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Abstract

Background—The transmural distribution of apamin-sensitive small conductance Ca2+-

activated K+ (SK) current (IKAS) in failing human ventricles remains unclear.

Methods and Results—We optically mapped left ventricular wedge preparations from 12 

failing native hearts and 2 rejected cardiac allografts explanted during transplant surgery. We 

determined transmural action potential duration (APD) before and after 100 nM apamin 

administration in all wedges and after sequential administration of apamin, chromanol and E4031 

in 4 wedges. Apamin prolonged APD from 363 ms [95% confidence interval (CI), 341 to 385] to 

409 [CI, 385 to 434] (p<0.001) in all hearts, and reduced the transmural conduction velocity from 

36 cm/s [CI, 30 to 42] to 32 cm/s [CI, 27 to 37] (p=0.001) in 12 native failing hearts at 1000 ms 

pacing cycle length (PCL). The percent APD prolongation is negatively correlated with baseline 

APD and positively correlated with PCL. Only one wedge had M-cell islands. The percentages of 

APD prolongation in the last 4 hearts at 2000 ms PCL after apamin, chromanol and E4031 were 

9.1% [CI, 3.9 to 14.2], 17.3% [CI, 3.1 to 31.5] and 35.9% [CI, 15.7 to 56.1], respectively. 
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Immunohistochemical staining of subtype 2 of SK (SK2) protein showed increased expression in 

intercalated discs of myocytes.

Conclusions—SK current is important in the transmural repolarization in failing human 

ventricles. The magnitude of IKAS is positively correlated with the PCL, but negatively correlated 

with APD when PCL is fixed. There is abundant SK2 protein in the intercalated discs of 

myocytes.
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Heart failure is associated with significant electrophysiological remodeling that includes a 

downregulation of most potassium currents and upregulation of late sodium and sodium–

calcium exchange currents.1, 2 These changes reduce the repolarization reserve, prolong the 

action potential duration (APD) and facilitate the development of ventricular arrhythmias 

and sudden cardiac death. Small conductance Ca2+-activated K+ (SK) current is a 

repolarization current responsible for afterhyperpolarization of the neurons in the central 

nervous system.3–5 Apamin, a western honey bee toxin, is a specific blocker of the SK 

current in both neurons and cardiac myocytes.5, 6 Studies from Chiamvimonvat’s laboratory 

showed that apamin-sensitive SK current (IKAS) is important in the repolarization of atrial 

myocytes and play important roles in automaticity and atrioventricular node conduction.7–9 

While IKAS contributes little in the normal ventricles at normal pacing rates,10 IKAS 

blockade by apamin can prolong APD in normal ventricles when the pacing rate is slow.11 

More importantly, IKAS is significantly upregulated in myocardial infarction and heart 

failure. The effects of apamin on APD in diseased hearts also increase with increased pacing 

cycle length (PCL).11–17 In addition, blocking IKAS at long PCL may result in spontaneous 

afterdepolarization, torsades de pointes ventricular arrhythmia and ventricular fibrillation in 

Langendorff-perfused rabbit hearts.11 While IKAS is upregulated in diseased hearts, the 

magnitude of upregulation may vary transmurally. In both failing human and rabbit 

ventricles, cells isolated from the midmyocardium had lower IKAS density than the cells 

isolated from the epicardial layer.12, 13 However, because only a small number of cells were 

studied, the transmural distribution of IKAS remains unclear. We sought to determine the 

transmural distribution of IKAS in failing human ventricles by studying the wedge 

preparation using optical mapping techniques. We also identified the comparative 

importance of IKAS, rapid delayed rectifier potassium current (IKr) and slow delayed rectifier 

potassium current (IKs) in human ventricles by sequential application of specific blockers. 

The results are used to test the hypothesis that IKAS inhibition by apamin has significant 

effects on transmural repolarization in diseased human ventricles.

Methods

This research project is approved by the Institutional Review Board of the Indiana 

University Purdue University Indianapolis. We consented and studied 20 consecutive 

transplant recipients who underwent orthotopic cardiac transplantation. Among them 6 were 

excluded due to poor signal quality. The remaining 14 were successfully studied (Table 1). 

