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Abstract 

T1a prostate cancers (cancer found incidentally in transurethral resection, <5% of the tissue) are 

indolent tumors of the transition zone. The overexpression of ERG and the inactivation of PTEN have 

been shown to be important drivers of carcinogenesis in large series of prostate cancer, but the genetics 

of transition zone tumors have not been well characterized. We evaluated the status of ERG and PTEN 

in formalin-fixed paraffin-embedded tissue using immunohistochemical and FISH analysis in 54 T1a 

transition zone tumors. The protein expression of ERG was determined using a rabbit monoclonal 

antibody and nuclear staining was scored as positive or negative. The genomic status of ERG was 

determined using 3 colored FISH using an ERG-TMPRSS2 tri-color probe set. The protein expression 

of PTEN was determined using a rabbit monoclonal antibody and cytoplasmic and nuclear staining was 

scored as positive or negative. The genomic status of PTEN was determined using dual color FISH 

with a PTEN probe and a CEP10 probe. We found ERG rearrangement in 2 of 54 tumors (4%), one 

with protein overexpression by immunohistochemistry.  PTEN inactivation was seen in 13 of 54 

tumors (24%). Nine of the 13 PTEN alleles were inactivated by hemizygous deletion. No homozygous 

PTEN deletion was observed. PTEN deletion and ERG rearrangement were mutually exclusive. ERG 

rearrangement was rare compared to peripheral zone tumors and to PTEN inactivation in T1a transition 

zone tumors. This article is protected by copyright. All rights reserved 
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Introduction 

Adenocarcinomas of the prostate gland arise within different anatomic zones that have varying 

clinical and molecular characteristics.[1,2]  The vast majority of clinically significant prostatic 

adenocarcinomas arise in the peripheral zone, which have been widely investigated. Transition zone 

tumors are estimated to make up 16-20% of all prostate tumors, but these tumors have been less 

extensively studied. Compared to peripheral zone tumors, transition zone tumors have a lower Gleason 

scores, lower Ki-67 labeling indices, less extraprostatic extension, seminal vesicle invasion, and 

lymphovascular invasion, suggesting they may have a limited malignant potential.[1-4] However, 

approximately 20% of transition zone tumors progress to disease that invades beyond the prostate, and 

approximately 5% have lymph node metastases.[5] Currently, there is no method to predict which 

transition zone tumors will follow an aggressive course.  

Recent discoveries have shown that peripheral zone tumors show a high prevalence of 

TMPRSS2–ERG gene fusions and PTEN inactivation, and the use of these two genetic events may help 

predict the clinical prognosis. Translocations between the TMPRSS2-ERG genes creates a 

constitutively active transcription factor that is uniquely found in approximately 50% of prostate 

tumors and thought to be essential for the carcinogenesis in this subset of tumors.[6-9]  Large series of 

prostate cancer estimate PTEN inactivation occurs in approximately 18-23% of all tumors [6,9,10], and 

its loss allows for uninhibited activation of the PI3K/Akt/mTOR pathway and additional downstream 

targets. Mouse models that constitutively over-expressed ERG in a PTEN null background lead to 

highly penetrant prostate cancer that that arises much quicker than PTEN loss alone.[11] PTEN 

deletions have been associated with higher histologic grades, lymph node metastases and lower overall 

survival in TMPRSS2-ERG gene fusion positive and negative cancers.[6,9,12,13] Prostate cancers that 

lack TMPRSS2-ERG gene fusions and PTEN deletion have been shown to have a better prognosis, and 

the use of both gene rearrangements is the basis of a predictive model of disease reoccurrence.[14]  

https://www.researchgate.net/publication/44595596_Multifocal_Prostate_Cancer_Biologic_Prognostic_and_Therapeutic_Implications?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
https://www.researchgate.net/publication/44595596_Multifocal_Prostate_Cancer_Biologic_Prognostic_and_Therapeutic_Implications?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
https://www.researchgate.net/publication/223091147_An_analysis_of_148_consecutive_transition_zone_cancers_Clinical_and_histological_characteristics?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
https://www.researchgate.net/publication/26661451_ETS_family_transcription_factors_collaborate_with_alternative_signaling_pathways_to_induce_carcinoma_from_adult_murine_prostate_cells?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
https://www.researchgate.net/publication/9057021_Molecular_genetic_aspects_of_prostate_transition_zone_lesions?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
https://www.researchgate.net/publication/267048654_Biologic_Differences_Between_Peripheral_and_Transition_Zone_Prostate_Cancer?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
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Clinical course of T1a prostate cancers (tumors found incidentally in transurethral resection 

without clinically suspected tumor, making up <5% of the tissue) is variable with long term 

followup.[15-17]  The status of TMPRSS2-ERG fusions and PTEN and have not been well 

characterized in transition zone T1a tumor. These tumors typically do not receive treatment, but have 

the risk of progression to clinically significant disease.  We assessed the genetic status of TMPRSS2-

