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Abstract

Various proteoforms may be generated from a single gene due to primary struc-

ture alterations (PSAs) such as genetic variations, alternative splicing, and post-
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translational modifications (PTMs). Top-down mass spectrometry is capable of analyz-

ing intact proteins and identifying patterns of multiple PSAs, making it the method of

choice for studying complex proteoforms. In top-down proteomics, proteoform identifi-

cation is often performed by searching tandem mass spectra against a protein sequence

database that contains only one reference protein sequence for each gene or transcript

variant in a proteome. Because of the incompleteness of the protein database, an iden-

tified proteoform may contain unknown PSAs compared with the reference sequence.

Proteoform characterization is to identify and localize PSAs in a proteoform. Although

many software tools have been proposed for proteoform identification by top-down mass

spectrometry, the characterization of proteoforms in identified proteoform-spectrum-

matches still relies mainly on manual annotation. We propose to use the Modification

Identification Score (MIScore), which is based on Bayesian models, to automatically

identify and localize PTMs in proteoforms. Experiments showed that the MIScore is

accurate in identifying and localizing one or two modifications.

Introduction

The expression of a gene may result in many proteoforms,1 which often contain some pri-

mary structure alterations (PSAs), such as amino acid substitutions, insertions/deletions

of amino acids or exons, and post-translational modifications (PTMs), compared with the

reference protein sequence in the Swiss-Prot2 or RefSeq3 database. Because many PSAs

alter protein structure, function, and protein-protein interactions, they play a vital role in

biological processes and are closely related to many diseases such as heart failure4 and age-

dependent memory impairment.5 Researchers have been actively developing experimental

and computational methods for identifying proteoforms with PSAs.6

Bottom-up mass spectrometry (MS) has dominated proteomics studies for more than

two decades. However, protein digestion in bottom-up MS cleaves long proteins into short

peptides, limiting its ability to identify the combinatorial pattern of multiple PSAs in a
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complex proteoform.7 In addition, only a fraction of peptides can be confidently identified,

and the PSAs on those unidentified peptides cannot be observed. By contrast, top-down

MS analyzes intact proteins and provides whole protein sequence coverage, making it the

method of choice for studying complex proteoforms with PSAs. Over the past five years,

high accuracy and high resolution mass spectrometers (e.g., Orbitrap), which are required

for top-down MS, have become available to many laboratories. Developments in protein

separation and MS instrumentation have boosted the applications of top-down MS, which

open a window into the poorly explored world of proteoforms.1

There are three main approaches to identifying proteoforms by top-down MS: extended

databases, blind PSA search, and the combination of the first two. In the first approach, an

extended proteoform database is constructed that includes all known proteoforms, against

which tandem mass (MS/MS) spectra are searched. The second approach is similar to blind

PTM search in bottom-up MS, in which MS/MS spectra are searched against an ordinary

protein database, such as a Swiss-Prot protein database, to identify proteoforms with un-

known PSAs. These two approaches can be combined, that is, MS/MS spectra are searched

against an extended proteoform database to identify proteoforms with known and/or un-

known PSAs. ProteinGoggle8 and the absolute mass search mode of ProSightPC9 exemplify

the first approach. Various methods have been proposed using the second approach, such as

spectral alignment,10,11 precursor ion independent search (PIITA),12 and tag-based meth-

ods.13 ProSightPC provides the ∆m and biomarker search modes that are based on the third

approach. MS-Align-E14 is another example of the third approach, which is capable of iden-

tifying proteoforms with both variable and unknown PTMs. Although the first approach is

fast, it often misses many identifications because of the existence of unknown PSAs. As a

result, the second and third approaches are more efficient in exploring the world of unknown

complex proteoforms.

In the third approach, the objective is to map a top-down MS/MS spectrum to a proteo-

form of the target gene in the database that shares the maximum number of PSAs with the
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target proteoform. PSAs shared by the database and target proteoforms are known PSAs;

those in the target proteoform only are unknown or novel PSAs. Although proteoform char-

acterization, which identifies and localizes PSAs, is an indispensable step in top-down MS

data analysis, existing proteoform identification tools often report only the database prote-

oform, but fail to characterize the target proteoform.

In bottom-up MS, many methods have been proposed for the automated identification

and localization of PTMs, particularly for the localization of phosphorylation, such as A-

score,15 PTM score,16 Phosphorylation Localization Score,17 SLoMo,18 PhosphoRS19 and

Mascot Delta Score.20 After a mass shift in a peptide-spectrum match is identified, these

methods identify the PTM based on the mass shift and compute a confidence score for each

possible site of the PTM.21 In addition, there are methods that refine predicted PTMs and

their locations, such as PTMFinder22 and iPTMClust.23 However, the methods have some

limitations: PTMFinder uses a peptide-level approach, which favours modified peptides with

high-abundance; iPTMClust cannot handle peptides with multiple PTMs.

In top-down MS, software tools such as ProSightPC9 provide graphical user interfaces

for manually characterizing complex proteoforms, but they are inefficient in analyzing high

throughput data. Software tools for automated characterization of proteoforms are still

lacking.

Dang et al. described three types of confidence scores in proteoform identification and

characterization by top-down MS:24 protein identification scores, PTM localization scores,

and proteoform characterization scores. The last two are used in proteoform characteriza-

tion. The methods for PTM localization on peptides, such as A-score, can be extended

to compute PTM localization scores in proteoform characterization. However, most of the

methods were designed for single PTM localization, not for the characterization of complex

proteoforms with multiple PSAs. LeDuc et al.25 proposed a Bayesian approach for proteo-

form identification, in which C-scores are computed for candidate proteoforms in an extended

proteoform database. C-scores are proteoform characterization scores when the target pro-
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teoform does not contain unknown PSAs and the candidate proteoforms are limited to those

in the extended database.

We limit this study to the identification and localization of PTMs in proteoforms and

use Bayesian models to compute the Modification Identification Score (MIScore), which is

a PTM level, not proteoform level, score. While a PTM localization score is the confidence

score of a potential site of a given PTM; an MIScore is the probability that the reported

modification and site are correct. The computation of posterior probabilities in the proposed

models is simpler and faster than that in the C-score method. We give efficient algorithms

for computing MIScores as well as a divide and conquer method for the localization of two

modifications. One limitation of the MIScore method is that it can identify at most 2

modifications from an unknown mass shift. Experiments showed that the MIScore method

was accurate in identifying and localizing modifications in proteoforms.

Methods

Data sets

The MIScore method was tested on two top-down MS/MS data sets: one from Escherichia

coli K-12 MG1655 (EC) and the other from Salmonella typhimurium 14028s (ST). In ad-

dition, a Salmonella typhimurium 14028s bottom-up MS/MS data set was used for the

validation of identified modification sites.