A detailed method section can be found in the Data Supplement.
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Human Wedge Preparation

A wedge of the left ventricular free wall was perfused by an isolated left circumflex 

coronary artery branch (Figure 1A). The wedge was Langendorff perfused with 37°C 

oxygenated Tyrode’s solution. Two pseudo-ECG electrodes were mounted on the opposite 

sides of the wedge. A bipolar pacing lead was hooked onto the endocardium.

Imaging system: single and dual mapping

For the first 10 hearts, a single camera was used for mapping the action potential (AP). We 

used blebbistatin to arrest contraction and di-4ANEPPS for voltage mapping. The last 4 

hearts were stained with Rhod-2 AM andRH237 for simultaneous AP and calcium transient 

(CaT) mapping (Figure 1B). The activation time, APD, calcium transient duration (CaTD) 

and the difference between CaTD and APD (CaTD-APD) of the mapped region were 

examined (Figure 1C).

Experimental Protocol

Protocol I: the effects of apamin on APD—To determine APD restitution curve 

before and after apamin, 10 preparations were sequentially paced (in ms) at 2000, 1500, 

1000, 900, 800, 700, 600 and 500 PCL. We then determined the steep portion of the APD 

restitution curve by reducing the PCL from 400 ms in 10 ms steps until loss of capture. 

Apamin (100 nM) was then added into the perfusate and the protocol was repeated 30 min 

later.

Protocol II: The comparative importance of IKAS, IKs and IKr in ventricular 
repolarization—The last 4 hearts were first treated with apamin, followed by chromanol 

(50 μM) and then E4031 (100 nM). Optical mapping was performed at baseline and after 

each drug was administered.

Data processing

The subepicardium and subendocardium were defined by 20% of transmural thickness from 

epicardium and endocardium, respectively. The remaining 60% of tissue was the 

midmyocardium. To determine the APD, we selected for analysis four pixels in each layer 

and obtained a mean of these four pixels to represent the APD of that layer. Transmural 

APD or CaTD gradients were defined by the difference of APD or CaTD, respectively, 

between endocardial and epicardial layers.18 M cell islands were defined as the regions that 

had longer APD than neighboring myocardium surrounded by a local APD gradient > 15 

ms/mm.18 Transmural conduction time was defined by the difference of activation time 

between the earliest activation site at endocardium and the corresponding epicardial site. 

The transmural conduction velocity (TCV) (cm/s) was calculated by the ratio between the 

transmural thickness and the transmural conduction time. The magnitude of drug-induced 

changes of APD (% APD prolongation) was calculated by the ratio between the ΔAPD 

(post-drug APD – pre-drug APD) and the baseline APD.

Immunohistochemical staining was performed using an anti-SK2 rabbit polyclonal antibody 

(Sigma-Aldrich, St. Louis, MO).19
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Western blot analysis

Human heart membrane microsomes were obtained by homogenization and centrifugation. 

Sixty μg of microsomes were subjected to a SDS-polyacrylamide gel electrophoresis and 

transferred to a nitrocellulose membrane. The blot was probed with a rabbit anti-SK2 

polyclonal antibody (Sigma, 1:1000). Antibody-bound protein bands were visualized with 

125I-protein A followed by autoradiography.

Statistical analysis

Results are summarized as mean and 95% confidence interval (CI). Pearson correlation 

coefficient was used to assess the association between baseline APD and APD prolongation. 

The paired T tests were used to compare APD, maximal restitution slope and conduction 

velocity between baseline and post-apamin. Bonferroni method was used to adjust for 

multiple comparisons. Fisher’s exact test was used to compare the occurrence of electrical 

alternans between baseline and post-apamin. The CI of the proportion of the wedges with 

strong intercalated discs SK2 staining is based on the exact binomial distribution. Linear 

mixed-effects models were used to estimate the effects of different drugs averaged over PCL 

by treating patients as the random effect. All statistical analyses were performed in IBM 

SPSS Statistics V21 and SAS 9.3 (SAS Inc., Cary, NC). A two sided p≤0.05 was considered 

statistically significant.

