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Solutions of diophantine equations as

periodic points of p-adic algebraic

functions, I

Patrick Morton

Abstract

Solutions of the quartic Fermat equation in ring class fields of odd conduc-
tor over quadratic fields K = Q(

√
−d) with −d ≡ 1 (mod 8) are shown to be

periodic points of a fixed algebraic function T (z) defined on the punctured disk
0 < |z|2 ≤ 1

2 of the maximal unramified, algebraic extension K2 of the 2-adic
field Q2. All ring class fields of odd conductor over imaginary quadratic fields
in which the prime p = 2 splits are shown to be generated by complex periodic
points of the algebraic function T , and conversely, all but two of the periodic
points of T generate ring class fields over suitable imaginary quadratic fields.
This gives a dynamical proof of a class number relation originally proved by
Deuring. It is conjectured that a similar situation holds for an arbitrary prime
p in place of p = 2, where the case p = 3 has been previously proved by the
author, and the case p = 5 will be handled in Part II.

1 Introduction.

In this paper and its sequel it will be shown that the periodic points of an algebraic
function, suitably defined, have, in several particularly interesting cases, number
theoretic significance. I shall primarily consider algebraic functions defined on subsets
of p-adic fields.

An important problem in algebraic number theory is to classify the finite exten-
sions L of an algebraic number field K for which Gal(L/K) is abelian. These are
the abelian extensions of K, and for certain fields K we have a good understanding
of how to find explicit generators for these extensions. For example, a famous theo-
rem known as the Kronecker-Weber Theorem says that all abelian extensions of the
rational field K = Q are subfields of cyclotomic fields Q(ζf), where ζf is a primitive
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f -th root of unity with f ≥ 3. In the case that K = Q(
√
−d) is an imaginary

quadratic extension of Q, the abelian extensions of K are known to be subfields of
ray class fields, where the latter fields are generated over K by the coordinates of
torsion points on elliptic curves E whose endomorphism rings are isomorphic to cer-
tain subrings (orders) of K (see [h1] and [si]). Such a curve is said to have complex
multiplication by the subring R ⊂ RK , where RK is the ring of algebraic integers
contained in K, if EndQ(E)

∼= R and Z ( R. There is an important subclass of
these abelian extensions known as ring class fields, which are generated over K by
the j-invariants j(E) of elliptic curves E with complex multiplication by orders con-
tained in K. The properties of ring class fields are developed in the classical theory
of complex multiplication, which is the main focus of the book by Cox [co1].

In class field theory (see [ch], [d3], or [h1]), the ring class fields over K are
characterized as follows. If f is a positive integer, the ring class field (mod f) of
K = Q(

√
−d), denoted by Ωf , is the unique abelian extension of K having the

property that the prime ideals p (not dividing f) of the ring of integers RK of K,
which split completely into prime ideals of degree 1 in the ring of integers RΩf

of
Ωf , are exactly those p for which p = (ξ) is principal in RK with ξ ≡ r (mod f)
and r ∈ Z. It follows from class field theory that Gal(Ωf/K) ∼= Af/Pf , where Af

is the group of fractional ideals of K which are relatively prime to f and Pf is the
subgroup of Af consisting of principal ideals of the form (ξ) for numbers ξ ≡ r (mod
f) and r ∈ Z. The set of all such integers ξ of RK is a ring R−d, which gives rise
to the name ring class field. If dK is the discriminant of K, the integer −d = dKf

2

is called the discriminant of the ring (order) R−d. In [co1, pp. 190-192] it is shown
that the subfields of the fields Ωf are exactly the abelian extensions L of K for which
Gal(L/Q) is a generalized dihedral group.

Let Kp be the maximal unramified, algebraic extension of the p-adic field Qp. Call

an imaginary quadratic field K p-admissible, for a given prime p ∈ Z, if

(
dK
p

)
= +1,

where dK is the discriminant of K, so that p splits into two prime ideals in the ring
of integers RK . If K is p-admissible, then its discriminant is a square in Qp, and K
can therefore be embedded in Qp. Moreover, if p ∤ f , then Ωf/K is unramified at p
and can also be embedded in Kp. My goal in this paper is to prove a special case of
the following conjecture, which was stated in [m3].

Conjecture 1. Let p be a fixed prime number. There is an algebraic function Tp(z),
defined on a certain subset Dp ⊆ Kp of the maximal unramified, algebraic extension
of Qp, such that Tp(Dp) ⊆ Dp, with the following properties:

(a) Any ring class field Ωf ⊂ Kp of a p-admissible field K ⊂ Qp, whose conductor f
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is relatively prime to p, is generated over K by a periodic point ξ of Tp(z) contained
in Dp;

(b) All but finitely many periodic points ξ of Tp(z) contained in Qp generate ring
class fields Ωf = K(ξ) over some p-admissible quadratic field K.

The situation referred to in this conjecture is analogous to the fact that the fields
Q(ζf), where ζf is a primitive f -th root of unity and (f, p) = 1, are generated over
Q by periodic points of the map F (z) = zp. In fact, ζf is a periodic point of F (z)
with period n, where n is the order of the prime p modulo f . Furthermore, the fields
Q(ζpkf) are generated over Q by pre-periodic points of F (z), since ζpkf is a root of
F k+n(z)− F k(z) = 0, for the same value of n.

An algebraic function T3(z) satisfying Conjecture 1 for the prime p = 3 was given
in [m3], namely

T3(z) =
z2

3
(z3 − 27)1/3 +

z

3
(z3 − 27)2/3 +

z3

3
− 6, for z ∈ K3, |z|3 ≥ 1,

where T3(z) is defined using the binomial series. The periodic points of the function
T3(z) in its 3-adic domain were shown to be solutions of the cubic Fermat equation in
ring class fields Ωf over 3-admissible quadratic fieldsK = Q(

√
−d), whose conductors

f are prime to 3. Furthermore, every such Ωf is generated over Q by one of these
periodic points.

In this paper I will show that a certain 2-adic branch of the function

T (z) =
4
√
1− z4 + 1

4
√
1− z4 − 1

= 1− 2

z4
(
1 + (1− z4)1/4 + (1− z4)1/2 + (1− z4)3/4

)

satisfies the statement of the above conjecture for the prime p = 2. I will show that all
of the periodic points of T (z) in its 2-adic domain D2 = {z : 0 < |z|2 ≤ 1

2
} ⊂ K2 are

solutions of the quartic Fermat equation in ring class fields of 2-admissible quadratic
fields. These solutions have been given in [lm] as follows. Though the precise formulas
are not necessary for the proofs in this paper, it is worth noting that these solutions
can be represented in terms of modular functions.

