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TWO-POINT CORRELATION FUNCTIONS AND UNIVERSALITY FOR THE ZEROS OF SYSTEMS
OF SO(N+1)-INVARIANT GAUSSIAN RANDOM POLYNOMIALS

PAVEL M. BLEHER!, YUSHI HOMMA 2, AND ROLAND K. W. ROEDER

ABSTRACT. We study the two-point correlation functions for the zeroes of system®(fr + 1)-invariant Gaussian
random polynomials ofRP™ and systems dfsom(R™)-invariant Gaussian analytic functions. Our result reflects the same
“repelling,” “neutral,” and “attracting” short-distance asymptotic behavior, depending on the dimension, as was discovered
in the complex case by Bleher, Shiffman, and Zelditch.

We then prove that the correlation function for tlsem (R™)-invariant Gaussian analytic functions is “universal,” de-
scribing the scaling limit of the correlation function for the restriction of systems ofSthék + 1)-invariant Gaussian
random polynomials to any-dimensionalC’? submanifoldd/ C RP*. This provides a real counterpart to the universality
results that were proved in the complex case by Bleher, Shiffman, and Zelditch.

1. INTRODUCTION

This paper concerns thi#0 (n+1)-invariant ensemble of Gaussian random polynomialRBh and thelsom (R")-
invariant ensemble of Gaussian random analytic function®6n The SO(n + 1)-invariant ensemble consists of
random polynomials of the form:

@ P = 30 ((8)oaxe,

le|=d

where X € R"*! and thea,, are independent and identically distributed (iid) on the standard normal distribution,
N (0,1). Here, we use the following multi-index notation: for amyc (ZZO)"H, one defines:

n+1 n+1 d d'
i=1 i=1 H aj!
j=1
We will study the simultaneous zeroes on the projective sfdteof the systems:
(3) F:R"™ - R"  where F=(F(X), F(X),... F.(X))),

where each¥; is an independently chosen random function of the form in Equation (1). Almost surely, the common
zero set of F' will be finitely many points. We equifRPP" with the Riemannian metric obtained from its double
cover by the unit spher8® C R"*!. The simultaneous zeroes of ensemilg are invariant under the isometries
by elements ofSO(n + 1); see Section 2. Because of this symmetry, authors have described this ensemble as the
“most natural” ensemble of a random polynomials define®8f. For this reason, it has been extensively studied by
Kostlan-Edelman[12], Shub-Smale[32], and others.

ThelIsom(R")-invariant ensemble of Gaussian random analytic functions is defined by the following:
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(4) f:R" 5 R" where f=(fi(z),fo(z),..., folx)), wWith fi(z) :Zﬁv

wherea,, are iid on the standard normal distributioi’, (0, 1). We will show in Section 2 that the zeroes of this
ensemble are invariant under all isometriedR3f We will see shortly that this ensemble is intimately tied to the
SO(n + 1)-invariance ensemble in the scaling limit as the degree .
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Theprobability densityof the zeros of the system (3) ate RP" is defined to be
. 1
©) P(@) = i N @)

whereN;s(x) := {y € RP" : dist(x,y) < d}. It follows from the invariance that this ensemble (3) hasastant
density of zeroes given by

(6) palx) =7 "F T (n;1>d%;

Pr(3 a zero ofF' in Ns(x)),

see, for example, [12, Sec. 7.2]. Note: the volume of the pegjective space i T ("T“)*l, so the expected
number of zeroes is simplyz . The analogous definition applies to the ensemble (4) whiebause of the invariance
under isometries dR™ has constant density

™) pla) =70 (111,

The correlation function between the zeros of the systemat(8)e two points: andy in RP" is defined to be

(8) Ko a(,) = I Pr(d a zero ofF in Ns(x) and3 a zero ofF' in Ns(y))
n, 5 = 1m . -

AT Y s—0 Pr(3azeroofF in Ns(x))Pr(3 azero ofF in Ns(y))

It follows from the SO(n + 1) invariance that<,, 4(z,y) depends only on the distance betweeandy. For this

reason, we can writ&,, 4(x,y) = K, q(t), wheret = distgp~ (x,y). Similarly, for anyz,y € R", the two point
correlation functioriC,, (x, y) between zeros of (4) depends onlydistg-~ (x, y). We have

Theorem 1. For anyx # y € RP", lett = distgp~ (x, y). For fixedd > 3, the correlation function between zeros of
the SO(n + 1)-invariant ensemble satisfies

dd:'l) vl (52)

9 Knal@,y)=Knalt)=A,at> " +0 (") as t—0, where 4,,4= < - o (eE)
2

Theorem 2. For anyz # y € R", lett = distg~ (x,y). The correlation function between zeros of them(R")-
invariant ensemble satisfies

T (nt2
(10) Kn(z,y) = Ko(t) = A, t* "+ 0 (t*") as t—0, where A, = \/Q%I‘ (S”rzl))’
2
and
(11) Ko(t)=140 (te_g) ast — oo.

Given aC? submanifoldd/ ¢ RP* having dimensiom, the restrictions of, of the polynomials chosen iid from
the SO(k + 1)-invariant ensemble (1) has a well-defined zero set whicmagmsists a.s. of finitely many points. We
give M  RP* the metric induced by the double cover®P* by the unit spher&*. More specifically, we obtain
a Riemannian metric o/ using the inclusion of tangent spacEsM C T,,]RIP”“. When restricted to a sufficiently
small neighborhood of the origin, the orthogonal projettieoj, : 7;,M — M provides a system of local coordinates
on M. We will use these systems of local coordinates to study dhestation between zeros of the restriction of the
SO(k + 1) invariant ensemble td/. The next theorem expressks,(x, y) as the universal correlation function in
the scaling limitd — oo for the restriction of thesO(k + 1)-invariant ensemble td/ c RP*:

Theorem 3. Let M ¢ RP* be aC? submanifold of dimension and K40 (x,y) denote the correlation function
between zeros of polynomials chosen iid from the degr@&€ O(k + 1) invariant ensemble restricted fo/. Then, for
anyp € M and anyz, y € T,M we have

Kpanr (projp <%> , proj, <%>) = K (z,y) + O <\/LE) asd — .

The constant in the estimate is uniform on compact subsef$ af x T,M \ Diag, whereDiag = {(xz,y) €
T,M xT,M : x=uy}.
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Our techniques are largely based on those of Bleher and DiWkd use the Kac-Rice formula (see Section 3
below) to study the:-point correlation functions for th80(1, 1) and SO(2)-invariant polynomials in one variable.
Moreover, our results in the higher dimensional real caséythe exact same short-distance asymptotic behavior
(with a different constant) as those of Bleher, Shiffmard Zelditch [7, 8, 9] in the complex case. These asymptotic
behaviors can be interpreted as “repelling” for= 1, “neutral” forn = 2, and “attracting” forn > 3. See Figure 1
for numerical plots of<,,(t) forn = 1, n = 2, andn = 3.

We remark that calculation of the leading order asymptaiaaore delicate in the real case than in the complex
case because one cannot apply Wick's Theorem to the reaRlicacformula. Similar types of analysis have been
done in the real setting by Nicolaescu, who studied thecalifpoints for random Fourier series. It is interesting that
he found the same exponent®df- n arising in his work [29, Egn. 1.15].

Theorem 3 above provides a real analog of the universaldiylt®that were obtained in the complex setting by
Bleher, Shiffman, and Zelditch [7, 8]. Thus, the plots shawirigure 1 depict the universal scaling limits of the
correlation functions for any submanifold ¢ RP* of dimensiont, 2, or 3.

The scaling limit used in Theorem 3 is needed to get a uniVeoseelation function. This is illustrated in Section 8
where we show that when restricted to a paralgotabz? the leading term from the correlation between zeros for the
SO(3)-invariant polynomials of degreenearz = 0 depends non-trivially oh. More generally, it can be interesting
to ask how the geometry d@ff affects the correlation functioR™ for finite degreei.

The proof of Theorem 3 easily adapts to to complex setting It (k + 1)-invariant ensemble of polynomials are
obtained by interpreting the variables in (1) as complexrapthcing the real Gaussiang with complex Gaussians.
Thelsom(C™)-invariant ensemble of Gaussian analytic function€8his obtained by making the same adaptations
to (4). We obtain:

Theorem 4. Let M ¢ CP* be an complex analytic submanifold of dimensioand K, 4 a/ (2, y) denote the corre-
lation function between zeros ofpolynomials chosen iid from the degré&'U (k + 1) invariant ensemble restricted
to M. Then, for any € M and anyzx,y € 1,M we have

Kpanr (projp <%> , proj, <%>) = K (z,y) + O <\/LE) asd — .

The constant in the estimate is uniform on compact subsef$ af x T,,M \ Diag, whereDiag = {(xz,y) €
T,M xT,M : x=uy}.