EC data set Escherichia coli K-12 MG1655 was grown in M9 minimal medium at 37◦C

with shaking. Cells were harvested at OD600 of 0.6 by centrifugation (2 400 g, 15 min) at

4◦C, and washed with ammonium bicarbonate buffer (100 mM, pH 8). Cell pellets (1.5 g,

wet weight) were reconstituted in the ammonium bicarbonate buffer plus 1 mM PMSF. The

suspension was lysed with bead beating (0.1 mm Zirconia beads) at the maximum speed for

3 min. The cell debris and beads were removed by centrifugation (10 000 g, 5 min). The
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supernatant represented the soluble protein extract. No reduction and alkylation of cysteine

residues were performed in the sample preparation. The protein extract was separated by a

Waters NanoAquity LC system with a custom packed column (80 cm × 75 µm i.d., C5, 5 µm

particle diameter, 300 Å pore size). Mobile phase A was composed of 0.5% acetic acid, 0.01%

TFA, 5% isopropanol, 10% ACN, and 84.5% water. Mobile phase B consisted of 0.5% acetic

acid, 0.01% TFA, 9.9% water, 45% isopropanol, and 45% ACN. The operating flow rate was

0.3 µl/min. The LC system was equilibrated with 100% mobile phase A for 5 minutes, and

then increased to 20% mobile phase B in 1 minute. A 250 minute linear gradient was set

from 20% mobile phase B to 55% mobile phase B. All the related MS analysis was performed

using an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific, San Jose, CA). FTMS

MS and MSn AGC target values were 106 and 2 × 105, respectively. For the LC-MS/MS

analysis with higher-energy C-trap dissociation (HCD) fragmentation, a parent spectrum

was collected at a 60K resolution at m/z of 400 and was followed by high resolution (60K

at m/z of 400) HCD MS/MS spectra of the 6 most intense ions, isolated with a 3 m/z

window, from the parent mass spectrum. FT MS/MS employed 45% normalized collision

energy for HCD. Mass calibration was performed prior to analysis according to the method

recommended by the instrument manufacturer. A total of 3 704 HCD MS/MS spectra were

collected.

ST data set Cultures of Salmonella typhimurium 14028s were grown in low-phosphate,

low-magnesium, low-pH minimal medium (LPM) for infection-like condition. Protein sam-

ples of the cultures were collected and divided into two portions: one for top-down MS/MS

analysis and the other for bottom-up MS/MS analysis. No reduction and alkylation of cys-

teine residues were performed in the preparation of the samples. In the top-down MS/MS

experiment, the protein samples were separated by a reversed phase liquid chromatogra-

phy (RPLC) system and then analyzed by an LTQ Orbitrap Velos mass spectrometer. The

most 8 intense ions in each MS spectrum were selected to generate high resolution (60K)
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collision-induced dissociation (CID) MS/MS spectra. In the bottom-up MS/MS experiment,

the protein samples were digested using trypsin and analyzed by an high-performance liquid

chromatography (HPLC) system coupled with an LTQ Orbitrap Velos mass spectrometer.

The 6 most intensity ions in each MS spectrum were selected for CID MS/MS analysis.

Finally, a total of 7 400 top-down and 106 350 bottom-up MS/MS were collected. (See Ref

26 for details of the experiments.)

Binary representation of peptides and spectra

An MS/MS spectrum is represented by a precursor mass and a list of peaks. The precursor

mass corresponds to the molecular mass of the proteoform, and each peak (m/z, intensity)

corresponds to a fragment ion of the proteoform. The m/z value and intensity are the mass-

to-charge ratio and abundance of the fragment ion, respectively. In preprocessing of top-down

spectra, m/z values are converted into neutral masses of fragment ions by a deconvolution

algorithm.27–29 The neutral masses and the precursor mass are discretized by multiplying

the masses by a scale factor and rounding the resulting values to integers. A scale factor

274.335215 was used in the experiments.14 In practice, the scale factor is determined by the

accuracy of m/z values in top-down MS/MS spectra. For simplicity, peak intensities are

ignored in the following description of the method.

Let M be the discretized precursor mass of an MS/MS spectrum S. We represent spec-

trum S as a binary string s1s2 . . . sM , where sj = 1 if j is a discretized neutral fragment

mass in S; and sj = 0, otherwise (Figure 1). Let F be a proteoform matched to spectrum

S. The molecular mass of F equals M (within an error tolerance), and the proteoform F is

represented as a binary string f1f2 . . . fM , where fj = 1 if j is the discretized neutral mass of

a theoretical fragment ion of F ; and fj = 0, otherwise. For example, when only b- and y-ions

are used in the generation of theoretical spectra, a proteoform AGR (without modifications)

has four theoretical neutral fragment ions (b1, b2, y1 and y2) whose masses are 71.04, 128.06,

174.11, 231.13 Dalton (Da). In addition, the molecular mass of the proteoform is 302.17 Da.
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After discretization with a scale factor 1, the integer molecular mass is 302 and the four

integer neutral fragment masses are 71, 128, 174, 231. The protein AGR is represented by

the following binary string:

70︷ ︸︸ ︷
0 . . . 0 1

56︷ ︸︸ ︷
0 . . . 0 1

45︷ ︸︸ ︷
0 . . . 0 1

56︷ ︸︸ ︷
0 . . . 0 1

71︷ ︸︸ ︷
0 . . . 0 .

The shared mass count of S and F is the number of matched 1s in the binary strings of

S and F , denoted as Score(S, F ). When the precursor masses of S and F do not match,

Score(S, F ) = −∞. Notations in this paper are summarized in Table 1.

Single modifications

When a top-down MS/MS spectrum is matched to a proteoform in the database and the

target proteoform contains unknown modifications compared with the database proteoform,

the resulting proteoform-spectrum match (PrSM) (between the database proteoform and

the spectrum) contains some mass shifts identified based on matched theoretical and experi-

mental fragment masses.11 When the target proteoform contains one unknown modification

(and no other types of PSAs) and one mass shift is reported in the PrSM, the mass of the

modification equals (within an error tolerance) the mass shift. Because the type of the mod-

ification can be generally determined by the mass shift, the remaining task is to find the

location of the modification. Following the approach proposed in Ref 25, we use a Bayesian

model to compute the confidence score for each candidate site of the modification, that is,

the probability that the modification is on the site. For simplicity, we use the following as-

sumptions: (a) the database proteoform is an unmodified protein, (b) the target proteoform

is not truncated, and (c) the modification can occur on any amino acid of the protein.

Suppose a top-down MS/MS spectrum S is generated from a proteoform containing m

amino acids and a modification. Let P be the unmodified protein sequence of the target

proteoform, and F1, F2, . . . , Fm all possible modified proteoforms of P with the modification.
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The modification in Fi is on the ith amino acid. By Bayes’ theorem,

Pr(Fi|S) =
Pr(S|Fi) Pr(Fi)

Pr(S)
=

Pr(S|Fi) Pr(Fi)∑m
j=1 Pr(S|Fj) Pr(Fj)

,

where Pr(Fi|S) is the posterior probability for proteoform Fi given spectrum S, Pr(S|Fi) is

the conditional probability of observing spectrum S given proteoform Fi, and Pr(S) is the

probability of the data S (Table 1). The probability Pr(S) is computed as the sum of the

prior probabilities Pr(Fj) multiplied by their likelihoods Pr(S|Fj). In practice, the uniform

distribution is used for the prior probability of each proteoform, that is, Pr(Fj) = 1/m for

j = 1, 2, . . . ,m.

Below we describe how to obtain the values of Pr(S|Fi) for i = 1, 2, . . . ,m, which are

needed for computing the confidence scores of candidate sites. Let X0 be a random variable

that represents if a mass that does not match any theoretical fragment masses of a protein

in a given proteome database is observed in a top-down MS/MS spectrum of the protein.