Results

Effects of apamin on transmural APD

Apamin significantly altered transmural APD distribution. Figure 2A and 2B show typical 

APD maps before and after apamin, respectively, at 2000 ms PCL. Apamin administration 

prolonged APD throughout the mapped region, as shown by the changing colors between 

Figures 2A and 2B. Figure 2C shows a significant negative correlation between the 

magnitudes of APD prolongation and baseline APD. The average correlation coefficient 

between the magnitudes of APD prolongation and baseline APD in all wedges studied was 

−0.35 [CI, −0.14 to −0.57] by Pearson correlation (r) when PCL was fixed at 2000 ms.

In addition to baseline APD, PCL was also an important factor that determines the 

magnitudes of APD prolongation after apamin. Figure 3A shows the effects of PCL on APD 

at 3 different myocardial layers of the wedge preparation, both at baseline and after apamin. 

Apamin prolonged APD significantly in all three layers at all PCL (p value <0.05 for all). 

Among them, 22 out of 27 comparisons remained significant after Bonferroni adjustment. 

The ΔAPD progressively increased with lengthening of PCL. Figure 3B shows the APD 

restitution curve before and after apamin. Apamin administration increased the maximal 

slope of APD restitution curve in the subendocardium from 0.49 [CI, 0.41 to 0.57] to 0.58 

[CI, 0.48 to 0.69] (p=0.033), but did not significantly change the maximal restitution slope 

of the subepicardium (from 0.44 [CI, 0.35 to 0.54] to 0.54 [CI, 0.40 to 0.48], p=0.058) or 

midmyocardium (from 0.42 [CI, 0.35 to 0.50] to 0.51 [CI, 0.41 to 0.61], p=0.096). The 

observations of electrical alternans when approaching effective refractory periods (ERP) 

were 6 out of 10 before apamin (ERP=304 ms [CI, 262 to 346]) and 9 out of 10 after apamin 

(ERP=312 ms [CI 262 to 361]) (p=0.4). No arrhythmia was induced with programmed 
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stimulation before and after apamin in the first two wedges studied. Figure 3C plots the 

magnitudes of APD prolongation against the PCL at all 3 layers of the myocardium. There 

was a positive correlation between the magnitudes of APD prolongation and the PCL at all 3 

layers (subendocardium, r=0.423 [CI, 0.131 to 0.521]; midmyocardium, r=0.338 [CI, 0.094 

to 0.624]; subepicardium, r=0.437 [CI, 0.243 to 0.622]). The differences of APD between 

subepicardium and subendocardium (the transmural APD gradient) at 1000 ms PCL was 33 

ms [CI, 21 to 44] at baseline and 42 ms [CI, 21 to 62] after apamin (p=0.244). The 

transmural APD gradient correlated positively with PCL both at baseline (r=0.816, p=0.007) 

and after apamin (r=0.870, p=0.002) (supplement Figure 1).

There were large individual variations of APD responses to apamin (Figure 3D). A possible 

mechanism for differential APD response to apamin is pre-transplant treatment with 

amiodarone, a known inhibitor of IKAS.20 However, the magnitudes of APD prolongation in 

patients treated with amiodarone (11.6% [CI, −0.5 to 23.7], N=7) did not differ significantly 

from patients not treated with amiodarone (14.9% [CI, −8.2 to 38.0], N=7) at 1000 ms PCL 

(p=0.55). None of the other clinical characteristics was significantly associated with APD 

prolongation induced by apamin (See Supplement Results).

M cell islands

We applied the criteria used by Glukhov et al18 to identify the M cell islands in the 

transmural wedge preparation. Only 1 of 14 wedges had any M cell island according to 

those criteria. In that wedge, there were two M cell islands at subendocardial and 

subepicardial regions, respectively, at 2000 ms PCL (red arrows, Figure 4A). The M cell 

islands had long APD and were surrounded by steep APD gradients. APD in M cell islands 

averaged 457 ms [CI, 454 to 460], which was increased to 496 ms [95% CI, 495 to 498] 

after apamin (p<0.001). Figure 4B shows a map of ΔAPD. The M cell islands (red arrows) 

show less APD prolongation (smaller ΔAPD) than the surrounding tissues. Figure 4C shows 

the local APD gradients of the mapped area. Red arrows point to the M cell islands 

surrounded by large local APD gradients. Figure 4D shows the %APD prolongation as a 

function of baseline APD. There was a highly heterogeneous prolongation of APD when the 

baseline APD was < 440 ms, with a magnitude of APD prolongation as high as 70%. In 

contrast, the M cell islands (data points within the red circle) had APD prolongation of only 

0–20%, consistent with the observation that the magnitudes of APD prolongation are 

reversely correlated with the baseline APD. No other wedges had M cell islands detected. 