Let η(τ) be the Dedekind η-function [co1, p. 256]. The Schläfli functions
f(τ), f1(τ), f2(τ) (see [sch, p. 148] or [co1, p. 256]) are defined to be:

f(τ) = e−
πi
24
η
(
τ+1
2

)

η(τ)
, f1(τ) =

η
(
τ
2

)

η(τ)
, f2(τ) =

√
2
η(2τ)

η(τ)
.

These functions have the infinite product representations
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f(τ) = q−
1
48

∞∏

n=1

(1 + qn−
1
2 ), f1(τ) = q−

1
48

∞∏

n=1

(1− qn−
1
2 ),

f2(τ) =
√
2 q

1
24

∞∏

n=1

(1 + qn), q = e2πiτ ,

convergent on the upper half-plane H. Let K = Q(
√
−d) be a 2-admissible quadratic

field, where −d ≡ 1 (mod 8) is the discriminant of the order R−d inK, with conductor
f , satisfying −d = dKf

2. Further, let w ∈ K be defined by

w =
v +

√
−d

2
, v2 ≡ −d (mod 16), v = 1 or 3,

and set

a ≡
{

−3d+5
16

(mod 4), if v = 3 and d ≡ 7 (mod 16),
−d+31

16
(mod 4), if v = 1 and d ≡ 15 (mod 16).

Then the numbers

πd = ia
f2(w/2)

2

f(w/2)2
, ξd =

β

2
= i−v f1(w/2)

2

f(w/2)2
(1)

lie in the ring class field Ωf of conductor f over K, and satisfy

π4
d + ξ4d = 1.

(See [lm, Sec. 10].) The numbers πd and ξd are conjugate algebraic integers over Q
and Ωf is generated over Q by either of them. Furthermore, if ℘2 = (2, w) is one of
the prime ideal divisors of 2 in K, then with (2) = 2RK = ℘2℘

′
2, we have

(πd) = πdRΩf
= ℘2RΩf

, (ξd) = ξdRΩf
= ℘′

2RΩf
, in Ωf ,

where RL denotes the ring of algebraic integers in the field L. In other words, πd
and ξd are principal ideal generators in RΩf

of the prime ideal divisors of 2 in RK ,
when those ideals are extended to the larger ring RΩf

.

Denote by bd(x) the minimal polynomial over Q of the numbers πd and ξd. Then
bd(x) is a normal polynomial over Q (meaning that one of its roots generates a normal
extension of Q) and

deg(bd(x)) = 2h(−d),
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where h(−d) = |Af/Pf | is the class number of the order R−d, i.e. the number of
elements of the ideal class group of R−d. See [co1, pp. 132-148]; and see Section 6
for some examples of these polynomials.

To explicitly define the branch of T (z) that we will be considering, let

T1(z) =
2z4 − 4− 4

√
1− z4

z4
, T2(z) =

z

2
− z

2

√
1− 4

z2
,

where the square-roots are defined 2-adically by the binomial series. We have:

Theorem 1. a) The function T (z) = T2 ◦ T1(z) maps the set

D2 = {z : 0 < |z|2 ≤
1

2
} ⊂ K2

to itself.

b) The periodic points of T (z) in D2 are the roots ξd of the polynomials bd(x), as
−d varies over quadratic discriminants ≡ 1 (mod 8), along with the conjugates of ξd
over K = Q(

√
−d), under the natural embedding of Ωf in its completion (Ωf)p ⊂ K2,

for a prime ideal p of RΩf
which divides ℘′

2.

c) The number of periodic points of T (z) in the domain D2 with minimal period
n is given by ∑

−d∈Dn

h(−d) = nN4(n) =
∑

k|n

µ(n/k)22k, n > 1.

Here Dn is the set of discriminants −d ≡ 1 (mod 8) for which the square of the

corresponding Frobenius auotmorphism τ =
(

Ωf/K

℘2

)
has order n in Gal(Ωf/K), and

µ is the Möbius µ-function. For n = 1, the number of fixed points of T (z) in D2 is
∑

−d∈D1

h(−d) = h(−7) + h(−15) = 4− 1.

Thus, our analysis gives a dynamical interpretation of the class number formula
occurring in part c), which is equivalent to a special case of a class number formula
of Deuring [d1], [d2, Eq. (1)]. As in [m3], the proof implies a similar statement about
the periodic points of the multi-valued function T (z) on either of the fields Q2 or C.
For this it is necessary to define what we mean by a periodic point of a multi-valued
algebraic function.

Let f(z) be any algebraic function defined over a given field F , so that f(z)
lies in the algebraic closure F (z) of F (z), and let g(z, w) ∈ F [z, w] be the minimal
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polynomial of w = f(z) over F (z). Define a periodic point a over F of the algebraic
function f(z) to be any number a ∈ F for which there exist a1, a2, · · · , an−1 ∈ F for
which

g(a, a1) = g(a1, a2) = · · · = g(an−2, an−1) = g(an−1, a) = 0.

By cyclically permuting the equations in the definition it is clear that all the numbers
ai are also periodic points of f(z) of period n. Thus, when writing f(ai−1) = ai, each
individual element ai = fi(ai−1) will be defined using one particular branch fi(z) of
f(z), for 1 ≤ i ≤ n (taking a0 = an = a), and different branches fi, fj may or may
not coincide. With this definition we have the following.

Theorem 2. The set of periodic points of the multi-valued function T (z) on any of
the fields K = K2, Q2 or C coincides with the set

S(K) = {0,−1} ∪ {ξ ∈ K : (∃n ≥ 1)(∃ (−d) ∈ Dn) s.t. bd(ξ) = 0}.
Thus, all the periodic points of T (z) distinct from 0 and −1 in any of these fields gen-
erate ring class fields over 2-admissible quadratic extensions of Q, and give solutions
of the quartic Fermat equation.

In part II of this paper, I shall verify the above conjecture for the prime p = 5,
by considering solutions of the diophantine equation

ε5X5 + ε5Y 5 = 1−X5Y 5, ε =
1 +

√
5

2
,

in certain class fields of 5-admissible quadratic fields.

The following conjecture is also stated in [m3].

Conjecture 2. Any ring class field of a p-admissible quadratic field K = Q(
√
−d) ⊂

Qp, whose conductor is divisible by p, is generated over K by some pre-periodic point

of the multi-valued function Tp(z) contained in the algebraic closure Qp.

This statement was proved for p = 3 and the above function T3(z) in [m3] and
will be proved for p = 2 and the 2-adic function T (z) elsewhere. (See [cn].)

