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We study the transverse-field Ising model with interactions that are modulated in time. In a rotating frame,
the system is described by a time-independent Hamiltonian with many-body interactions, similar to the cluster
Hamiltonians of measurement-based quantum computing. In one dimension, there is a three-body interaction,
which leads to string order instead of conventional magnetic order. We show that the string order is robust
to power-law interactions that decay with the cube of distance. In two and three dimensions, there are five-
and seven-body interactions. We discuss adiabatic preparation of the ground state as well as experimental
implementation with trapped ions, Rydberg atoms, and polar molecules.
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I. INTRODUCTION

A current goal in atomic physics is to realize exotic many-
body phases since atomic-physics experiments can simulate
the physics of condensed-matter systems [ 1-12]. An advantage
of atomic quantum simulators is that they are highly tunable.
For example, the interaction between atoms is often induced
by a laser, so one can easily tune the interaction strength, sign,
and range by changing the laser parameters [13,14].

An intriguing type of many-body phase is symmetry-
protected topological order [15]. A common feature of such
a phase is string order. A system with string order does
not appear to have long-range order according to two-site
correlation functions. However, if one calculates a nonlocal
correlation function involving a long string of operators, the
hidden order becomes apparent. A well-known example of
string order is the Haldane phase of a spin-1 chain [16-19].

In this paper, we show that one can realize string order
with spin-1/2 particles by modulating the interaction of the
transverse-field Ising model. This scheme is well suited for
atomic-physics experiments since it exploits their tunability.
In one dimension (1D), a spin chain with time-modulated
two-body interactions is equivalent to a spin chain with time-
independent three-body interactions. The three-body interac-
tion leads to string order in the ground state. The three-body
interaction is a cluster Hamiltonian of measurement-based
quantum computing, and the string order is a manifestation
of the cluster phase [20,21]. We discuss how to adiabatically
prepare the ground state in the laboratory frame.

We then show that the scheme works even if the original
spin chain has power-law interactions as is common in
atomic-physics experiments [5,6,10,11]. For interactions that
decay with the cube of distance, the long-range interactions
have a negligible effect on the ground state, and the ground
state still has string order. We also show that modulating
the interaction in two dimensions (2D) and three dimensions
(3D) leads to five- and seven-body interactions. Finally,
we discuss experimental implementation with trapped ions,
Rydberg atoms, and polar molecules.

In recent years, there has been a lot of work on us-
ing time-periodic modulation to control many-body systems
(see Refs. [22,23] for recent reviews). The generation of
many-body interactions has been previously studied in the
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context of bosonic quantum gases [24-27] and spin mod-
els [28,29]. Other time-modulated spin models have also been
studied [30-32].

II. GENERAL MODEL

We consider a lattice of spin-1/2 particles, where the
spin-spin interaction is modulated in time. The Hamiltonian is
(h=1)

J cos(R2t)
H = T Zamnxmxn +38 Z Zy, (1)

mn n

where X,,Y,, Z, are the Pauli matrices for spinn, J is the mod-
ulation amplitude, and g is the transverse-field strength. The
1/2 accounts for double-counting pairs in the sum. For now,
we let the lattice be arbitrary, and a,,,, encodes the connectivity
between spins m and n. In later sections, we will consider one-,
two-, and three-dimensional lattices. Reference [28] studied
the case of all-to-all coupling. Reference [29] studied the case
of one dimension with nearest-neighbor interactions.

For convenience, we define the operator A, = Zm An Xom»
which is the sum of the spins that spin n interacts with. Then
Eq. (1) can be written as

J cos(21)

To analyze this time-dependent model, we use Floquet
theory [22,23]. We go into the interaction picture, rotating with
the first term of Eq. (2). In this rotating frame, H becomes H’,

H =U@! <g > Zn) U, 3)
U(r) = exp [—@ > Anxn}, €

B(t) = ésin(Qt). (5)
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Then we use the Baker-Campbell-Hausdorff formula to
rewrite H',

H' =" g{cos[2B()As1Z, + sin[2B(1) A, 1Y, }, 6)

-y %[(zn — iY,)e P OM L (Z, 4 i¥,)e PO,
n

)

We write in terms of Bessel functions,

. [o¢]
exp [2% sin(Qt)An} => ﬂ(%)e’m’. (8)
{=—00
H' is still time dependent, so we make a rotating-wave
approximation [30,33]. The £ # 0 terms in H’ oscillate very
quickly and are off-resonant. Thus, we only need to keep the
£ =0 terms to capture the slow-time-scale dynamics. This

rotating-wave approximation is valid when

Q> g. 9
So the final Hamiltonian is
, 2JA,
H =g;%( 5 )zn, (10)

Zan:jb(ZEJ ;amnxm>zna (11)

Thus, in the interaction picture and when €2 is sufficiently
large, the system is described by the time-independent Hamil-
tonian H' in Eq. (11). At this point, we choose a lattice
geometry (a,,,) and expand [y in a power series,

o]

B (=7 (x\?
wo=Sorpen(s) 0

p=0

‘We obtain arbitrary even powers of A,,, which can be simplified
using the fact that X2 = 1. In general, H' has many-body
interactions involving one Z and an even number of X’s, e.g.,
X1Z,X5. H' is reminiscent of cluster Hamiltonians that arise
in measurement-based quantum computing [20,21].