When paced at fast rates approaching the ERP, APD alternans was not observed at baseline 

(Figure 4E, data from points #1 and #2 in Figure 4A). However, after apamin 

administration, APD alternans was observed in M cell islands (Figure 4F, point #2 in Figure 

4A) but not in the tissues outside M cell islands (Figure 4F, point #1 in Figure 4A). The 

maximal slope of APD restitution curve increased from 0.75 to 1.25 after apamin (Figure 4G 

and 4H).

Effects of Apamin on Transmural Conduction Velocity

There was no difference of transmural conduction velocity (TCV) between baseline (37.0 

cm/s [CI, 31.5 to 42.3]) and after apamin (35.3 cm/s [CI, 28.8 to 41.8]) (p=0.333) at 1000 

ms PCL. Two wedge preparations from rejected cardiac allografts (patients #8 and #14) 
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showed accelerated TCV after apamin (from 43.5 cm/s at baseline [CI, 43.2 to 43.8] to 55.0 

cm/s [CI, 54.3 to 55.8]; statistical analysis was not performed due to limited case number). 

In the remaining 12 patients, the TCV reduced from 35.9 cm/s [CI, 30.1 to 41.7] to 32.0 

cm/s [CI, 26.8 to 37.2] (p=0.001). Figure 5A shows the representative activation maps (left 

panel) and AP tracings (right panel) before and after apamin at 1000 ms PCL. Figure 5B 

demonstrates the change of TCV at all PCL after the administration of apamin in wedges 

from either all 14 wedges together (green and blue lines) or from only the 12 wedges from 

native failing hearts (black and red lines). The reductions of TCV after apamin were 

significant for the latter group over all PCLs (red line). There was no significant difference 

between patients with ischemic or non-ischemic cardiomyopathy (−4.0 cm/s [CI, −6.2 to 

−1.8], n=4 vs. −0.8 cm/s [CI, −3.8 to 2.2], n=10; p=0.132), or in patients with normal 

(>55%) or abnormal ejection fraction (0.7 cm/s [CI, −7.8 to 9.2], n=3 vs. −2.4 cm/s [CI, 

−4.6 to −0.1], n=11; p=0.553).

Figure 5C shows the average of local conduction velocity (LCV) in three muscle layers at 

1000 ms PCL. There were significant differences among the three muscle layers (p<0.001 

when n=14, p=0.004 when n=12). The LCV was the fastest at the subendocardium and the 

slowest at the midmyocardium. After applying apamin, a significant reduction of LCV was 

observed at the subendocardium in native hearts (N=12); from 66.9 [CI, 49.4 to 84.3] to 51.7 

cm/s [CI, 34.7 to 68.8] (p=0.011). No significant change of LCV was noted in other two 

layers.

Immunohistochemical staining

Immunohistochemical staining of the ventricular myocytes showed strong staining of the 

SK2 protein in the intercalated discs between ventricular myocytes. Figures 5D and 5E are 

typical examples of the SK2 staining. Figure 5D shows that both the nerves and the 

myocardium were positively stained with the SK2 protein in patient #4. Figure 5E shows a 

magnified view of the SK2 proteins in the intercalated discs in patient #5. Strong SK2 

staining was found in the intercalated discs of all 14 wedges studied (100% [CI, 80–100]).