2 The quartic Fermat equation.

The numbers πd and ξd defined in (1) were shown in [lm] to be algebraic conjugates
of each other over Q. This fact was deduced from the relationship

πτ2

d =
ξd + 1

ξd − 1
,
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where τ is a certain automorphism in the Galois group of Ωf/K, uniquely defined
by the condition that

ατ ≡ α2 (mod ℘2),

for all elements α of the ring of integers Ωf , RΩf
. Actually, this congruence holds for

all α ∈ Ωf whose denominators are relatively prime to ℘2 – these are the elements
of Ωf which are integral for ℘2. This automorphism is denoted by

τ =

(
Ωf/K

℘2

)
,

and is called the Frobenius automorphism for the prime ideal ℘2 of RK . An automor-
phism of Gal(Ωf/K) can be assigned to any prime ideal p in RK which is relatively
prime to f (and therefore unramified in Ωf ), satisfying

ασ ≡ αNorm(p) (mod p), α ∈ RΩf
, σ =

(
Ωf/K

p

)
,

where Norm(p) = |RK/p| is the absolute norm of p. (See [ch], [co1], or [h2].) Recall
that f is the positive integer for which K = Q(

√
−d) and −d = dKf

2, where dK
is the discriminant of K/Q. Although the square-roots of the numbers −dKf 2 all
generate the same quadratic field K, the degrees of the numbers πd and ξd and the
field they generate over Q depend strongly on the parameter f . We always assume
−d ≡ 1 (mod 8), so that dK and f are odd integers.

Replacing x by (x + 1)/(x− 1) in the Fermat equation x4 + y4 = 1 leads to the
curve f(x, y) = 0 defined by the equation

f(x, y) = y4(x− 1)4 + 8x(x2 + 1). (2)

Writing π = πd, ξ = ξd, the relation (πτ2)4 + (ξτ
2
)4 = 1 yields

f(ξ, ξτ
2

) = 0, ξ =
β

2
. (3)

It follows that ξτ
2
can be considered as one of the values of the algebraic function

y = S(x) = 4

√
−8x(x2 + 1)

(x− 1)4
=

4

√

1−
(
x+ 1

x− 1

)4

at x = ξ. It is natural to try to expand S(x) as follows:

7



S(x) = 1 +
∞∑

k=1

(−1)k
(

1
4

k

)(
1 + x

1− x

)4k

.

Unfortunately, this cannot be expressed as a convergent 2-adic series in powers of x,
since

S(0) = 1 +

∞∑

k=1

(−1)k
(

1
4

k

)

does not even converge (2-adically). Instead, we apply τ−2 to f(ξ, ξτ
2
) = 0, obtaining

f(ξτ
−2
, ξ) = 0, and we consider ξτ

−2
as one of the values of the inverse algebraic

function

x = T (y) =
4
√

1− y4 + 1
4
√

1− y4 − 1
, f(x, y) = 0, (4)

evaluated at y = ξ.

We first find an expression for a particular 2-adic branch of the function T (y).
Expanding and dividing f(x, y) by y4 gives

f(x, y)

y4
= x4 +

8− 4y4

y4
x3 + 6x2 +

8− 4y4

y4
x+ 1

= x4 + tx3 + 6x2 + tx+ 1, t =
8− 4y4

y4
.

Hence,

f(x, y)

x2y4
=

(
x2 +

1

x2

)
+ t

(
x+

1

x

)
+ 6

= z2 + tz + 4, z = x+
1

x
.

Thus we have

z =
−t±

√
t2 − 16

2
=

2y4 − 4± 4
√

1− y4

y4
.

We define

T1(y) =
2y4 − 4− 4

√
1− y4

y4
. (5)
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This function can be expanded into a 2-adic Laurent series in y, as follows.

T1(y) = 2− 4

y4
− 4

y4

∞∑

n=0

(
1
2

n

)
(−1)ny4n

= 2− 4

y4
− 4

y4
(1− 1

2
y4 − 1

8
y8 − · · · )

=
−8

y4
+ 4 + 4

∞∑

n=2

( 1
2

n

)
(−1)n+1y4n−4.

It is not hard to verify that the series for T1(y) converges 2-adically for 0 < |y|2 ≤ 1
2
.

To see this, set y = 2y1. With this substitution, the series becomes

T1(2y1) +
1

2y41
− 4 =

∞∑

n=2

24n−2

(
1
2

n

)
(−1)n+1y4n−4

1 =

∞∑

n=2

22n−1Cn−1y
4n−4
1 , (6)

where Cn−1 = (−1)n+122n−1
( 1

2
n

)
∈ Z is the Catalan number. Hence, the coefficient

of y1 in the series (6) is divisible by 22n−1, and the series is therefore convergent for
|y1| ≤ 1. This proves the above claim. Moreover, the infinite series in (6) represents
a 2-adic integer for |y|2 ≤ 1

2
, so it is clear that

|T1(y)|2 ≥ 2, if 0 < |y|2 ≤
1

2
, (7)

because of the leading term −8
y4
. The second solution of z2 + tz + 4 = 0 is then

−t− T1(y) = −4

∞∑

n=2

(
1
2

n

)
(−1)n+1y4n−4 =

4

T1(y)
,

which is a 2-adic integer.

Solving the equation x2 − zx + 1 = 0 for x gives

x =
z ±

√
z2 − 4

2
.

Now we set

T2(z) =
z

2
− z

2

√
1− 4

z2
=
z

2
− z

2

∞∑

n=0

(−1)n
(

1
2

n

)
22n

z2n

=
∞∑

n=1

(−1)n+1

(
1
2

n

)
22n−1

z2n−1
=

∞∑

n=1

Cn−1

z2n−1

=
1

z
+

1

z3
+

2

z5
+

5

z7
+

14

z9
+

42

z11
+ · · · ,

9



which is convergent for |z|2 ≥ 2, as above. It is clear from this series expansion that

0 < |T2(z)|2 ≤
1

2
for |z|2 ≥ 2, (8)

since 4
z2

6= 0. The second solution of x2 − zx+1 = 0 is then z− T2(z) =
1

T2(z)
, which

is not a 2-adic integer.

By the above arguments, setting z = T1(y) gives the solution

x = T2(z) = T2(T1(y)), for 0 < |y|2 ≤
1

2
, (9)

of f(x, y) = 0. By (7) and (8), the function

T = T2 ◦ T1

maps the region 0 < |y|2 ≤ 1
2
of K2 into itself. It is clear that this is also true of the

region |y|2 = 1
2
. This is the branch of T which we will use throughout our discussion.

To summarize, we have:

Proposition 3. The algebraic function T (y) = T2(T1(y)), where

T1(y) =
−8

y4
+ 4 + 4

∞∑

n=2

(
1
2

n

)
(−1)n+1y4n−4,

T2(z) =
∞∑

n=1

(−1)n+1

(
1
2

n

)
22n−1

z2n−1
,

is defined on the punctured disk

D2 = {y ∈ K2 : 0 < |y|2 ≤
1

2
}

in the field K2, and maps D2 to itself. For any y ∈ D2, we have f(T (y), y) = 0.

We now prove the following theorem.

