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Abstract 

Providers’ annotations are often used as classifiers for supervised machine learning. Occasionally, annotations of 

patient status are ‘naturally occurring’ in clinical documents, such as the morbidities assessment of patients starting 

dialysis. We aimed to examine the predictability of provider annotations for 8 clinical conditions. We retrieved the 

reported status (positive/negative) for these conditions from existing clinical documents for a cohort of dialysis 

patients at Indiana University. We used all available procedure, billing, laboratory, and prescription data to generate 

predictive models of physician annotations. The best performing algorithms yielded precision and recall metrics 

ranging from a low of 0.44 and 0.37 for heart failure and a high of 0.86 and 0.71 for cancer. We concluded that the 

relatively poor prediction of provider annotations points towards heterogeneous and inconsistent annotation 

behavior. A thorough assessment of provider accuracy should be done prior to using annotations generated during 

routine clinical care as gold-standard outcomes. 

Introduction 

A significant challenge in the domain of predictive modeling is obtaining annotated datasets. Such annotations are 

necessary to classify, and subsequently predict, outcomes of interest using supervised machine learning approaches. 

Commonly, annotations are generated by manual expert review when the outcome is not readily classifiable from 

available clinical documentation. Such expert review can be both time-consuming and resource-intensive, and often 

comprises the bulk of effort in a predictive modeling study. While automated algorithms can be used to perform 

classification tasks, review and interpretation by an expert is generally considered the gold standard. 

Such expert annotations are sometimes collected as part of routine clinical care. For example, sources for such 

annotations include disability forms, registration forms, and death certificates which contain physician 

documentation and interpretation of patient conditions and other outcomes.  The use of such ‘naturally occurring’ 

annotations in the clinical record is a convenient source of classifiers for predictive modeling.  However, the quality 

of these annotations may be influenced by numerous factors, including but are not limited to: 1) complexity of logic 

required for the annotation 2) cognitive and behavioral biases and heuristics 3) availability and access to necessary 

data 4) time constraints.  Thus, provider annotation performance is itself variable.  The objective of this study is to 

utilize machine learning techniques to assess the predictability of providers’ annotation performance for a set of 

common clinical conditions.  Specifically, we looked at nephrologists’ documentation of co-morbidities in patients 

with end-stage renal disease.  

Materials and Methods 

Patient Cohort 

Our cohort included all patients who started chronic dialysis therapy between 2005 through 2014 at Indiana 

University outpatient dialysis centers. This initial cohort consisted of 296 patients. Approvals were obtained from 

the Indiana University Institutional Review Board and the relevant institutions participating in the Indiana Network 
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for Patient Care (INPC) 
1
, a health information exchange that aggregates clinical data from all major health systems 

in Indianapolis, Indiana. 

Data extraction 

We extracted electronic medical record data (billing and procedure codes, medications, and laboratories) for all 

patients in the cohort for up to 10 years prior to the onset of End Stage Renal Disease (ESRD). We extracted these 

data using the INPC. 

For the provider annotations, we obtained the ESRD registration forms required by the Center for Medicare and 

Medicaid Services (CMS) for all new-onset dialysis patients (Figure 1).  The forms capture information on disease 

status (present/absent) for 23 conditions. Completion of these forms is part of the routine clinical care for all new 

ESRD patients 
2
. Each disease state has a corresponding checkbox to indicate the presence of disease, i.e. positive or 

negative outcome. 

Figure 1: The comorbid conditions section of the end stage renal disease patient registration form. 

Data preprocessing 

We integrated datasets extracted from multiple sources into a single master dataset for analysis. Data sets included 

each patient’s procedure and billing codes, medications, and laboratory data. To these data, we added as outcome 

measures 8 clinical conditions documented by the nephrologist on each patient’s registration form:  coronary artery 

disease, cancer, congestive heart failure, cerebrovascular accident, diabetes mellitus, peripheral vascular disease, 

chronic obstructive pulmonary disease, and retinopathy. All data analysis, pre-processing and decision model 

building were performed using version 3.7.12 of the Waikato Environment for Knowledge Analysis (Weka) 

software 
3
. 