The importance of IKAS relative to IKs, IKr

The effects of apamin, chromanol and E4031 on APD prolongation were studied 

sequentially in wedges from patients #11–14. Figure 6A shows representative AP tracings 

from patient #12 at baseline and after sequential administration of apamin, chromanol and 

E4031. In these 4 hearts, APDs was significantly prolonged by chromanol (p<0.001) and 

E4031 (p<0.001) when APD prolongation is averaged over different PCL levels. At 2000 ms 

PCL (Figure 6B), apamin prolonged APD by 9.1% [CI, 3.9 to 14.2], resulting in an increase 

of APD from 375 ms [CI, 342 to 407] to 409 ms [CI, 366 to 451] (p=0.043). APD increased 

further by 17.3% [CI, 3.1 to 31.5] to 483 ms [CI, 384 to 581] after addition of chromanol 

(p=0.111). It further increased by 35.9% [CI, 15.7 to 56.1] to 659 ms [CI, 489 to 828] after 

addition of E4031 (p=0.04). There were no differences of the magnitudes of APD 

prolongation among the 3 myocardial layers after the treatment with apamin, chromanol 

(Figure 6D) or E4031 (Figure 6E). However, the transmural gradient of APD is reduced by 

E4031 (p=0.0287, including data from all PCL) (Figure 6C). The maximal slope of APD 

restitution curve of subepicardium, midmyocardium and subendocardium after chromanol 
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are 0.50 [95% CI, 0.33 to 0.67], 0.56 [95% CI, 0.40 to 0.71] and 0.49 [95% CI, 0.37 to 

0.61], respectively (p=0.181, p=0.141 and p=0.588, respectively, compared with post 

apamin); and after E4031 were 1.01 [95% CI, 0.36 to 1.67], 0.90 [95% CI, 0.48 to 1.32] and 

0.76 [95% CI, 0.56 to 0.97], respectively (p=0.212, p=0.139 and p=0.049, respectively, 

compared with post chromanol).

Figure 7A shows representative calcium transient (CaT) tracings and calcium transient 

duration (CaTD) maps at baseline and after apamin, chromanol and E4031 from patient #12. 

Apamin did not significantly prolong the CaTD (p=0.502), but chromanol (p=0.042) and 

E4031 (p<0.001) did. The CaTD prolongation was PCL dependent and was different among 

drugs. As shown in Figure 7B, the effect of apamin could be observed at long PCLs, while 

the effect of chromanol was mainly observed at short PCL. There was no significant 

prolongation of CaTD by apamin in any of the three layers. However, the prolongation of 

CaTD by chromanol was significant at the subepicardium (p=0.009). E4031 significantly 

prolonged CaTD in all three layers of the transmural surface, with larger effects at the 

subepicardium (p=0.004) and midmyocardium (p=0.013) compared to the subendocardium. 

Therefore, the transmural gradient of CaTD (i.e., CaTD between subendocardium and 

subepicardium) was eliminated after E4031 (p=0.201) (Figure 7C).

IKAS and the differences between APD and CaTD

Figure 8A shows the effects of apamin on the difference between CaTD and APD (CaTD-

APD) at the subepicardium and the subendocardium from patient #14. Consistent with that 

reported by Lou et al,21 there was a larger CaTD-APD at the subendocardium than at the 

subepicardium or midmyocardium (p<0.001 for both comparisons). This difference 

increased with increasing PCL (Figure 8B). Apamin significantly (p<0.001) reduced the 

CaTD-APD on the subendocardium but not in the midmyocardium (p=0.141) or the 

subepicardium (p=0.146) (Figure 8C). This differential effect resulted in a reduction, but not 

elimination, of the differences of CaTD-APD between subendocardium and the other two 

layers (p=0.078 compared to midmyocardium; p<0.001 compared to subepicardium). CaTD-

APD is further reduced by chromanol (p<0.001,) and E4031 (p<0.001), resulting in the 

elimination of the differential CaTD-APD among the three layers after all 3 drugs were 

given (supplement Figures 2 and 3).

Discussion

The major finding of our study is that IKAS is important in the repolarization of the 

transmural wedge preparation in failing human ventricles. The conclusion is strengthened by 

our recent study that showed apamin is a highly specific SK current blocker.6 The 

magnitude of IKAS was positively correlated with the PCL. At a fixed PCL, the magnitude of 

IKAS was negatively correlated with APD. The M cells (which have long APDs) appear to 

have less IKAS upregulation than the non-M cells. We also found that there was an abundant 

expression of SK2 proteins in the intercalated discs, and that apamin may reduce transmural 

conduction velocity in native failing ventricles but not in the ventricles removed due to 

rejection. Finally, the presence of IKAS may be in part responsible for the differences 

between CaTD and APD in the failing ventricles.
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IKAS and transmural repolarization in human wedge preparation

