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Abstract Sunlight induced chlorophyll a fluorescence (SICF) can be used as a probe to estimate
chlorophyll a concentrations (Chl) and infer phytoplankton physiology. SICF at �685 nm has been widely
applied to studies of natural waters. SICF around 740 nm has been demonstrated to cause a narrow reflec-
tance peak at �761 nm in the reflectance spectra of terrestrial vegetation. This narrow peak has also been
observed in the reflectance spectra of natural waters, but its mechanism and applications have not yet
been investigated and it has often been treated as measurement artifacts. In this study, we aimed to inter-
pret this reflectance peak at �761 nm and discuss its potential applications for remote monitoring of natu-
ral waters. A derivative analysis of the spectral reflectance suggests that the 761 nm peak is due to SICF. It
was also found that the fluorescence line height (FLH) at 761 nm significantly and linearly correlates with
Chl. FLH(761 nm) showed a tighter relationship with Chl than the relationship between FLH(�685 nm) and
Chl mainly due to weaker perturbations by nonalgal materials around 761 nm. While it is not conclusive, a
combination of FLH(761 nm) and FLH(�685 nm) might have some potentials to discriminate cyanobacteria
from other phytoplankton due to their different fluorescence responses at the two wavelengths. It was fur-
ther found that reflectance spectra with a 5 nm spectral resolution are adequate to capture the spectral
SICF feature at �761 nm. These preliminary results suggest that FLH(761 nm) need to be explored more for
future applications in optically complex coastal and inland waters.

1. Introduction

Sunlight induced chlorophyll fluorescence (SICF) is a probe for inferring the status of photosynthesis. It has
a sharp peak at �685 nm and a broad shoulder at �740 nm [e.g., Krause and Weis, 1991; Meroni and
Colombo, 2006; Zarco-Tejada et al., 2009]. The detected SICF signals from marine phytoplankton and terres-
trial vegetation have been widely used to estimate chlorophyll a concentrations (Chl) or detect phytoplank-
ton blooms [e.g., Tyler and Smith, 1970; Gordon, 1979; Gitelson, 1992; Hu et al., 2005; Meroni et al., 2009]. The
SICF at �685 nm has been measured, verified, and applied to natural waters in numerous studies [e.g., Gor-
don, 1974; Neville and Gower, 1977; Gordon, 1979]. However, the SICF signal at �740 nm has not been inves-
tigated for natural waters, while the SICF at �740 nm has been commonly used in the remote sensing of
terrestrial vegetation [e.g., Krause and Weis, 1991; Meroni and Colombo, 2006; Zarco-Tejada et al., 2009]. The
SICF at �740 nm causes a noticeable peak at �761 nm in the reflectance spectra of terrestrial vegetation,
which is due to the fill-in effects of Telluric lines by SICF [Meroni et al., 2009; Zarco-Tejada et al., 2009; Meroni
and Colombo, 2006]. However, although a number of published works retrieved fluorescence from terrestrial
plants (see above cited references), the use of a 761 nm band for the aquatic phytoplankton has not been
reported in the literature because it has been commonly treated as measurements artifacts.

Telluric lines, the narrow troughs in the terrestrial solar irradiance spectrum, are caused by the absorption of
gases in the Earth’s atmosphere [Meroni et al., 2009]. The terrestrial solar irradiance within the range of
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Telluric lines is dramatically reduced compared to those at adjacent spectral ranges outside Telluric lines. At
a wavelength of �761 nm, the main Telluric characteristics are caused by the absorption of oxygen (O2-A,
centered at 761.035 nm) in the Earth’s atmosphere [Meroni et al., 2009; Damm et al., 2011].

Figure 1a shows the shape of illustrative terrestrial downwelling solar irradiance (Ed(k); hereafter, the
dependence on wavelength k is dropped for simplicity unless it causes ambiguity) with 3 nm spectral reso-
lution around the O2-A band based on MODTRAN 5.3 simulations for a 1976 U.S standard atmosphere and
maritime aerosols with 23 km visibility. The affecting wavelengths range from k1 (�758 nm) to k3