ERG fusions and PTEN in order to further understand the biology of prostate cancer in an attempt to 

find genetic predictors of aggressive behavior. Here we describe the frequency of PTEN inactivation 

and TMPRSS2-ERG gene fusions and their relationship in T1a tumors using human prostatic tissue 

removed by transurethral resection of the prostate (TURP). We analyzed 54 cases of Gleason score 7 or 

lower adenocarcinoma for the status of PTEN and TMPRSS2-ERG using both immunohistochemistry 

and fluorescence in situ hybridization.   

 

Methods 

Patients  

We identified 54 T1a prostate adenocarcinomas by reviewing TURP specimens from 

participating institutions (Indiana University, Indianapolis, USA; Polytechnic University of the Marche 

Region, United Hospitals, Ancona, Italy; Case Western Reserve University, Cleveland, USA; Henry 

Ford Health System, Detroit, MI; Cordoba University, Cordoba, Spain) between 2003 and 2014. All 

TURP samples with carcinoma diagnoses were reviewed by 2 anatomic pathologists (KWF and LC) to 

confirm tumor volume was less than 5% of the resected specimen, meeting the criteria of the American 

Joint Committee on Cancer for T1a tumor staging.  No Gleason grade 8 or higher cancers were found 

to have less than 5% involvement of a TURP sample.  This research was approved by the Institutional 

Review Board.  

  

Immunohistochemistry 

https://www.researchgate.net/publication/51975178_Staging_of_prostate_cancer?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
https://www.researchgate.net/publication/13613240_Long-Term_Follow-up_of_Untreated_Stage_T1a_Prostate_Cancer?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
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We evaluated the status of ERG and PTEN proteins in formalin-fixed, paraffin-embedded tissue 

using immunohistochemical staining. Briefly, 4-μm-thick sections were heated in a PT module 

(DAKO, Carpinteria, CA) in Tris/EDTA (pH 9.0) for 20 minutes and then cooled down to room 

temperature.  Samples were incubated at 1:200 dilution with PTEN antibody (rabbit monoclonal 

antibody, clone D4.3 XP, Cell signaling technology, Danvers, MA) or ready-to-use ERG antibody 

(rabbit monoclonal antibody, clone EP111, Dako Carpinteria, CA.) for 30min and 20min. respectively. 

This was followed by incubations with DAKO Envision Flex+rabbit linker, Envision HRP, and DAB+ 

chromogen.  All other step followed the manufacturers’ provided protocols. A tumor was considered to 

have PTEN protein loss if the intensity of cytoplasmic staining was markedly decreased or entireley 

lost in more than 10% of tumor cells compared with surrounding benign glands.[18-21].  ERG nuclear 

staining was scored as positive or negative and any nuclear staining of ERG was considered as 

indicative of ERG expression.[22,23]  

 

Fluorescence in situ hybridization 

Four-micrometer-thick sections were obtained from formalin-fixed, paraffin-embedded 

specimen blocks and deparaffinized with two 15-minute washes in xylene, subsequently washed twice 

with 100% ethanol for 10 minutes each, and air-dried. The sections were heated at 95°C in 0.1 mM 

citric acid (pH 6) solution (Invitrogen, Carlsbad, CA) for 10 min, rinsed with distilled water for 3 min, 

and washed with 2x saline-sodium citrate (SSC) for 5 min. Tissue digestion was performed by applying 

0.4 ml of pepsin (Sigma, St Louis, MO, USA) solution (4 mg/ml in 0.9% NaCl in 0.01N HCl) to each 

slide and incubating the slides in a humidified box for 40 min at 37°C. The slides were rinsed with 

distilled water for 5 min, washed with 2xSSC for 5 min, and then air dried.  