We showed that the transmural APD significantly and heterogeneously prolonged when 

exposed to apamin. However, previous studies from our laboratory found a lower IKAS 

density in cells isolated from the midmyocardial layer than that isolated from subepicardial 

and subendocardial layers in failing rabbit and human ventricles.12, 13 In comparison, we 

found no statistically significant differences of apamin-induced APD changes among the 

three myocardial layers. These findings may be explained by the effects of electrical 

coupling which may reduce the transmural repolarization heterogeneity in the wedge 

preparation compared with that in isolated myocytes.2223

The APD and the PCL

At a fixed PCL, there is a clear negative correlation between the magnitude of apamin-

induced APD prolongation and the baseline APD. These findings imply that IKAS 

upregulation is important in maintaining transmural repolarization reserve. Failure to 

upregulate IKAS is a characteristic finding in cells with long APDs. If the APD is the only 

determinant for apamin-responsiveness, then conditions that typically lengthen APD (such 

as long PCL) should be associated with reduced apamin responsiveness. However, 

lengthening PCL in the human wedge preparation significantly increased the magnitude of 

APD prolongation induced by apamin. The K channel blockers (class III antiarrhythmic 

agents) are known to exhibit reverse use-dependence, resulting in greater prolongation of 

APD at longer PCL.24 Apamin may have similar reverse use-dependent properties, resulting 

in greater effects on IKAS at longer PCL. Reverse use-dependence may also underlie that 

proarrhythmic effects of apamin at slow ventricular rates.11

IKAS and the characteristics of M cells

The M cell is distinguished from other ventricular myocytes based on the ability of its APD 

to prolong prominently at slower rates.25 Distinct M cell islands are observed frequently in 

the wedge preparation from normal ventricles but rarely in failing ventricles.18, 21 Consistent 

with these previous studies, we found only two M cell islands in one of the 14 wedges 

studied. In that M cell island, APD is long and the magnitude of APD prolongation induced 

by apamin is small. These data suggest that M cells in failing ventricles are characterized by 

a deficiency in IKAS as compared with most of the surrounding myocytes. When the PCL is 

lengthened, the repolarization reserve of non-M cells is maintained in part by a robust 

upregulation of the IKAS. However, because of the relative deficiencies of the IKAS in the M 

cell island, it was not able to maintain its repolarization reserve thus prolonged its APD 

more prominently during the slow than the fast rates. This phenomenon (the ability for APD 

to prolong prominently at slower rates) fulfills the traditional definition of M cell.25

While M cell islands have longer APD than the surrounding tissues, no electrical alternans 

were observed when PCL shortened to near ERP. After apamin administration, the M cell 

island and the surrounding tissues had similar APD. However, rapid pacing induced electric 

alternans only in the M cell island. While IKAS is not prominently upregulated in M cell 

islands, it may still play an important role in preventing alternans at fast rates. IKAS blockade 

may have larger effects on the repolarization reserve of the M cell islands than the 

surrounding myocardium.
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IKAS and transmural conduction

We found that apamin prolonged transmural conduction time in 12 wedges isolated from 

failing native hearts. There is also abundant SK2 protein in the intercalated discs, suggesting 

that apamin may significantly interfere with the intercalated disc function. Previous studies 

have shown that SK2 channel knockout in a murine model results in prolongation of the PR 

interval and that the SK2Δ
/
Δ mice may develop complete atrioventricular block.9 Studies in 

mice resistance arteries showed that electrical conduction along the endothelium of the 

arteries is also controlled in part by the SK2.26 Other investigators showed that 

overexpression of SK3 in murine model is associated with reduced ventricular conduction 

velocity, bradyarrhythmias, heart block and sudden death.27 These findings imply a possible 

role of SK channels in cell-cell signal transduction and conduction.

The relative importance of IKAS, IKs and IKr

The magnitude of APD prolongation after apamin varies greatly from site to site. In some 

locations, the APD could prolong up to 70% after apamin administration. Previous reports 

about the IKs and IKr in transmural preparations were mostly performed in canine models 

using pharmacological interventions. Because E4031 and chromanol 293 also blocks the SK 

current,20 APD prolongation in those studies may be in part due to the inhibition of the SK 

currents. In our study, we gave apamin first, followed by chromanol 293 and E4031. Our 

results did not show different magnitudes of APD prolongation by potassium channel 

blockers in different myocardial layers.