(�771 nm), with the center of the trough at k2 (�761 nm), and the corresponding downwelling solar irradi-
ances are Ed(k1), Ed(k3), and Ed(k2), respectively. When the sunlight enters and interacts with a water
medium, the radiance that leaves the water, Lw, includes the contribution of an elastic component, LE

w , and
inelastic components such as fluorescence, Lf (Figure 1b). LE

w is the product of Ed in Figure 1a and 0.33 3

bb/(a 1 bb) [Gordon et al., 1988] where bb and a are total backscattering and absorption coefficients of mod-
erately turbid waters. The relative shape of Lf was taken from Meroni and Colombo [2006]. The correspond-
ing remote sensing reflectance (Rrs, sr21) spectra with and without Lf are shown in Figure 1c. The example
in Figure 1 only shows the relative shapes of the displayed parameters, which do not represent any specific
case. It implies that the spectral peak around O2-A bands may not be observed in the Rrs spectrum without
contribution of Lf, while a noticeable peak can be found when chlorophyll fluorescence was included. The
same principle of fill-in of O2 absorption lines around 689 nm has actually been used to measure solar-
stimulated fluorescence around 685 nm in water [Hu and Voss, 1998]. The total SICF signal around the peak
centered at 761 nm is defined as the total fluorescence line height (TF, see Figure 1c) which cannot be
retrieved from in situ reflectance spectra. However, fluorescence line height (FLH, see Figure1c) can be
derived from the Rrs spectrum and is proportional to TF (see section 2.3.2 for details). FLH does not represent
the radiance produced by SICF but is an index that shows the relative strength of the SICF.

As explained above, the SICF signal at �740 nm can result in a spectral reflectance peak at �761 nm where
the Telluric lines caused by O2 absorption are found. Such a phenomenon has been investigated in remote
sensing of terrestrial vegetation [Zarco-Tejada et al., 2009] but not in water applications. In this study, we
aimed to demonstrate that SICF can also cause a narrow peak at �761 nm in the spectral reflectance of nat-
ural waters. The correlation analysis between the first-order derivative of Rrs at �761 nm as well as the rela-
tionship between FLH(761 nm) and Chl will be discussed below to support our arguments. The work is not
to develop a Chl retrieval algorithm, but to demonstrate that the reflectance peak at �761 nm from natural
waters may not be a measurement artifact but a result of solar-stimulated fluorescence. We hope this work
stimulates further investigations by the ocean color community into the potential causes and applications
of the narrow reflectance peak at �761 nm, especially for coastal and inland waters where the optical signal
remains strong to be accurately detected in this spectral region.

Figure 1. Schematic graph showing the detection of SICF within Telluric lines at �761 nm. (a) Downwelling solar irradiance (Ed) around the Telluric line due to oxygen absorption (O2-A);
(b) water-leaving radiances (Lw) including radiance due to elastic processes LE

w , radiance due to fluorescence Lf, and the total radiance (Lw 5 LE
w 1Lf); (c) remote sensing reflectance Rrs

with and without the contribution of fluorescence. Refer to the text for the definition of the symbols and acronyms in this figure. This figure was inspired by Moya et al. [2004, Figure 2]
in which downwelling irradiance and upwelling radiance were also shown in relative units.
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2. Materials and Methods

2.1. Study Area
The study areas included Liaodong Bay in China and three reservoirs in Indiana, USA (Figure 2). Liao-
dong Bay is located in the northern coastal region of Bohai Sea, the largest inland sea of China. The
average depth is approximately 18 m. The water surface temperature is approximately 248C–258C. Dur-
ing the summer, the wind speed is 4–5 m/s. Two inland rivers, i.e., the Shuangtaizi River and Liaohe
River, flow into Liaodong Bay in this area. Therefore, the ocean color is complex with a high suspended
particulate material (mostly nonalgal particles) concentration (SPM), which is a main characteristic of
this study area (i.e., SPM is generally higher than 100 g/m3). The three reservoirs in Indiana are the Eagle
Creek Reservoir (ECR, 398510N, 86818.30W), Geist Reservoir (GR, 398550N, 85856.70W), and Morse Reservoir
(MR, 4086.40N, 8682.30W). These reservoirs have similar depths (3.2–4.7 m), surface areas (5–7.5 km2), and
volumes (21–28 3 106 m3). They all face a serious eutrophication problem that leads to frequent toxic
cyanobacterial blooms. As a result, the SPM contains a large contribution of phytoplankton when the
SPM is relatively low; e.g., typically less than 30 g/m3. More information about the three reservoirs can
be found in Li et al. [2013, 2015].