The presence of many-body interactions in H’ can be
intuitively understood as follows. The transverse field in H
causes spin n to undergo Rabi oscillations between | | ), and
| 1)x. However, the modulated interaction means that spin n
sees an oscillating energy shift that depends on its neighbors’
X. Similarly, the many-body terms in H' mean that spin n
Rabi-oscillates depending on its neighbors’ X, but now the
energy shift is time independent.

The relationship between the wave function |i¢) in the
laboratory frame (evolving with H) and the wave function
|’} in the rotating frame (evolving with H’) is:

[y () = U@IY'(1)). 13)

Equations (4) and (5) say that when ¢ is a multiple of
27/, B(t) =0 and U(t) = 1. Thus, if we measure the
system at these periodic times, |¢) = |¢'), and we do not
have to worry about converting between the two frames [28].

There is a simple way to convert between the two frames
at arbitrary times. We note that |y'(¢)) = U(I)”I[/(t)), where
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U(t)! is the evolution operator of H withg =0and J — —J.
Thus, after we have obtained |y (¢)), if we evolve it further for
time ¢ with g = 0 and J — —J, we obtain |¢//(¢)).

In Eq. (1), we assumed that the interaction alternates sign,
but our results still hold if the interaction is modulated without
changing sign. In that case, H' is the same, but U(¢) is
different [30]. In some experimental setups, it is easier to
modulate the strength without changing the sign.

Lastly, we note that, although we assume spin-1/2 in this
paper, one obtains similar results for higher spin. Suppose the
X, Yy, Z, in Eq. (1) were for higher spin. Then H' would
still be given by Eq. (11) since the commutation relations of
X, Y, Z, donot depend on the spin magnitude. The difference
is that X ,21 # 1 for higher spin, so the expanded and simplified
form of H' would look differently.

III. ONE DIMENSION WITH NEAREST-NEIGHBOR
INTERACTIONS

A. Model

We now consider a one-dimensional lattice of N spins
with nearest-neighbor interactions, which was first studied in
Ref. [29]. We assume open boundary conditions. However, we
add a longitudinal field to the edge spins,

N—1 N
H=1J cos(Qt)[Z Xy Xnt1 + X1+ XN:| +3 Z,.
n=1 n=1

(14)

It is not necessary to add X; 4+ X, but without these extra
terms, the ground state of H’ is fourfold degenerate due to
a Zp x Z, symmetry [29,34,35]. Although this degeneracy
is a signature of symmetry-protected-topological order, it is
problematic if one wants to adiabatically prepare the ground
state of H’; without these terms, one needs a slower ramp.
Another reason for adding these terms is to make H’ look
more like a cluster Hamiltonian as discussed below.

The non-edge spins have A, = X,,_; + X,+1, whereas the
edge spins have A =1+ X, and Ay = Xny—1 + 1. After
expanding and simplifying Eq. (11), we obtain [29]

N N-1
H =¢ Z Z,—c3 (Z Xn-1ZnXn+1
n=1 n=2

+ZIX2+XN1ZN>a (15)

4J
cl %[1+%<5>]’ (16)

47
C3=§[1—%<§>]. (17)

Thus, H' has a transverse field with strength ¢; and a
three-body interaction with strength c¢3. The ratio ¢3/c; can
be adjusted by varying J/ 2 [Fig. 1(a)]. The transverse field is
always present, although it can be weaker than the three-body
interaction. c3/c; reaches its maximum value of 2.35 when
J/ 2 =0.96.
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FIG. 1. One-dimensional chain with nearest-neighbor interac-
tions. (a) Coefficients in H' in units of g. (b) String-order parameter
for the ground state of H'.

B. Cluster phase

H'’ in Eq. (15) is significant for two reasons. First, the
terms in parentheses are a cluster Hamiltonian [1,34-38]. The
(unique) ground state of a cluster Hamiltonian is a cluster
state, which is a highly entangled state that is useful for
measurement-based quantum computing [20,21]. Note that in
order to be a cluster Hamiltonian, H’ must have boundary
terms as in Eq. (15), which is why we included X; 4+ Xy in
Eq. (14).

H'’ is also significant because the ground state exhibits a
phase transition to string order. The string-order parameter

is [34,35,38]
N-2
<X1Y2<H Zk) YN—1XN>
k=3

although other string-order parameters also work [36,37].
When c¢3/c; > 1, the ground state has string order (S > 0), and
the system is in the “cluster phase” since the ground state is
still useful for measurement-based quantum computing even
if ¢; # 0 [36]. When c3/c; < 1, the ground state is in the
paramagnetic phase (S = 0). The critical point at c3/c; = 1
is a second-order phase transition. These properties can be
obtained analytically by using the Jordan-Wigner transforma-
tion [1,35] or by mapping to the (time-independent) transverse-
field Ising model [34,36]. Note that two-site correlations, such
as (X,, X,,), do not show long-range order [1].