Theorem 4. Let (π, ξ) be any solution of X4 + Y 4 = 1 in the ring class field Ωf

of odd conductor f over K = Q(
√
−d) which is conjugate over K to the solution

(1). Then under the embedding of Ωf in the maximal unramified extension K2 of the
2-adic field Q2 given by Ωf → (Ωf )p, where p is a prime divisor of ℘′

2 in RΩf
, we

have

ξτ
−2

= T (ξ), with τ−1 =

(
Ωf/K

℘′
2

)
,

10



where T (y) is the 2-adic algebraic function from Proposition 3. Thus, ξ → T (ξ) is a
lift of the square of the Frobenius automorphism corresponding to ℘′

2 on Ωf/K.

Proof. The Galois group Gal(Ωf/K) is a generalized dihedral group (see [co1, pp.

190-191]), so the automorphism τ =

(
Ωf/K

℘2

)
(applied exponentially) satisfies

τ−1 = φ−1τφ =

(
Ωf/K

℘′
2

)
,

(see [co1, p. 107]) where φ is an automorphism of Ωf which restricts to the nontrivial
automorphism of K, sending ℘2 to its conjugate ideal ℘′

2. Hence, we know that

(
ξ

2

)τ−2

≡
(
ξ

2

)4

(mod ℘′
2) in Ωf .

Embedding Ωf into K2 by completing at a prime p of Ωf lying over ℘′
2, we obtain

that the images of ξ, ξτ
−2
, which we denote by the same symbols, satisfy

(
ξ

2

)τ−2

≡
(
ξ

2

)4

(mod 2) in (Ωf )p ⊂ K2,

and, since both sides of this congruence are units for ℘′
2, that

23ξτ
−2

ξ4
≡ 1 (mod 2) in (Ωf)p ⊂ K2.

Now we have from (7) and the series for T2(z) that T2(T1(y)) ≡ 1
T1(y)

(mod 23), so

23T (ξ)

ξ4
=

23T2(T1(ξ))

ξ4
≡ 23

ξ4T1(ξ)
≡ −1 ≡ 1 (mod 2), for 0 < |ξ|2 ≤

1

2
. (10)

It follows that
ξτ

−2

T (ξ)
= η−1 ≡ 1 (mod 2),

and therefore T (ξ) = ηξτ
−2
, where η is a 2-adic unit. But T (ξ) and ξτ

−2
are both

roots of f(x, ξ) = 0 in K2. From the above argument we know there is a second root
of f(x, ξ) = 0 in K2 given by T1(ξ)− T2(T1(ξ)) = T1(ξ)− T (ξ), which is not a 2-adic
integer, by (7), since T (ξ) ∈ D2 by Proposition 3. (Recall that (ξ) = ℘′

2 in RΩf
, so

that |ξ|2 = 1
2
in K2.) Thus, T (ξ) is distinct from this root.

11



Now I claim that the polynomial

g(x) =
f(x, ξ)

ξ4
= x4 + tx3 + 6x2 + tx+ 1, t =

8− 4ξ4

ξ4
,

has at most two roots in K2. To see this, note that the Ferrari cubic resolvent of
g(x) [co2, pp. 358-359], whose roots are rational expressions over Q2(ξ) in the roots
of g(x), is

r(y) = y3 − 6y2 + (t2 − 4)y − 2t2 + 24 = (y − 2)(y2 − 4y + t2 − 12),

where the discriminant of the quadratic factor is given by

δ = −4(t2 − 16) =
256(ξ4 − 1)

ξ8
.

We have 1−ξ4 ≡ 1 (mod 16) since |ξ|2 = 1
2
, so Hensel’s Lemma implies that δ = −µ2

for some µ ∈ K2. Therefore,
√
δ /∈ K2, since Q2(

√
−1) is a ramified extension, and

the resolvent r(y) has exactly one root in K2. This shows that the polynomial g(x)
has exactly two roots in K2 and that T (ξ) = ξτ

−2
.

It is clear that the above discussion also holds for any conjugate of ξ = ξd over
K = Q(

√
−d), since the ideal ℘′

2 is fixed by the elements of Gal(Ωf/K), and since
this Galois group is abelian. �

We use Theorem 4 to prove

Theorem 5. With notation as in Theorem 4, ξ is a periodic point of the algebraic
function T (y) on the domain D2 := {y : |y|2 ≤ 1

2
} ⊂ K2, whose period n is equal to

the order of the automorphism τ−2 in Gal(Ωf/K).

Proof. This follows from the fact that τ−2, as an automorphism on the completion
(Ωf )p fixing the prime ideal ℘′

2Z2 = 2Z2 of (RK)℘′

2
= Z2, satisfies

T (z)τ
−2

= T (zτ
−2

), for z ∈ (Ωf )p ∩ D2,

since the coefficients of T1(2y1)− 1
2y41

(see (6)) and T2(z) lie in Z. Therefore,

T 2(ξ) = T (T (ξ)) = T (ξτ
−2

) = T (ξ)τ
−2

= ξτ
−4

,

and more generally, T k(ξ) = ξτ
−2k
, k ≥ 1. Since ξ generates Ωf over K, we have

ξτ
−2k 6= ξ for k < n. Hence, T n(ξ) = ξτ

−2n
= ξ, which shows that ξ is a periodic

point of T with minimal period n. �
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This proves part (a) of Conjecture 1 of the Introduction, since every ring class field
Ωf of odd conductor over the 2-admissible field K is generated by the coordinates of
a solution of the quartic Fermat equation.

We would now like to prove the converse; namely, that any periodic point of T
on the domain D2 comes from one of the solutions (π, ξ) in some ring class field Ωf

over K = Q(
√
−d), with −d ≡ 1 (mod 8).

3 Iterated resultants.

Define the following iterated resultants, as in [m3]. Set R(1)(x, x1) = f(x, x1),

R(2)(x, x2) = Resx1(f(x, x1), f(x1, x2)),

and recursively define

R(k)(x, xk) = Resxk−1
(R(k−1)(x, xk−1), f(xk−1, xk)), k ≥ 3. (11)

Then we set xn = x in R(n)(x, xn) to obtain Rn(x):

Rn(x) = R(n)(x, x), n ≥ 1.

From this definition it is easy to see that the roots of Rn(x) are exactly the a’s for

which there exist common solutions of the equations

f(a, a1) = 0, f(a1, a2) = 0, · · · f(an−1, a) = 0. (12)

In particular, (12) holds for

a = ξ = T n(ξ), an−1 = T (ξ), an−2 = T (an−1) = T 2(ξ), · · · , a1 = T (a2) = T n−1(ξ),

by Proposition 3 and Theorem 5, so that T k(ξ) is a root of Rn(x) for any k with
0 ≤ k ≤ n. It is straightforward to show by induction that

R(n)(x, xn) ≡ x4
n

n (x+ 1)4
n

(mod 2),

and therefore
Rn(x) ≡ x4

n

(x+ 1)4
n

(mod 2).

In the following lemma, we show that Rn(x) is monic and has degree 2 · 4n.

