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ABSTRACT 
An indoor tracking system is inherently an asynchronous and 
distributed system that contains various types (e.g., detection, 
selection, and fusion) of events. One of the key challenges with 
regards to indoor tracking is an efficient selection and 
arrangement of sensor devices in the environment. Selecting the 
“right” subset of these sensors for tracking an object as it traverses 
an indoor environment is the necessary precondition to achieving 
accurate indoor tracking. With the recent proliferation of mobile 
devices, specifically those with many onboard sensors, this 
challenge has increased in both complexity and scale. No longer 
can one assume that the sensor infrastructure is static, but rather 
indoor tracking systems must consider and properly plan for a 
wide variety of sensors, both static and mobile, to be present. In 
such a dynamic setup, sensors need to be properly selected using 
an opportunistic approach. This opportunistic tracking allows for 
a new dimension of indoor tracking that previously was often 
infeasible or unpractical due to logistic or financial constraints of 
most entities. In this paper, we are proposing a selection technique 
that uses trust as manifested by its a quality-of-service (QoS) 
feature, accuracy, in a sensor selection function. We first outline 
how classification of sensors is achieved in a dynamic manner and 
then how the accuracy can be discerned from this classification in 
an effort to properly identify the trust of a tracking sensor and 
then use this information to improve the sensor selection process. 
We conclude this paper with a discussion of results of this 
implementation on a prototype indoor tracking system in an effort 
to demonstrate the overall effectiveness of this selection 
technique.   

CCS Concepts
• Information systems ➝ Information systems applications ➝
Spatial-temporal systems ➝ Location based services.  
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1. INTRODUCTION
The ability to accurately track an object as it moves through an 
indoor environment remains an important and often difficult task. 
Such accurate indoor tracking is necessary in many application 
domains – e.g., asset tracking in a typical healthcare facility or 
providing first response to critical events. Unlike outdoor 
environments, in which there exists a single global tracking 

system that is readily available, there are no such pervasive 
options for indoor tracking. Instead, a mixture of different sensors 
and sensing techniques are often necessary in order to accurately  

track an object. Traditionally, indoor tracking has relied on 
statically deployed sensing infrastructure that is either non-
pervasive and/or infeasible for many application domains. With 
the emergence of inexpensive sensors and the proliferation of 
mobile devices, often containing a wide range of sensing 
capabilities, it is now possible for many new application domains 
to make use of these sensors to track objects in an indoor 
environment. In addition, these new sensors can augment existing 
infrastructure, when present, and increase the scale and scope of 
the tracking process. This ad-hoc, or opportunistic, tracking 
creates many new challenges that did not exist or were not fully 
considered in a static tracking environment.  

Irrespective the nature (i.e., static or dynamic) of the indoor 
tracking environment, any indoor tracking system is inherently an 
asynchronous and distributed system that includes various types 
of events such as object detection, sensor selection, and data 
fusion. Hence, a key task of any indoor tracking system is the 
event of sensor selection – a necessary precursor to the final 
calculation of the location information of a moving object. 
Selecting sensors then becomes critical in deciding which sensors 
to not only to use but also how to handoff between these sensors 
during the process of tracking. In the case of a static tracking 
infrastructure, the challenge of sensor selection is eased by the 
fact that the sensors are known a priori and an offline 
classification can often be constructed. Even in such a static 
scenario, the sensors themselves may behave unpredictably during 
the course of their deployment and thus, prove to be 
untrustworthy. For instance, in the case of a single modal 
environment (i.e., all sensors are of same kind and are 
functionally homogeneous) there still may be variations of that 
class of sensors present (e.g., cameras may have different 
properties and performance values) – these challenges are further 
exaggerated in a multi-modal system (e.g., a combination of 
vision and Wi-Fi sensors). Hence, the two key challenges that 
make sensor selection a difficult task in indoor tracking are: a) a 
wide variety of different classes of sensors having varying 
capabilities and characteristics and b) a dynamic and 
heterogeneous sensing infrastructure 

In an effort to address these two challenges, we are proposing a 
technique that includes the integration of trust (defined as the 
conformance of a sensor’s behavior to its specification) as the 
criterion during the selection process. Although trust of any 
indoor tracking system can be analyzed at both the functional and 
QoS levels here we focus only on the accuracy of the sensor – i.e., 
how accurately a sensor can compute the position of an object. 
Through the use of trust as a selection criterion, we are 
hypothesizing that the sensor selection can be improved which 
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will ultimately lead to increased overall accuracy provided by the 
tracking system.  