There is in fact a deep connection between string
order and measurement-based quantum computing [36]. In
measurement-based quantum computing, one does a sequence
of local measurements to entangle distant qubits. The sequence
of local measurements is equivalent to a string operator. If a
state’s string-order parameter is nonzero, the state is useful
for measurement-based quantum computing because local
measurements on it produce a state that is more entangled
than a random state. A larger string-order parameter implies
more usefulness.

Figure 1(b) shows the string-order parameter for finite N,
calculated using exact diagonalization of H'. As N increases,
the phase transition at ¢3/c; = 1 becomes more evident.

S = lim
N—o00

; (18)

FIG. 2. Adiabatic ramp from J = 0 to 0.96%2 in the laboratory
frame (blue solid line) and rotating frame (red dashed line).
(a) Population in the target final state W}- ). (b) String-order parameter.
In the laboratory frame, the wave function is sampled stroboscopically
in time at multiples of 27/Q. We use a 1D chain with N =8,
nearest-neighbor interactions, f,mp = 75/g, and Q = 10g.

C. Adiabatic preparation

Now we discuss how to adiabatically prepare the cluster
phase of H' by turning on the three-body interaction. We
linearly increase J from O to 0.96£2 over a time fymp such
that c¢3/c; starts at 0 and ends at the maximum value of 2.35.
The phase transition at c¢3/c; = 1 corresponds to J = 0.60%2.
The system starts in |¢) = [/} = || |{ ---), which is the
initial paramagnetic ground state of H’. We denote the final
ground state of H' as |1,0}), which is the desired cluster phase.

We first simulate the adiabatic ramp in the rotating frame
(]y') evolves with H). Figure 2 shows there is a clean transfer
of population into |y }) as expected. There is a slight infidelity,
which can be reduced by using a slower ramp (larger #.amp)-

Next, we simulate the adiabatic ramp in the laboratory
frame (|¥) evolves with H). We sample |1/} at periodic times
so that the wave functions of the laboratory and rotating
frames coincide. Figure 2(a) shows that the population transfer
in the laboratory frame is similar to the rotating frame. The
deviation is due to the rotating-wave approximation, but the
agreement improves as €2 increases. Interestingly, despite the
deviation from |¢') during the ramp, |¥/) ends up in |¢}) with
very high fidelity.

In Fig. 2(b) we plot the string-order parameter S as a
function of time. As expected, S starts at zero and ends at
a nonzero value.

It turns out that this adiabatic method does not work for N =
5,9,13, ..., due to a symmetry of H’. If one starts the adiabatic
rampin | ||| ---), the system ends up in an excited state.

IV. ONE DIMENSION WITH POWER-LAW
INTERACTIONS

We now consider a one-dimensional lattice with power-law
interactions, i.e., the spin-spin interaction decreases with a
power law in distance (1/r%). The motivation is that atom-
based quantum simulators (e.g., trapped ions [6], Rydberg
atoms [10], and polar molecules [3]) usually have power-law
interactions. Below, we present results for « = 1-3, which are
relevant to these experiments. We show that @ = 3 is almost
identical to the nearest-neighbor model, whereas o = 1 is quite
different.
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FIG. 3. Coefficients in H' for a 1D chain of N = 5 spins with different interaction ranges: (a) nearest neighbor, (b) power law with o = 3,
(c) power law with & = 2, and (d) power law with = 1. Coefficients are in units of g.

A. Model

We assume open boundary conditions and again add a
longitudinal field to the edge spins,

N
H = J cos(R2t) Z WX,"X" + X1+ Xy

m,n=1
m<n

N
+gZZ".

n=1

19)

So for non-edge spins, A, = Zm#n X /|lm —nl|®.

We now calculate H’ for Eq. (19). Since H now has
coupling between every pair of spins, H' has many more
terms than Eq. (15). There are three-body terms between
non-neighboring spins. There are also many-body interactions
involving five, seven, etc., spins. There are two questions we
seek to answer. First, how large are these extra terms? Second,
how does the ground state of the new H’ compare to that of
the nearest-neighbor case [Eq. (15)]?

To get a sense of the magnitude of the extra terms,
we consider in detail the case of N =5 spins, which is
representative of larger N. In this case, H' has one-, three-, and
five-body terms. Figure 3 plots the coefficients for some terms
that involve Z3. We calculated these coefficients numerically
by expanding Eq. (11) to sufficient order. We see that the extra
terms are small for « = 3 but large foroe = 1. So H' fora = 3
is very similar to the nearest-neighbor case, whereas o = 1 is
quite different.

We discuss in detail the case of « = 3. For J/Q < 2, the
coefficients of Z; and X,Z3X, are very close to Egs. (16)
and (17), whereas the coefficients of the extra terms are small.
If we set J/ 2 = 0.96 (which maximized c3/c; for the nearest-
neighbor case), the extra terms are very small. The largest extra
term is X X,Z3X4X5, whose coefficient is still 1/30 that of
X»Z3X4. Also, the new three-body terms are smaller than what
one would naively expect based on the cubic power law. For
example, one would expect the coefficient of X|Z3X5 to be
1/64 that of X,Z3X, (since the X; X3 and X3 X5 interactions
in H are 1/8 those of X, X3 and X3 X}), but the ratio is actually
1/240. So the power-law decay of interaction in H does not
directly carry over to H'.

