
1

An Experimental Distributed Framework for
Distributed Simultaneous Localization and Mapping

Ruwan Gamage, Mihran Tuceryan Department of Computer and Information Science
Indiana University - Purdue University - Indianapolis

Indianapolis, Indiana 46202
Email: rjegodag@iupui.edu, tuceryan@iupui.edu

Abstract

Simultaneous Localization and Mapping (SLAM) is widely used in applications such as rescue, navigation,
semantic mapping, augmented reality and home entertainment applications. Most of these applications would do
better if multiple devices are used in a distributed setting. The distributed SLAM research would benefit if there is
a framework where the complexities of network communication is already handled. In this paper we introduce such
framework utilizing open source Robot Operating System (ROS) and VirtualBox virtualization software. Furthermore,
we describe a way to measure communication statistics of the distributed SLAM system.

Keywords

Simultaneous Localization and Mapping, SLAM, Distributed SLAM, ROS

I. INTRODUCTION

The robotics community defines Simultaneous Localization and Mapping(SLAM) problem as an agent
creating a map of an unknown environment using sensors, while localizing itself in it. To localize the agent
properly, an accurate map is required. To generate an accurate map, localization has to be done properly.
Which means these two tasks have to be done simultaneously to benefit each other.

Many researchers investigated on how to use multiple agents to perform SLAM: called collaborative
or distributed SLAM. Distributed SLAM increases the robustness of SLAM process and makes it less
vulnerable for catastrophic failures. The main challenge in distributed SLAM is to share information between
agents with limited communication bandwidth.

In this paper we introduce an experimental distributed framework for distributed SLAM. We utilize many
aspects of already available free and open source Robot Operating System (ROS) [1][2]. The maturity of the
ROS communication system is a major factor for selecting ROS as our underlying communication platform.
Furthermore, a large number of robotics and related libraries are already supported in ROS, meaning our
framework would attract many researchers.

During the experimentation stage, we implement distributed system in virtual machines. In our work we
used VirtualBox virtualisation software [3], given it suited most of the network requirements to simulate a
distributed framework. To test our framework we used the LSD-SLAM implementation by Engel et al. [4].

This paper is organized as follows. First, in section II we discuss related work. Next, in section III
we introduce how to adopt our framework for a distributed SLAM environment. Finally in section IV we
provide conclusion and what we would do with this framework in the future.

II. RELATED WORK

An Extended Kalman Filter based SLAM Solution (EKF-SLAM) was first introduced in a seminal
paper by Smith et al. [5]. Since then, many contributed using algorithms based on Monte Carlo Sampling
(FastSLAM) [6] & Unscented Kalman Filter based approach (UKF-SLAM)[7], etc.

This paper was accepted and appeared in:R. Gamage and M. Tuceryan, ”An experimental distributed framework for distributed Simultaneous
Localization and Mapping,” 2016 IEEE International Conference on Electro Information Technology (EIT), Grand Forks, ND, 2016, pp. 0665-
0667. doi: 10.1109/EIT.2016.7535318 c©2016 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/81634455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/EIT.2016.7535318


2

Davison et al. [8] introduced a VisualSLAM method of capturing the path of a freely moving camera (6
Degrees of Freedom — DoF), while generating a sparse map. The method was called Monocular Visual
SLAM (MonoSLAM). A more robust MonoSLAM method called Parallel Tracking and Mapping (PTAM)
was introduced by Klein et al. in [9]. Recent MonoSLAM contributions such as DTAM by Newcombe et
al. in [10] and LSD-SLAM by Engel et al. [4], utilize image pixel intensities directly, and generate dense
or semi-dense maps of the environment.

To handle a distributed SLAM environment consisting of multiple agents, a naive brute-force method
is to communicate all sensor observations and map updates between each and every agent. However,
the bandwidth and computational resources available for an agent are typically limited. Furthermore, the
distributed network is subject to failures of nodes and links. So it is required to come up with an intelligent
approach to cope with these challenges. Cunningham et al. in [11][12] formulates the distributed SLAM
problem using a graphical model. In their fully decentralized system, each agent maintains a consistent
local map augmented with information shared in a neighborhood of agents. In the system proposed in [13],
local feature matches are propagated through the low-bandwidth communication network. This method
helps agents to find global correspondences with other agents with no direct connections.Work done in [14]
discusses about most informative features to transmit, to reduce bandwidth requirements.

The distributed tracking system (DTS) by Joshi et al. [15] and its enhancement by Rybarczyk et al. [16]
[17] describe an efficient distributed tracking infrastructure for indoor usages. Their design is capable of
communicating and fuse tracking results from multiple cameras within the system. They utilize a discovery
service to locate camera services.