13



Lemma. a) For n ≥ 2, R(n)(x, xn) = An(x)x
4n

n + Sn(x, xn), where An(x) ∈ Z[x] is
a monic polynomial satisfying deg(An(x)) = 4n, and

degxn
(Sn(x, xn)) ≤ 4n − 4, degx(Sn(x, xn)) ≤ 4n − 1.

b) deg(Rn(x)) = 2 · 4n, and the leading coefficient of Rn(x) is 1.

Proof. a) The assertion is obvious for n = 1 by (2). Assume it holds for n−1, where
n ≥ 2. Then x4n is the leading coefficient of xn−1 in f(xn−1, xn), so by (11) and the
definition of the resultant, we have that

R(n)(x, xn) = x4
n

n

4∏

i=1

R(n−1)(x, βi) =
4∏

i=1

x4
n−1

n R(n−1)(x, βi),

where xn−1 = βi, 1 ≤ i ≤ 4, are the roots of the equation f(xn−1, xn) = 0. Dividing
this equation by x4n and expanding with xn−1 = βi shows that

β4
i −

(
4− 8

x4n

)
β3
i + 6β2

i −
(
4− 8

x4n

)
βi + 1 = 0.

It follows that the elementary symmetric functions in the βi have degree 0 in xn, and
in the product

R(n)(x, xn) =
4∏

i=1

(x4
n−1

n An−1(x)β
4n−1

i + x4
n−1

n Sn−1(x, βi)),

the leading term is x4
n

n An−1(x)
4(β1β2β3β4)

4n−1
= x4

n

n An−1(x)
4, since the product

of the βi is 1. By the inductive hypothesis, the degree in x of Sn−1(x, xn−1) is
at most 4n−1 − 1, so in multiplying out the remaining terms have degree at most
3 · 4n−1 + 4n−1 − 1 = 4n − 1 in x. In collecting the remaining terms that involve
x4

n

n , and adding them to An−1(x)
4, the highest degree term in x occurs only in the

leading term and An(x) is therefore monic of degree 4n. It is also clear that in the
product, the degrees of the terms involving xn will all be multiples of 4. This proves
part a) of the lemma. Part b) follows immediately from a) on setting xn = x. �

We will now show that the polynomials Rn(x) have distinct roots.

We define similar quantities for the curve

f1(x, y) =
f(2x, 2y)

16
= (16x4 − 32x3 + 24x2 − 8x+ 1)y4 + 4x3 + x.

14



We have
f1(x, y) ≡ y4 + x (mod 2).

Define the iterated resultants for f1(x, y) by R̃
(1)(x, x1) = f1(x, x1),

R̃(2)(x, x2) = Resx1(f1(x, x1), f1(x1, x2)),

R̃(k)(x, xk) = Resxk−1
(R̃(k−1)(x, xk−1), f1(xk−1, xk)), k ≥ 3.

It follows easily by induction that

R̃(n)(x, xn) ≡ x4
n

n + x (mod 2), n ≥ 1,

and therefore
R̃n(x) = R̃(n)(x, x) ≡ x4

n

+ x (mod 2), n ≥ 1. (13)

This congruence and Hensel’s Lemma [h, p. 169] imply that R̃n(x) has at least 4n

distinct roots in K2, of which 4n − 1 are units, corresponding to the 4n − 1 nonzero
roots of the congruence (13). Furthermore, the relation

Rn(2x) = 24
n

R̃n(x) (14)

implies that Rn(x) also has at least 4n distinct roots, as well, and N2(k) monic
irreducible factors of degree k in Z2[x], for each divisor k of 2n, where N2(k) is the
number of monic irreducible polynomials of degree k in F2[x]. The roots a of these
irreducible factors (except for a = 0, note f(0, 0) = 0) are prime elements in the ring
of integers R2 of K2, i.e. a ∼= 2 (∼= is Hasse’s notation [h3], denoting equality up to a
unit factor).

Now we make use of the identity

(x− 1)4(y − 1)4f

(
x+ 1

x− 1
,
y + 1

y − 1

)
= 16f(y, x). (15)

Putting

b =
a+ 1

a− 1
, bk =

ak + 1

ak − 1
, 1 ≤ k ≤ n− 1,

where a and the ak satisfy (12), the identity (15) gives that

f(b, bn−1) = 0, f(bn−1, bn−2) = 0, · · · f(b1, b) = 0.

It follows that b = a+1
a−1

is a root of Rn(x) = 0 whenever a is. If a is a prime element,
then b is clearly a unit in R2. This proves that Rn(x) has 2 · 4n distinct roots in K2,
for any n ≥ 1 (including the roots x = 0,−1), exactly half of which are units.
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It follows as in [m3] that there are polynomials Pn(x) and P̃n(x) in Z[x] for which

Rn(x) =
∏

k|n

Pk(x), Pn(x) =
∏

k|n

Rk(x)
µ(n/k), (16)

R̃n(x) =
∏

k|n

P̃k(x), P̃n(x) =
∏

k|n

R̃k(x)
µ(n/k), (17)

and
deg Pn(x) = deg P̃n(x) = 2

∑

k|n

µ(n/k)4k. (18)

We note also that

R1(x) = P1(x) = x(x+ 1)(x2 − x+ 2)(x4 − 4x3 + 5x2 − 2x+ 4) (19)

R̃1(x) = P̃1(x) = x(2x+ 1)(2x2 − x+ 1)(4x4 − 8x3 + 5x2 − x+ 1).

Setting

T̃ (z) =
1

2
T (2z), |z|2 ≤ 1,

we see from (10) that
T̃ (x) ≡ x4 (mod 2), |x|2 = 1. (20)

From (13) and (17) and the above arguments it is clear that all the irreducible factors

of P̃n(x) (i.e., its reduction modulo 2) over F4 have degree n. It is clear that T̃ (a) is

a root of P̃n(x) whenever the unit a is, since a and therefore T̃ (a) are both periodic
points of T̃ with minimal period n. This is because T̃ k(a) = a for k < n would imply
that a4

k ≡ a (mod 2), and a would therefore be a root of a polynomial of degree less
than n over F4.

For such a unit a, T̃ (a) reduces (mod 2) to a root of the right side of (13). Since

(13) does not have multiple roots, and by (14), half of the roots of P̃n(x) are non-
units, (20) shows that a and T̃ (a) are roots of the same irreducible factor over F4,
and therefore they must be roots of the same irreducible factor over Q2. It follows
that

Pn(x) =
∏

i

gi(x)g̃i(x),

where the irreducible factor gi(x) ∈ Z2[x] has degree n or 2n;

g̃i(x) = (x− 1)deg(gi)gi

(
x+ 1

x− 1

)
;
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and T maps the set of roots of gi(x) into itself, for each i. Since Pn(x) ∈ Z[x],
Theorem 5 implies that the minimal polynomial bd(x) of ξd over Q divides Pn(x), for
any d for which the automorphism τ−2

d = τ−2 has order n in Gal(Ωf/K). In Section
5 we will prove that these are the only irreducible factors of Pn(x), for n > 1.