Although Fig. 3 only shows terms involving Z3, we observe
similar behavior for other Z,,. Furthermore, as we increase N,
the above observations still hold. So H' for @ = 3 is very close
to that for the nearest-neighbor case [Eq. (15)]. However, it is
possible that the ground states are very different, so we proceed
to compare the ground states.

B. Ground state of H’

Here, we compare the ground state |w1’,l) of H' for the
power-law case with the ground state |1,,) of H' for the
nearest-neighbor case [Eq. (15)]. In principle, we could find
|1ﬂl’,,> by first calculating all terms of H’ via Eq. (11), then
diagonalizing to find the ground state, but this is very tedious
for large N. A more convenient way is to perform an adiabatic
ramp of H, such as in Sec. III C: If the ramp is very slow
(to ensure adiabaticity) and 2 is very large (to validate the
rotating-wave approximation), then W;ﬂ) will be prepared with
very high fidelity. (At the moment, we are interested in the ideal
case in order to obtain the ground state of H’. In Sec. VIB, we
will use more realistic experimental parameters.) Note that, as
discussed in Sec. III C, the ground states for N = 5,9,13, ..,
are inaccessible via adiabatic ramp.

Figure 4 compares |1/f1’,,) with [y ) for J/Q = 0.96.
In these plots, W;l) was obtained using framp = 300/g and

Q = 100g. Figure 4(a) shows the overlap |{y// |1p[’,,)|2 for
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FIG. 4. Comparison of ground states of H’ with different
interaction power laws for J/S2 = 0.96. (a) Overlap of ground
states with nearest-neighbor ground state |(w{m|w1’,,)|2. (b) String-
order parameter for nearest-neighbor (black points) and power-law
interactions.
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different N and «. The case of @« = 3 has very high overlap
(0.998 for N = 14), whereas the case of @« = 1 has small
overlap. Actually, the overlap is larger than what is plotted due
to the way we obtained |¢;,), i.e., using a slower ramp and
larger 2 would make the overlap even higher. Figure 4(b) plots
the string-order parameter S: For o = 3, there is very good
agreement between |t/f/ ) and [¢],). Thus for & = 3, WI/,I) is
almost identical to |1/f,m) This means that quantum simulators
with cubic power-law interactions can observe the transition
to string order.

V. HIGHER DIMENSION

Now we consider two- and three-dimensional square
lattices with nearest-neighbor interactions,

H =17 cos(Q) Y XuX, +gZZ (20)
(mn)
For simplicity, we assume periodic boundary conditions.
For a 2D lattice, expanding Eq. (11) leads to
—C[ZZ —c )y Z X:X;Z,
n i,jeNn)
tesY D XX XiXeZ, @1
noi,jkLeN(n)
gl 4J 8J
==(34+4%| — — 1 22
c 8_+%<Q>+j0<9 (22)
[ 8J
3 = % 1— j()(—ﬂ, (23)
4J 8J
e =% 3—4%( )+Jo(§>}, (24)

where N (n) denotes the nearest neighbors of spin n, and Y’
means to include each set of neighbors only once. The c3 terms
are three-body interactions involving each pair of neighbors
of n, whereas the c5 terms are five-body interactions involving
all four neighbors. Figure 5(a) plots the coefficients. There are
ranges of J/Q where ¢5 > cy,c3.
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FIG. 5. Coefficients ¢, of n-body terms in H’ for (a) 2D and (b)
3D square lattices. Coefficients are in units of g.
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Equation (21) was previously studied for the case of c; = 0
[36]. There is a phase transition at ¢5/c; = 1 with string order
for ¢s/c; > 1, where the string runs diagonally across the
lattice. Note from Fig. 5(a) that H' always has c3 > 0; it will be
interesting to see how c3 affects the phase transition described
in Ref. [36].

For a 3D lattice, expanding Eq. (11) leads to

—clzZ —c )y Z XiX;Z,

n i,jeNn)

+es Y Z XiX;XeXoZn

noi,jkLeN(n)

/
1YY XiXXiXe XX, Zo,
no i, jk.tm,peNn)

i 4J 8J 12J
¢ = % 10+ 15%(5> + 670(5) + Jo(?ﬂ

(26)

4] 8J 12J
C3=%_2+L70< >—2u70(5>—jo<v)], 27

47 8J 12J
Cs=%_2—70<§>—2jo<§)+jo< )] (28)

4J 8J 12J
o=l 0- () vea('g) - (g )|
(29)

So H’ includes up to seven-body interactions. Figure 5(b) plots
the coefficients. There are ranges of J /2 where ¢; > ¢y,c3,¢s.