A preliminary analysis of the dataset indicated that many of the outcomes were unbalanced, with the number of 

negative outcomes for each condition greatly outweighing the number of positive outcomes. We also noted that a 

number of patients in the dataset had no reported outcomes (not checked yes or no). To ensure better data quality, 

we excluded those patients from the dataset. This removed 20 patients from the initial cohort leaving 276 patients 

for our final analysis. We pre-processed the procedure and billing codes, prescription data into binary variables. 

Unlike the other datasets, the laboratory data were in numeric format. An initial data analysis indicated that these 

numeric values were highly distributed, and therefore, may reflect negatively on the decision model building. To 

address this challenge, the laboratory data was discretized into automatically-generated categorical ranges using 

Weka's built-in discretization support.  



To address the unbalanced nature of the master dataset, we decided to perform Synthetic Minority Oversampling 

Technique (SMOTE) to balance the dataset under evaluation. SMOTE boosted the negative outcomes in the dataset 

using synthetic data, further improving the quality of the decision model generation. 

 

Machine learning approach 

We sought to determine the ability to predict each outcome using the master dataset. We hypothesized that varying 

(a) feature subset sizes, (b) classification algorithms and (c) boosting percentages would yield varying performance 

metrics. To test our hypothesis, we built multiple decision models using varying combinations of the 

abovementioned criteria. The classification algorithms selected for our study were simple logistic regression (SLR), 

naïve Bayes (NB), random forest (RF), and J48 decision tree (J48). These algorithms were selected based on their 

widespread use in various matching learning studies, and track record of yielding optimal results 
4, 5

. 

The master dataset had a total of 7655 features. Existing literature indicates that using irrelevant features for 

decision model building may lead to over-fitting 
6
. To prevent this, we limited our feature space by ranking each 

feature in order of significance using Weka's information gain approach, based on the Kullback-Leibler divergence 
7
, a widely used method for selecting optimal features for machine learning. From the ranked feature set, we selected 

feature subsets of 50, 75, 100 and 125 for study. These feature subset sizes were selected based on preliminary 

analysis of what subset sizes provided the best results for the dataset, coupled with previous literature that 

recommended smaller feature subset sizes for use 
8-10

. Due to the limited dataset, we adopted ten-fold cross 

validation, aka rotation estimation, a widely used train/test method prescribed for use with relatively small datasets 
11

. 

We built and tested decision models using combinations of the aforementioned feature subset sizes, classification 

algorithms and boosting percentages (Figure 2). Given 4 feature subset sizes, 4 algorithms, and 3 boosting 

percentages, this resulted in a total of 48 (4 x 4 x 3) decision models for each outcome being tested. 

 

Figure 2. The study approach from the selection of alternative feature subsets to decision model building and the 

evaluation of results. Synthetic Minority Oversampling Technique (SMOTE), simple logistic regression (SLR), 

naïve Bayes (NB), random forest (RF), and J48 decision tree (J48), receiver operating characteristic curve (ROC). 

 

Results 

The overall predictive accuracy of providers’ positive annotations was poor to fair, with an average recall of 0.6 and 

no F-measure exceeding 0.8. Results of our supervised machine learning are summarized in Table 1, which shows 

the best performing learning algorithm for each condition’s annotations, along with the corresponding accuracy 

metrics of precision, recall, F –measure, and area under the receiver operating characteristic curve (ROC). 



Outcome Algorithm Class Precision Recall F-measure ROC 

CAD NB 

Positive 0.731 0.679 0.704 

0.923 
Negative 0.964 0.972 0.968 

Cancer NB 

Positive 0.857 0.706 0.774 

0.93 
Negative 0.981 0.992 0.987 

CHF SL 

Positive 0.436 0.37 0.4 

0.755 
Negative 0.878 0.904 0.891 

CVA NB 

Positive 0.619 0.722 0.667 

0.952 
Negative 0.98 0.969 0.975 

DM NB 

Positive 0.875 0.368 0.519 

0.927 
Negative 0.955 0.996 0.975 

PVD NB 

Positive 0.769 0.526 0.625 

0.945 
Negative 0.966 0.988 0.977 

COPD NB 

Positive 0.667 0.667 0.667 

0.928 
Negative 0.981 0.981 0.981 

Retinopathy NB 

Positive 0.354 0.81 0.493 

0.907 
Negative 0.982 0.878 0.928 

Coronary artery disease (CAD), congestive heart failure (CHF), cerebrovascular accident (CVA), diabetes mellitus 

(DM), hypertension (HTN), peripheral vascular disease (PVD), chronic obstructive pulmonary disease (COPD), 

simple logistic regression (SL), naïve Bayes (NB), receiver operating characteristic curve (ROC).  