Let X1 be a random variable that represents if a theoretical fragment mass of a protein in

a given proteome database is observed in a top-down MS/MS spectrum of the protein. The

random variable (X0 or X1) equals 1 if the mass is observed; otherwise, 0. A matched pair

(sj, fj) in the binary strings of S = s1s2 . . . sM and Fi = f1f2 . . . fM has four possible values

(0, 0), (0, 1), (1, 0), and (1, 1). Let z00, z01, z10, z11 be the numbers of (0, 0), (0, 1), (1, 0), and

(1, 1) pairs in the binary strings, respectively. For example, the numbers of (0, 0), (0, 1), (1, 0)

and (1, 1) pairs in S = 0101000100 and Fi = 0101001000 are 6, 1, 1, and 2, respectively.

That is, z00 = 6, z01 = 1, z10 = 1 and z11 = 2. The number z11 is the same as Score(S, Fi),

the shared mass count between S and Fi. By assuming the values in s1s2 . . . sM and those

in f1f2 . . . fM are independent, the likelihood is computed as follows:

Pr(S|Fi) = Pr(X0 = 0)z00 Pr(X0 = 1)z01 Pr(X1 = 0)z10 Pr(X1 = 1)z11 , (1)

where z00, z01, z10 and z11 are exponents.

To simplify the analysis, we assume that only two types of fragment ions (one is N-
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terminal and the other is C-terminal) are used for generating the binary string of Fi, and that

all neutral fragment masses are distinct. As a result, the number of 1s in the binary string of

Fi is 2m−2, where m is the number of amino acids in Fi. Suppose that z01 and z11 are known,

the values of z00 and z10 are computed as follows: z00 = M−z01−z10−z11 = M−z01−(2m−2);

z10 = 2m− 2− z11.

The four probabilities for X0 = 0, X0 = 1, X1 = 0, and X1 = 1 are estimated from

training data sets of identified PrSMs without modifications. (See Section “Estimation of

parameters.”) The probability Pr(S|Fi) is determined by the values of m, M , z01, and z11.

Because m and M are known, the probability Pr(S|Fi) can be computed if z01 and z11 are

obtained. In practice, an error tolerance is allowed to match a theoretical fragment mass to

an experimental one. In this case, the value z01 is replaced by the number of fj in the binary

string of Fi such that fj = 0 and the corresponding mass of fj matches an experimental

fragment mass within the error tolerance, denoted by RandMatch(S, Fi). Similarly, z11 is

replaced by the number of matched theoretical fragment masses within an error tolerance,

denoted by TheoMatch(S, Fi). For a given error tolerance, the number of fj satisfying

that the corresponding mass of fj matches an experimental fragment mass within the error

tolerance is fixed, that is, RandMatch(S, Fi)+TheoMatch(S, Fi) are the same for 1 ≤ i ≤ m.

As a result, the value RandMatch(S, Fi) can be obtained from TheoMatch(S, Fi). Similarly,

z01 + z11 equals the number of neutral masses in S, and the value z01 can be obtained from

z11 = Score(S, Fi). Based on the observation, we discuss the computation of Score(S, Fi)

and TheoMatch(S, Fi) only in the following analysis.

When Score(S, Fi−1) (or TheoMatch(S, Fi−1)) is given, it takes only several operations

to compute Score(S, Fi) (or TheoMatch(S, Fi)) because the theoretical spectra of Fi−1 and

Fi are almost the same. The number of operations for computing all probabilities Pr(S|Fi),

for i = 1, 2, . . . ,m, is proportional to n + m, where n is the number of masses in S and

m is the number amino acids in P . The probability Pr(Fi|S) is a modification localization

score. Because the type of the modification is known, we also report it as the MIScore. After
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obtaining the MIScores for all potential sites, the best scoring site is reported.

Modifications near N or C termini

A proteoform may have an unknown N-terminal (or C-terminal) truncation and an unknown

modification near the N-terminus (or C-terminus). The truncation and the type of the

modification need to be determined simultaneously. Below we use a proteoform with an

N-terminal truncation and a modification near the N-terminus as an example to illustrate

how to use a Bayesian model to solve the problem. To simplify the description, we assume

that all modifications can occur on any amino acid of the protein.

Let P be an unmodified protein sequence in the database with m amino acids and S an

MS/MS spectrum generated from a modified proteoform of P with an N-terminal truncation

and a modification near the N-terminus. Let Ti,j, 0 ≤ i < j ≤ m, be the proteoform of P

in which the first i amino acids at the N-terminus are truncated and the modification is

on the jth amino acid. The proteoform Ti,j is valid if the mass difference between the

precursor mass of S and the molecular mass of the truncated unmodified protein sequence

(the last n − i amino acids) matches the mass of a common modification (within an error

tolerance). The list of common modifications is specified by the user. The prior probability

of an invalid proteoform is 0; the uniform distribution is assumed for the prior probabilities

of valid proteoforms. By Bayes’ theorem

Pr(Ti,j|S) =
Pr(S|Ti,j) Pr(Ti,j)∑m−1

k=0

∑m
l=k+1 Pr(S|Tk,l) Pr(Tk,l)

.

Two modifications

When a mass shift in an identified PrSM results from a combination of two modifications,

the sum of the masses of the two modifications equals (within an error tolerance) the mass

shift. However, the mass shift may be explained by many combinations of two modifications.

For example, a mass shift 56.0626 Da can be explained by a methylation site (14.01565 Da)
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and a trimethylation site (42.04695 Da) or by two dimethylation sites (28.0313 Da each).

We propose to solve the problem with two steps: (1) determine the types and order of the

two modifications and (2) localize the two modifications. Finally, we report an ordered pair

of modifications, localized sites of the modifications, and their MIScores.

At the first step, we consider only common modifications specified by the user. If a mass

shift in a PrSM cannot be explained by two common modifications, it will be annotated by

a unknown mass shift and the proteoform will not be fully characterized. To simplify the

analysis, we assume that the PrSM contains only one unknown mass shift. Given a mass

shift d, we find all possible ordered pairs of two common modifications: (x1, y1), (x2, y2),. . . ,

(xk, yk), such that the sum of the masses of xi and yi is similar to d (within an error tolerance).

Because the pairs are ordered, we treat (methylation, trimethylation) and (trimethylation,

methylation) as two different pairs. For i = 1, 2, . . . , k, let Qi be the set of all candidate

proteoforms of protein P with two modifications (xi, yi) satisfying that xi is closer to the N-

terminus of the protein than yi. We compute the probability that the spectrum is generated

from a proteoform in Qi, that is, the probability that the types and order of the modifications

is (xi, yi), as follows:

Pr(Q ∈ Qi|S) =

∑
Q∈Qi

Pr(S|Q) Pr(Q)∑
Q′∈∪kj=1Qj

Pr(S|Q′) Pr(Q′)
. (2)

In practice, we assume that all the candidate proteoforms with two common modifications

follow a uniform distribution.