2.2. In Situ Measurements
2.2.1. Hyperspectral Reflectance
In Liaodong Bay (Figure 2a), an ASD spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA)
system with a single radiometer and a 100% reflecting white panel was used to determine reflectance spec-
tra. In the visible and near-infrared (VNIR) wavelengths of detection (350–1050 nm), the spectral resolution
is 3 nm with 1.4 nm sampling intervals and 0.5 nm wavelength accuracy, and the data were resampled to
1 nm spectral interval. The upwelling radiance of the water surface, Lt, was first determined by pointing the
radiometer towards the water surface, followed by the determination of downwelling irradiance, Ed, on a
Spectralon panel (Labsphere Inc., North Sutton, NH) using the same radiometer. Two field campaigns were

Figure 2. The study areas. (a) Liaodong Bay, China; (b) three Indiana reservoirs (Eagle Creek Reservoir, Geist Reservoir, and Morse Reservoir), USA. The black dots represent the sample
sites during multiple field campaigns.
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conducted on 17–18 September 2006 and 22–23 August 2007. The local observation time was from 10:00
A.M. to 14:00 P.M. We collected, in total, 32 valid reflectance spectra, where the reflectance (R) was calcu-
lated as

R5
Lt

Ed
5

Lw1Ls

Ed
; (1)

where Lw is the water leaving-radiance (including the contribution of Lf), and Ls is the Fresnel reflected radi-
ance by the water surface. The measured R is not a conventional definition of remote sensing reflectance
(Rrs 5 Lw/Ed) due to the extra term Ls in the numerator. The impact of Ls on data interpretation will be dis-
cussed in section 4.1.

In three Indiana reservoirs (Figure 2b), an Ocean Optics USB4000 system (Ocean Optics, Inc., Dunedin, FL,
USA) with dual radiometers was used to measure Rrs from April to October in 2010. The two radiometers
were connected to different Ocean Optics consoles. The measurements by the two radiometers were
resampled to the same spectral wavelengths before computing remote sensing reflectance. The reflec-
tance was measured by following the procedure described in Gitelson et al. [2007]. Mounted on a 2 m
pole, radiometer #1 was pointed upward to measure the real-time incident Ed through a cosine collector,
and simultaneously radiometer #2 was dipped �2 cm below the water surface via a 2 m pole to measure
the below-surface upwelling radiance Lu(02) at the nadir. For every few stations or under changing sky
conditions, the instrument was manually calibrated by measuring the Lcal on a Spectralon panel with
reflectance q and the corresponding real-time downwelling irradiance Edcal in air, and this calibration was
automatically used for subsequent measurements until a new calibration was performed. The field meas-
urements were later processed to remote sensing reflectance using the software provided by the
manufacturer:

Rrs5
Lw

Ed
5

t
n2

Luð02Þ
Ed

qEdcal

pLcal
F; (2)

where F is the spectral immersion factor, t is the transmittance of the water-air interface, and n is the refrac-
tive index of water medium. t/n2 is generally a constant; i.e., 0.54 [Mobley, 1999]. The measured spectra of R
and Rrs are shown in Figure 3.
2.2.2. Chlorophyll a and Suspended Particulate Matter Concentrations
Concurrent with the reflectance measurements, water samples were collected and sent to the laboratory
to determine the Chl (mg/m3) and SPM (g/m3). Chl was measured using the spectrophotometric method
[Ritchie, 2008] and the SPM concentration was determined using the gravimetric weighing method for
both Liaodong Bay and the Indiana reservoirs. The statistics of the measured Chl and SPM are shown in
Table 1.

2.3. Methods
2.3.1. Spectral Derivative
The spectral derivative (SD) is defined in equation (3):

SDðkiÞ5
Rrsðki11Þ2Rrsðki21Þ

2Dk
; (3)

where Rrs can also be replaced by R, and Dk is the spectral resolution of the reflectance spectra (1 nm for
our data set after resampling). SD is used to eliminate the impact of a linear background on the Rrs spectrum
and detect the change in positions of reflectance peaks [Lee et al., 2007, and references therein]. Therefore,
the correlation between SD of Rrs and Chl can help to identify the spectral reflectance peaks caused by chlo-
rophyll, e.g., SICF. In this study, SD was also used to determine the wavelengths k1, k2, and k3 that were
used to compute the FLH in section 2.3.2.
2.3.2. Fluorescence Line Height
As shown in Figure 1c, the TF on the Rrs around k2 should be

TFðk2Þ5
LE

wðk2Þ1Lf ðk2Þ
Edðk2Þ

2
LE

wðk2Þ
Edðk2Þ

5
Lf ðk2Þ
Edðk2Þ

; (4)

and the FLH(k2) is
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FLHðk2Þ5Rrsðk2Þ2
k32k2

k32k1
Rrsðk1Þ2Rrsðk3Þð Þ1Rrsðk3Þ

� �
: (5)