III. METHODOLOGY

Our experimental distributed framework consists of multiple nodes and a communication network. Robot
Operating System[2] is used as the underlying platform for nodes and communication network of the
distributed framework. For virtualization we used VirtualBox[3] virtualisation software. Furthermore, an
existing SLAM implementation for ROS, LSD-SLAM [4], is used to test our framework.

A. Robot Operating System
A node in ROS is responsible of performing computations. ROS also provides a message passing

communication framework between nodes. A single project could consist of multiple ROS nodes. For
example, there could be a node to acquire sensor data, a second node to process it, and another to visualize
the results.

In its communication framework, ROS provides named communication buses called topics. Multiple
nodes can publish messages to a topic while multiple subscribed nodes could receive them. Based on the
requirement, ROS could either use UDP or TCP for message passing. In addition to that ROS allows remote
procedure calls (RPC) between nodes. These are called ROS services. During a service call, a node sends
a request message and waits for a response.

ROS consists a master server to list all available topics of a system. After identifying providers and
subscribers of a topic by communicating with master server, ROS nodes can communicate with each other
via topics.

B. LSD-SLAM based monocular visual SLAM system
To test our framework we have used a modified version of semi-dense SLAM implementation for ROS,

called LSD-SLAM, found in the work by Engel et al. [4][18].
LSD-SLAM implementation contain two nodes. the first lsd slam core node receives camera frames

via ROS topic /image. The lsd slam core node generate keyframes and a pose graph after performing its
SLAM operation. Results are made available via ROS topics /lsd slam/graph, /lsd slam/keyframes
and /lsd slam/liveframes. The second node lsd slam viewer node displays resultant point cloud by
listening to these topics.



3

Fig. 1: Communication network using 2 types of network interfaces.

C. The framework: Network configuration
The distributed framework needs to support free flow of information between nodes. For that, we

configured virtual machines with the options provided by VirtualBox virtualisation software.
As shown in Figure1, each virtual machines are configured to contain 2 network adapters.
• First network adapter operates in host-only mode. This host-only network allows the host computer

to communicate with each virtual machine. Furthermore, it allows virtual machines to communicate
with each other. A static IP address is provided to each network interface.

• The second network adapter operate in NAT mode. This NAT network allows virtual machines to
access the network beyond the host machine.

D. The framework: SLAM Nodes
Each node is deployed in a VirtualBox virtual machine having Ubuntu as the operating system. The

lsd slam core node is deployed in each virtual machine. Each machine is given a unique host name as
well.

ROS master is deployed in the host machine where all virtual machines are deployed. To use remote
ROS master, each virtual machine has to be configured as shown in listing 1. In this example, the host
machine has a virtual network adapter configured with IP address 10.1.2.2

Next lsd slam viewer node is deployed in the host machine and successfully received topic data
from each lsd slam core node deployed in different virtual machines. Furthermore, lsd slam viewer is
deployed in a virtual machine, and successfully received topic data from a lsd slam core node deployed
in a virtual machine.

E. Multiple instances of the same ROS node
For a distributed SLAM system containing multiple instances of a ROS node, we need to find a way to

uniquely identify each node’s topics. For example, LSD-SLAM core publishes messages to /lsd slam/graph
topic. If we have two instances, namely A and B, we would like to see these topics as /A/lsd slam/graph
and /B/lsd slam/graph. In this way, node A could listen to topic /B/lsd slam/graph and node B could
listen to topic /A/lsd slam/graph.

Fortunately, ROS provides a way to remap a topic to a different name. We use roslaunch, a tool designed
launch ROS nodes with a set of given parameters. roslaunch can read environment variables, hence we
set following environment variables before calling the roslaunch tool.



4

Listing 1: Setting up environment variables
export ROS_HOSTNAME=c3po
export ROS_IP=10.1.2.3
export ROS_MASTER_URI=http://10.1.2.2:11311
export LSD_SLAM_NODE=c3po
roslaunch lsd_slam.launch

We configure the lsd slam.launch file for topic remapping as shown in listing 2.

Listing 2: ROS node launch script
<launch>
<node pkg="lsd_slam_core"
type="live_slam"
name="slam_$(env LSD_SLAM_NODE)"
args="image:=/image_raw
camera_info:=/camera_info"
output="screen">
<remap from="/lsd_slam/graph"
to="/$(env LSD_SLAM_NODE)/graph" />
<remap from="/lsd_slam/keyframes"
to="/$(env LSD_SLAM_NODE)/keyframes" />

</node>
</launch>

Above launch file remap topics /lsd slam/graph & /lsd slam/keyframes/ to /c3po/graph & /c3po/keyframes
respectively. Now the node r2d2 can listen to the topic /c3po/graph and c3po can listen to the topic
/r2d2/graph.