We describe a dynamic programming algorithm that efficiently computes the distribution

of the shared mass counts between S and all Q ∈ Qi, which are required for the computation

of the probability Pr(Q ∈ Qi|S). In the algorithm, the shared mass count between a prefix

of a proteoform and an MS/MS spectrum needs to be computed. A length l prefix R of a

proteoform is represented by a binary string by treating it as a special proteoform with l+ 1

amino acids: the first l amino acids are the same as those in the prefix and the l+1th amino
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acid is a special one representing the remaining amino acids. The residue mass of the special

amino acid is the sum of the residue masses of the remaining amino acids. The shared mass

count Score(R, S) is the number of matched 1s in the binary strings of R and S.

We fill out a three-dimensional table D(f, g, h) for f = 0, 1, and 2. The value D(f, g, h)

represents the number of different prefixes R of proteoforms in Qi satisfying that (1) R

contains the first f modifications of the pair (xi, yi) (when f = 1, R contains the modification

xi; when f = 2, the ordered modifications xi and yi), (2) the length of R is g, and (3)

Score(R, S) = h (Figure 2).

To simplify the analysis, we assume that all theoretical N- and C-terminal fragment

masses of a proteoform are distinct. When an N-terminal theoretical neutral fragment mass

and a C-terminal one of a proteoform Q ∈ Qi are the same and matched to a neutral fragment

mass in S, the proposed algorithm treats them as two matched theoretical fragment masses

and reports an approximation of Score(S,Q). In addition, we assume that CID spectra are

studied and that only b- or y-ions are used for the generation of theoretical spectra.

The masses of xi and yi are denoted as MX and MY , respectively. Let Bg denote the

neutral mass of the bg ion (the b-ion containing g amino acids) of Q. Let Bf,g be the

neutral mass of the bg ion with f modifications in (xi, yi) for f = 0, 1, 2, that is, B0,g = Bg,

B1,g = Bg +Mx, B2,g = Bg +Mx +My (Figure 2a). When the bg ion with f modifications is

a product ion of a proteoform Q, the neutral mass of the complementary y ion is M −Bf,g,

where M is the molecular mass of Q. We define

sf,g =


0, if none of Bf,g and M −Bf,g is matched to neutral masses in S;

1, if only one of Bf,g and M −Bf,g is matched to a neutral mass in S;

2, if both Bf,g and M −Bf,g is matched to neutral masses in S.

(3)

In addition, we set s0,m = s1,m = s2,m = 0, where m is the length of Q. Figure 2b shows an

example of table sf,g.

Let t = min{n, 2m−2} be the largest shared mass count score between S and a proteoform
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in Qi. In the initialization, we set

D(f, g, h) =


1, if f = g = h = 0;

0, if f = 0, g = 0 and h 6= 0;

0, if f 6= 0 and g = 0;

(4)

The values initialized in Figure 2c are shown in shaded areas. We use the following recurrence

functions to compute the values D(f, g, h) that are not initialized.

D(0, g, h) =

 D(0, g − 1, h− s0,g) if h ≥ s0,g;

0 otherwise.

D(1, g, h) =



D(0, g − 1, h− s1,g) + D(1, g − 1, h− s1,g) if the gth amino acid is a modification

site of xi and h ≥ s1,g;

D(1, g − 1, h− s1,g) if the gth amino acid cannot be modified

by xi and h ≥ s1,g;

0 otherwise.

D(2, g, h) =



D(1, g − 1, h− s2,g) + D(2, g − 1, h− s2,g) if the gth amino acid is a modification

site of yi and h ≥ s2,g;

D(2, g − 1, h− s2,g) if the gth amino acid is not a modification

site of yi and h ≥ s2,g;

0 otherwise.

Finally, the values in D(2,m, h) for h = 0, 1, . . . , t are reported as the distribution of

the shared mass counts between S and all Q ∈ Qi. The dynamic programming algorithm is

given in Figure S1 in the supplementary material. When error tolerances of fragment masses

are allowed, the algorithm can be modified to compute distributions of TheoMatch(S,Q)

for Q ∈ Qi by introducing error tolerances in Formula (3). Based on the distribution of

TheoMatch(S,Q), the confidence score for each modification type pair is obtained, and

14



the modification type pair with the highest confidence score is reported. The number of

operations of the algorithm is proportional to m2.

After the types and order of the two modifications (xi, yi) are determined, a divide and

conquer method is employed to localize the two modifications. We assume that all proteo-

forms in Qi follow a uniform distribution. Let Qij be the set of proteoforms satisfying that

xi occurs on the first j amino acids and yi on the last n−j amino acids. When S is generated

from a proteoform Q with a pair of modifications (xi, yi),

Pr(Q ∈ Qij |S,Q ∈ Qi) =

∑
Q∈Qij

Pr(S|Q) Pr(Q)∑
Q′∈Qi

Pr(S|Q′) Pr(Q′)
.

The denominator and numerator of the right-hand side of the equation are determined by the

shared mass count distribution of PrSMs between S and proteoforms in Qi and that between

S and proteoforms in Qij. The first is computed using the algorithm for determining the

ordered modification pair; the second can be efficiently calculated using a similar dynamic

programming algorithm (Figure S2 in the supplementary material). Suppose the highest

probability among Pr(Q ∈ Qij|S,Q ∈ Qi) for j = 1, 2, . . . ,m is obtained from the set Qij∗ .

In this case, the proteoform is broken into two sub-proteins: the first contains the first j∗

amino acids and the second the last m−j∗ amino acids. The two modifications are treated as

single ones in their corresponding sub-proteins for localization, resulting in two probabilities

Pr(xi on k1|S,Q ∈ Qij∗) and Pr(yi on k2|S,Q ∈ Qij∗) for the best localization sites k1 and

k2 of the two modifications xi and yi. Finally, we report two probabilities as the MIScores:

Pr(Q ∈ Qi|S) Pr(Q ∈ Qij∗ |S,Q ∈ Qi) Pr(xi on k1|S,Q ∈ Qij∗); (5)

Pr(Q ∈ Qi|S) Pr(Q ∈ Qij∗ |S,Q ∈ Qi) Pr(yi on k2|S,Q ∈ Qij∗). (6)
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Determination of the number of modifications

A mass shift in a PrSM may be explained by one or two modifications. For example, a mass

shift 28.0313 Da can be explained by a dimethylation site (28.0313 Da) or two methylation

sites (14.01565 Da each). We use a Bayesian model to determine the number of modifications

that best explain a mass shift. To simplify the analysis, we assume that the PrSM (P, S)

has only one unknown mass shift. Let F1 (F2) be the set of all proteoforms of P with one

(two) common modifications whose molecular masses match the precursor mass of S. The

probability that the target proteoform F contains one modification is estimated as

Pr(F ∈ F1|S, F ∈ Fi ∪ F2) =

∑
F∈F1

Pr(S|F ) Pr(F )∑
F ′∈F1∪F2

Pr(S|F ′) Pr(F ′)
.

In the computation, all proteoforms in F1 have the same prior probability, and all prote-

oforms in F2 have the same prior probability. The ratio r between the prior probabilities

of the proteoforms with one modification and those with two modifications (r = Pr(F ∈

F1)/Pr(F ∈ F2)) is a user-specified parameter.