It is important to note that ¢s in Eq. (24) and ¢7 in Eq. (29)
are the same order as c3 in Eq. (17). This is surprising since
one would expect interactions involving more spins to be a
lot smaller. We also note that Egs. (21) and (25) are cluster
Hamiltonians; this is significant because a measurement-based
quantum computer beats a classical computer when the cluster
state is on a lattice higher than 1D [21].

It turns out that the form and coefficients of H’ depend
only on the number of neighbors in H. If H was on a 2D
triangular lattice (six neighbors), H' would still be given by
Egs. (25)—(29). This is because A, has the same form for a 2D
triangular lattice as a 3D square lattice. On the other hand, a
2D honeycomb lattice (three neighbors) would have a different
form.

(25)

VI. EXPERIMENTAL IMPLEMENTATION
A. Possible setups

We now discuss three types of experiments that could
modulate the interaction as in Eq. (1). In these experiments,
a spin state is encoded in the levels of an atom or molecule,
and the spin-spin interaction is engineered via laser fields.
Time-independent interactions have been demonstrated for all
three types, and introducing a modulation is straightforward.
(It is easier to modulate the interaction strength without
changing the sign, but our results still hold in this case, albeit
with a different U (¢) [30].) These experiments have power-law
interactions, but Sec. I'V showed that « = 3 ends up being very
similar to the nearest-neighbor case.
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The first example is trapped ions [6]. In this setup, a laser
induces a spin-spin interaction between ions (¢ = 0-3). The
sign and magnitude of the interaction depends on the frequency
and intensity of the laser [13,14]. By modulating the laser
parameters, one modulates the interaction.

The second example is Rydberg atoms [10]. Rydberg
levels have strong dipolar interactions. One can generate
spin-spin interactions (¢ = 3,6) by dressing a ground state
with a Rydberg state via an off-resonant laser [39]. The sign
and magnitude of the interaction depends on which Rydberg
state is used and the intensity of the dressing laser. By
modulating the intensity of the dressing laser, one modulates
the interaction. An alternative approach is to directly populate
a Rydberg state; since the dipolar interaction can be tuned via
a Forster resonance [40], one can modulate the interaction by
modulating electric or microwave fields.

The third example is polar molecules [3,5]. In this case,
a spin is encoded in the rotational degree of freedom of
a molecule. The molecules interact via dipolar interactions
(a = 3), which can be tuned via electric and microwave fields.
By modulating the latter, one modulates the interaction.

B. Experimental numbers

To maximize fidelity of the prepared ground state, 2 and
tamp should both be large to ensure validity of the rotating-
wave approximation and adiabaticity, respectively. In practice,
these are limited because the interaction strength J cannot be
arbitrarily large and the system has a finite coherence time.

We give example numbers for trapped ions. Recent ex-
periments have implemented a spin chain with power-law
interactions with J ~ 2w x 1 kHz [6]. We simulate a 1D
chain with o = 3 [Eq. (19)] and increase J linearly from O
to 2 x 1 kHz over a time tump. We set 2 = 27 x 1.04 kHz
to maximize the final three-body interaction. The rotating-
wave approximation requires 2 >> g; empirically, we obtain
reasonable results with 2 = 10g, which corresponds to g =
2w x 104 Hz.

The required framp increases with N. For N = 3, tyymp =
4.5/¢ = 7 ms is sufficient to prepare the ground state of H’
with reasonably high fidelity [Fig. 6(a)]. This is on the order

(a) (b)
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0 2 4 6 8 10 0 10 20 30 40 50 60
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FIG. 6. Adiabatic ramp for a 1D chain with power-law interac-
tions («¢ = 3) and realistic experimental parameters: (a) N = 3 with
tramp = 7 ms and (b) N = 8 with #,,,, = 40 ms. The wave function
is sampled stroboscopically in time at multiples of r = 27/ Q2. We
plot the population in |, ), which is the final ground state of the
nearest-neighbor H'.
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of the coherence time of current experiments [6]. For N =
8, tramp = 26/g = 40 ms is sufficient [Fig. 6(b)]. One could
decrease t,mp by increasing the maximum J or by optimizing
the ramp profile.

VII. MODULATED XY INTERACTIONS

We briefly discuss the effect of time modulation on the XY
chain,

H=17cos(Q)) XpXpei+8) VaYuri.  (30)

For simplicity, we assume one dimension, nearest-neighbor
interactions, and periodic boundary conditions. Such a model
can also be implemented with trapped ions since the X and
Y interactions can be independently controlled, although the
interaction would be long range [14].

By going into the interaction picture and taking the rotating-
wave approximation as in Sec. I, we obtain a time-independent
Hamiltonian,

H' =c¢) YiYuu+ca ) Xo1ZoZogiXs2 GD)
n n

47
cz=§|:1+..7o<§>:|» (32)

4]
4= %[1 - %(5)}. (33)

H’ contains two- and four-body interactions, where ¢, and
¢4 are exactly the same as ¢ and c¢3 in Egs. (16) and (17).
Equation (31) has been shown to have a second-order phase
transition from antiferromagnetic order (c4/c, < 1) to nematic
order (c4/cy > 1) where the latter is also characterized by a
nonlocal order parameter [38].