F. The framework: Network Statistics
Distributed SLAM could easily reach the bandwidth limit of the network, specially, if nodes transfer

map data between each other for fusion. We could generate statistics of our system’s bandwidth utilization
and accordingly do necessary changes. Given each node’s output topics are now uniquely defined with its
name as a prefix, we use ROS Topic Statistics to generate statistics per node. In addition to that, topic
statistics could measure, number of dropped messages, mean & standard deviation of the age of messages,
and period of messages by all providers.

IV. CONCLUSION & FUTURE WORK

In conclusion we have developed an experimental framework for distributed SLAM. As a case study,
we have used the LSD-SLAM implementation to test our framework. We have tested different subscriber
and provider configurations and found our framework support data communication between nodes with
no issues. Similarly, one can adapt our proposed distributed framework for different distributed SLAM
implementations.

In future, we are going to use this framework to perform Distributed SLAM, where multiple agents
generate a single fused dense map of the environment.

REFERENCES

[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[2] Robot operating system. [Online]. Available: http://www.ros.org
[3] Virtualbox: An open source, general-purpose full virtualizer for x86 hardware. [Online]. Available: https://www.virtualbox.org/



5

[4] J. Engel, T. Schps, and D. Cremers, “Lsd-slam: Large-scale direct monocular slam,” in Computer Vision ECCV 2014, ser.
Lecture Notes in Computer Science. Springer International Publishing, 2014, vol. 8690, pp. 834–849. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-10605-2 54

[5] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relationships in robotics,” in Autonomous Robot Vehicles, I. Cox
and G. Wilfong, Eds. Springer New York, 1990, pp. 167–193. [Online]. Available: http://dx.doi.org/10.1007/978-1-4613-8997-2 14

[6] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam: A factored solution to the simultaneous localization and mapping
problem,” in In Proceedings of the AAAI National Conference on Artificial Intelligence. AAAI, 2002, pp. 593–598.

[7] R. Martinez-Cantin and J. Castellanos, “Unscented slam for large-scale outdoor environments,” in Intelligent Robots and Systems, 2005.
(IROS 2005). 2005 IEEE/RSJ International Conference on, Aug 2005, pp. 3427–3432.

[8] A. Davison, I. Reid, N. Molton, and O. Stasse, “Monoslam: Real-time single camera slam,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 29, no. 6, pp. 1052–1067, June 2007.

[9] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in Mixed and Augmented Reality, 2007. ISMAR 2007.
6th IEEE and ACM International Symposium on, Nov 2007, pp. 225–234.

[10] R. A. Newcombe, S. Lovegrove, and A. Davison, “Dtam: Dense tracking and mapping in real-time,” in Computer Vision (ICCV), 2011
IEEE International Conference on, Nov 2011, pp. 2320–2327.

[11] A. Cunningham, M. Paluri, and F. Dellaert, “Ddf-sam: Fully distributed slam using constrained factor graphs,” in Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE, 2010, pp. 3025–3030.

[12] A. Cunningham, V. Indelman, and F. Dellaert, “Ddf-sam 2.0: Consistent distributed smoothing and mapping,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on. IEEE, 2013, pp. 5220–5227.

[13] E. Montijano, R. Aragues, and C. Sagues, “Distributed data association in robotic networks with cameras and limited communications,”
Robotics, IEEE Transactions on, vol. 29, no. 6, pp. 1408–1423, 2013.

[14] E. Nettleton, S. Thrun, H. Durrant-Whyte, and S. Sukkarieh, “Decentralised slam with low-bandwidth communication for teams of
vehicles,” in Field and Service Robotics. Springer, 2006, pp. 179–188.

[15] G. G. Joshi, R. R. Raje, and M. Tuceryan, “Designing and experimenting with a distributed tracking system,” in Parallel and Distributed
Systems, 2008. ICPADS ’08. 14th IEEE International Conference on, Dec 2008, pp. 64–71.

[16] R. Rybarczyk, R. Raje, and M. Tuceryan, “edots 2.0: A pervasive indoor tracking system.”
[17] R. T. Rybarczyk, “E-dts 2.0: A next-generation of a distributed tracking system,” Master’s thesis, Purdue University, 7 2010.
[18] J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odometry for a monocular camera,” in Computer Vision (ICCV), 2013 IEEE

International Conference on, Dec 2013, pp. 1449–1456.