Within the spectral range around k2 but outside the O2-A band, Rrs(k1) � Rrs(k3). Therefore,

FLHðk2Þ � Rrsðk2Þ2Rrsðk3Þ5
LE

wðk2Þ1Lf ðk2Þ
Edðk2Þ

2
LE

wðk3Þ1Lf ðk3Þ
Edðk3Þ

: (6)

Assuming the wavelength dependency of Lf is relatively weak at �761 nm (less than 10% change between
755 and 771 nm according to Meroni and Colombo [2006]) and applying LE

wðk2Þ/Ed(k2) � LE
wðk3Þ/Ed(k3) (see

Figure 1c) in equation (6) leads to:

FLHðk2Þ � ð12TaÞ
Lf ðk2Þ
Edðk2Þ

5ð12TaÞ3TFðk2Þ; (7)

where Ta 5 Ed(k2)/Ed(k3). Within the Telluric lines due to O2-A, Ta generally ranges from 0.2 to 0.5 for differ-
ent atmospheres and solar angles; however, it should be relatively stable across a small region (with similar
solar angle and atmosphere), so changes in FLH(k2) can be interpreted as changes in the fluorescence

Table 1. The Statistics of Chl and SPM for Each Group Shown in Figure 3

Chl (mg/m3) SPM (g/m3)

Min. Max. Avg. Std. Min. Max. Avg. Std.

Group 1 2.39 16.52 8.60 4.08 87 315 188.82 59.38
Group 2 0.88 13.42 4.89 3.20 194 941 530.60 188.26
Group 3 1.85 129.39 53.33 29.98 5.17 36.17 15.32 6.10
Group 4a 19.84 104.96 41.07 17.74 5.83 18.33 9.77 2.66

aThe highest SPM for group 4, 81.17 g m23, was excluded in the statistics.
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Figure 3. Reflectance (R, sr21, equation (1)) spectra of Liaodong Bay (a) group 1 in 2006 and (b) group 2 in 2007, and remote sensing
reflectance (Rrs, sr21, equation (2)) spectra of Indiana reservoirs (c) group 3 and (d) group 4. The inset in each plot shows the reflectance
spectra around 761 nm. The data set is divided into four groups due to different concentrations of suspended particulate matter and
phytoplankton composition. The detailed reasons to classify the spectra into four groups can be found in section 4.2.
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signal. In other words, the FLH(k2) for a particular image of a small region is proportional to the total SICF
signal around k2 and could therefore possibly be used to infer biomass or chlorophyll a concentrations with
cautions (see sections 4.2 and 4.3 for more detail).

3. Results

3.1. Spectral Derivative (SD) Analysis
The core idea of SD analysis is to use a first-order differential equation to eliminate the impact of a linear
background on the Rrs spectrum and identify any spectral peaks that may be caused by SICF. Figure 4 shows
the correlation coefficients between the SD and Chl in the spectral range of 650–800 nm.

Within the wavelength range around Telluric lines by O2-A, SD and Chl were significantly correlated at two
wavelengths, which are located on the left and right side of the spectral peak at 761 nm. This suggests that
both the increase in reflectance before the spectral peak of 761 nm and the decrease in reflectance after
the spectral peak can be attributed to chlorophyll, which implies that the spectral peak at �761 nm may be
caused by SICF. Depending on the group of reflectance spectra, the wavelengths with the best correlation
varied from 758 to 760 nm on the left side of the peak and from 763 to 765 nm on the right side of the
peak.