This serves as a weaker version of the results from [7, 8]am Al is required to be embedded in projective space
(instead of being an arbitrary Kahler manifold), the linentle is the hyperplane bundle (corresponding to the
SU(n + 1)-invariant ensemble), and only two-point correlation fiiores are considered. On the other hand, in the
work of [7, 8] the manifold)M is assumed to be compact. No such assumption is made in The@and 4. For
example, they can be applied at any smooth ppisita singular projective variety.

For general background on Gaussian random analytic furetod polynomials, we refer the reader to [2, 3, 19,
20, 32] and their references therein. Specifically to catieh functions, we refer the reader to the three papeesllist
above in the previous paragraph, as well as the works of BoglgmBohigas, and Leboeuf [10], Tao and Vu [33],
Bleher and Ridzal [6], and Bleher and Di [5].

Our work fits in within the context of the emerging field “ramdoeal algebraic geometry.” For example, Theorem 3
applies to the restriction of th8O(k + 1) ensemble to the smooth locus of a real-algebraic subsBiP6f We
refer the reader to the works of Kostlan [24], Shub-Smal§, [Bagimov-Podkorytov [21], Burgisser [11], Gayet-
Welschinger [14], Ibragimov-Zaporozhets [22], Nastagd28], Gayet-Welschinger [15, 16], Lerario-Lundberg [25]
Gayet-Welschinger [17, 18], and Fyodorov-Lerario-Lundijé3].

The remainder of the paper will be organized as follows: I fibllowing Section 2, we study the invariance
properties of the ensembles from (3) and (4). We then usentragiance to reduce Theorems 1 and 2 to suitable
versions in affine coordinates (Theorem 9). In Section 3,egalf the Kac-Rice Formulae for the density and for the
correlation functions, the main tools used in our proof. &tt®n 4 we compute the covariance matrices needed to
prove Theorem 9, as well as their determinants, inverses,Téteorem 9 consists of two statements (short-distance
asymptotics and long-distance asymptotics), which areqatin Sections 5 and 6 respectively. Section 7 is dedicated
to proving Theorem 3 about universality of the scaling linSection 8 provides an example showing that for finite
degree the leading asymptotics depends on the geometrg sfitmanifold\/ ¢ RP*. In Section 9 we explain the
changes that need to be made to the proof of Theorem 3 in argeovte the complex version, Theorem 4.
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FIGURE 1. Universal two-point limiting correlation functiors,, (¢) forn = 1,2, and 3, demon-
strating the repelling, neutral and attracting behavidfer n = 1, the graph is obtained from
Formula (5.35) in [4]. Fom = 2 andn = 3, the graphs were computed using Monte Carlo in-
tegration applied to formula (86) with0” and 106 points, respectively, for each The data was
smoothed out by replacing each value with the average oflitla& 14 nearest neighboring points.
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Appendix A contains the proof of a general estimate whiclsexin Sections 6 and 7. In Appendix B, we prove a
result regarding the volume of random parallelotopes wlicteeded in Section 5.

Notation: Let diag,, (A) denote the block-diagonal matrix withcopies of the square matri along the diagonal.

2. INVARIANCE PROPERTIES ANDREDUCTION OF THEOREMS1 AND 2 TO LOCAL COORDINATES

TheSO(n + 1)-invariant ensemble and thgom(R")-invariant ensemble are instances of the following definiti

Definition 5. A Gaussian analytic functioh : R™ — R™ is anm-tuple (hy(x), ha(z), ..., hm(x)) of functions
h; : R™ — R chosen iid of the form
(12) hi(x) := anaawo‘,

[

where thea,, are chosen iid on the standard normal distributidn(0, 1) and the coefficients, are chosen so that
> cox™ converges for allr € R™.

«

Lemma 6. A Gaussian analytic functioh : R™ — R™ almost surely converges uniformly on compact subseis' of
and moreover is real analytic oR™.

Proof. The proof of Lemma 2.2.3 from [20] applies to show (12) almsstely converges uniformly on compact
subsets ofC™ and hence defines a random complex analytic functiof’onBy restricting the resulting functions to
R™, we obtain the desired result. O

In particular, Lemma 6 justifies our consideration them (R™)-invariant ensemble (4) as actually defining a ran-
dom function. The following two lemmas justify our termingly “SO(n + 1) invariant ensemble” and§om(R™)-
invariant ensemble”:

Lemma 7. The zeroes of the systefhgiven in (3) are invariant under the action §10(n + 1). That is, for any open
setU C RP" and any4 € SO(n + 1), we have P{F has a zero iJ) = Pr (F has a zero ind (U)) .

Proof. EachF;(X) defines a Gaussian processRin !, with mean 0 and covariance function

d avy o d
13) PRCOR) = (&)xeve=x v
Since any Gaussian process is uniquely determined by itafidssecond moments [19, Theorem 2.1], this process is
invariant undeiSO(n + 1). Therefore, the zeros withiRP" are also invariant under the action®0(n + 1). O

Proposition 8. The zeroes of the systefn= (f1,. .., f,) from (4) are invariant under any isometry®f*. That s, for
any open sel/ C R™ and any isometry : R™ — R™, we have P f has a zero i) = Pr (f has a zero inf (U)).

Proof. The zeroes off are the same as those of

(14) 9:=(91.92.---.92) Where g;(z):= e 2l f(a).
Eachg;(x) defines a Gaussian processlh, with mean 0 and covariance function

(@) — o=l S ETYT  a(el?) TT (S @)™ L dlleml?
(15)  E(gi(@)gily)) = e 2UI=IFHvID S Z I — oalllel iy )H<ZT! =il

!l

(a4 =1 (!1,:0

The result follows because (15) is clearly invariant undemetries oiR™. O

We will now use these invariance properties to reduce thefpraf Theorems 1 and 2 to a particularly simple pairs
of points and to local coordinates. The two points
(16) w:{l:O:---:O:—%} and yz{l:O:---:O:%}
(given here in homogeneous coordinates) have distance

t
distgpn (2, y) = 2 arctan (5) =t+0(t*) ast—0.

Thus, in order to prove Theorem 1, it suffices to verify (9)tfds pair of points.
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Note that(xy,...,2,) — [1: 21 : ... : a,] provides a system of local coordinates in a neighborhoad afidy.
In these coordinates, th#0)(n + 1)-invariant ensemble becomes

Ja= (far(), fao(x), ..., fan(x)),

where eaclyy ; is chosen independently of the form

(17) fa(z) = Z <Z)aam°‘ where (i) = d!

|| <d (d — |a|)' H ;!
i=1

and thea,, are iid on the standard normal distributidh(0, 1).

In summary: LetlC,, 4(x,y) and K, (x,y) denote the correlation functions between zeros of¥t¥n + 1)-
invariant ensemble, expressed in affine coordinates (hd)pbatween zeros of tHeom(R")-invariant ensemble (4),
respectively, and let
(18) Kna(t) :=Kpna((0,...,0,-t/2),(0,...,0,t/2)) and K,(t):=K,((0,...,0,—t/2),(0,...,0,t/2))

In order to prove Theorems 1 and 2, it suffices to prove:

Theorem 9.
(1) Ast — 0 we have

Knalt)=A,at> " +0E™™), and K,(t) = A, > "+ O0(t3™™),

whereA,, ; and A,, are given in (9) and (10), respectively.
(2) Ast — oo we have

Ku(t) = 140 (te—ﬁ) .

3. KAC-RICE FORMULA

The main technique used in this paper is a variant of theickdsac-Rice Formula [23, 30, 31] that was developed
for correlations between zeros of multivariable Gaussiaadydic functions by Bleher, Shiffman, and Zelditch in [8,
Section 2].

We will begin this section with a statement and proof of thetRice formula for then point correlation function
with m arbitrary. At the end of the section we will rephrase the itssas needed in this paper. LUet R” — R™ be
a Gaussian analytic function and fet, . . ., ™ bem distinct points inR™. Them-point correlation functiorfor the
zeros ofh is

L . Pr(3azeroofhin Ns(z) foreachi = 1,...,m)
(19) K,(x',...,2™) = lim = - . ,
50 [I;Z, Pr (3 azero ofh in Ns(x?))

whereN;(z?) is the ball of radiug > 0 centered at’ € R™.
Them-point densityfor the zeros oh is

(20) Ko(z', ... &™) = (%12% #Pr (3azero ofh in Ns(z') for eachi = 1,...,m),

whereV; = F”(n%/?:) is the volume of each ball. When = 1, K,,(z) = p,(z), the probability density (5). For
m > 1 we have

(21) Kn(x',...,x™) = ! Ko(z', ... x™).