IKAS and CaTD-APD

We found an increased CaTD-APD in the transmural wedge. The magnitudes of CaTD-APD 

are the largest at the subendocardium, a finding consistent with earlier studies in failing 

human hearts.21 The CaTD-APD was reduced by apamin, suggesting that IKAS upregulation 

in failing ventricles is in part responsible for differences between CaTD and APD.

The SK subtypes

The SK channels have 3 different subtypes: SK1, SK2 and SK3.28 Among them, SK2 is 

most sensitive to apamin, followed by SK3 and SK1, respectively.29 SK1 sensitivity to 

apamin is species-specific and that SK1 in humans is apamin sensitive.29 Because we used 

high dose (100 nM) of apamin in this study, all 3 subtypes of SK currents should have been 

blocked during the drug administration. However, it is not possible to determine the relative 

importance of these 3 subtypes of SK currents in the conduction and repolarization in the 

human transmural wedge preparations. Our earlier study had detected only a small amount 

of SK3 protein in the normal and failing human ventricles.13 In contrast, the SK2 protein is 

abundantly present in failing human ventricles and is most sensitive to apamin. Therefore, 

we have focused our study on SK2.

Limitations

There are several limitations in this study. First, the etiology and duration of disease varied 

greatly among the subjects of the study. Nine of them had received ventricular assist device 

before receiving transplantation. Four of them received cardiac resynchronization therapy 
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before transplantation. Both forms of therapy may result in ventricular remodeling. Second, 

we attempted to map 20 hearts between January 2012 and December 2013, but only 14 

hearts were successfully studied and included in this analysis. Various technical issues might 

have been involved in failed mapping studies, but it remains possible that the hearts not 

successfully mapped may have different SK currents than the hearts successfully mapped. 

Third, the number of patients in the second part of the experiment is small, although the 

results among these 4 ventricles consistently showed that all 3 major K channels played 

important roles in ventricular repolarization. One of the 4 hearts was from a patient with 

cardiac allograft rejection. The number of patients is too small to determine if that heart had 

a different drug response than the other 3 hearts. Fourth, we only studied left ventricular free 

wall, perfused by a branch of left circumflex artery. Therefore, the finding in this study may 

not apply to other regions of the ventricles. Finally, the photosensitive dyes and the 

electromechanical uncoupler may have electrophysiological effects that affect the results of 

the study.

Conclusions

We conclude that IKAS is important in the transmural repolarization in diseased human 

ventricles. The magnitude of IKAS is positively correlated with the PCL, but negatively 

correlated with APD when PCL is fixed. There is abundant SK2 protein in the intercalated 

discs. These results suggest that SK current may be an important new target for 

antiarrhythmic drug therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Optical mapping of the left ventricular wedge preparation. A, A typical left ventricular 

wedge preparation. A blue square marks the mapped area (camera field of view). B, 
Representative action potential and intracellular calcium transient tracings. C, Examples of 

2-dimensional distribution of the activation time, APD, CaTD and CaTD-APD. Data came 

from patient #14 at 2000 ms PCL. APD, action potential duration; CaTD, calcium transient 

duration; CaTD-APD, difference between CaTD and APD; Endo, subendocardial layer; Epi, 

subepicardial layer; Mid, midmyocardial layer.
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Figure 2. 
Effects of apamin on transmural APD distribution. The wedge was from patient #10 and was 

paced at 2000 ms from the endocardium. A, APD distribution at baseline. B, APD 

distribution after apamin. C, X-Y scatter plots showing that the magnitude of APD 

prolongation is negatively correlated with the baseline APD. r represents Pearson correlation 

coefficient.
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Figure 3. 
Effects of apamin on APD prolongation over different PCLs and transmural locations. A, 
Transmural APD distribution at baseline and after apamin. APD after apamin (dotted lines) 

at each layer was significantly (p<0.05) longer than APD at baseline (solid lines) in the same 

layer. B, Restitution curves at baseline and after apamin. C, APD prolongation at different 