VIII. CONCLUSION

We have presented a simple method of generating many-
body interactions in atomic systems. One future direction is to
consider the effect of disorder. It is known that the transverse-
field Ising model with quenched disorder forms a Griffiths
phase [41,42]. It would be interesting to see if the Griffiths
phase survives time modulation of the interaction.

Another direction is to add a second slower modulation. For
example, suppose one modulated c3 in Eq. (15) by modulating
J on a slower time scale than 1/. By going into another
rotating frame, one may obtain an even more exotic spin chain.

ACKNOWLEDGMENTS

The simulations in this paper were performed on Indiana
University’s supercomputer, Big Red II. Y.N.J. was supported
by NSE-DMR Grant No. 1054020.

023610-6



STRING ORDER VIA FLOQUET INTERACTIONS IN ...

[1] J. K. Pachos and M. B. Plenio, Phys. Rev. Lett. 93, 056402
(2004).

[2] A.Bermudez, D. Porras, and M. A. Martin-Delgado, Phys. Rev.
A 79, 060303 (2009).

[3] A. V. Gorshkov, S. R. Manmana, G. Chen, J. Ye, E. Demler,
M. D. Lukin, and A. M. Rey, Phys. Rev. Lett. 107, 115301
(2011).

[4] T.E. Lee, S. Gopalakrishnan, and M. D. Lukin, Phys. Rev. Lett.
110, 257204 (2013).

[5] B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. Hazzard,
A. M. Rey, D. S. Jin, and J. Ye, Nature (London) 501, 521
(2013).

[6] P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-
Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe, Nature
(London) 511, 198 (2014).

[7] I. Cohen and A. Retzker, Phys. Rev. Lett. 112, 040503 (2014).

[8] A.J. Daley and J. Simon, Phys. Rev. A 89, 053619 (2014).

[9] C.-K. Chan, T. E. Lee, and S. Gopalakrishnan, Phys. Rev. A 91,
051601 (2015).

[10] P.SchauB, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau, T. Macri,
T. Pohl, 1. Bloch, and C. Gross, Science 347, 1455 (2015).

[11] Z.-X. Gong, M. F. Maghrebi, A. Hu, M. Foss-Feig, P. Richerme,
C. Monroe, and A. V. Gorshkov, Phys. Rev. B 93,205115 (2016).

[12] J. Kaczmarczyk, H. Weimer, and M. Lemeshko,
arXiv:1601.00646.

[13] K. Mglmer and A. Sgrensen, Phys. Rev. Lett. 82, 1835 (1999).

[14] D. Porras and J. I. Cirac, Phys. Rev. Lett. 92, 207901 (2004).

[15] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107
(2011).

[16] F. Haldane, Phys. Lett. A 93, 464 (1983).

[17] M. den Nijs and K. Rommelse, Phys. Rev. B 40, 4709 (1989).

[18] T. Kennedy and H. Tasaki, Phys. Rev. B 45, 304 (1992).

[19] D. V. Else, S. D. Bartlett, and A. C. Doherty, Phys. Rev. B 88,
085114 (2013).

[20] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001).

[21] M. A. Nielsen, Rep. Math. Phys. 57, 147 (2006).

PHYSICAL REVIEW A 94, 023610 (2016)

[22] M. Bukov, L. D’Alessio, and A. Polkovnikov, Adv. Phys. 64,
139 (2015).

[23] A. Eckardt, arXiv:1606.08041.

[24] J. Gong, L. Morales-Molina, and P. Hanggi, Phys. Rev. Lett.
103, 133002 (2009).

[25] A. Rapp, X. Deng, and L. Santos, Phys. Rev. Lett. 109, 203005
(2012).

[26] S. Greschner, L. Santos, and D. Poletti, Phys. Rev. Lett. 113,
183002 (2014).

[27] E. Meinert, M. J. Mark, K. Lauber, A. J. Daley, and H.-C. Nagerl,
Phys. Rev. Lett. 116, 205301 (2016).

[28] G. Engelhardt, V. M. Bastidas, C. Emary, and T. Brandes, Phys.
Rev. E 87, 052110 (2013).

[29] T. Iadecola, L. H. Santos, and C. Chamon, Phys. Rev. B 92,
125107 (2015).

[30] V. M. Bastidas, C. Emary, G. Schaller, and T. Brandes, Phys.
Rev. A 86, 063627 (2012).

[31] A. Russomanno and E. G. D. Torre, arXiv:1510.08866.

[32] A. Gémez-Leén and P. Stamp, arXiv:1512.08315.

[33] S. Ashhab, J. R. Johansson, A. M. Zagoskin, and F. Nori, Phys.
Rev. A 75, 063414 (2007).

[34] W. Son, L. Amico, R. Fazio, A. Hamma, S. Pascazio, and V.
Vedral, Europhys. Lett. 95, 50001 (2011).

[35] P. Smacchia, L. Amico, P. Facchi, R. Fazio, G. Florio,
S. Pascazio, and V. Vedral, Phys. Rev. A 84, 022304
(2011).

[36] A. C. Doherty and S. D. Bartlett, Phys. Rev. Lett. 103, 020506
(2009).