[T pu(?)™ "
Consider the Gaussian randgmn? + mn)-dimensional column vector

(22) [Vhi(z') Vha(x') ... Vhy(x') ... ... Vhi(z™) Vho(z™) ... Vhy, (™)
h(z') h(z?) - h(z™)]",
where each gradient vect®ih; (z’) and each vectds(z") is concatenated into in the indicated location.
Letg!, ..., €™ ben x n matrices whose rows ag, ... ¢! foreachi = 1,...,m. Let

(23) u=[§& ... & & ... & ... g e )T
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be themn? dimensional column vector formed by concatenating the fowts of each of the matrice&', . .., &™
followed by their second rows, etc.

Proposition 10 (General Kac-Rice Formula). Suppose the covariance mat@ = (Ev;v;);"" f””" of the vec-
tor (22) is positive definite. Then, the-point densityf( (z!,...,x™) for the zeroes of the systdmis given by

(24) K(z',...,a™) = 3(Quw) gy,

(27T)mn(n+l /det C /n2 1_[|thé e

where(Q is themn? x mn? principal minor of C~! andwu is as in (23).

Proposition 10 is easily obtained from [8, Theorem 2.2] bipgishe suitable Gaussian densiy. (0, &, z) in their
formula (38). In order for this paper to be relatively selhtained, we present a proof of Proposition 10 below.
We start with the following lemma. Define the derivatibdé(x) as a linear map — Dw, whereD is the matrix

ohi \"
p= (o <m>> |
<a$j ij=1

andw = [wy, ..., wy]T.
Lemma 11. We have

(25) Ko(z',..., ™) = lim %Pr(h(mi) € Dh(z")(Ns(0)) foreachi = 1,.. ., m)

Proof. We begin by cutting off the tails d§. Let R > 0 be chosen sufficiently large so that for &lt> 0 sufficiently
smalland alk = 1, ..., m we haveN;s(z*) C {||z| < R}. Consider the following bounds on the derivativegwof

0*h;(z)
axkal'l

(26) |Dh(z")|| < Aforall 1 <i < m and < Aforalll <j kI <nandall|z| < R.

For any Gaussian analytic functién
Pr (h satisfies condition (26) —lasA — .

Therefore, it will be sufficient to prove (25) under the hylpedes (26). (The constadt > 0 will be fixed for the
remainder of the proof.)

As in the statement of Proposition 10, itbe then x n matrices, fori = 1,...,m, and letu € R™"” be given
2

asin (23). Lets := [ st g2 ... g™ ]T be themn-dimensional column vector, where eashc R"™. For any
open subset/ C R™ having compact closure and aay- 0 let

U7 ={xeU : dist(x,0U) > €} and Ul :={zcR": dist(z,U) < €}.
For anys > 0 andB > 0 consider
@7)  Eip = {(u,s) eR™T | < Aands' € (€1(N5(0)))E,, foreachi = 1,. m} and
(28) EY = {(u,s) e R M |61 < Aands’ € £°(Ny(0)) for eachi = 1,. .. ,m} :

Here,£!(Ns(0)) denotes the image of the bail;(0) under the the linear map fro®™ to R™ expressed in terms of
the standard basis @&f* by then x n matrix &°.
The boundg|¢|| < A, fori = 1,...,m, imply that as§ — 0 for fixed B > 0 we have

(29) Vol(Ej 5 \ Ej ) = O(6™"+™).
Let
Hs:={h : hhasazeroimnVs(z') foreachi = 1,...,m},
Hy = {h . (Dh(zY),..., Dh(z™), h(z"), ..., h(z™)) € E;B} , and
HY :={h : (Dh(z"),...,Dh(z™),h(z"),... h(z™)) € Ej}.
It is immediate from the definition of the seE;fB andEY that for anys > 0 and anyB > 0 that
(30) Hyp C HY C Hf .
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Meanwhile, by assumption (26), Taylor's Theorem gives thate exists3 > 0 (depending on the bound) so that
for all sufficiently smalld > 0 we have
(31) Hjp C Hs C Hy .

Since(Dh(x"),..., Dh(z™),h(x"),..., h(z™)) is a Gaussian random vector, its probability distributioal-
solutely continuous. Therefore, (29) implies that

(32) Pr (h € Hip\ H;B) = O(§mmHm),
Combined with (30) and (31) this implies that under the aspiiﬂn (26) we have

(33) lim —— (u; P (h c H(;) = lim ——

since(V;)™ is bounded below by a constant timgs".

(u;) Pr (h e H(;)

O
Proof of Proposition 10. We use Lemma 11 to replace the definition6f, with (25). Using the formula for a

Gaussian density, we have
(34)

! ! _<C[UHUD
7 1 my _ ; s S
Kn(z!,....a™) = PRI — lim o / / e dsdu,
Rrmn? €1(N3(0)) % x €™ (N3(0))

Where[ Z denotes the column vector obtained by stacking the two colotorsu ands.

BecauseC is positive definite, the integrand decays rapidly at infirlthus, the Dominated Convergence Theorem
allows us to interchange the limit with the first integral. Wso multiply and divide by " , | det &’|, obtaining:

(35)

e (1)
! lim Hi:1|det£| / e ’ $ S dsdu.

1 m -
(2r)"" D2 /3ot © 50 [[;~, Vol €(N5(0))

R £1(N5(0)) x---x €™ (N5(0))
The Integral Mean Value Theorem implies that

PRV 3 Y ST B 5

li .
5250 T, Vol €1(N;(0))
€1(N5(0))x - x €™ (N5(0))

which completes the proof. O

Remark 12. Proposition 10 shows that the correlation measure is alisbficontinuous off of the “diagonal” where
x' = x’ for somei # j (hence the name “correlation function”). Thus, in the defom (19) of K, (z*, ..., ™) one
need not use round balls;(x?). Rather, any sequence of shrinking neighborhoods of eashitable for computing
a Radon-Nikodym derivative will suffice.

On certain occasions we will need the following lemma, whécproved in Appendix A, to make estimates involv-
ing the Kac-Rice formula (24).

Lemma 13. For any positive definitexn? x mn? matrix A

(37) /H|det£|e §(Buw) _ /H|det£|e Hawgyl =0 (]1A - BIIY?)

Rmn? =1 Rmn? =1
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for anymn? x mn? matrix B sufficiently close to\. (Herew is as in (23) and| ||, denotes the maximum entry of
the matrix.)

Remark 14. After reading a preprint of this paper, L. Nicolaescu infathus that a very similar estimate appears in
his paper [Prop. A.1J29], whose proof was provided by G. Lowther in a discussion orhNIaterflow{26].

We close the section with simplified rephrasings of Propmsit0 in the cases: = 1 andm = 2 that will be used
throughout this paper. In both cases it will be better to otide random vectos from (22) in a way that will make the
covariance matrixC block diagonal. (It will come at the cost of the definition farbeing slightly more complicated.)

If m = 1 we reorder the random vectoras

(38) vi=[ hi(x) Vhi(z) ... hp(z) Vhy(z) }T.

Because the componentsifare chosen iid, the resulting covariance ma@ix= (Evivj);fj.;“? will be of the form
C = diag,(C), whereC = (Ev;v;)!1, anddiag, (C) denotes the block diagonal matrix withcopies ofC on
the diagonal. The vectar becomes, = [ & ... & ]T whereg is an x n matrix.

Proposition 15. (Kac-Rice for Density)Suppose the covariance matix = (Evivj)zg.’jl) of the vector (38) is
positive definite. Then, the density of zeroes of the sykstism

(39)

1 — 1 (Qu,u)
pnl(x) = / det &le 2 (2w, du,
(®) (2m)" "t/ /det C 2' |
Rn

where(2 is the matrix of the elements @f~! left after removing the rows and columns with indices coegtuo 1
modulon + 1.

If m = 2 we reordew as

(40) v = [ hi(x) Vhi(x) hi(y) Vhi(y) ... hp(®) Vh(x) h.(y) Vh,(y) ]T ,
which will again make its covariance matrix block diago@a= diagn(C). Let& andn be then x n matrices whose
rows arety, ... &, andny, ... n,, respectively. Leu = [ & m1 & m2 ... &, my, ]’ bethe vector formed
by alternating the vectoig andn,;.

2n(n+1)

Proposition 16 (Two Point Kac-Rice Formula). Suppose the covariance matx = (Ev;v;); ;-

tor (40) is positive definite. Then, the two-point corratatfunction for the zeroes of the systaris:

of the vec-

(41) K, (z,y) =

1 / _1 Q
— | det &[] det n|e™ 2 (%) dy,
(2m)" "V p(a)o(y)VderC J,

whereQ is the matrix of the elements @f~! left after removing the rows and columns with indices coegtuo 1
modulon + 1.

4. CALCULATION OF THE COVARIANCE MATRICES, THEIR INVERSES AND 2

LetC, 4 = C, 4(t) andC,, = C,,(t) be the covariance matrix for vector (40) appliedfto(Equation 17) and¢f
(Equation 4), respectively, at the points

t t
(42) m_<0,...,0,—§) and y-(O,...7O,§).