4 A cyclic isogeny of degree 4.

We will now use several results from [m1, pp. 253-254] and [lm]. First, the quantity

j1(α) =
(α8 − 16α4 + 16)3

α8 − 16α4
,

is the j-invariant of the elliptic curve

E1(α) : Y 2 +XY +
1

α4
Y = X3 +

1

α4
X2, (21)

which is the Tate normal form for a curve with a point of order n = 4; meaning that
the point (0, 0) has order 4 on this curve. Further,

j2(α) =
(α8 − 16α4 + 256)3

α8(α4 − 16)2
(22)

is the j-invariant of the elliptic curve

E2(α) : Y 2 +XY +
2

α4
Y = X3 +

4

α4
X2 − 1

α8
,

and E1(α) is 2-isogenous to E2(α) by the map ψα = (ψα,1, ψα,2) : E1(α) → E2(α)
with

ψα,1(X) =
X2

X + b
, ψα,2(X, Y ) =

−b2
X + b

+
X(X + 2b)Y

(X + b)2
, b =

1

α4
.

From [lm, Eq. (4.8)] we know that E1(α)[2] – the group of 2-torsion points on E1(α)

– consists of the base point O, together with the points

(−1

α4
, 0

)
,

(
−β

2 − 4

8β2
,
(β2 − 4)2

32β4

)
,

(
−β

2 + 4

8β2
,
(β2 + 4)2

32β4

)
, (23)

where 16α4 + 16β4 = α4β4. Reversing the roles of α and β in (23) gives the points
of order 2 on the curve E1(β).
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Furthermore, still with b = 1/α4, the isogeny ρα = (ρα,1(X), ρα,2(X, Y )), with

ρα,1(X) =
X2 − b

X + 4b
, (24)

ρα,2(X, Y ) =
bX2 + (b− 8b2)X + 3b2 − 32b3

(X + 4b)2
+
X2 + 8bX + b

(X + 4b)2
Y, (25)

maps E2(α) to the curve

E3(α) : Y 2 +XY +
4

α4
Y = X3 +

16

α4
X2 +

6

α4
X +

α4 − 4

α8
, (26)

and the j-invariant of this curve is

j3(α) =
(α8 − 256α4 + 4096)3

α16(16− α4)
. (27)

We first use these facts to prove the following result. Although we do not make
explicit use of this result, we will use several of the facts mentioned in the proof
in Section 5. Moreover, the result itself is of independent interest, since it gives an
interesting application for solutions of the Fermat quartic, and corresponds to the
analogous result for the Fermat cubic given in [m2, Prop. 3.5].

Theorem 6. If (α, β) is a point on the curve

Fer4 : 16X4 + 16Y 4 = X4Y 4,

then there is a cyclic isogeny φα,β : E1(α) → E1(β) of degree 4, whose kernel is
ker(φα,β) = 〈(0, 0)〉.
Proof. The relation

α4 =
16β4

β4 − 16

implies easily using (22) that j2(α) = j2(β) and therefore E2(α) ∼= E2(β). On the
other hand, there is the dual isogeny ψ̂β : E2(β) → E1(β). Therefore, if ι : E2(α) →
E2(β) is an isomorphism, the map

φ = ψ̂β ◦ ι ◦ ψα : E1(α) → E1(β)

is an isogeny of degree 4. To determine ker(φ), we find an explicit isomorphism ι.
Note that with Y1 = Y + X

2
+ 1

α4 the equation for E2(α) becomes

Y 2
1 = X

(
X +

1

4

)(
X +

4

α4

)
.
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Using the relation
4

α4
=

1

4
− 4

β4

and putting X = −X2 − 1
4
, Y1 = −

√
−1Y2 gives the curve

Y 2
2 = X2

(
X2 +

1

4

)(
X2 +

4

β4

)
. (28)

Therefore, the map ι(X, Y ) = (ι1(X), ι2(X, Y )) can be taken to be the map

(ι1(X), ι2(X, Y )) =

(
−X − 1

4
,
√
−1Y +

1 +
√
−1

2
X +

1 +
√
−1

α4
+

1

16

)
. (29)

On the other hand, the X-coordinate of the dual isogeny ψ̂β : E2(β) → E1(β) is
given by

ψ̂β,1(X) =
X2 − 1

β4

4X + 1
.

Thus, we have

φ((0, 0)) = ψ̂β ◦ ι((0,−
1

α4
)) = ψ̂β((−

1

4
,
1

α4
+

1

16
)) = O1,

where O1 is the base point on E1(β). Since φ has degree 4 and the point (0, 0) has
order 4, this shows that ker(φ) = 〈(0, 0)〉 is cyclic. �

We note that the X-coordinate of the map φ = φα,β is given by the rational
function

φ1(X) = ψ̂β,1 ◦ ι1 ◦ ψα,1(X) = ψ̂β,1

(
− X2

X + 1
α4

− 1

4

)

= −(4α4β2X2 + α4(β2 − 4)X + β2 − 4)(4α4β2X2 + α4(β2 + 4)X + β2 + 4)

64α4β4X2(α4X + 1)
.
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5 Periodic points of T (z).

In this section we will prove the following theorem.

Theorem 7. For n > 1, the polynomial Pn(x) is the product of the polynomials
bd(x), where −d runs through all quadratic discriminants −d ≡ 1 (mod 8) for which
τ 2 has order n in the Galois group of the corresponding ring class field Ωf . Here

τ =
(

Ωf/K

℘2

)
is the Artin symbol (Frobenius automorphism) for the prime divisor ℘2

of 2 in K = Q(
√
−d).

Let ξ be an arbitrary periodic point of T (z) of minimal period n ≥ 1 in the
domain D2 = {z : 0 < |z|2 ≤ 1

2
} ⊂ K2, and set

β = 2ξ, α4 =
16β4

β4 − 16
= 16

ξ4

ξ4 − 1
, β ∈ K2, α ∈ K2(ζ8), (30)

where ζ8 = 4
√
−1 is an eighth root of unity. Then (α, β) is a point on Fer4 (see

Theorem 6) defined over K2(ζ8). Since Q2(ξ) is an unramified extension of Q2, and
Q2(ζ8) is totally ramified over Q2, there is an automorphism

τ̄ ∈ Gal(Q2(ξ, ζ8)/Q2), with τ̄ := (ξ → T (ξ), ζ8 → ζ8). (31)

(Recall that ξ and T (ξ) are roots of the same irreducible polynomial over Q2, by the
last assertion of Section 3.)