[37] S. O. Skrgvseth and S. D. Bartlett, Phys. Rev. A 80, 022316
(2009).

[38] S. M. Giampaolo and B. C. Hiesmayr, Phys. Rev. A 92, 012306
(2015).

[39] T. Macri and T. Pohl, Phys. Rev. A 89, 011402 (2014).

[40] D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and
C. S. Adams, Phys. Rev. Lett. 114, 113002 (2015).

[41] D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992).

[42] F. Igléi and C. Monthus, Phys. Rep. 412, 277 (2005).

023610-7


http://dx.doi.org/10.1103/PhysRevLett.93.056402
http://dx.doi.org/10.1103/PhysRevLett.93.056402
http://dx.doi.org/10.1103/PhysRevLett.93.056402
http://dx.doi.org/10.1103/PhysRevLett.93.056402
http://dx.doi.org/10.1103/PhysRevA.79.060303
http://dx.doi.org/10.1103/PhysRevA.79.060303
http://dx.doi.org/10.1103/PhysRevA.79.060303
http://dx.doi.org/10.1103/PhysRevA.79.060303
http://dx.doi.org/10.1103/PhysRevLett.107.115301
http://dx.doi.org/10.1103/PhysRevLett.107.115301
http://dx.doi.org/10.1103/PhysRevLett.107.115301
http://dx.doi.org/10.1103/PhysRevLett.107.115301
http://dx.doi.org/10.1103/PhysRevLett.110.257204
http://dx.doi.org/10.1103/PhysRevLett.110.257204
http://dx.doi.org/10.1103/PhysRevLett.110.257204
http://dx.doi.org/10.1103/PhysRevLett.110.257204
http://dx.doi.org/10.1038/nature12483
http://dx.doi.org/10.1038/nature12483
http://dx.doi.org/10.1038/nature12483
http://dx.doi.org/10.1038/nature12483
http://dx.doi.org/10.1038/nature13450
http://dx.doi.org/10.1038/nature13450
http://dx.doi.org/10.1038/nature13450
http://dx.doi.org/10.1038/nature13450
http://dx.doi.org/10.1103/PhysRevLett.112.040503
http://dx.doi.org/10.1103/PhysRevLett.112.040503
http://dx.doi.org/10.1103/PhysRevLett.112.040503
http://dx.doi.org/10.1103/PhysRevLett.112.040503
http://dx.doi.org/10.1103/PhysRevA.89.053619
http://dx.doi.org/10.1103/PhysRevA.89.053619
http://dx.doi.org/10.1103/PhysRevA.89.053619
http://dx.doi.org/10.1103/PhysRevA.89.053619
http://dx.doi.org/10.1103/PhysRevA.91.051601
http://dx.doi.org/10.1103/PhysRevA.91.051601
http://dx.doi.org/10.1103/PhysRevA.91.051601
http://dx.doi.org/10.1103/PhysRevA.91.051601
http://dx.doi.org/10.1126/science.1258351
http://dx.doi.org/10.1126/science.1258351
http://dx.doi.org/10.1126/science.1258351
http://dx.doi.org/10.1126/science.1258351
http://dx.doi.org/10.1103/PhysRevB.93.205115
http://dx.doi.org/10.1103/PhysRevB.93.205115
http://dx.doi.org/10.1103/PhysRevB.93.205115
http://dx.doi.org/10.1103/PhysRevB.93.205115
http://arxiv.org/abs/arXiv:1601.00646
http://dx.doi.org/10.1103/PhysRevLett.82.1835
http://dx.doi.org/10.1103/PhysRevLett.82.1835
http://dx.doi.org/10.1103/PhysRevLett.82.1835
http://dx.doi.org/10.1103/PhysRevLett.82.1835
http://dx.doi.org/10.1103/PhysRevLett.92.207901
http://dx.doi.org/10.1103/PhysRevLett.92.207901
http://dx.doi.org/10.1103/PhysRevLett.92.207901
http://dx.doi.org/10.1103/PhysRevLett.92.207901
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1016/0375-9601(83)90631-X
http://dx.doi.org/10.1103/PhysRevB.40.4709
http://dx.doi.org/10.1103/PhysRevB.40.4709
http://dx.doi.org/10.1103/PhysRevB.40.4709
http://dx.doi.org/10.1103/PhysRevB.40.4709
http://dx.doi.org/10.1103/PhysRevB.45.304
http://dx.doi.org/10.1103/PhysRevB.45.304
http://dx.doi.org/10.1103/PhysRevB.45.304
http://dx.doi.org/10.1103/PhysRevB.45.304
http://dx.doi.org/10.1103/PhysRevB.88.085114
http://dx.doi.org/10.1103/PhysRevB.88.085114
http://dx.doi.org/10.1103/PhysRevB.88.085114
http://dx.doi.org/10.1103/PhysRevB.88.085114
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1103/PhysRevLett.86.5188
http://dx.doi.org/10.1016/S0034-4877(06)80014-5