3.2. Relationship Between FLH and Chl
To concurrently take account of the effects of Telluric lines due to O2-A absorption band located at
758.725–770.416 nm [Damm et al., 2011] and the best sensitive bands (758–760 and 763–765 nm) from SD
analysis (Figure 4a), k1, k2, and k3 were set as 755, 761, and 771 nm with a bandwidth of 1 nm and
FLH(761 nm) was calculated accordingly using equation (5). Figures 5a and 5b show the statistical relation-
ship between FLH(761 nm) and Chl in Liaodong Bay, corresponding to data collected in 2006 and 2007,
respectively. The determination coefficients (r2) between FLH(761 nm) and Chl for 2006 and 2007 were
0.536 and 0.677, respectively, and the p values were both less than 0.05. Figures 5c and 5d show the
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Figure 4. Correlation coefficients between the first-order spectral derivative of R or Rrs and Chl corresponding to the four groups shown in
Figure 3.
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relationships between FLH(761 nm) and Chl for an additional two groups of data collected from the three
Indiana reservoirs, with the r2 being 0.499 and 0.337, respectively and p values less than 0.05. These results
indicate that a significant correlation between FLH(761 nm) and Chl exists for various limnological condi-
tions at different study sites. In contrast, if the 678 nm band was used to derive FLH(678 nm) for the same
data sets following the MODIS approach (i.e., the baseline was formed using bands locating at 667 and
748 nm) [Letelier and Abbott, 1996], the resulting FLH(678 nm) showed a much lower correlation with Chl for
Liaodong Bay, where nonphytoplankton particulate materials dominate (Figures 5e–5h, r2< 0.055, p �
0.05). FLH(678 nm) maintains a reasonable correlation with Chl for the three Indiana reservoirs, where phyto-
plankton is the dominant particulate material in the water, with r2> 0.34 and p< 0.05. However,
FLH(678 nm) showed a nonlinear relationship with Chl for one group of data at the Indiana sites and
became insensitive to Chl higher than �30 mg/m3 (Figure 5g), while the relationship appeared to be linear
for the other group (Figure 5h). The factors affecting the relationships between FLH and Chl will be dis-
cussed further in section 4.2.

4. Discussion

4.1. Effect of the Fresnel Reflection of the Water Surface on FLH
For the reflectance spectra collected in Liaodong Bay, the radiance due to Fresnel reflection of the water
surface, Ls, was not excluded. Substituting equation (1) into equation (5) and applying all the conditions in
section 2.3.2 leads to
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Figure 5. Relationships between (a–d) FLH (761 nm) and Chl as well as (e–h) FLH (678 nm) and Chl for the same four groups in Figures 3 and 4. Note: a few obvious outliers in Figures 5c
and 5d were excluded from regression and the same stations were also excluded from regression analysis in Figures 5g and 5h, respectively.
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FLHðk2Þ5ð12TaÞ3TFðk2Þ1
Lsðk2Þ
Edðk2Þ

2
Lsðk3Þ
Edðk3Þ

; (8)

where Ls(k2)/Ed(k2) and Ls(k3)/Ed(k3) are the Fresnel reflectance of the water surface at k2 and k3. According
to Kutser et al. [2013], the Fresnel reflectance of the water surface between 350 and 900 nm is a power func-
tion. Therefore, Ls(k2)/Ed(k2) and Ls(k3)/Ed(k3) are close to each other because k2 and k3 are only 10 nm apart
at �761 nm. As a result, Ls(k2)/Ed(k2) 2 Ls(k3)/Ed(k3) is negligible compared to the first term on the right-
hand side of equation (8), and equation (8) becomes comparable to equation (7). In other words, the inclu-
sion of the Fresnel reflection in the surface reflectance has a negligible impact on FLH at �761 nm. The
relatively flat spectrum outside the spectral peak at �761 nm, shown in the insets of Figure 2, confirmed
this assumption. Therefore, the reflectance spectra collected in Liaodong Bay were treated as Rrs for the pur-
pose of computing FLH(761 nm).

4.2. Factors Influencing the Relationships Between FLH and Chl
The results shown in Figure 5 indicate that the relationship between FLH(761 nm) and Chl varied for
different field campaigns. To understand the influencing factors, the biological-physical-optical mecha-
nism of detected chlorophyll fluorescence on Rrs is explained below. Similar to the expression of SICF
at �685 nm by Maritorena et al. [2000] and Huot et al. [2005], the radiance due to local SICF (assuming
no transmitted radiance from other depths) at 761 nm at depth z, Lf (z, 761), can be expressed by
equation (9):

Lf ðz; 761Þ5

uQað761Þ
ð700

400

ChlðzÞa�phðkÞEoðz; kÞdk

4p
; (9)

where u is the efficiency of Chl fluorescence at an emission wavelength of 761 nm, Qa(761) is the fraction of
the emitted radiance at 761 nm that is not reabsorbed by phytoplankton cells, a�phðkÞ is the chlorophyll a
specific absorption coefficient, and Eo(z, k) is the total scalar irradiance at depth z.

The total above-surface radiance due to SICF, Lf (01, 761), is a function of Lf (z, 761):

Lf ð01; 761Þ5 t
n2

ð1

0

Lf ðz; 761Þ exp 2KLuð761Þz½ �dz; (10)

where KLu(761) is the diffuse attenuation coefficient of upwelling radiance at 761 nm and 01 indicates the
above-water surface.