Table 1: Performance metrics of the best performing algorithm for providers’ annotations of medical conditions. 

 

An exceedingly high overall predictive accuracy (above 0.9) was achieved for the negative annotations and 

subsequently the ROC, which can be explained by the high prevalence of negative annotations in the data. In Figure 

3, we show the estimated precision for each positively annotated outcome using different decision models and 

different numbers of selected features. Similarly, the estimated recall for each positively annotated outcome using 

different numbers of selected features is shown in Figure 4. In some cases, the predictive accuracy was variable 

when comparing between different decision models. 
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Coronary artery disease (CAD), congestive heart failure (CHF), cerebrovascular accident (CVA), diabetes mellitus 

(DM), hypertension (HTN), peripheral vascular disease (PVD), chronic obstructive pulmonary disease (COPD), 

simple logistic regression (SL), naïve Bayes (NB), random forest (RF), J48 trees (J48). 

Figure 3: Estimated precision across each positively annotated outcome graphed by varying feature subset size for 

each decision model. 
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Coronary artery disease (CAD), congestive heart failure (CHF), cerebrovascular accident (CVA), diabetes mellitus 

(DM), hypertension (HTN), peripheral vascular disease (PVD), chronic obstructive pulmonary disease (COPD), 

simple logistic regression (SL), naïve Bayes (NB), random forest (RF), J48 trees (J48). 

 

Figure 4: Estimated recall across each positively annotated outcome graphed by varying feature subset size for each 

decision model. 

 

Discussion 

Extensive literature exists on the utility of machine learning in predicting clinically relevant outcomes. Literature 

supports that many conditions such as heart failure 
12, 13

, diabetes 
14

, and cancer 
8
 can be predicted with high 

accuracy. However, in our study results show fair ability, at best, to predict these provider-reported clinical 

conditions in our cohort. This indicates wide heterogeneity in how providers annotate these clinical outcomes which 

is suggestive of a mismatch between annotations and the true state of these clinical conditions. This is further 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

50 75 100 125

R
ec

al
l 

Feature subset size 

Diabetes 

J48 RF NB SL

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

50 75 100 125

R
ec

al
l 

Feature subset size 

COPD 

J48 RF NB SL

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

50 75 100 125

R
ec

al
l 

Feature subset size 

CVA 

J48 RF NB SL

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

50 75 100 125

R
ec

al
l 

Feature subset size 

PVD 

J48 RF NB SL



supported by our previous findings where expert-designed phenotypes outperformed providers’ annotations to 

determine the true state of clinical conditions for this cohort 
15

. 

The precision and recall measures for the best performing positive annotation prediction model were as low as 0.44 

and 0.37 respectively for heart failure and as high as 0.86 and 0.71 for cancer. This indicates an overall fair 

prediction for positive annotations. The notable performance differences across the different decision models in 

many instances such as the precision for cancer and the recall for retinopathy, makes even this fair prediction likely 

to be an overestimate. 

The main strength of our study is the presence of pre-existing annotations that allowed us to approach the behavioral 

aspect of providers’ annotation as the main target. This is in contrast to the usual prediction of the true states of 

diseases that are more common in the literature and where annotations are created by the research team. We believe 

that the degree of prediction for un-intervened annotations such as those extracted from routine clinical care have 

important value for studying the behavioral aspects of providers’ decision making process. For example, highly 

predictable annotations suggest a systematic annotation behavior by providers, regardless whether correct or not for 

the true disease state, whereas low predictability indicates a more heterogeneous behavior. Such information can be 

used for further research and in the development of Clinical Decision Support (CDS) systems that target providers’ 

decision making process. The use of machine learning to understand physician annotation behavior has not been 

previously studied, and, in our opinion, deserves further exploration by the informatics research community as it 

impacts the rigor of data used for other purposes. For the meantime, providers’ annotations as a proxy for the true 

state of clinical conditions should be utilized with caution. 