Lemma 17. BothC,, 4 andC,, are of the form

(43) C = diag,(C), with €= [A+ BT],

B A_
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whereA ;. andB are the following(n + 1) x (n + 1) matrices:

[ 0 ... 0 40 [ 0 ... 0 V]

JCA 0 0o n 0

(44) Ac=|: o | B=|: '
0 B0 0 o0

E=J 0 v I-v 0 ... 0 7

and whereq, 3,9, v, u,n, v, and 7 are functions ofd and ¢ expressed in (50-57) fo€,, 4 and the functions of
expressed in (62-69) far,, .

Proof. Since the coefficients of;,; and f4,; (respectivelyf; and f;) are independent whenz# j, only the entries of
C,..q (respectivelyC,,) with i = j will have nonzero values. Thus, the covariance matricelshaile the following
block-diagonal structure:

(45) C,.q = diag,(Cna) and C, = diag,(Cy),

whereémd corresponds to the firgtn + 2 entries ofv (and similarly forC,,). These entries correspond fg; and
f1, respectively. For ease of notation, we’ll drop the sulpgdri /g = fi1, f = f1.
For anyz,w € R™ we have:

(46) E(fa(2) fa(w)) = (1 + z- w) :
(47) E< afd )>_8E Jal@DJa@) _ . 14 2wyt
ow;
(48) E<8fdzi 8{;101 >_ azl&fj( )):d(1+z.w)‘“+d(d—1)ziwi(1+z-w)d*2, and
Ofa(z) 0 _
(49) E< e f8w > azlasz( ) aa—1)muw (142w for 4]

Recalling thate = (0,...,0,—%) andy = (0,...,0, ) we now use expressions (46-49) to compute that the only
non-zero covariances id, 4 are

2\
50) = Bl fu@) = B(fato) fatw) = (145 )
Yy

(51) 6:=FE (fd(m)afd(m)> _E <fd(y)3fd( )

(52) B:=FE (a{;dy(f’) a?;}”) —E (a{;dy(f’) aj(;d;}’)) —d (1 + %)dl fori # n
_ p (0fa(@) Ofu(@)\ _ o (Ofaly) Ofaly)\ _ e\ "
(B3 ~ E( 9z Oz ) E( 2 d(1+4> +=d(d 1)t2(1+4>

(58) o= B(fa(@)faly) = 1+ z-y)' = (

(55) vi=F (fd(w) o) d(’”) —F <fd(y) of d(“")) - (1 - 5)d_1 |

OYn, Oy 4
d—1
(56) 1n:=FE (aj(;df) 8{;;@) —d (1 - g) fori #n, and
d—1 d—2
57) T=F (aé‘;(”’) 822(1/)) —d (1 - g) = id(d —1)¢ (1 - g) .

This proves thaC,, 4 has the structure stated in Lemma 17.
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ForIsom(R")-invariant ensemblg and anyz,w € R™ we have:

(58) ,w)) — ez-w7
(59) ( ) _ OBU@IW) e
8wi
(60) E( 32’1 awl ) - Wz(l-F%wi)e”w,and
2

We now use (58-61) to compute that the only non-zero coveeiainC,, are

(62) a = E(f(x)f(x) =E(f(y)f(y) =e€T,
(63) 0= B(f@) = (1Y) = L.
0 (YY) () 7 i
_ (@@ (@ _ (., ). 2
(65) v o= E((?:z:n 8xn>_E(ayn 8%)_(1+Z>e ,
(66) wo= E(f(@)fy) =c ",
©7) v = B(r@ %) —-p (1)) - Lt
(68) n = E(ag—;)ag—;)>_e% fori #n, and
_ p(M@w _(, ), =
(69) T = ( T >— (1—Z)e .
This proves thaC,, also has the structure stated in Lemma 17. O

To apply the Kac-Rice formula to compuig, 4(x,y) and K, (x, y) for the values ofc andy given in (42) we
will need to computelet C,, 4, det Cy,, 2y 4, 2, and the diagonalizations 61,, ¢ andQ2,,. Here,2,, 4 andQ?,, are
the matrices obtained frm@;_}i andC;, !, respectively, by deleting all of the rows and columns whioskces are
congruent 1 module + 1, as in the Kac-Rice formula.

By Lemma 17 we can do all of these calculations in terms of #eegic formC given in (43) and then substitute
in the values ofy throughr from (50-57) and (62-69) accordingly.

The determinant o€ is

(70)
det(C) = (52—772)71("71) (a'y—aT—52—25V+'yu—uT—V2)n (a7+a7—52+251/—7u—u7—1/2)n

Recall thatC = diagn(é) whereC is described in (43) and (44). Applying a suitable permatatd the rows and
columns ofC, one obtains a block matrix with orlex 4 block andn — 1 copies of the sam® x 2 block. Because

D, E*} whereD

of this, C~* will have the same block structure and it can readily be caepto beC~! = {E D
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andE. are the following(n + 1) x (n + 1) matrices:

ayi—ar?-6*y—25vr—v1? 0 0 adytavT—8—Sur+svi—yuv 7]
X . ¥ X
0 e 0 0
D, =
0 ﬁ 0
:Fa6v+a1/7'—63—6u7'+61/2—'yuu 0 0 a?y—ad?—ar?428 pr—ypu?
L A t A J
I =8r—28yv+y u—pri—v?r 0 0 :FQ5T+O¢’YV+52U—5’YM—MUT—U3 ]
A . A
0 S - 0 0
E. =
0 s 0
:l:a67'+a'yu+621/—6vu—u1/'r—u3 0 0 _a27’+20¢61/—62u—u2'r—u1/2
L A e A _
where

(71)
A=’y —a’? —2a8’y—dadvr—2av12 +6* +28%ur — 282 + 46y pv — 2P + 2t + 2t + ot

If Q is obtained fromC~! by deleting all of the rows and columns whose indices are e@1g 1 modulor + 1,
as in the Kac-Rice formula, we have

Lemma 18. = diag,, (ﬁ) with Q = [91’1 91’2} , Where:
2,1 2,2

~ ~ ) 15} 154 a?y—ad® —av?+25puv —yu?

(72) 91,1 = 02,2 = dlag ﬂQ — 772 goany ﬂQ — 772 y A s
n—1 times
2 2 2 2

~ ~ ) n n a*T+2a0v — 6" — Ut — pv
73 Q12=071=d —_— = —
( ) 1,2 2,1 1ag ﬂQ — 772 ) ) 52 — 7727 A

n—1 times

We notice that there exists a permutation ma®isuch that

(74) M:QTQQ:dlag Ml,...,Ml,MQ,...,Ml,...,Ml,MQ
n—1 times n—1 times
n times
_B __n a?y—ad?—arv? 4268 prv— 2 _a27+2a6u—62u—u2r—uu2
where M; = l_ﬁi E2] and M, = [ a27+2a5U§52#7#277#V2 azfyfaézfauﬁﬂéuufvuz
Br—n?  p2-n? - A A
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Lemma 19. We can orthogonally diagonaliz® with QP, whereQ is the permutation matrix described in the

V2 V2
previous paragraph an® = diag,,» /5 3| |- obtaining
2 2

(75) A = QPTQQPZPTMP:dlag )\1,)\2,...,)\1,/\2,)\3,)\4,...,)\1,/\2,...,/\1,)\2,)\3,/\4 5
— —

n—1 times n—1 times
n times
where
1 1 o+
76 M=oy A=) A= ,
(e ! B—n ° B+n ’ ay—aT—02—-2vi+ypu—put — 2
and M\, = ol o

avy+ar—82+2v8 —yu—pt —v?’

We now begin substituting in the values @fthrough+ given in (50-57) and (62-69) into the results we have
obtained for theC in order to derive the results we need {0y, ; andC,,.

Lemma 20. For all t > 0, C,, is positive definite. Foil > 3 and sufficiently small > 0, C,, 4 is positive definite.