       For PTEN copy number assay, a probe cocktail containing BAC clone RP11-383D9-Orange 

(PTEN, Empire Genomics, Buffalo, NY, USA) and CEP10-Green (Abbott Molecular, Abbott Park, IL) 

diluted 1:25 in tDenHyb2 (Insitus, Albuquerque, NM, USA).  The genomic status of ERG was 
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determined using 3 colored FISH using a TMPRSS2 aqua probe, a 5’ ERG green probe, and a 3’ gold 

ERG probe. Five microliters of diluted probe were applied to each slide. Coverslips were placed over 

the slides and sealed with rubber cement. The slides were denatured at 80°C for 10 min and hybridized 

at 37°C overnight. The coverslips were removed and the slides were extensively washed with two 

0.1xSSC/1.5M urea solutions at 45°C for 20 min, in 2xSSC at 45°C for 10min, and then in 

2xSSC/0.1% NP40 at 45°C for 10 min. Finally, the slides were washed with 2xSSC at room 

temperature for 5 min, air dried, counterstained with 10 µl DAPI/Antifade (DAPI in Fluorguard, 0.5 

g/ml, Insitus, Albuquerque, NM, USA) and sealed with nail polish. 

        The hybridized slides were observed and documented using a MetaSystem imaging system and 

ISIS software (Belmont, MA, USA) under x100 oil objective. The images were acquired with a 

CoolCube 1 camera (MetaSystem) and analyzed with Isis software (Belmont, MA). The following 

filters were used: SP-100 for DAPI, FITC MF-101 for spectrum green, Gold 31003 for spectrum 

orange. Signals from each color channel (probe) were counted under false color, with computerized 

translation of each color channel into blue, green, red, or aqua.  Four sequential focus stacks with 0.3 

µm intervals were acquired and integrated into a single image to reduce thickness-related artifacts. For 

each case, 100 non-overlapping cancer cells nuclei were evaluated. Preparations were considered valid 

if >90% of the cells showed bright signals. Hemizygous deletion of PTEN was defined as ≥50% of 

tumor nuclei containing one PTEN signal, and with the presence of CEP 10 signals. Homozygous 

deletion of PTEN was defined as in ≥30% of tumor nuclei simultaneous loss of both PTEN signal, and 

with the presence of CEP 10 signals.[13,24,25]  Cases with ERG signal abnormalities in ≥20% of the 

tumor cell population were considered to be positive.[22,26]   

 

Statistical methods 

Fisher exact tests were used to determine the association between PTEN protein expression and 

allele deletion status. Statistical significance was defined as p < 0.05 and all p values were two-sided. 

https://www.researchgate.net/publication/7905332_Clinical_utility_of_fluorescence_in_situ_hybridization_FISH_in_nonbrainstem_glioblastomas_of_childhood?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
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Results 

The samples we analyzed were composed of 51 Gleason grade 3+3=6 and 3 Gleason grade 

3+4=7 prostatic adenocarcinomas, all of which involved less than 5% volume per sample.  The average 

age was 73 years (range: 52-92 years), and the average specimen mass was 58 grams (range: 3-260 g) 

(Table 1). 

We found ERG rearrangement by FISH in 2 of 54 tumors (4%), one with corresponding protein 

overexpression by immunohistochemistry (Figure 1 and Table 1). We did not find any ERG 

overexpression or ERG rearrangements in adjacent benign prostatic glands. We found PTEN protein 

loss in 13 of 54 (24%) tumors using immunohistochemistry (Figure 2 and Table 2). The PTEN protein 

loss status was highly correlated with PTEN allele deletion detected by FISH method (p=0.0001). Nine 

of the 13 cases (69%) with PTEN protein loss showed hemizygous deletion of PTEN by FISH. No 

homozygous PTEN deletion was observed. We did not find any PTEN protein loss in adjacent benign 

tissue.  

 

Discussion 

TMPRSS2-ERG rearrangements can be found in approximately 50% of peripheral zone tumors 

[6-9] and large series of prostate cancer estimate PTEN inactivation to occur in approximately 18-23% 

of all tumors [6,9,10]. Using a combination of IHC and FISH, we found that ERG overexpression (4%) 

is dramatically underrepresented in small T1a transition zone tumors. However, PTEN inactivation 

(24%) in stage T1a prostate cancer was similar to the most recent estimates of PTEN inactivation in 

large series of prostate cancer [6,9,10]. 