Multiple modifications

The methods for identifying two modifications from a mass shift can be extended to multiple

modifications. When a mass shift results from K modifications, the number of ordered K

modification types that can explain the mass shift is an exponential function with respect

to K, making the proposed method inefficient. This dynamic programming algorithm in

Figure S1 in the supplementary material is modified to fill out a table D(f, g, h) for f =

0, 1, . . . , K. We extend the definitions of Bf,g and sf,g for f = 3, 4, . . . , K and fill out the
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table using the following recurrence function:

D(f, g, h) =



D(f, g − 1, h− sf,g) + D(2, g − 1, h− sf,g) if the gth amino acid is a site of

the fth modification and h ≥ sf,g;

D(2, g − 1, h− sf,g) if the gth amino acid is not a site of

the fth modification and h ≥ sf,g;

0 otherwise.

The number of operations of the algorithm is proportional to ntK.

This divide and conquer method is employed to localize K ordered modifications. Let

Pi be the set of proteoforms of P with ordered modifications xi,1, xi,2, . . . , xi,K . Let Pij be

the set of proteoforms satisfying that the first modification occurs on the first j amino acids

and all other modifications on the last m − j amino acids. Using this method, we find a

position j∗ with the highest probability Pr(F ∈ Pij∗|S, F ∈ Pi) to divide the protein into

two parts. The first modification is localized as a single modification on the first j∗ amino

acids, and the other K − 1 modifications are localized using the divide and conquer method

progressively.

Results

The MIScore method was implemented in C++ and tested on a desktop with a 3.4 GHz

CPU (Intel Core i7-3770) and 16 GB memory.

Training and test PrSMs

The proteome database of Escherichia coli K-12 MG1655 was downloaded from UniProt

(Jun 18, 2015 version, 4 305 entries). All EC top-down MS/MS spectra were deconvoluted

by MS-Deconv28 and searched against a target-decoy concatenated database by TopPIC.30

In database searches, the error tolerances for precursor and fragment masses were set as 15

17



ppm, and at most 2 unknown mass shifts were allowed in a PrSM. (The parameters used in

TopPIC are summarized in Table S1 in the supplementary material.)

A total of 1 533 PrSMs were identified with a 1% spectrum level false discovery rate

(FDR), including 767 PrSMs without modifications. We further removed PrSMs that contain

less than 15 matched fragment ions, resulting in 1 277 PrSMs including 610 PrSMs without

modifications (Table S2 in the supplementary material). Because of the stringent filtering,

the 610 PrSMs without modifications were treated as correct ones. They are randomly

divided into two groups with the same size: one for training parameters and the other for

generating test PrSMs.

Test PrSMs with modifications were generated from the identified PrSMs without mod-

ifications. Given an identified PrSM without modifications, we change the protein sequence

to introduce a modification with two steps: (a) randomly select a modification and an

amino acid on which the modification can occur in the protein sequence, and (b) replace

the amino acid with a special amino acid “X”, whose residue mass equals the difference

between the masses of the amino acid residue and the modification. For instance, if the

selected amino acid is an alanine (71.0371 Da) and the selected modification is methylation

(+14.0156 Da), the residue mass value of “X” (“X” is a glycine) that replaces the alanine

residue is 71.0371 − 14.0156 = 57.0215 Da, resulting in a PrSM with a methylation on the

amino acid “X”. To generate PrSMs with a truncation at the N (or C) terminus and a mod-

ification near the N (or C) terminus, we limit the replacement to the 15 amino acids at the

N (or C) terminus and add a random peptide (no longer than 20 amino acids) to the N (or

C) terminus. PrSMs with two modifications can be generated in a similar way.

Using four common modifications (acetylation, methylation, oxidation, and phosphory-

lation), we generated 6 100 test PrSMs with one modification, 3 050 test PrSMs with one

modification near the N-terminus and an N-terminal truncation, 3 050 test PrSMs with one

modification near the C-terminus and a C-terminal truncation, and 6 100 test PrSMs with

two modifications from the 305 PrSMs without modifications. These PrSMs were used as a
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gold standard in the experiments.

Estimation of parameters

The 305 training PrSMs without modifications were used to estimate the four probabilities:

Pr(X0 = 0), Pr(X0 = 1), Pr(X1 = 0) and Pr(X1 = 1). (See Section Methods.) For a protein

P and its matched spectrum S, we compute TheoMatch(S, P ) and RandMatch(S, P ) with an

error tolerance of 15 ppm. In addition, we converted the protein into its binary representation

with a scale factor 274.335215. Let N01 be the sum of RandMatch(S, P ) of the training

PrSMs and N0 the total number of 0s in the binary strings of the proteins in the PrSMs.

The probability Pr(X0 = 1) is estimated as N01

N0
and Pr(X0 = 0) = 1− Pr(X0 = 1). Let N11

be the sum of TheoMatch(S, P ) of the PrSMs and N1 the total number of 1s in the binary

strings of the proteins in the PrSMs. The probability Pr(X1 = 1) is estimated as N11

N1
and

Pr(X1 = 0) = 1 − Pr(X1 = 1). The estimated probabilities are listed in Table S3 in the

supplementary material.

The 305 training PrSMs were used to compare the performance of the Bayesian model

for determining the number of modifications with different settings of the ratio r. For

each PrSM, we generated two pairs of proteoforms with modifications. In the first pair,

one proteoform has a dimethylation site and the other has two methylation sites. In the

second pair, one proteoform has two oxidation sites and the other has a dioxidation site. By

setting the ratio r to 0.5, 0, 6, . . . , 1, 1.1, . . . , 2, we used the proposed method to report the

number of modifications for each modified proteoform and calculate the accuracy of reported

modification numbers. The ratio r = 0.8 achieved the best accuracy 83.9% (Figure S3 in the

supplementary material) and was used in the experiments.

Identification of single modifications

The MIScore method was employed to analyze the 6 100 test PrSMs with one modification,

in which the correct location of each modification is known. The proposed model reported
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for each PrSM a site with the highest MIScore. A total of 3 038 (49.8%) modification

sites were localized to a site with an MIScore ≥ 0.45, of which 2 381 (39.0%) were correct

(Figure S4 in the supplementary material). Many modification sites were not identified with

a high MIScore because some top-down MS/MS spectra had low sequence coverage and

failed to provide enough fragment masses for confident localization of modifications. We

divided the reported sites into 10 groups with scores in [0, 0.1], (0.1, 0.2], . . . , (0, 9, 1.0]. If the

reported scores are accurate, the accuracy rate of the sites in each group should be similar

to their average scores because the scores are the accuracy rates estimated by the model.

Figure 3 shows that the accuracy rates are similar to the average scores for these 10 groups,

demonstrating that the MIScores reported by the model were accurate.

Identification of modifications near N or C termini

The MIScore method was used to analyze the 6 100 test PrSMs with a truncation at the

N or C terminus and one modification near the N or C terminus. If the correct truncation

and modification site are reported, we say the result is correct; otherwise, incorrect. A

total of 2 874 (47.1%) modification sites were localized to a site with an MIScore ≥ 0.45, of

which 2 107 (34.5%) were correct (Figure S5 in the supplementary material). Similar to the

previous experiment, the reported modification sites were divided into 10 groups based on

their MIScores, and the average of the scores in each group was compared with the accuracy

rate of the corresponding sites (Figure S6 in supplementary information). The results showed

that the model reported accurate MIScores for modifications near N or C termini.

Identification of two modifications

For each of the 6 100 test PrSMs with two modifications, the proposed method reported

an ordered modification pair, their best locations, and three scores: the first one is the

confidence score that the modification pair is correct (Equation (2)); the other two are the

MIScores of the two modifications (Equations (5) and (6)).
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First, we evaluated the accuracy of the confidence scores of reported modification pairs.