There are several limitations to this study. First, this is a defined cohort with a sample of only 276 patients. Although 

this represents a 10 year longitudinal cohort, the size of the cohort is a limiting factor and therefore our findings may 

not be generalizable. Second, data mining is subject to the known nuances of missing, corrupted, inconsistent, or 

non-standardized data 
16

. However, this was reduced with the use of broad access and standardized retrieval via the 

Indiana Network for Patient Care network. Further, we adopted a series of best practices advocated in machine 

learning literature as solutions to pitfalls caused by missing, corrupted, inconsistent, unbalanced or non-standardized 

data. This means that despite of these limitations, we are following the best possible solutions to build decision 

models using the data at hand. 

 

Conclusions 

We cautiously conclude that providers’ annotations of key clinical outcomes are limited based on the lack of their 

predictability. We suspect that this limitation is likely present in other clinical settings, though this needs further 

exploration. We suggest that the use of providers’ annotations extracted from clinical documents be carefully 

examined and appropriately challenged for clinical data analytics research. Finally, the use of machine learning 

techniques can be a valuable tool in understanding annotations patterns in order to guide development of decision 

support systems. 

 

Disclosures 

Dr. Malas is funded by a grant under the Merck-Regenstrief Program in Personalized Health Care Research and 

Innovation, a collaboration between Merck, Sharp, & Dhome and the Regenstrief Institute, and the Regenstrief-

Merck Scholar’s Award in Pharmacoepidemiology and Informatics. The authors declare that there are no conflicts 

of interests. 

 

References 

1. Indiana network for patient care. Available from: http://www.ihie.org/indiana-network-for-patient-care. 

2. End stage renal disease medical evidence report - medicare entitlement and/or patient registration. Available 

from: https://www.cms.gov/Medicare/CMS-Forms/CMS-Forms/downloads/cms2728.pdf. 

3. Frank E, Hall M, Trigg L, Holmes G, Witten IH. Data mining in bioinformatics using weka. Bioinformatics. 

2004;20(15):2479-81. 

http://www.ihie.org/indiana-network-for-patient-care
https://www.cms.gov/Medicare/CMS-Forms/CMS-Forms/downloads/cms2728.pdf


4. Selker HP, Griffith JL, Patil S, Long WJ, D'Agostino RB. A comparison of performance of mathematical 

predictive methods for medical diagnosis: Identifying acute cardiac ischemia among emergency department patients. 

J Investig Med. 1995;43(5):468-76. 

5. Lemon SC, Roy J, Clark MA, Friedmann PD, Rakowski W. Classification and regression tree analysis in public 

health: Methodological review and comparison with logistic regression. Ann Behav Med.26(3):172-81. 

6. Hawkins DM. The problem of overfitting. J Chem Inf Comput Sci. 2004;44(1):1-12. 

7. Polani D. Kullback-leibler divergence.  Encyclopedia of systems biology: Springer; 2013. p. 1087-8. 

8. Kasthurirathne SN, Dixon BE, Gichoya J, Xu H, Xia Y, Mamlin B, et al. Toward better public health reporting 

using existing off the shelf approaches: A comparison of alternative cancer detection approaches using plaintext 

medical data and non-dictionary based feature selection. Journal of biomedical informatics. 2016;60:145-52. 

9. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157-82. 

10. Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 

2007;23(19):2507-17. 

11. Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Statistics surveys. 2010;4:40-79. 

12. Wu J, Roy J, Stewart WF. Prediction modeling using ehr data: Challenges, strategies, and a comparison of 

machine learning approaches. Med Care. 2010;48(6):S106-S13. 

13. Rosenman M, He J, Martin J, Nutakki K, Eckert G, Lane K, et al. Database queries for hospitalizations for acute 

congestive heart failure: Flexible methods and validation based on set theory. J Am Med Inform Assoc. 

2014;21(2):345-52. 

14. Yu W, Liu T, Valdez R, Gwinn M, Khoury MJ. Application of support vector machine modeling for prediction 

of common diseases: The case of diabetes and pre-diabetes. BMC Med Inform Decis Mak. 2010;10(1):16. 

15. Malas MS, Wish J, Moorthi R, Grannis S, Dexter P, Duke J, et al. A comparison between physicians and 

computer algorithms for form cms-2728 data reporting. Forthcoming in 2016. 

16. Koh HC, Tan G. Data mining applications in healthcare. J Healthc Inf Manag. 2011;19(2):65. 

 