It is possible that our study using only immunohistochemistry and FISH studies might 

underestimate the true incidence of genetic PTEN inactivation, but other studies has shown a 75-89% 

correlation between FISH and IHC.[6,18] A recent study has shown inactivating point mutations of 
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PTEN occur in approximately 5% of samples, which would not be detected by FISH and IHC.[6] Even 

a minor upward adjustment in our estimation of PTEN inactivation in T1a tumors would not change the 

conclusion that the prevalence is similar to PTEN inactivation seen in peripheral zone tumors. PTEN 

deletion has been associated with a worse prognosis in peripheral zone cancers and the similar 

frequency of PTEN inactivation in our sample does not seem to be an explanation for the indolent 

behavior of transition zone tumors.[6,9,18,24]  Larger data sets and prospective studies will be needed 

to assess the prognostic value of PTEN inactivation in transition zone tumors. More recent work has 

been done to optimize PTEN analysis by immunohistochemistry and that optimized four color FISH 

probes have been identified and applied in other cohorts of prostate cancer.  These optimized assays 

have now been applied to a large multicenter cohort with rigorous statistical analysis. [21]  The 

development of a clinical-grade, automated, and cost effective PTEN assay will facilitate further 

validation of PTEN as an important prognostic and predictive biomarker for prostate cancer.    

TMPRSS2-ERG fusion proteins are seen in approximately 50% of prostate cancers, but these 

were dramatically underrepresented in our sample population. ERG is a member of the ETS family, 

which has 28 unique genes. Of these, FLI, ERG, ETV1 and ETV4 are commonly deregulated in 

cancer.[27] TMPRSS2 and ERG are located within 3 megabases of each other on chromosome 21, and 

large deletions, and less commonly translocations, help to explain the high prevalence of fusions 

involving ERG compared to other ETS family members.[28] ETS family members can also be fused to 

proteins other than TMPRSS2, but represent a tiny fraction of all fusion proteins.[29-32] ERG 

immunohistochemistry has approximately 85% sensitivity and specificity for ERG fusions confirmed 

by RT-PCR and can be used in conjunction with ERG FISH to increase confidence in identifying ERG 

fusion positive tumors up to 98.5%.[6,7,33,34]  It is possible in our sample population that a different 

ETS family member or different partner other than TMPRSS2 is involved in rearrangements in some 

cases; however, this is unlikely to add a substantive fraction of ETS family-rearranged tumors, since 

https://www.researchgate.net/publication/51374966_Molecular_genetic_analyses_of_the_TMPRSS2-ERG_and_TMPRSS2-ETV1_gene_fusions_in_50_cases_of_prostate_cancer?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
https://www.researchgate.net/publication/6206777_Gene_fusions_between_TMPRSS2_and_ETS_family_genes_in_prostate_cancer_Frequency_and_transcript_variant_analysis_by_RT-PCR_and_FISH_on_paraffin-embedded_tissues?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
https://www.researchgate.net/publication/51104234_Genomic_and_Biochemical_Insights_into_the_Specificity_of_ETS_Transcription_Factors?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
https://www.researchgate.net/publication/263397476_Molecular_Pathways_Targeting_ETS_Gene_Fusions_in_Cancer?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
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other partners have a much lower incidence than ERG and TMPRSS2 was not aberrantly disrupted in 

any sample. 

The best defined role for TMPRSS2-ERG fusions appears to be in the initiation of 

carcinogenesis, as it is found in early lesions and typically homogenously maintained within high grade 

tumors.[22,35-37] However, there are emerging molecular pathways to carcinogenesis that appear to be 

mutually exclusive to ERG fusions: 1) Speckle-type POZ protein (SPOP) is the most commonly 

mutated gene in prostate cancer and acts as an E3 ubiquitin ligase adaptor that directly binds target 

proteins and promotes their cullin 3-dependent ubiquitination and proteolysis.[38,39] Mutations in 