We divided the reported modification pairs into 10 groups with scores in [0, 0.1], (0.1, 0.2],

. . . , (0, 9, 1.0], and computed the accuracy rate for the modification pairs in each group

(Figure S7 in supplementary information). The average confidence score is approximately

the same to the accuracy rate in each group, demonstrating that the reported confidence

scores were accurate.

Second, we evaluated the accuracy of reported MIScores. A total of 6 154 (50.4%) mod-

ification sites were localized to a site with an MIScore ≥ 0.45, of which 4 798 (39.3%) were

correct (Figure S8 in the supplementary material). Similar to single modifications, we di-

vided the reported modification sites into 10 groups based on their scores and compared the

average scores and accuracy rates of the groups. The results showed that the accuracy rates

were similar to the average scores (Figure S9 in supplementary information), and that the

reported MIScores were accurate.

Modifications in the EC data set

Among the 1 277 PrSMs identified by TopPIC30 from the EC data set, 667 PrSMs contain

mass shifts. A total of 318 PrSMs contain a mass shift about ±1 Da, which may be caused by

±1 Da errors introduced in the deconvolution of precursor masses. The MIScore method was

employed to characterize the proteoforms in the remaining 349 PrSMs from 74 proteins. Four

PTMs (acetylation, methylation, oxidation, and phosphorylation) were chosen as common

PTMs (Table 2). If a mass shift in the PrSMs can be explained by one common PTM, the

MIScore method reports the type of the PTM and the site with the best score. If several

sites have the same best MIScore, all the sites are reported. For a PrSM with one mass

shift, the mass shift equals the difference between the precursor mass of the spectrum and

the molecular mass of the protein or a truncated form of the protein. The error tolerance

(15 ppm) of the precursor mass is used for mapping a mass shift to a modification. Because

±1 Da errors are often observed in deconvoluted precursor masses, ±1 Da errors are also
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allowed in the mapping. If the error tolerance of the precursor mass is δ, a modification with

mass m1 is mapped to a mass shift m2 if min{|m1 −m2|, |m1 −m2 + 1.00235|, |m1 −m2 −

1.00235|} ≤ δ, where 1.00235 Da is the average mass difference between two isotopomers

whose neutron numbers differ by 1. Similarly, a mass shift is mapped to two modifications

if the difference between the mass shift and the sum of the masses of the two modifications

satisfies the condition described above. In this case, the types and best scoring sites of the

two modifications are reported. Because ±1 Da errors are observed more frequently in large

fragment masses than small ones, they are allowed for fragment masses that are larger than

an empirical threshold 5 000 Da, and not allowed for those less than the threshold. The

running time of the analysis was about 204 seconds.

A total of 116 and 13 mass shifts in the 349 PrSMs match the mass of one common PTM

and a combination of two common PTMs, respectively. Of the 116 mass shifts explained

by single PTMs, 28 were localized to a site with an MIScore no less than 0.9 and 10 were

localized to two candidate sites with the same MIScore no less than 0.45. For the 13 mass

shifts explained by PTM pairs (26 PTMs in total), 10 PTMs were localized to a site with an

MIScore no less than 0.9 (Table S4 in the supplementary material). The reason that only

a small number of PTMs were confidently identified and localized is that most identified

PrSMs had many missing fragment peaks, lacking enough information to localize PTMs to

one or two sites.

The 28 mass shifts that are explained by single PTMs and localized to single sites cor-

respond to 15 PTM sites (methylation: 6, oxidation: 8, phosphorylation: 1) in 11 proteins.

The 10 mass shifts explained by single PTMs and each localized to two sites correspond to

4 PTMs (methylation: 3, acetylation: 1) in 3 proteins. We compared the reported modifica-

tion sites with the annotations of the proteins in the Swiss-Prot database. The N-terminal

methylation site K82 in the protein RL7 ECOLI (UniProt ID: P0A7K2) and the N-terminal

methylation site A2 in the protein RL33 ECOLI (UniProt ID: P0A7N9) were supported

by the annotations. One main reason for the lack of support by the annotations is that
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the annotation of the EC proteome is incomplete in the Swiss-Prot database. In addition,

two N-terminal methylation sites were reported (M1 in the protein PTHP ECOLI, UniProt

ID: P0AA04; M1 in the protein RL23 ECOLI, UniProt ID: P0ADZ0). Because N-terminal

methylation has been found in many proteins,31 these sites may be new identified N-terminal

methylation sites.

The 5 mass shifts explained by two PTMs correspond to 8 PTM sites (1 oxidation pair and

3 methylation pairs). Manual inspection showed that the oxidation pair may be explained by

a dioxidation and that the two methylation pairs may be explained by dimethylation sites.

Comparison with the Mascot Delta Score

The Mascot Delta Score (MD-score)20 is computed based on the difference between the

scores reported by Mascot32 for the best and second best modified peptides with different

modification sites and the identical peptide sequence for a bottom-up MS/MS spectrum. We

tested the MD-score method using the 38 PrSMs identified from the EC data set each of

which contains an unknown mass shift that is explained by a PTM and localized to either

one site with an MIScore ≥ 0.9 or two sites each with an MIScore ≥ 0.45 (Table S4 in the

supplementary material). The 38 spectra were converted to MGF files containing charge

+1 fragment m/z values and divided into four groups based on the PTMs reported by the

MIScore method: 28 spectra with methylation, 8 with oxidation, 1 with acetylation, and 1

with phosphorylation. The four groups of spectra were searched separately against the Swiss-

Prot EC proteome database using the Mascot server at http://www.matrixscience.com.

For each group, the corresponding PTM was set as the variable PTM. Other parameters of

Mascot are shown in Table S5 in the supplementary material.

Mascot identified 13 PrSMs with an E-value ≤ 0.05, of which 4 contained a localized

N-terminal modification (all were methylation) and 9 contained a localized modification not

at the N-terminus. Mascot reported MD-scores for only the latter 9 PrSMs, not for the

N-terminal ones (Table S6 in the supplementary material). Because Mascot treated the
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top-down MS/MS spectra as bottom-up ones and these top-down spectra contained many

fragment peaks, it automatically removed many low abundance peaks from the spectra before

database search. It may be the main reason that Mascot identified only about 34.2% of the

test spectra. The 4 N-terminal methylation sites reported by Mascot are consistent with

those reported by the MIScore method. The two methods reported the same localization

site for only one of the 9 modification sites with MD-scores and different localization sites

for the other 8. By manual inspection of the results reported by the two methods, we found

that the main reason for the different localized sites is that the MD-score method uses only

a set of high abundance peaks, not all peaks, for localizing PTM sites.

Modifications in the ST data set

The proteome database of Salmonella typhimurium 14028s were downloaded from UniProt

(Jul 30, 2015 version, 5369 entries). All top-down MS/MS spectra of the ST data set were

deconvoluted by MS-Deconv28 and searched against the proteome database concatenated

with a decoy database by TopPIC30 using the parameters in Table S1 in the supplementary

material.