I claim now that E3(β) ∼= E1(α
τ̄), where E3 and E1 are the curves defined in (26)

and (21). To prove this, let σ(z) be the linear fractional map

σ(z) =
2(z + 2)

z − 2
.

From the fact that f(T (ξ), ξ) = 0 we have that

ξ4 = 1−
(
T (ξ) + 1

T (ξ)− 1

)4

and therefore (
T (ξ) + 1

T (ξ)− 1

)4

= 1− ξ4.

Since β τ̄ = 2ξ τ̄ = 2T (ξ), this gives

(
β τ̄ + 2

β τ̄ − 2

)4

= 1− β4

16
,
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and hence
σ(β τ̄ )4 = 16− β4. (32)

Therefore, as in the proof of [lm, Prop. 8.5], and using the relation between α and
β, we have

j(E1(α
τ̄)) =

(
(α8 − 16α4 + 16)3

α4(α4 − 16)

)τ̄

=

(
(β8 + 224β4 + 256)3

β4(β4 − 16)4

)τ̄

=

(
(σ(β)8 + 224σ(β)4 + 256)3

σ(β)4(σ(β)4 − 16)4

)τ̄

,

since r(z) = (z8+224z4+256)3

z4(z4−16)4
is invariant under the substitution (z → σ(z)). (See [m1,

Thm. 5.2] or [lm, Section 8].) Thus, (32) gives that

j(E1(α
τ̄ )) =

((16− β4)2 + 224(16− β4) + 256)3

(16− β4)β16

=
(β8 − 256β4 + 4096)3

β16(16− β4)

= j(E3(β)).

From the isomorphism just established and the beginning remarks in Section 4,
we have an isogeny

ϕ1 = ῑ ◦ ψατ̄ ◦ ι3 ◦ ρβ (33)

of degree 4 from E2(β) to E2(β
τ̄), where ῑ and ι3 are isomorphisms

ῑ : E2(α
τ̄ ) → E2(β

τ̄ ), ι3 : E3(β) → E1(α
τ̄ ).

(Note that E2(α
τ̄ ) ∼= E2(β

τ̄ ) by the beginning of the proof of Theorem 6.) Applying

the isomorphism τ̄ i−1 to the coefficients gives an isogeny ϕi : E2(β
τ̄ (i−1)

) → E2(β
τ̄ i),

and therefore an isogeny

ς = ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ1 : E2(β) → E2(β), (34)

since τ̄n = 1. This isogeny has degree deg(ς) = 4n, and I claim that

Φ4n(j2(β), j2(β)) = 0, (35)
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where Φm(X, Y ) = 0 is the modular equation. (See [co1] and [d1].) It is well-known
that (35) is equivalent to the assertion that ker(ς) ⊂ E2(β) is cyclic.

From (28), the points of order 2 on E2(β) are

(
0,− 1

β4

)
,

(
−1

4
,
1

8
− 1

β4

)
,

(
− 4

β4
,
1

β4

)
. (36)

The last of these points is in ker(ρβ), and ρβ maps the first two points to the point
P1 =

(
−1

4
, 2
α4

)
on E3(β). The other two points of order 2 on E3(β) are the points

P2, P3 =

(
−8

α2 ±
√
−1β2

α2β4
, 2
α2 ± 2

√
−1β2

α2β4

)
.

From (23), with α replaced by ατ̄ , the points of order 2 on E1(α
τ̄) are

Q1 =

( −1

(ατ̄ )4
, 0

)
, Q2 =

(
−(β τ̄ )2 − 4

8(β τ̄)2
,
((β τ̄ )2 − 4)2

32(β τ̄)4

)
, Q3 =

(
−(β τ̄ )2 + 4

8(β τ̄ )2
,
((β τ̄)2 + 4)2

32(β τ̄)4

)
.

Now from (32) we have that

σ(β τ̄ )4 = −16β4

α4
,

which implies that

σ(β τ̄ ) =
2β

ζ8α
,

for some primitive eighth root of unity ζ8. Therefore, since σ is an involution,

β τ̄ = σ

(
2β

ζ8α

)
= 2

β + ζ8α

β − ζ8α
. (37)

With (37), the points of order 2 on E1(α
τ̄ ) can be expressed in terms of α and β:

Q1 =

(
−ζ8αβ(β

2 + ζ28α
2)

2(β + ζ8α)4
, 0

)
, Q2 =

(
− ζ8αβ

2(β + ζ8α)2
,

ζ28α
2β2

2(β + ζ8α)4

)
,

Q3 =

(
− β2 + ζ28α

2

4(β + ζ8α)2
,
(β2 + ζ28α

2)2

8(β + ζ8α)4

)
.
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Converting the curves E3(β) and E1(α
τ̄ ) to Weierstrass normal form and using

standard arguments, it can be shown that the X-coordinate of an isomorphism ι3 :
E3(β) → E1(α

τ̄) is given by

ι3,1(X) =
β4 + α4

(β + ζ8α)4
X − ζ8α(β

2 + ζ28α
2)

2(β + ζ8α)3
.

Hence, we have that

ι3,1

(
−1

4

)
= − β2 + ζ28α

2

4(β + ζ8α)2
.

Using (24), and comparing X-coordinates of the different representations of the
points of order 2 on E1(α

τ̄ ), we have

ι3 ◦ ρβ
(
0,− 1

β4

)
= Q3 =

(
−(β τ̄ )2 + 4

8(β τ̄ )2
,
((β τ̄ )2 + 4)2

32(β τ̄ )4

)
. (38)

Now a straightforward calculation shows that

ῑ1 ◦ ψατ̄ ,1

(
−(β τ̄ )2 + 4

8(β τ̄)2

)
= ῑ1

(
−1

4

)
= 0, (39)

by (29), with α replaced by ατ̄ . It follows from (33), (38), (39), and (36), that

P =

(
0,− 1

β4

)
=⇒ ϕ1(P ) =

(
0,− 1

(β τ̄ )4

)
= P τ̄ .

Applying τ̄ i−1 gives that ϕi(P
τ̄ i−1

) = P τ̄ i , and therefore (34) gives that

ς(P ) = P τ̄n = P.

Since P has order 2 on E2(β), this shows that P /∈ ker(ς). It follows that ker(ς) is a
cyclic group, and this implies (35).

Now by a classical result [co1, p.287] we have the factorization

Φ4n(x, x) = cn
∏

−d

H−d(x)
r(d,4n),

where the product is over discriminants of orders R−d of imaginary quadratic fields
and

r(d,m) = |{λ ∈ R−d : λ primitive, N(λ) = m}/R×
−d|.
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The exponent r(d, 4n) can only be nonzero when 4k · 4n = x2 + dy2 has a primitive
solution (k = 0 or 1). Since Q2(β) = Q2(ξ) is unramified and normal over Q2,
equation (35) implies j2(β) = j(E2(β)) is a root of H−d(x) for some odd integer d;
hence, (2, xyd) = 1 and for n > 1 we have −d ≡ 1 (mod 8).