The incident light mostly travels toward a downward direction, so Eo is assumed to approach Ed, especially
in the blue and green spectral bands [Morel and Gentili, 2004], where the primary source photons of SICF
are located:

Eoðz; kÞ � Edðz; kÞ5tEdð01; kÞexp 2KdðkÞz½ �; (11)

where Kd(k) is the diffuse attenuation coefficients for Ed and is also assumed to be depth independent
within the top shallow layer.

Substituting equations (10) and (11) into equation (7), we can derive

FLHð761 nmÞ � ð12TaÞ
Lf ð01; 761Þ
Edð01; 761Þ

/ Chl u ð12TaÞ
ð700

400

a�phðkÞ
Edð01; kÞ

Edð01; 761Þ
1

KdðkÞ1KLuð761Þ dk;

(12)

with the assumption of homogenous Chl within the top layer of the water column. Such an assumption is
reasonable because of the high absorption of water molecules at 761 nm unless a thin layer of phytoplank-
ton scum is formed under blooming conditions.
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Equation (12) implies that the influencing factors of the relationships between FLH(761 nm) and Chl may
include variations in Ta, u, a�phðkÞ, Kd(k), Ed, and KLu(761). Ed may not be a major factor due to normalization
to Ed(01, 761), which minimizes the effects of changing illumination conditions above the water surface.
KLu(761) is not a major factor either due to the dominant absorption by water molecules at 761 nm, unless
in rare cases where the particulate backscattering coefficient is comparable to water absorption. Among
the remaining factors, Ta may have regional variability due to different atmospheric compositions, and this
may partly explain why FLH(761 nm) has a different relationship with Chl in Liaodong Bay as compared to
the Indiana reservoirs (Figure 4). u and a�ph may vary with diurnal and seasonal changes, phytoplankton
genera/species, light history, photoacclimation, and photophysiology, which subsequently leads to varia-
tions in FLH seen in Figures 5c and 5d. The data shown in Figures 5c and 5d were collected in repeated field
campaigns in the three Indiana reservoirs from April to October, and it was found that FLH(761 nm) and Chl
show different relationships for samples collected at different times of a day within the same field campaign
and for samples collected at different seasons at the same site. The last factor, Kd, is not available for our
data sets. Alternatively, the SPM can be an indicator of Kd [Kratzer et al., 2003], although the absorption of
dissolved matter should also be considered. The SPM concentrations were 87–315 g/m3 (mean 5 188.82 g/m3)
for Liaodong Bay in 2006 and 194–941 g/m3 (mean 5 530.6 g/m3) for Liaodong Bay in 2007, 5.17–36.17 g/m3

(mean 5 15.32 g/m3) for group 3 in Indiana, and 5.83–18.33 g/m3 (mean 5 9.77 g/m3 after excluding only two
points with SPM> 30 g/m3) for group 4 in Indiana (see Table 1). The four groups can be generally separated
from each other by the SPM (or the SPM-related Kd), although a small overlap of SPM between groups of the
same study area could be found.

These factors may also be used to explain the current MODIS and MERIS FLH algorithms using the SICF at
�685 nm. For example, while MODIS FLH(678 nm) has been widely used to monitor phytoplankton blooms
in sediment-poor waters rich in colored dissolved organic matter [Hu et al., 2005], Gilerson et al. [2007] found
that the FLH (678 nm) signal was sensitive to sediment perturbation, although the FLH(761 nm) signal does
not appear to suffer as much as the FLH(678 nm) signal as a result of sediment perturbations, which can be
clearly observed by comparing the results of Liaodong Bay shown in Figures 5a, 5b, 5e, and 5f. The less
influence of SPM on FLH(761 nm) than on FLH(678 nm) is partially because of the spectral proximity of the
bands (spanning only 16 nm) used in the formulation of FLH(761 nm), which negates the influence of SPM,
while formation of FLH around 685 nm uses bands spanning more than 45 nm. The failure of FLH(678 nm)
in explaining the Chl in high SPM water bodies can be additionally explained by equation (12) when applied
to SICF at �678 nm instead of �761 nm, which is primarily due to the variations in Kd(k). The influence of
nonalgal material (i.e., SPM) on FLH(678 nm) has also been discussed by Gilerson et al. [2007] and McKee
et al. [2007]. They found that increasing the mineral particulate matter, and therefore the Kd(k), would intro-
duce significant uncertainties in FLH at �685 nm and suggested that additional caution is required to use
the satellite FLH product at �685 nm when the SPM is high as nonalgal material will also compete with phy-
toplankton for photons to reduce the strength of fluorescence signal even for same Chl (see equation (12)).