http://dx.doi.org/10.1016/S0034-4877(06)80014-5
http://dx.doi.org/10.1016/S0034-4877(06)80014-5
http://dx.doi.org/10.1016/S0034-4877(06)80014-5
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1080/00018732.2015.1055918
http://dx.doi.org/10.1080/00018732.2015.1055918
http://arxiv.org/abs/arXiv:1606.08041
http://dx.doi.org/10.1103/PhysRevLett.103.133002
http://dx.doi.org/10.1103/PhysRevLett.103.133002
http://dx.doi.org/10.1103/PhysRevLett.103.133002
http://dx.doi.org/10.1103/PhysRevLett.103.133002
http://dx.doi.org/10.1103/PhysRevLett.109.203005
http://dx.doi.org/10.1103/PhysRevLett.109.203005
http://dx.doi.org/10.1103/PhysRevLett.109.203005
http://dx.doi.org/10.1103/PhysRevLett.109.203005
http://dx.doi.org/10.1103/PhysRevLett.113.183002
http://dx.doi.org/10.1103/PhysRevLett.113.183002
http://dx.doi.org/10.1103/PhysRevLett.113.183002
http://dx.doi.org/10.1103/PhysRevLett.113.183002
http://dx.doi.org/10.1103/PhysRevLett.116.205301
http://dx.doi.org/10.1103/PhysRevLett.116.205301
http://dx.doi.org/10.1103/PhysRevLett.116.205301
http://dx.doi.org/10.1103/PhysRevLett.116.205301
http://dx.doi.org/10.1103/PhysRevE.87.052110
http://dx.doi.org/10.1103/PhysRevE.87.052110
http://dx.doi.org/10.1103/PhysRevE.87.052110
http://dx.doi.org/10.1103/PhysRevE.87.052110
http://dx.doi.org/10.1103/PhysRevB.92.125107
http://dx.doi.org/10.1103/PhysRevB.92.125107
http://dx.doi.org/10.1103/PhysRevB.92.125107
http://dx.doi.org/10.1103/PhysRevB.92.125107
http://dx.doi.org/10.1103/PhysRevA.86.063627
http://dx.doi.org/10.1103/PhysRevA.86.063627
http://dx.doi.org/10.1103/PhysRevA.86.063627
http://dx.doi.org/10.1103/PhysRevA.86.063627
http://arxiv.org/abs/arXiv:1510.08866
http://arxiv.org/abs/arXiv:1512.08315
http://dx.doi.org/10.1103/PhysRevA.75.063414
http://dx.doi.org/10.1103/PhysRevA.75.063414
http://dx.doi.org/10.1103/PhysRevA.75.063414
http://dx.doi.org/10.1103/PhysRevA.75.063414
http://dx.doi.org/10.1209/0295-5075/95/50001
http://dx.doi.org/10.1209/0295-5075/95/50001
http://dx.doi.org/10.1209/0295-5075/95/50001
http://dx.doi.org/10.1209/0295-5075/95/50001
http://dx.doi.org/10.1103/PhysRevA.84.022304
http://dx.doi.org/10.1103/PhysRevA.84.022304
http://dx.doi.org/10.1103/PhysRevA.84.022304
http://dx.doi.org/10.1103/PhysRevA.84.022304
http://dx.doi.org/10.1103/PhysRevLett.103.020506
http://dx.doi.org/10.1103/PhysRevLett.103.020506
http://dx.doi.org/10.1103/PhysRevLett.103.020506
http://dx.doi.org/10.1103/PhysRevLett.103.020506
http://dx.doi.org/10.1103/PhysRevA.80.022316
http://dx.doi.org/10.1103/PhysRevA.80.022316
http://dx.doi.org/10.1103/PhysRevA.80.022316
http://dx.doi.org/10.1103/PhysRevA.80.022316
http://dx.doi.org/10.1103/PhysRevA.92.012306
http://dx.doi.org/10.1103/PhysRevA.92.012306
http://dx.doi.org/10.1103/PhysRevA.92.012306
http://dx.doi.org/10.1103/PhysRevA.92.012306
http://dx.doi.org/10.1103/PhysRevA.89.011402
http://dx.doi.org/10.1103/PhysRevA.89.011402
http://dx.doi.org/10.1103/PhysRevA.89.011402
http://dx.doi.org/10.1103/PhysRevA.89.011402
http://dx.doi.org/10.1103/PhysRevLett.114.113002
http://dx.doi.org/10.1103/PhysRevLett.114.113002
http://dx.doi.org/10.1103/PhysRevLett.114.113002
http://dx.doi.org/10.1103/PhysRevLett.114.113002
http://dx.doi.org/10.1103/PhysRevLett.69.534
http://dx.doi.org/10.1103/PhysRevLett.69.534
http://dx.doi.org/10.1103/PhysRevLett.69.534
http://dx.doi.org/10.1103/PhysRevLett.69.534
http://dx.doi.org/10.1016/j.physrep.2005.02.006
http://dx.doi.org/10.1016/j.physrep.2005.02.006
http://dx.doi.org/10.1016/j.physrep.2005.02.006
http://dx.doi.org/10.1016/j.physrep.2005.02.006