Consequently, equation (22) shows that ξ4 = β4/16 is a root of the polynomial

Ld(x) = (x2 − x)2h(−d)H−d

(
28(x2 − x+ 1)3

x2(x− 1)2

)
.

By the proof of [lm, Prop. 8.4], this polynomial factors into a product of three
irreducible polynomials of degree 2h(−d), exactly one of which has roots which
are integral for the prime 2. If this factor is g(x), then from [lm, Eq. (8.4)] and
deg(g(x)) = 2h(−d) it follows that

g(x4) = bd(x)bd(−x)h(x), (40)

where the irreducible polynomial h(x) = bd(ix)bd(−ix) belongs to an extension of Q
which is ramified over p = 2. Thus, ξ is a root of one of the first two factors in (40).
Now the set of roots of bd(x) is stabilized by the map

(
x→ x+1

x−1

)
, and that of bd(−x)

is stabilized by
(
x→ 1−x

1+x

)
(see [lm, Prop. 8.2]). But by the factorization of Pn(x)

in Section 3, the roots of Pn(x) are stabilized by
(
x→ x+1

x−1

)
. If 1−ξ

1+ξ
were a root of

Pn(x), then
1−ξ
1+ξ

+ 1
1−ξ
1+ξ

− 1
=

−1

ξ

would also be a root of Pn(x). But ξ ∈ D2, so −1/ξ is not an algebraic integer, and
therefore cannot be a root of Pn(x). This proves that ξ is a root of the polynomial
bd(x) and hence that bd(x) divides Pn(x). From Theorem 4 and (31) we have finally
that τ̄ = τ−2, and since ξ generates the ring class field Ωf over Q and τ−2n(ξ) =
T n(ξ) = ξ, the automorphism τ−2 has order n in Gal(Ωf/K), where K = Q(

√
−d).

Recalling the final remark of Section 3, this completes the proof of Theorem 7. �

For n = 1, we have the factorization P1(x) = x(x+1)b7(x)b15(x), by (19). Hence,
Theorem 7 and the formulas in (16) imply part (b) of Conjecture 1: all but two of
the periodic points of T in Qp generate ring class fields over Q. In addition, this
proves Theorem 2 of the introduction, since the formulas in (16) hold over Q, and
therefore also over C.

Denote the set of discrimimants −d referred in Theorem 7 by Dn. Using (18) and
the fact that deg(bd(x)) = 2h(−d), Theorem 7 implies the following class number
relation.
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Theorem 8. If h(−d) is the class number of the order R−d of discriminant −d ≡ 1
(mod 8) in K = Q(

√
−d), then

∑

−d∈Dn

h(−d) = nN4(n) =
∑

k|n

µ(n/k)22k, n > 1,

where Dn is the set of discriminants −d ≡ 1 (mod 8) for which τ 2 =
(

Ωf/K

℘2

)2

has

order n in the Galois group of the corresponding ring class field Ωf . This equation
gives the total number of periodic points of T (z) having minimal period n in the
domain D2 := {y : 0 < |y|2 ≤ 1

2
} ⊂ K2. All of these periodic points (for n > 1) are

prime elements in the local field K2.

Finally, Theorem 1 summarizes the results in Proposition 3 and Theorems 4, 5,
7, and 8.

6 Examples.

The iterated resultants considered in Section 3 are useful in computing the polyno-
mials bd(x) which are the minimal polynomials of the periodic points of T (z). For
example, factoring R2(x) on Maple yields the polynomial P1(x) in (19) times

P2(x) = (x8 + 20x7 + 110x6 − 100x5 + 49x4 − 80x3 − 40x2 + 40x+ 16)

× (x8 + 6x7 + 78x6 − 84x5 + 53x4 − 66x3 − 12x2 + 24x+ 16)

× (x8 − 6x7 + 42x6 − 60x5 + 53x4 − 54x3 + 24x2 + 16)

= b63(x)b55(x)b39(x).

(See [lm, Section 12, Table 3].) In addition, factoring R3(x) on Maple gives P1(x)
times the polynomial

P3(x) = A6(x)A12(x)A24(x),

where

A6(x) = (x6 + x5 + 9x4 − 13x3 + 18x2 − 16x+ 8)

× (x6 + 7x5 + 11x4 − 15x3 + 16x2 − 20x+ 8)

= b23(x)b31(x);
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A12(x) = (x12 − 262x11 + 20035x10 + 13096x9 − 13397x8 − 15878x7 − 24435x6

− 14516x5 + 14372x4 + 15128x3 + 5440x2 + 416x+ 64)

× (x12 − 36x11 + 2271x10 + 1586x9 − 1689x8 − 1800x7 − 2527x6

− 2310x5 + 2664x4 + 832x3 + 1296x2 − 288x+ 64)

× (x12 − 166x11 + 8027x10 + 5200x9 − 5565x8 − 6446x7 − 9659x6

− 6172x5 + 6540x4 + 5600x3 + 2672x2 − 32x+ 64)

× (x12 + 16x11 + 395x10 + 398x9 − 357x8 − 316x7 − 155x6

− 1058x5 + 1332x4 − 704x3 + 800x2 − 352x+ 64)

× (x12 + 184x11 + 57491x10 + 39206x9 − 36669x8 − 44260x7 − 70067x6

− 41690x5 + 37644x4 + 43072x3 + 13616x2 + 1472x+ 64)

= b207(x)b135(x)b175(x)b87(x)b247(x);

and

A24(x) = (x24 − 160x23 + 39806x22 − 404188x21 + 1735295x20 − 4082916x19

+ 6591016x18 − 7995792x17 + 7025423x16 − 3646952x15 − 2986282x14

+ 8218276x13 − 7410127x12 + 8124428x11 − 590812x10 − 4737592x9

+ 2208800x8 − 5462688x7 + 644992x6 + 672768x5 + 631808x4 + 875008x3

+ 496640x2 + 53248x+ 4096)

× (x24 + 484x23 + 67682x22 − 315500x21 + 1778351x20 − 3320880x19

+ 7580476x18 − 12603888x17 + 15479855x16 − 14728444x15 + 4226978x14

+ 12258548x13 − 20944063x12 + 22569256x11 − 11161888x10 − 5859992x9

+ 9241280x8 − 9494496x7 + 2773504x6 + 2227200x5 − 1364224x4 + 780800x3

+ 708608x2 + 100352x+ 4096)

= b231(x)b255(x).

That each of the above polynomials is given by the corresponding bd(x) can be verified
by factoring the polynomial modulo primes of the form q = x2 + dy2, checking that
it splits completely into linear factors (mod q). Thus, we have the factorization

P3(x) = b23(x)b31(x)b207(x)b135(x)b175(x)b87(x)b247(x)b231(x)b255(x)

for the periodic points of minimal period 3.
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