SPOP occur in the substrate binding domain and prevent the interaction with target proteins leading to 

increased levels of oncogenic steroid receptor co-activator-3 (SRC-3/AIB1) and the androgen 

receptor.[40-42]; 2) Chromodomain helicase DNA-binding protein 1 (CHD1) is a tumor suppressor 

located at 5q21 that is inactivated, mainly through deletion, in 13-26% of prostate cancers.[43-45] The 

loss of CHD1 inhibits AR-dependent signaling, which is required for TMPRSS2-ETS family gene 

rearrangements, so CHD1 inactivation and TMPRSS2-ETS family gene rearrangements are seldom 

identified in the same tumor.[46,47] Inactivation of CHD1 forces the developing cancer into a pathway 

of carcinogenesis that does not require TMPRSS2-ETS family rearrangements. Deletion of CHD1 alone 

in cell line models of prostate cancer was insufficient to cause invasive carcinoma, and the additional 

genetic events required for malignancy remain undetermined [44]; 3) Serine peptidase inhibitor, Kalal 

type 1 (SPINK1) is overexpressed in approximately 6% of all prostate cancers and 10% of TMPRSS2-

ETS family gene fusion negative cancers.[48,49] SPINK1 overexpression appears largely to be 

mutually exclusive with ERG fusion, and is highly associated with 6q15 and 5q21 deletions, suggesting 

it represents a unique pathway to carcinogenesis.[49] SPINK1 overexpressing tumors as sensitive to 

inhibition of EGFR and may be clinically amenable to targeted inhibition of EGFR.[50,51] 

PTEN inactivation is relatively common compared to ERG rearrangement in T1a prostate 

cancers.  The low prevalence of TMPRSS2-ERG gene fusion positive cancers in our study suggests that 

https://www.researchgate.net/publication/51898384_Recurrent_deletion_of_CHD1_in_prostate_cancer_with_relevance_to_cell_invasiveness?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
https://www.researchgate.net/publication/260129851_Destruction_of_Full-Length_Androgen_Receptor_by_Wild-Type_SPOP_but_Not_Prostate-Cancer-Associated_Mutants?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
https://www.researchgate.net/publication/45827965_Detection_of_TMPRSS2_Gene_Deletions_and_Translocations_in_Carcinoma_Intraepithelial_Neoplasia_and_Normal_Epithelium_of_the_Prostate_by_Direct_Fluorescence_In_Situ_Hybridization?el=1_x_8&enrichId=rgreq-357a5d862bcb2a110cc4fddcb29029d1-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAwNTczNTtBUzozOTg2MDQxMzgyMzc5NTJAMTQ3MjA0NjA0MDI5OA==
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the alternative molecular pathways to carcinogenesis may play a crucial role in T1a cancers.  Further 

study is needed to define the role of these alternate pathways to tumorigenesis and assess their role in 

prognosis and targeted treatment regimens.   
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Figure Legends 

Figure 1 Histological and ERG status by immunohistochemistry and ERG FISH in T1a prostate 

cancer: Only a single example (1 of 54, 2%) of T1a prostate cancer (A) exhibited ERG protein 

expression by immunohistochemistry (B), and only 2 of 54 (4%) demonstrated ERG rearrangement by 

FISH (C). In each nucleus, one red-green-aqua signal triplet is closely juxtaposed, whereas the other 

copy exhibits a widely separated green signal (C). In most T1a prostate cancers (D), neither ERG 

protein expression (E) nor ERG rearrangement was present (F), the latter evidenced by two copies of 

closely juxtaposed red-green-aqua signals. 

 

Figure 2 PTEN loss in a subset of T1a prostate cancers: Among the 54 T1a prostate cancers (A), 76% 

exhibited normal PTEN protein expression (B) and normal PTEN copy number (C) as indicated by 2 

red (PTEN) and 2 green (CEP10) signals. A subset of 24% of T1a prostate cancers (D) showed loss of 

PTEN expression (E), which correlated with hemizygous PTEN deletion as indicated by the loss of 1 

red signal (PTEN) and 2 normal green signals (CEP10). 
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Table 1. Immunohistochemical and FISH assessment of ERG status 

ERG STATUS IHC + IHC - Total 

FISH Rearrangement + 1 1 2 

FISH Rearrangement - 0 52 52 

Total 1 53 54 

 

IHC: immunohistochemistry. 
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Table 2. Immunohistochemical and FISH assessment of PTEN status 

PTEN STATUS IHC + IHC - Total 

Deletion - 41 4 45 

Deletion + 0 9 9 

 41 13 54 

 

IHC: immunohistochemistry. 
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Figure 1 
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Figure 2 
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