Proof. It is a general fact from probability theory that the covaga matrix of a random vector is positive semi-
definite. ForC,,, equation (70) becomes

-1
det(Cp) = (e%’52 — efétz)n(n : (e%t2 —ezt +t2)n (e%’52 —eztt tz)n,

which is positive for alk > 0.
ForC,, 4 we have

d2n2+n d—1 n’+n d— 2)"
det(cn,d) = ( 1;71 ( ) t2n2+6n + O(t2n2+6n+1)’
which is positive ford > 3 andt > 0 sufficiently small. 0

Lemma 21. Q,, ;, and(2,, are orthogonally diagonalized B P whereQ andP are the2n? x 2n? matrices described
in Lemma 19. The eigenvalugg, A2, Aa 3, Aa,3 Of €2, 4 satisfy

(77)

_ dld—1 _ _ _ d(d®> —3d+2
= (T)t +O(E) AP =Vadrow) NP =Vad-1t A= (T) 2+ 0(t).
The eigenvalues, A2, \3, A\, of ,, equal
(78)

2 2\ 1 2 2\ 1 e§ —i—e’% e% — 67%
Al == (eT - eiT) 5 AQ - (eT +67T) 5 )\3 - ﬁ’ and A4 == 2 2
t24+e7T —e" 7 —t24e7T —e 2

and satisfy

_ t _ - - 1
790 NVP=—40() NP=v24+0() NP =t+0() NVP=—2+0(P).
( ) 1 \/5 ( ) 2 ( ) 3 ( ) 4 \/ﬁ ( )
Proof. This follows from Lemma 19 and by substituting the valuea dfiroughr from (50-57) and (62-69) into (76).
(The asymptotics in (77) determined using the Maple conraltgebra system [1]. However, they are simple enough
that one can check them by hand.) O

We will need the following calculation in Section 5:

Lemma 22. We have
(80)

()\l,d)\Q,d)ién(nil) ()\3,d)\4,d)7%n

y/det Cy p,

()\1)\2)7%71(7171) (A3A4)7%n
vdet C,,

=d 2t "+ 0@t ") and =t"+ Ot
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Proof. Using (70) and Lemma 19 for the generic form of the covariana&ix C we have

(A1Ag) 2 ann=h) (AsAg )

81 2o u)e,
(81) AN = (a” —p7)
The result then follows by substituting (50-57) and (62-&) doing an expansion. O

5. PROOF OFPART (1) FROM THEOREM 9: SHORFRANGE ASYMPTOTICS

We apply the Kac-Rice formula to the covariance matricgg; andC,, and the submatrice®,, ; and$2,, of their
inverses, as computed in Section 4. It applies because, iyrize20,C is positive definite for alt > 0 andC,, 4 is
positive definite for all > 3 and sufficiently smalt > 0. The proof will be the nearly same for each, so we will work
with IC,, 4(t) and then explain what change needs to be madkfdt) at the very end of the section.

We apply the diagonalization & = A,, 4 = (QP)7Q,, 4(QP) from (74) and (75) to the Kac-Rice formula (41)
to obtain

1 1
®2)  Kealt)= - [ 1det €@l det n()|emsam D,
(27)"(+D) pd(m)pd(y)\/mwn2
wherer = [ T T2 ... Tn }T .= PTQTu, wherer; = [ Ti1 Tz ... Timm ] for eachl < i < n. In

these new variableg,andn become the new matricéqr) andn (7), whose entries are defined by

2 2 .
(83) &g (T) = > (—Ti2j—1+ Ti2;) and n,; (1) = 5 (Tij2j—1 +Ti2j) for 4,7 <n.

The reason for diagonalizin@®,, 4 was to change the exponent into a form conducive to formirsgts of2n-

dimensional spherical coordinates so that-, T) becomesz 3.

Letw .—[ r re ... 1T, 61 60y ... 0, ] Where0 —[ i1 91'72 91'12"71 ] Let

Jj—1
A;ﬁri il sinel-_,k> (cost,20)  if jisoddandj # 20— 1,
ari {11 .,

(84) Tij =
sin 9i7k> (cos 0, i ) if jis even ang # 2n,and
k=1

bV (nr[ smb’lk) (cos fi.n) if j = 2n,
(

2n—1 .
sin@ik> if j =2n—1.

Thus, dr becomes()\l_,d)\zd)*%"(”fl) (/\37d/\47d)7%"Hrf”*1 dpugzn—1yndr , whereS**~! denotes the unit
=1
sphere ifR?" anddjsz«-1)» denotes the product measure(@i"~!)" obtained from the standard spherical measure
dpsen—1 oNS2" 1, Let ¢;,; be the trigonometric product in ; so thatr; ; = /\;é)_dri¢i7j. After this variable change,
we see that
V2 -1 -1 V2

(85) i (r0) = i (=M iizios + Ay g0y and g (r,0) = 57
wherem = 1 whenj # n andm = 3 whenj = n.

1 1
-2 -2
Apla®izi—1 + /\m+1,d¢n,2j)

Thus, in the new spherical coordinates, we have:

(86)
,_n 1 i 2
ualt) = Q) 77 o) / [ det &(r.0) | detn(r,0) [ * =" [ disnocs e
(2m) pa(x)pa(y),/det Cna ., 1=1
Using the asymptotic behavior of /%, A, 2/2, ;% andA; }? expressed in (77), we notice that each the ele-

ments of thexth column of each determinant vanishes Ilnearly witfiherefore, we factor outfrom each column to
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prevent these columns from vanishing in the limittagpes to0. Also note that each element of ravin both& and

n are linear withr;. Thus, we le€ (8,¢) and#j (6,t) denote the resulting matrices wheis factored from the:th
column andr; is factored from each row of each matrgandrn, respectively. Using Fubini’'s Theorem, we can now
split the integral from (86) into an integral over the radidean integral over the angles:

@ R /H ity 20,
(2m) pa(x)pa(y)/det Cpa det Cnd
(88) . tz‘/ | deté (6,1) || detn) (0,1) | dpgon—1yn
(S2n—1)n

Using the definition of the Gamma function, (87) simplifies to

2n21"(n—|—1)" ()\1 d)\2 d)—%n(n—l) ()\3 d)\4 d)—%n )
(89) Kn.a (t) = ( - ) ( dA2, da, .
(2m)" " pa() paly) J/det C,r

| deté (6,1) || detn) (0, 1) | dpysen—yn
Ol
By (80) we have that
()\l,d)\Q,d)ién(nil) (/\S,d/\4,d)7%n

\/det Cn,d

Meanwhile, by (77), each entry gfands is of the form: constant (potentially 0) pla(t). Therefore,

(90) =d 2"+ 0 ().

(91) [ 1deté(6.0) 1| deti(6.6)| duoanry = Do+ 0 (1),
(S27171)"
where
(92) Dy=limy [ [deté (6.0) || detq (66| dpoan oy
(s2m-1)n
Finally, we also have from (6) that
_ n+1
(93) pata) = paly) =T (152 ) @t +0()
Therefore,
n+1 n
(94) Knalt) = Aua 27+ O(*™)  where A = —T L nt)” _)p,.
(2m)" "I T (241)* g3
We now compute the constaht,. From Equations (85), (77) and (79):
(95) lim & 5 (0,1) = lim 7j;; (8,1) = Vd ¢ for j < n, and
. : o d(d—1) .
(96) lim —&; 5 (0,t) = lim 73,5 (0,t) = Gion—1 forj=n.

Let i (0) be the resulting matrix whey(d is factored out of the first through— 1-st columns and/ @ is factored
out of thenth column of}%é (0,t). If we do the same process WitHj)I(l) [ (0,t), we obtain the same result with the
sign changed in theth column. Therefore,
d*(d—1)

|detu (0) |2 dlu(g2n—1)n.
(Sznfl)n
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n
From (84), we notice that each entry of rowf n (6) contains a factor oH sin 6; ;. Thus, we can take this factor
j=1
out of each row of the matrix, removing any dependence of #éterchinant or9; ; for j < n. Letv (0) denote the
matrix that remains after removing these factors.
We can then split the integral into two, an integral o8&t whereB := [0, x|, corresponding té; ; for j < n, and

an integral ovefS"~1)", corresponding té, ; for j > n:

d"(d—1)

[T (sin;;)*"*'~ dLebgn / | detw (8) [* dpygn-1yn.

Bn LISn (sn—1)n

Here we have used thafigzn—1 = | [ sin 02"~/ dLebs dps.—1. The former integral in this product can be calcu-
j=1
lated recursively with integration by parts to be:

n

) i n j ) i " nll
(99) / IT (sin6;;)*" 7 dLebs. = | ] / (sin6)*" 17 do ( $1glz) 2n”)

Bn ,j<n j=1 0

The calculation of the latter integral follows from Propasi 30 of Appendix B:

(100) / | detv | dp(gn-1yn = (F (ﬁ%) (?l();; = (F?:i)> - F(lfb(t%lz’)) nT.

(Sn—1)m™ 2

Therefore,
(101)
s < 9n® 1T (1 4 1)" )Dn— ( 9n® 1T (- 1)"3 ) <d”(d—1)) ( 4191) n”) I(n+1)rs
T (251 ) T () al )\ 2l T ()
T (k2
(102) _ ( - ) \gr(fl 21)) — Cha.
Thus,

ICmd(t):( pE: ) QF(EL ))t2 "+ O (),

as stated in Part (1) from Theorem 9.
The only differences when computiig, (¢) instead ofC,, 4(¢) are:

@) A% = V2 + O(2) instead of/2d + O(t2) and); '/ = ¢ + O(¢2) rather tham; /% = | /41t - O(#2),

(2) the factor ofl—2" in (80) is missing, and
(3) the factors ofiz" are missing from the expression for the density of the zeros.