After filtering with a 1% spectrum-level FDR and a threshold 15 for the number of

matched fragment ions, TopPIC30 identified 1 413 PrSMs without mass shifts and 1 278

PrSMs with mass shifts (Table S7 in the supplementary material). Those with mass shifts

were analyzed by the MIScore method using the same parameters in the analysis of the EC

data set except for the PTM cysteinylation. Ansong et al. showed that cysteinylation is often

observed in ST in response to infection-like conditions,26 so cysteinylation was also treated

as a common PTM (mass: 119.00 Da; modified residue: cysteine). The running time of the

analysis was about 994 seconds.

A total of 132 mass shifts match the mass of one common PTM, of which 58 were localized

to a site with an MIScore no less than 0.9. These mass shifts correspond to 41 PTM sites

(acetylation: 10, methylation: 2, oxidation: 2, cysteinylation: 27) in 33 proteins. And 11

24



mass shifts explained by single PTMs were localized to two sites each with an MIScore no

less than 0.45. These mass shifts correspond to 8 PTM sites (acetylation: 4, oxidation: 3,

cysteinylation: 1) in 6 proteins (Table S8 in the supplementary material). In addition, 14

mass shift matches the mass of a combination of two common PTMs, but no localized sites

with high MIScores were reported.

To further validate the localized PTMs, the bottom-up data set generated from the

same sample was searched against the Salmonella typhimurium 14028s proteome database

concatenated with a decoy database using MS-GF+.33 A total of five rounds of database

searches were performed to identify peptides with PTMs. In MS-GF+, the high-resolution

mode was used (the error tolerances for precursor and fragment masses were 20 ppm and

0.1 Da, respectively); no fixed PTMs were used; non-tryptic termini were allowed, and

the default settings were used for the other parameters (Table S9 in the supplementary

material). In the first round, cysteinylation was set as a variable PTM. With a 5% Q-

value cutoff, 52 825 peptide-spectrum matches were identified. Of the 29 cysteinylation sites

identified by the proposed method, 8 (all of them are from mass shifts localized to single sites)

were supported by identified peptide-spectrum matches (Table S10 in the supplementary

material). The site C239 in the protein Transaldolase (UniProt ID: A0A0F6AWC3) was

covered by identified peptides without modifications. Proteoforms without modification on

the sites were also identified by the top-down MS analysis, showing that there exist two

proteoforms (one modified and the other unmodified) of the protein in the sample. The site

C36 in the protein Triosephosphate isomerase (UniProt ID: A0A0F6B9R1) was also covered

by identified peptides without modifications, and proteoforms without the modification were

not identified by top-down MS. The remaining 19 cysteinylation sites were not supported

by identified peptides because the bottom-up MS/MS spectra covered only about 18.2%

of the sequences of identified proteins. When cysteinylation sites were covered by both

identified proteoforms and peptides, the peptides supported most of the PTM sites (8 out

of 10) identified by the proposed method. In the other four rounds, similar analyses of the
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bottom-up MS/MS spectra were performed to find peptides supporting identified acetylation,

methylation, oxidation, and phosphorylation sites. However, because of the low protein

sequence coverage of identified peptides, only two acetylation sites (K314 in Elongation factor

Tu, UniProt ID: A0A0F6B9X6; K226 in Cysteine synthase, UniProt ID: A0A0F6B4H6) were

covered by identified peptides, which were not modified and did not support the reported

PTM sites.

Discussion and conclusions

In this paper, we proposed several Bayesian models that determine the types of modifications,

localize modifications, and identify truncations for proteoforms with unknown mass shifts.

The experiments on the test PrSMs generated from the EC data set showed that MIScores

reported by the models were accurate for proteoforms with one or two modifications. In

addition, the MIScore method identified and localized many modifications from mass shifts

in PrSMs reported from the EC and ST data sets, of which some were supported Swiss-Prot

annotations and some by bottom-up MS/MS spectra.

Several parameters, such as the probability Pr(X0 = 1) in Equation (1) and the ratio

r, are used in the MIScore method. When a new data set is analyzed, we can train these

parameters using PrSMs without modifications identified from the data set to improve the

accuracy of reported MIScores with two steps: (a) A proteoform identification tool is used

to report PrSMs without modifications from the data set, and (b) the methods described in

Section“Estimation of parameters” are employed to estimate the parameters.

The MIScore method is faster than the C-score method because the proposed dynamic

programming algorithms significantly speed up the computation of probabilities. For exam-

ple, when a mass shift identified in a PrSM is explained by two modifications whose types

are known and each of which has n candidate sites, a total of n2 proteoforms need to be

considered in the localization of two modifications. In the C-score method, each of the n2
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proteoforms needs to be explicitly generated to compute the conditional probability that the

spectrum is observed given the proteoform (the likelihood in Table 1) because of the lack

of efficient algorithms. By contrast, the dynamic programming algorithm in the MIScore

method can efficiently compute the probabilities of the n2 proteoforms in one run without

explicitly generating them. Let q be the ratio between the running time for computing all

probabilities in the MIScore method and that for computing one probability in the C-score

method. In practice, q is much smaller than n2 and the speed of the MIScore method is

about n2/q faster than the C-score method.

Top-down spectral deconvolution algorithms may introduce ±1 Da errors in reported

precursor masses. Since precursor masses are used to compute the mass shifts of unknown

modifications, the errors in precursor masses may result in incorrect identifications of modi-

fications. Increasing the accuracy of deconvoluted precursor masses is essential to improving

the accuracy of proteoform characterization.

A simple shared mass count score is used for computing MIScores. Peak intensities and

errors in matched theoretical and experimental masses also provide valuable information for

proteoform characterization. Incorporating these information into the proposed models will

further improve the accuracy of MIScores, but the incorporation also makes it complex to

compute posterior probabilities in the models. Designing efficient algorithms for computing

posterior probabilities using these complex probabilistic models is a future research direction.

Many possible modifications need to be considered in proteoform characterization in

proteome-level analyses of complex species. Including all these modifications may increase

the possibility of reporting incorrectly characterized modifications. One possible solution

to the problem is to divide identified PrSMs in a proteome-level analysis into groups, each

of which has one or several common modifications that are expected to be observed based

on domain knowledge. Using protein-specific modifications can improve the accuracy of

proteoform characterization.

The MIScore method still has many limitations in analyzing complex proteins and com-
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plex species such as humans. First, the number of modifications the MIScore method can

identify from an unknown mass shift is limited to 1 or 2. Second, protein samples of com-

plex eukaryotic species may contain many proteoforms generated from alternative splicing,

which the MIScore method cannot characterize. Third, the accuracy of the MIScore method

heavily replies on the accuracy of reported precursor masses. When the molecular mass of

the target proteoform is very large and a large error, e.g. 0.5 Da, is introduced into the mea-

sured precursor mass, the MIScore method may fail to find the correct modifications. Fourth,

when a protein has heterogeneous modifications and many possible modification sites, liquid

chromatography or other separation techniques may fail to separate multiple proteoforms

with similar molecular masses of the same protein, resulting in multiplexed MS/MS spectra.

The MIScore method cannot accurately characterize unknown mass shifts identified by these

multiplexed spectra. Fifth, a mass shift identified in a ultramodified protein may result from

a combination of three or more modifications because of missing peaks. The mass shift can

be explained by many combinations of modification types and sites and there are no enough

matched peaks to distinguish the target proteoforms from other candidates. As a result, the

MIScore method may fail to characterize and localize these modifications.
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Supporting Information

The MIScore method has been added as a component of the software TopPIC, which is freely

available at http://proteomics.informatics.iupui.edu/software/toppic/.