The results from the Indiana reservoirs suggest additional interesting features. FLH(678 nm) exhibited differ-
ent relationships with Chl for the two groups of the Indiana data set; i.e., one group (seven field campaigns)
with a negative and nonlinear relationship and the other with a positive and linear relationship for the
remaining three field campaigns. In particular, FLH(678 nm) becomes insensitive to Chl> 30 mg/m3 (Figure
5g), which is due to the absorption of chlorophyll a around 670 nm and possibly lack of fluorescence from
cyanobacteria [Matthews et al., 2012]. The negative correlation between FLH at �678 nm and Chl is com-
monly observed for cyanobacteria-dominant water bodies because cyanobacteria fluoresce weakly due to
the arrangement of pigments in their light harvesting complexes [Palmer et al., 2015a]. Additional confirma-
tion comes from the FLH(681 nm) data using bands at 665, 681, and 709 nm (analogy to bands 7, 8, and 9
of MERIS). The FLH(681 nm) values for Chl> 10 mg/m3 are negative for group 3 (not shown), which is a
widely observed feature of cyanobacteria [Palmer et al., 2015b, and references therein]. This is expected
because all three Indiana reservoirs have been facing serious cyanobacterial bloom problems. For the addi-
tional three field campaigns shown in Figure 5h, a weak positive correlation begins to appear, which might
suggest weaker dominance of cyanobacteria in group 4 (assumption made in conjunction with observa-
tions in literatures). The comparison between Figures 5c and 5d may suggest that cyanobacteria has lower
quantum efficiency of fluorescence than other phytoplankton species as the slope between FLH(761 nm)
and Chl is 1 order magnitude lower in cyanobacteria-dominant waters (Figure 5c) than noncyanobacteria-
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dominant waters (Figure 5d). It is well known for fluorescence at shorter wavelength of �685 nm where cya-
nobacteria fluoresce much less compared to other phytoplankton species [Yentsch and Phinney, 1985a,b].
Campbell et al. [1998] also suggested that cyanobacteria possess most chlorophyll in photosystem I, the main
photoreaction center that produces fluorescence in the near-infrared spectral region. Thus, these results show
the potentials of combining FLH(761 nm) and FLH(�685 nm) to discriminate cyanobacteria-dominant waters
from others, although more data need to be analyzed with more conclusive findings.

The comparison between FLH at �761 nm (this study) and FLH at �685 nm suggests that FLH(761 nm) is
generally less affected by SPM and the phytoplankton composition (e.g., cyanobacteria). FLH(761 nm)
always exhibited a positively linear relationship with Chl for the entire Chl range. Regardless of the potential
influence of SPM, FLH(761 nm) shows more potential than FLH(�685 nm) for applications in the turbid and
productive coastal and inland waters if high-quality hyperspectral surface reflectance data is available. In
particular, the signal of cyanobacterial fluorescence may also be detected in the spectral region around
761 nm, which could provide an alternative tool to study cyanobacterial bloom intensity. Because the rela-
tionships between FLH(761 nm) and Chl are affected by variations in Ta, u, a�ph, and Kd, which may change in
both space and time, further efforts are required to establish a relationship to quantify Chl from
FLH(761 nm). However, it may be challenging to establish a Chl algorithm based on FLH(761 nm) for large
spatial scale due to high variations in these influencing factors.
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Figure 6. The relationships between FLH (761 nm) and Chl based on the aggregated (top row) 10 nm and (bottom row) 5 nm resolution reflectance spectra. The same groupings as in
Figures 3 and 5 were used, and the same regression criteria as in Figures 5a–5d were used. The three bands used in computing FLH (761 nm) are centered at �750 nm (745–755 nm),
760 nm (755–765 nm), and 770 nm (765–775 nm) for the 10 nm resolution spectra and at �757 nm (755–760 nm), 762 nm (760–765 nm), and 767 nm (765–770 nm) for the 5 nm
resolution spectra.
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4.3. Implications for Satellite Remote Sensing
The above analysis was purely based on field-measured hyperspectral data at 1 nm increments. Currently
there is no hyperspectral ocean color sensor in space with such a high spectral resolution. In future, there
may be hyperspectral satellite sensors such as PACE, Geo-CAPE, HyspIRI, FLEX, or EnMAP with 5–10 nm con-
tinuous bands. Whether these bands can resolve the small FLH peak at �761 nm remains a question. To
answer this question, the 1 nm resolution reflectance spectra were aggregated to 10 and 5 nm resolutions,
assuming a Gaussian spectral response function with Full-Width-Half-Maximum (FWHM) to be 10 and 5 nm,
respectively. The aggregated 10 and 5 nm resolution spectra were then used to compute the FLH(761 nm)
using the same methods as described in section 2.3.2.