One can readily check that this results in the factofi‘;‘gf being removed from the constant:
)t27n + 0] (t37n)

O (Part (1) of Theorem 9).

6. PROOF OFPART (2) FROM THEOREM 9: LONG-RANGE ASYMPTOTICS

It will be convenient to apply the Kac-Rice formulae to thesembleg given in (14), which has the same zeros
as thelsom(R™)-invariant ensembl¢. Let C,, , denote the covariance matrix applied to random vector @0this
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ensemble. Recall that andy are given by (42). The following covariances can be compfrd those in (62-69)
and the productrule:

(103) E(g(z)g(z)) = E(9(y)9(y)) =1,
(104) E g(w)agf)) = E(g(y)ag;y =0,
dg(x) dg(x)\ dg(y) 99(y)\
(105) E< Oz; Ox; ) B E( dy; 0Oy, )_1’
(106) E<8gim) 85;(:;)) - E(ag;y) 3;5’))_0 it i,
(107) E(g(z)g(y) = o tllzyll” = =%

0 if j £n

08 5 (s(e)

- o)

2 )
(r“)SCj —te_% Ifj =n.

—ljz—yl|?
=e 5 llz—yll (xj_yj)—{
2

009 (D) _ e (1—@—%)2):{2;f_tzﬁf L

(110) E = —e 2o (g — ) (an — ) =0,

Remark thatC,, 4 has the structure asserted in (17) and that
—\nnmh —1e22 —2\" —12 —2\"
det(Cn,g)z(l—e ) (1—|—e 2Vt —e ) (1—e Ut —e ) >0

for all ¢ > 0, so thatC,, 4 is positive definite.
The proof will rely upon two facts:

(111) (det Cpg) 2 =1+ O0(t'e ") and
(112) 11— Qu gllee = O(t2e™"),

where|| ||~ denotes the maximum entry of the matrix. The former can baiobt from expression (70). The latter
follows from the calculations above and Lemma 18 expresQing in terms of the entries of,, 4.

The covariance matrix for random vector (38) is the idenhity(103-106) above. Thus, the Kac-Rice Formula for
the density of zeroes @f(x) gives

p(x)p(y) 1 1 / —L(&.8) 1 ~1(nm)
1= = — | det &le™ 28 d¢ — |det nle™ 2" dn
p)ply)  p(@)p(y) | (27)=5" , (2m) "= ,
1 1
— —3z(u,u)
(113) = ) T @) ) / | det || det ple™ 2 du.

R2n2
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SinceC,, 4 is positive definite, the Kac-Rice formula for two-point pelations (41) and Equation (113) give

1

(27T)n(n+1) p(x)p(y)./det Cn,ngnz
1

(2m) (T p(x)p(y)/det Cr g
. det &|| det n|e™2(@mo®w) gy — | /det C,, det &|| det mle™ 2 (ww) gy
| det £]| det | g n

R2n2 R2n2

(115) < vdetCng

= @nr p(e)

IKn(t) — 1] = | det £|| det mle™ 2 @now®) gy, | — 1

(114) -

@) /|det£||detn|e_%(9"’9“’“)du— / |det§||detn|e_%(u’u)du
o),

R2712
‘1 ~ (detCpg)?
(2m)" D p(x) p(y)

(116) +

/ | det &|| det n|e_%(“’“)du.
R2n?

Equation (116) i€)(t*e ") by (111).
From Lemma 13 Part 2, using = I andB = ,, 4, we have

(117) /|det£||detn|e’%(9"’9"’")— / [det g det e 2 ) = O (|[1 - €,6][1%) = 0 (1%

2n2 R2712

p2

Therefore|K(t) — 1| = O (te‘%), so we obtain the desired result.
O (Part (2) of Theorem 9).

7. PROOF OFTHEOREM 3: UNIVERSALITY

This section is devoted to a proof of Theorem 3. It will be ded into three parts: 1) Reduction to a local version,
2) Statement and proofs of two lemmas, and 3) Proof of thd ieaion.

7.1. Reduction to a local version of Theorem 3.Let the homogeneous coordinatesRi#* be denoted7,, ..., Zi11].
After applying a suitable isometry froiiO(k + 1) we can assume that= [0 : --- : 0 : 1], allowing us to work in
the affine (local) coordinates

Zl Zk
118 z1 = S ey 2=
(118) 'Y e " Zen
having[0 : - --: 0 : 1] € RP* as their origin.

In these local coordinates, the tangent sghge\/) becomes am-dimensional linear subspace &f containing
the two pointse # y. We can now rotate abogtin these local coordinates by an elementaéi (k) (corresponding
to an element ofO(k + 1) that fixes[0 : - - - : 0 : 1]) allowing us to assume that

(1) T,M = span(ey, ..., ey), Whereey, ..., e, are the standard basis vectors®h and
(2) x=(0,...,0,s,t)andy = (0,...,0,u) in the local coordinate&:, . .., z,) onT,M = R",

where (s, t) # (0,u). Since the ensemble (3) dkP" is invariant under elements fO(k + 1) and since we
have rotated the submanifold and the points andy under the same composition of elementsS6f(k + 1), the
correlation function remains the same.

By our choice 1, abovel/ is locally expressed as a graph of'd functionsp : R — R*~" that satisfies

(119) ¥(0) =0 and  Dw(0) = 0.
The orthogonal projectioproj,, : T, M = R" — M is given byproj,(w) = ((w), (w)) for anyw € R™.
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In affine coordinates (118), th&O(k + 1)-invariant polynomials are

(120) falz) = Z <Z)aaz°‘ where <i) = d

|la|<d (d— |a|)' H ;!

and thea,, are iid on the standard normal distributidh(0, 1).
The correlation between zeros

o (2) 0 (2)

is the same as the correlation between zeros for the pukl-tifathis ensemble to the tangent spdgd/ = R C R*
underproj,,, which is given by systems of functions chosen iid of the form

o (3)-1(5+(3)

This follows because one need not use round balls in the defir(8) of the correlation function—any sequence of
neighborhoods that is sufficiently nice for computing a Ratlikodym derivative suffices (see Remark 12). If one

uses round ball&/s (projp (%)) and N (projp (%)) in the definition ofK, 4 as (projp (%) , Proj,, (%))
then their preimages under th& mappingproj, will be suitable neighborhoods for defining the correlafianction

for the pull-back (121).
Thus, we have reduced the statement of Theorem 3 to:

Theorem 23(Local version of Theorem 3). Let K, 4.4 = Kq4, denote the correlation function for systemsnof
functions chosen iid of the form (121) and IEt, denote the correlation function for tHeom(R")-invariant sys-
tem (4).

Foranys,t,u € R,ifx = (0,...,0,s,t) € R",y = (0,...,0,u) € R", andx # y, then

() (2)) oo ()

with the constant implicit in thé& notation depending uniformly on compact subse®®ok R \ {(s,t) = (0,u)}.

We will need the following more detailed notation in the niewb subsections. Lap(x) = (¢1(x), ..., Yr—n(x)).
If we write a = (3,~) with 8 € Z" and~ ¢ Zi‘", then (121) becomes

(122) hap <%> = D e (%)ﬁ@ (%»7

1Bl +]vI<d

d d d!
where b ) = (ﬁ 7)%.,7) and (ﬁ ,y): n k-n
(d—18] = 7)) 1_11 Bil l_Tl 3!

As before, the coefficients s - are iid on the standard normal distributian(0, 1).

7.2. Two lemmas.

Lemma 24. Foranyz = (0,0, ...,s,t) andy = (0,0,...,0,u) in R™ with z # y we have:

(1) The covariance matrixC corresponding to random vector (38) from the Kac-Rice fdenfar density (39)
applied to thelsom(R™)-invariant ensemble (4) (at or y) is positive definite. The submatr§ of C~*
defined in (39) is also positive definite.

(2) The covariance matrixC corresponding to random vector (40) from the Two Point KéaceRormula (41)
applied to thelsom(R™)-invariant ensemble (4) is positive definite. The subma&®riaf C— defined in (41)
is also positive definite.

Proof. We give the proof of Part 2 leaving the necessary modificationPart 1 to the reader.
It is a general fact from probability theory that the covada matrix of a random vector is positive semi-definite.
Thus, it will be sufficient for us to check thdet(C) > 0. We substitutec = (0,0,...,s,t) andy = (0,0,...,0,u)
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into the covariances computed in Equations (58-61) fromptlo®f of Lemma 17, obtaining tha® is of the form

~ ~ T
diag,, (C), whereC = {g %} andA, B, andD are the following(n + 1) x (n + 1) matrices:
1 o0 ... s t ] (1 0 ... 0 u ]
0o 1 . 0 0o 1 . 0
(123) A=t c |, B=e|: . - - |, and
S 1+ s? st s | SU
t 0 ... st 1+¢2] it 0 ... 0 1+tu]
(1 0 0 u
0 1 0
(124) D=¢"
0 | 0
lu 0 ... 0 1+4+u?]