Figure S1. An algorithm for computing the distribution of shared mass counts between

a spectrum and the proteoforms of a protein with a pair of ordered modifications.

Figure S2. An algorithm for computing the distribution of shared mass count scores

between spectrum S and Qi,j.

Figure S3. Comparison of the accuracy of the model for determining the number of

modifications with different settings 0.5, 0.6, . . . , 1, 1.1, . . . , 2 of the ratio r.

Figure S4. Percentages of identified modification sites and correctly identified ones by the

MIScore method from the 6 100 PrSMs with one modification with various MIScore cutoff

values.

Figure S5. Percentages of identified modification sites and correctly identified ones by

the MIScore method from the 6 100 PrSMs with a truncation at the N (or C) terminus and

one PTM near the N (or C) terminus with various MIScore cutoff values.

Figure S6. The modification sites reported by the MIScore method from the 6 100 PrSMs

with a truncation at the N (or C) terminus and one PTM near the N (or C) terminus are

grouped into bins with width 0.1 based on their modification identification scores. The aver-

age identification score and accuracy rate of the modification sites in each bin are compared.

Figure S7. The ordered modification pairs reported by the MIScore method from the 6 100

PrSMs with two modifications are grouped into bins with width 0.1 based on their confidence

scores. The average confidence score and accuracy rate of the ordered modification pairs in

each bin are compared.

Figure S8. Percentages of identified modification sites and correctly identified ones by

the MIScore method from the 6 100 PrSMs with two modifications with various MIScore

cutoff values.

Figure S9. The modification sites reported by the MIScore method from the 6 100 PrSMs
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with two modifications are grouped into bins with width 0.1 based on their modification

identification scores. The average identification score and accuracy rate of the modification

sites in each bin are compared.

Table S1. Parameters used in TopPIC.

Table S2. A total of 1 277 PrSMs with at least 15 matched fragment ions are reported

from EC data set by TopPIC with a 1% spectrum level FDR.

Table S3. Probabilities estimated from the 305 training PrSMs of the EC data set.

Table S4. PTM sites localized by the MIScore method in the EC data set: 28 mass

shifts are explained by one PTM and localized to one site with an MIScore ≥ 0.9; 10 mass

shifts are explained by one PTM and localized to two candidate sites with the same MIScore

≥ 0.45; 5 mass shifts are explained by two PTMs and each PTM is localized to a site with

an MIScore ≥ 0.9.

Table S5. Parameters used in Mascot for searching the 38 top-down MS/MS spectra

against the Swiss-Prot EC proteome database.

Table S6. A total of 13 of the 38 top-down MS/MS spectra are identified by Mascot with

an E-value cutoff 0.05.

Table S7. A total of 2 691 PrSMs with at least 15 matched fragment ions are reported

from the ST data set by TopPIC with a 1% spectrum level FDR.

Table S8. PTM sites localized by the MIScore method in the ST data set: 58 mass shifts

are explained by one PTM and localized to one site with an MIScore ≥ 0.9; 11 mass shifts are

explained by one PTM and localized to two candidate sites with the same MIScore ≥ 0.45.

Table S9. Parameters used in MS-GF+.

Table S10. A total of 8 cysteinylation sites reported from ST data set that are supported

peptides identified from the bottom-up data set by MS-GF+.
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Tables

Table 1: Symbol definitions

Symbol Definition

S A top-down tandem mass spectrum
Score(S, F ) The shared mass count between spectrum S and a proteoform F .
P The unmodified protein sequence of the target proteoform with length m
Fi The proteoform of P in which the ith amino acid is modified. The molecular mass

of Fi matches the precursor mass of S.
Pr(Fi) The prior probability of proteoform Fi

Pr(S) The probability of the data (spectrum). In Bayesian models, it is usually computed
as the sum of the prior probabilities of all hypotheses multiplied by their likelihoods.

Pr(S|Fi) The likelihood, the conditional probability of observing S given Fi

Pr(Fi|S) The posterior probability, the probability for Fi after taking into account S
Ti,j The proteoform of P in which the first i amino acids are truncated and the jth amino

acid is modified. The molecular mass of Ti,j matches the precursor mass of S.
Qi The set of proteoforms of P with a pair of ordered modifications (xi, yi)
Qij The set of proteoforms satisfying that the first modification xi occurs on the first j

amino acids and the second modification yi on the last m− j amino acids
F1 The set of all proteoforms of P with one common modification whose molecular masses

match the precursor mass of S
F2 The set of all proteoforms of P with two common modifications whose precursor masses

match the precursor mass of S

Table 2: Four PTMs are treated as common PTMs in proteoform characterization

PTM Modified amino acids Modified amino acids Monoisotopic mass
at the N-terminus mass (Da)

Acetylation All 20 amino acids K 42.01
Methylation All 20 amino acids HKNQRILDEST 14.01
Oxidation DKNPYRC∗ DKNPYRC∗ 15.99

Phosphorylation STY STY 79.96

∗ Artifacts introduced in sample preparations and mass spectrometry experiments are not
included.
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Figures

mass
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Round to integers

with scale factor 1

mass
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Figure 1: Illustration of the conversion from a deconvoluted spectrum of neutral masses
to a binary string. A spectrum (top) has three neutral fragment masses 2.2, 3.9, and 8.1
Da (peak intensities are ignored), and its precursor mass is 10.1 Da. The precursor and
fragment masses are discretized by multiplying by a scale factor 1 and rounding to integers,
resulting in a spectrum with a precursor mass 10 and three fragment masses 2, 4 and 8. The
discretized spectrum is converted to a binary string 0101000100. The length of the string
is the same to the integer precursor mass; the three 1s correspond to the three fragment
masses.
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Figure 2: The three-dimensional table D(f, g, h) for a discretized spectrum with a precursor
mass 848 and four neutral fragment masses 131, 413, 421, 550, a protein sequence MSDYCH,
and an ordered pair of modifications (phosphorylation, methylation). A scale factor 1 is used
in the computation. (a) B0,g is the sum of the masses of the first g residues of the protein.
B1,g is the sum of B0,g and the mass of phosphorylation (80 Da). B2,g is the sum of B0,g and
the masses of phosphorylation (80 Da) and methylation (14 Da). (b) Table sf,g is generated
based on Bf,g using Equation (3). (c) D(f, g, h) is filled out by the dynamic programming
algorithm in Figure S1 in the supplementary material. The shaded areas are initialized using
Equation (4). The second residue S is a modification site of phosphorylation, and the value
D(1, 2, 2) is computed as D(0, 1, 2−s1,2 +D(1, 1, 2−s1,2) = D(0, 1, 1)+D(1, 1, 1). Similarly,
the fifth residue C is modification site of methylation, and the value D(2, 5, 3) is computed
as D(1, 4, 3− s2,5) +D(2, 4, 3− s2,5) = D(1, 4, 3) +D(2, 4, 3).
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Figure 3: The modification sites reported by the MIScore method from the 6 100 PrSMs with
one modification are grouped into bins with width 0.1 based on their MIScores. The average
identification score and accuracy rate of the modification sites in each bin are compared.
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