PCLs. D, APD prolongation in each patient. Bars represent 95% confidence interval. DI, 

diastolic interval; Endo, subendocardial layer; Epi, subepicardial layer; Mid, midmyocardial 

layer.
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Figure 4. 
Effects of apamin in M cell islands (patient #4). A, APD distribution map at baseline at 2000 

ms PCL. Red arrows indicate M cell islands. Black arrows indicate the locations where the 

representative tracings shown in (E) were censored. B, ΔAPD map showing the difference of 

APD between baseline and after apamin at 2000 ms PCL. C, Local APD gradient map at 

baseline at 2000 ms PCL. D, X-Y scatter plots showing APD prolongation vs. baseline 

APD. The red circle highlights regions with the longest baseline APD (M cells) at 2000 ms 

PCL. E, Action potential tracings at baseline at regions #1 and #2 in (A) at 300 ms PCL. F, 
Action potential tracings of the same pixels as figure E after apamin at 260 ms PCL. G, 
Restitution curves of three muscle layers and M cell islands. H, Restitution curves after 

apamin. DI, diastolic interval; Endo, subendocardial layer; Epi, subepicardial layer; Mid, 

midmyocardial layer.
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Figure 5. 
Effects of apamin on transmural conduction velocity. A, Representative activation maps at 

baseline and after apamin from patient #5 at 1000 ms PCL. Red and blue dots mark the sites 

where representatives on the right were obtained. B, The estimated transmural conduction 

velocity restitution curves of all wedges (n=14) and wedges from native hearts (n=12) 

before and after apamin. *p<0.05 between baseline and apamin in native hearts (n=12). C, 
The conduction velocity at three different myocardial layers of all hearts (upper panel) and 

native hearts (lower panel) at 1000 ms PCL. D, Immunohistochemical staining of SK2 

protein from endocardial layer of wedge #5. The staining was strongest at the nerve (N) and 

the intercalated discs of the myocytes (200x magnification). E, Immunohistochemical 
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staining of SK2 protein from the epicardial layer in wedge #4 (400x magnification). Bars 

represent 95% confidence interval. Endo, subendocardial layer; Epi, subepicardial layer; 

Mid, midmyocardial layer.
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Figure 6. 
Comparison of APD prolongation by apamin, chromanol and E4031. A, Representative 

action potential tracings from patient #12 at baseline, after apamin, chromanol and E4031 at 

2000 ms PCL. B, The percentage of APD prolongation by apamin, chromanol and E4031. 

*p<0.05 comparing the effect of apamin and chromanol. †p<0.05 comparing the effect of 

chromanol and E4031. C, Transmural APD gradients at different PCL. D, Effects of 

chromanol on APD in three myocardial layers. E, Effects of E4031 on APD in three 

myocardial layers. Bars represent 95% confidence interval. Endo, subendocardial layer; Epi, 

subepicardial layer; Mid, midmyocardial layer.
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Figure 7. 
Effects of apamin, chromanol and E4031 on CaTD. A, Representative calcium transient 

tracings and CaTD maps from patient #12 at 2000 ms PCL at baseline and after sequential 

administration of apamin, chromanol and E4031. B, CaTD at different PCL. *p<0.05 

between baseline CaTD and that after apamin. †p<0.05 between after apamin and after 

chromanol. ‡p<0.05 between after chromanol and after E4031. C, transmural gradient of 

CaTD at different PCLs. Bars represent 95% confidence interval. CaTD, calcium transient 

duration.
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Figure 8. 
CaTD-APD at baseline and after sequential administration of apamin, chromanol and 

E4031. A, Representative action potential and calcium transient tracings at subendocardium 

and subepicardium from patient #14 at baseline and after apamin at 2000 ms PCL. B, CaTD-

APD of three myocardial layers at baseline. C, CaTD-APD of three muscle layers after 

apamin. *p<0.05 when comparing CaTD-APD at the subendocardium and the 

subepicardium. †p<0.05 when comparing CaTD-APD at the subendocardium and the 

midmyocardium. ‡p<0.05 when comparing CaTD-APD at the midmyocardium and the 

subepicardium. Bars represent 95% confidence interval. CaTD-APD, difference between 

calcium transient duration and action potential duration; Endo, subendocardial layer; Epi, 

subepicardial layer; Mid, midmyocardial layer.
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