After applying a suitable permutation to the rows and colsjthbecomes a block-diagonal matrix with— 2 copies

of
2, 42
85 —+t etu
2
etu et

and one copy of

r 2 2 2 2 2 2
es +t Ses +t tes +t etu Setu tetu
2 2 2 2 2 2
ses T (14 62) e Tt stes tt 0 et 0
2 2 2 2 2 2
tes Tt stes i (T+t3) e T wel™  sue™ (1+tu)e™
(125) tu tu u? u?
e 0 ue e 0 ue
2
setv et suet® 0 et 0
2 2
tetv 0 (1+tu)e™  ue" 0 (1+u?)e"

The former has determinaat'(e*"+ (=% — 1), which is positive since = s2 + (¢ — u)2 > 0, by our hypothesis
thatx # y. The latter has determinant equal to

eﬁtu ((es2+(t—u)2 _ e232-|—2 (t—u)2) <(52 + (t _ u)2)2 + 3) + e332-|—3 (t—u)2 _ 1> )

Without the exponential prefactor, this equéds — ¢?”) (r2 + 3) + 3" — 1, which one can also check is positive for

allr > 0.
SinceC is positive definite, so i€ ~*. After applying a suitable permutation to the rows and colsmfC~* the
n? x n? principal minor isQ2, which is therefore positive definite. O

Lemma 25. Foranyz = (0,0, ...,s,t) andy = (0,0,...,0,u) in R™ with x # y we have:

(1) LetCg4, and C be the covariance matrix for vector (38) applied to the sysitk, 4, given in (121) andf
given in (4), respectively, (at eithar or y) and let2, ., and 2 denote the submatrices 6)‘;71# andC—!
defined in the Kac-Rice formula for density (39). Then,

1 1
Cd_ﬂp =C+0 <a) and Qd7¢—9+0<a) ,

where the constants implicit in the notation depends unifgron compact subsel? (if we are working at
x) or R (if we are working aty).
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(2) Let Cg4,, and C be the covariance matrix for vector (40) applied to the systt, ., given in (121) and
f given in (4), respectively, and |62, ,, and 2 denote the submatrices (ﬁ;’lp and C~! defined in the
Kac-Rice formula for density (41). Then,

Cd,d,:C-f—O(é) and Qiypy=24+0 (é)

with the constant implicit in th€ notation depending uniformly on compact subse®ok R \ {(s,t) =

(0,u)}.

Proof. We will prove Part 2, leaving the necessary (simple) modifice for Part 1 to the reader.

We will only use the assumption that = (0,0,...,s,t) andy = (0,0,...,0,u) with ¢ # y in the last three
lines of the proof, to obtain the estimate relatidg ., to £2. Until then,z andy will denote any two points aR™. In
particular, the estimate relatin@, ., to C holds for anyx, y € R™.

We will first show that

1
(126) Cdﬂ/, = Cd70 + O (E) .

Becausep is C?, there exists a constart> 0 independent of such that for any multi-indice8 € Z" andy € fo"

2 (&))"
((2)]-o((2)")
ORI

Both the constantl and the multiplicative constants (implicit in tienotation) depend uniformly an within compact
subsets oR".
We can now prove that for any, y € R"

o2 ()@ GG @) ) -6

(127)

=0

(129)

an > (L) a (G @) () ) o)

o3 () (@ @) H(E 6@ -6

where we can have = y and/ori = j. The constant implicit in the big* notation depends uniformly on compact
subsets oR™ x R".
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The proofs of each of these are essentially the same, sopveile (132), leaving the proofs of (130) and (131) for
the reader. We have

a2 () ¢ G)) w8 ()

Here,A, B > 0 are given by (127-129) and are independeni®f|~| andd, but depend uniformly om andy within
compact subsets @& x R™. In particular,

2 () () @) w () (+(a))

< Z (,Bd'y) B(%)MJFQHSBTAZ Z (ﬂd,y) <%2>ﬁ|+v|

1Bl +1vI<d, 1B1+|~1<d,
lv|>1 [v|>1

2 2\ 1B+ 2 2\ ¢
< BA Z d A_ < BA 1—|—kA— < g
d By d d d d

1Bl+|v[<d

d
for someC > 0, sincelimg_oo (1 + k“%) = ekA?,
The estimate (126) follows immediately. For example,

5 ( Ohg,p(x) Oha,p(Y) )
ox; Ay,

SR A RN (CONCCINEACORECIN

- E (ahd,o(w) ahd,o(l/)) 4o (é) .

ox; Ay,

We will now show that
1
(134) Cio=C+0 <a) |
It follows from a calculation analogous to that from Lemma it with a rescaling by /+/d and the fact that
AN 1
(1+2) =e +O(3>,

with the constant depending uniformly enc R. Rather than including the computation for each of the ediffgrent
types of expectations, we simply list one of the more conapdid ones here:
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Ohgo(x) Ohao(y)\ -y xyi(d—1) T-y\12 .
E ( oz, 9; =1+ ] + 7 (1 + —) while

of (@) 0f(y)\ _ ST Y
E( o, oy, )~ (Lmwe
Combining (126) and (134) we conclude ti@& ., = C + O (3).

If £ = (0,...,0,s,¢t) andy = (0,...,0,u), with x # y, Part 2 of Lemma 24 gives th&t is positive definite.
Then, there is a neighborhood@fin the space of aitn? x 2n? matrices on which taking the inverse is a differentiable
map. Thereforecgjp =C'+0 (%) andhenc&2yy = Q2+ 0 (3). O

7.3. Proof of the local universality theorem. Proof of Theorem 23 Throughout the proof we will use that we have
normalized so that = (0,...,0,s,t) andy = (0,...,0,u) with x # y.

Part 2 of Lemma 24 gives that the covariance mattifor random vector (40) applied to ensemble (4) is positive
definite. Therefore, Part 2 of Lemma 25 gives that covarianakix C, ., for random vector (40) applied to ensem-
ble (121) will also be positive definite fat sufficiently large. We can therefore apply the Kac-Rice folan(41) to
ensemble (121) obtaining

1

(27T)n(n+l) pd¢ pdw \/det Cd¢

We will show that (135) differs by ( ) from the result obtained when applying the Kac-Rice Forn i to the
Isom(R™)-invariant ensemble (4).
Let us first consider the prefactor from (135). To show thay (x) = p(xz) + O (f) we apply Lemma 13 to

the Kac-Rice formula for density (39). This follows becatise matrix€2 in (39) is positive definite, by Part 1 of
Lemma 24, and becaus®, , = Q2+ O (%), by Part 1 of Lemma 25. The same estimate holdg.aMeanwhile,
sinceCgy = C + O (%), with C positive definite, it follows immediately that

(135)  Kuy(z,y) = / | det £]| det mle~ (@) gy,

1 1 1
V/det Cq - Vdet C o (E> .

We now consider the integral in (135). Part 2 of Lemma 24 gitias the matrix2 used when applying the Kac-
Rice formula (41) to thésom(R™)-invariant ensemble (4) is positive definite. MeanwhiletRaof Lemma 25 gives
thatQg ., = Q + O( ) Thus, Lemma 13 gives that the integral from (135) d|fferstQ ) from the integral in
(41), when (41) is applied to (4). Each of the lemmas usedissttat the constants depend uniformly on compact
subsets oR? x R\ {(s,t) = (0,u)}. O

Since we reduced the statement of Theorem 3 to Theorem 23biseStion 7.1, we have also finished the proof of
Theorem 3.

8. FINITE DEGREE RESTRICTIONS TO SUBMANIFOLDSV C RP* DEPEND ON THE GEOMETRY

We present a simple example illustrating that the constamh the leading term in the correlation function can
depend on the geometry of a submanifaldsc RP if the degreel of the ensemble is finite. Thus, it is not possible
to prove a universal formula for the short-range asympiaidinite degree.

We consider the ensembiO(3)-invariant polynomials of degre& because for degredsand?2 the covariance
matrix for random vector (40) is not positive definite. Riesed to a system of affine coordinatesy) — [z : y : 1]
each such polynomial has the form

F3(x,y) = aoo + V3a1,02 + V3ag1y + V6ai 120y + V3az 022 + V3ag 21>
+\/§a2,1x2y + \/gfll,ﬁy2 + (13,0963 + (Io,3y37

where each of the coefficients is chosen iid with respectéstandard normal distribution/ (0, 1).
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Let M C R? be given byy = bz, As in the previous section, we parameteriZeby thex coordinate, in this case
forming the one-variable ensemble of random polynomiasdepend om as a parameter:

(136) Hg_’a(I) = ao,0 + \/§a170$ + \/gao_’lbe + \/Eal_rlbxg + \/§a270x2 + \/50{)721)2564
—|—\/§a271bx4 —|— \/§a172b2x5 —|— ag_’()SCS —|— a073b3I6,

3
In order for our results from Sections 4 and 5 to apply herenuttiply by the prefactorh , := (1 + z—;) Hs ().
We will use the Kac-Rice formula (41) to show that the valué @fffects the constant term in the short-range

asymptotics for the correlation functidd(z,y) with z = —% andy = £.
An easy calculation using the Kac-Rice formula (39) for digrsf zeros gives that
V3
p(@) = ply) = — + O(t?),

where the constant term agrees with the result (6) thattisdsta the introduction for th€O(2)-invariant polynomials
of degrees.