The relationships between FLH(761 nm) and Chl using the 10 and 5 nm resolution spectra are shown in Fig-
ure 6. When the same regression approaches and criteria in Figures 5a–5d were used, the 10 nm resolution
data could not achieve the same accuracy of 1 nm resolution data, as shown in Figures 5a–5d. In particular,
the relationship between FLH(761 nm) and Chl for Liaodong Bay (2006) was substantially degraded,
although only slight degradation was observed for the other three groups. In contrast, the 5 nm resolution
data appear to be adequate in achieving similar or even higher accuracy than the 1 nm resolution data.
Therefore, the SICF feature at �761 nm of natural turbid and productive waters may be captured by future
hyperspectral ocean color satellite sensors with a 5 nm spectral resolution.

However, the findings above are based on the assumptions that atmospheric correction of satellite meas-
urements is error free. In reality, this is not the case. Although spectrally flat atmospheric correction errors
[Hu et al., 2013] may not influence band-subtraction algorithms, such as the FLH algorithm or the color
index (CI) algorithm [Hu et al., 2012a], the influence of variable aerosol height (e.g., troposphere aerosols
and cirrus clouds) on the total at-sensor signal around the wavelength of 761 nm cannot be neglected
[Ding and Gordon, 1995]. Indeed, the SeaWiFS 765 nm band, which encompasses the 761 nm absorption
line, was used to estimate aerosol height [Dubuisson et al., 2009]. To fully utilize the FLH(761 nm) algorithm,
such effects must be fully understood and corrected for future satellite sensors in order to assure error-free
Rrs retrievals or at least spectrally linear Rrs errors in the retrievals. For the same reason, the satellite sensors
must have enough sensitivity (or signal-to-noise ratio, SNR) to quantify the small reflectance peak around
761 nm (often between 1024 2 1023 sr21, Figure 5). For reference, the SNR of the MODIS 748-nm band is
about 1000:1 at typical radiance input of 0.75 mW cm22 mm21 sr21 [Hu et al., 2012b], leading to reflectance
errors in the order of <1025 sr21 and thus sufficient for this purpose.

5. Conclusions

The SICF exhibits two dominant spectral peaks around 685 and 740 nm. The SICF at 685 nm has been
widely applied to studies of natural waters. The SICF at �761 nm has also been used to study terrestrial
vegetation due to the fill-in effect on the Telluric line caused by oxygen absorption. However, the SICF at
�761 nm has never been applied to natural waters to study algal blooms. Instead, the small reflectance
peak around 761 nm measured from natural waters has often been treated as measurement artifacts. In
this study, we have demonstrated that such a peak from natural waters (Liaodong Bay in China and three
Indiana reservoirs in the USA) was also caused by SICF. This finding is supported by several lines of evi-
dence including a first-order derivative analysis of the reflectance spectra and a correlation analysis
between FLH(761 nm) and Chl. The theoretical basis of the correlation between FLH(761 nm) and Chl is
the same as that between FLH(678 nm) and Chl, while the factors influencing such relationships were also
the same. However, the former relationship appears to be less affected by SPM and phytoplankton com-
position, making FLH(761 nm) a potentially better spectral index for estimating Chl of extremely turbid
coastal and inland waters where SPM may be high, and for discriminating cyanobacteria-dominant waters
from others. Yet developing such an index still requires further data collection and more in-depth
analysis.

The relationship between FLH(761 nm) and Chl does not degrade when the 1 nm resolution reflectance
data are aggregated to a 5 nm resolution, suggesting that the FLH(761 nm) signal might be captured by
future satellite sensors with 5 nm resolution continuous bands provided that errors from atmospheric cor-
rection are negligible or spectrally linear. However, given the changing optical composition and variable flu-
orescence efficiency, it may not be able to establish a universal, region-independent Chl algorithm using
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FLH(761 nm). Further research is required to confirm and refine such relationships for various water types
under different conditions, and their sensitivity to atmospheric correction errors due to variable aerosol
heights also needs to be addressed before an application can be developed to use satellite data.
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