The covariance matrix for random vector (40) applied to theeenblehs , with z = —% andy = % is
a d pu -v
o v v T
(137) C=
uwov o oa =0
—v T =6 v
where
(R 42 1 16)° s S0P +2) (B0 4 a4 16)° (K2 — 42+ 16)°
“= 4096 0T 1024 M 4096 ’
(K%t 41262 + 48) (3kM® + 13K2* + 16k2% + 12t 4 16) 3t (K22 - 2) (K24 — 42 4 16)°
Y= 256 V= 1024 ’
and (3Kt — 12¢% + 48) (3k*6 — 13k%* + 16Kt + 12t% — 16)
T=— :
256

This matrix has exactly the same structure as that from @t and 5, in the case that the dimensiah iSherefore,
the submatrix? of C—! from the Kac-Rice formula (41) is diagonalized in precistig same fashion, with the
eigenvalues satisfying

_ _ 1
AP =6+ t+0(?)  and A VP= \/ 5 30 £+ O,
(We call them\s; and ), in order to be consistent with the previous sections.) We ladse
det C' = (54b* +63b% +9) t* + O (7).

The calculation of the short-range asymptotics done ini@e& applies here, with the minor modifications to
A3 /2, 272, anddet C listed above. One obtains

Proposition 26. The correlation between zeros for ensemble (136) satisfies

t t T
K <—§, 5) = m(l +02) t 4+ O(t?).

In particular, the leading term depends on the curvaturdbht 0.

Question 27. In the general setting of/ c RP* how does the constant in the leading order asymptotics peaf/
depend on the local geometry bf at p?
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9. UNIVERSALITY IN THE COMPLEX SETTING

We begin by adapting the Kac-Rice formulae (39) and (41) éocthmplex setting. As the modifications are nearly
identical, we will discuss the formula for correlationsV¥éng the formula for density to the reader.

Suppose thak = (hq, ha,...,h,) : C* — C™ is a Gaussian random analytic function with complex Gaussia
coefficients. Le andn be then x n complex matrices whose rows &e, ... &, andny,...n,, respectively. Let

=[& m & m ... & my, ], the vector formed by alternating the vectgrsindn;.

Proposition 28. Suppose that the covariance matfix= E(v;7;) of the random vector (40) is positive definite. Then,
the two-point correlation function for the zeroes of thetegsh is:

! / det(£*¢) det(n*n)e” P duda,

138 K, (x,y) =
(138) (®:Y) = G @)p(y) det O
C2n?

whereQ is the matrix of the elements @f~! left after removing the rows and columns with indices coegtuo 1
modulon + 1, x denotes conjugate transpose, and) denotes the Hermitian inner product.

Our General Kac-Rice Formula (Proposition 10) can be easipted to the complex setting, from which Proposi-
tion 28 follows easily. Alternatively, Proposition 28 folis from [8, Theorem 2.1] by using the suitable Gaussian
densityDy (0, &, z) in their formula 32 and normalizing by the density at the twinps « andy.

With these modifications to the Kac-Rice formulae, the pafofFheorem 4 adapts nearly verbatim from the proof
of Theorem 3. We list below the simple modifications that nedoke checked:

(1) The proof of Lemma 13 adapts easily to the integral exgioasn (138) and to the analogous formula for the
densitiesp(x) andp(y).

(2) The proof of Lemma 24 is easily adapted. More specifictily determinant of thé x 6 block analogous to
(125) equals:

O Re(t7) (e<\s|>2+<\t—u\>2 _ 62<|s\>2+2<\t—u|>2) (((|S|)2 + (|t - u|)2)2 + 3> + 3 UsDP 43 (le—ul)® _y

which is positive for(s, t) # (0, u).
(3) The proofof Lemma 25 applies after verifying that, whgpressed in local coordinates, the covariance matrix
for the rescaledU (n + 1)-invariant polynomials differs from that of tHeom(C™)-invariant ensemble by
(@] (é) (These covariances are listed in [8, Sections 2.4 and 4].)
APPENDIXA. PROOF OFLEMMA 13
We will need the following lemma to prove Lemma 13.

Lemma 29. For any positive definitean? x mn? matrix A, there exists a constaf? > 0 such that, forR sufficiently
large,

(139) / [11detgijem= A du| < e=PF,
luf[>R =T
(Herew is as in (23).

Proof. First, we note thatAw, u) > A\yin||u||?. The left side of inequality (139) is bounded by

(140) T .— / H|det£ e~ 3 Aminl[ul? 7o, < Vol( gmn®— |m/ 2mn®—1, mmrzdr
R

|ul|>R "

using thaf [, | det &| < n!™|Ju||™"". Leta := 2mn? — 1 andb := 2min,

oo (o]

2
141 rie=b dr < / e~briFar g — Ve erfe <\f R— —>
4 / : 2 Vb

R R
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o0
2 2 2
The result then follows becausefc(x) := N /e_t dt <e ™. O
7T
x

Proof of Lemma 13. We first split the left side of the inequality into integralsthv||u|| < R and||u|| > R for
someR:

(142) / H | det €i|efé(Bu=u) — / H | det €i|67%(Au"u)du

77‘LTL2 121 R7nn2 121
(143) < / H | det &¥]e~ = (Aww) (ef%«BfA)uvu) - 1) du
luf|l<r =1
(144) + / H|detgi|e*%<Bu=u>du + / H|det£i|e*%(Auvu)du :
lul| >R =1 luf| >R =1

For B sufficiently close toA, min (Bu, w)v/2 > (Au,u). Thus, Lemma 29 gives that the two latter summands of
(142) are both bound by P%.

We use Holder’s Inequality to bound the first summand in j1xigh
(145)

m

[]1det&le A% du He—é«B—A)u,u) _ 1H - Ds He—%“B—A)w) _ 1H ,
uil<r 1 L(|lull<R) Lo (||ul|<R)
u||<

LetL = A — B. Since||e2” — 1|| < x asz approaches,

(146)

1
e2(Lu,u) _ 1H < ||(Luau)||L°°(||u||<R) < mn? ||L||oo ||u|||2|u||<R < mn2R2 ||L||oo .

Lee([|lul|<R) —

Therefore, we have

(147) / | det &|| det p|e~ 2 (Auww) (ef%«BfA)uyu) - 1) du| < mn*DsR?||A — B||_ +2e P!
R27>
The result follows if we seR = ||A — B||;ol/4. O

APPENDIXB. MOMENTS OF THEVOLUME OF A RANDOM UNIT PARALLELOTOPE

The derivation of the formula for the density (7) and the sihange asymptotics from Theorems 1 and 2 require
the following formula:

Proposition 30. Considern random unit vectors ifR™ chosen independently with respect to spherical measue. Th
kth moment of the volumié of the parallelotope formed by these vectors is

o= () 55

i=1 2

This result is proved in greater generality in [27] (see Equa23); however, we will give a simple derivation of
the formula.

Proof. The method for finding this moment involves fixing each of teetarsy; that determine the parallelotope one
at a time with respect to the parallelotopéiitr ! described by the previous- 1 vectors, weighting each newly added
vector based on the probability of obtaining a given heighobthe previous(i — 1) —parallelotope.
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Thus, after fixing the first vector, we see that the height efsbcond vector off of the first vector in terms of the
angled off of the normal to the first isos (6) and the probability density of obtaining this height is

sin” 20

(SE

[sin" 260 do
0

Yet, from the next vector on, the vector can vary in two dits, along two different spheres, one of dimensient
and the other of dimensian— 7 — 1, in order to maintain the same height. Thus, forithevector, we have that the
probability density of obtaining each heighis 6 for an anglef off the normal vector of the base given by the first
1 — 1 vectorsis

sin" "1 hcosi1 o

j"sin”*if1 0 cosi—1 6 db
0
To express théth power of the volume, we multiply thieh power of each of the heights together. Thus,
w/2 - . .
no1 [ [ sin" """t Ocos 1R Od N 1,1 i ;
b 0 [ T(3) L ()T (%)
(148)  E[VM = - === 11 e
i=1 F(T) i=1 P( 2 )P(i)

J sin™ "1 cosi—1 0do
0

(149 “(Feny) O
]
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