The rest of the paper is organized as follows. Section 2 provides 
background on related work with respect to trust; Section 3 
provides the framework for evaluating trust associated with the 
parameter of accuracy and its role in sensor selection; Section 4 
conducts the performance evaluations and impact of the 
integration of the proposed framework into a prototype indoor 
tracking system; and Section 5 concludes the paper with a 
discussion of future work. 

2. RELATED WORK
Trust has received much attention in literature with respect its role 
as a QoS parameter. Specifically, trust has been frequently used in 
wireless sensor networks (WSN) and the role it plays in sensor 
selection. At the same time, little research has been done with 
respect to examining the role of trust for sensor selection in the 
context of indoor tracking. In addition, most prevalent approaches 
consider trust as a generalized concept rather than focusing on its 
specific constituents such as accuracy. For the sake of brevity, 
below we describe only the prominent trust-related efforts, mainly 
from the domain of WSN. Classification of trust has been 
extensively explored in literature [3]. A majority of these 
approaches use collected evidences, through sampling, in order to 
establish either a belief or disbelief about the trustworthiness of an 
entity. This establishment of trust is nothing more than forming an 
opinion about the expected behavior of an entity. Hence, there is a 
level of uncertainty with respect to this opinion that is needed to 
be evaluated and considered as part of this establishment process. 
In [1], the author proposes the concept of subjective logic as a 
means to model this uncertainty or incomplete knowledge with 
the trust opinions. This approach results in a tuple that contains 
belief, disbelief, and uncertainty values which add to 1.   

Specific relevant efforts related to the integration of trust into 
sensor networks can be found in [2] and [4]. In [2], the authors 
propose a framework that makes use of contextual information to 
collect evidences with respect to the expected behavior of a given 
sensor. This collecting of evidences is similar to our proposed 
approach but differs in the fact that their focus is on determining 
between faulty and malicious nodes as their criterion. In [4], the 
authors propose a combination between the use of an encryption 
technique and a trust management scheme. This combination is 
focused on the cost associated with such transmission in a sensor 
network and is not focused on the accuracy achieved with regards 
to the sensing data provided. Our work, in this paper, is focused 
on the overall accuracy achieved through trust-guided sensor 
selection. 

3. TRUST
As indicated earlier, we define trust to be the level of 
belief/disbelief that a sensor’s behavior (manifested by the 
accuracy of its data) will conform to its specification. This belief 
implicitly includes the behavioral history of a sensor and is 
determined by the evidences collected over the course of 
interactions with the sensor. This type of trust can be considered 
as data trust. This event of determining the validity of a sensor’s 
data is important for the event of sensor selection and the 
accuracy of the tracking system as a whole. Formally, we define 
accuracy-related trust as the level of belief that a sensor will 
provide a precise location estimate of an object over a period of 
time. This trust-component is based upon the specification of a 
sensor and its past history.  

In order to calculate the accuracy-related trust of a sensor, we 
must first examine the specifications of the sensors. We make the 
assumption that this information is made available by the 
manufacturer of that sensor and/or is provided by the developer of 
that sensor service1 to the middleware layer upon the event of 
sensor service registration. With this information, we can then 
evaluate whether the actual performance (as depicted by the 
accuracy of the location estimate provided by a sensor) of the 
sensor meets or exceeds the expected performance (as indicated in 
the specification of that sensor). We use the following inequality 
for this comparison: 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ≤ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 

Each such comparison results in evidence. In an effort to evaluate 
these evidences, we are proposing the use of subjective logic 
defined in [1]. This approach uses a tuple consisting of belief, 
disbelief, and uncertainty {B, D, U}, where the sum of these three 
values is 1, to demonstrate the overall opinion about an entity. If 
the above inequalities are met then positive, or favorable, 
evidence is recorded. If the inequalities are not met then negative, 
or unfavorable, evidence is recorded. Finally, if the inequalities 
cannot be evaluated, due to lack of sufficient information, 
uncertain evidence is recorded. The goal of this tuple calculation 
process is to continuously collect evidences regarding a sensor 
throughout the course of interaction and then act upon these 
evidences to provide improved sensor selection.  
To help in the process of collecting these evidences, we introduce 
the concept of accuracy agent into the framework of an indoor 
tracking system. The role of a tracking accuracy agent (TA) is to 
collect information regarding a sensor’s performance and use this 
information to build the evidences (as previously described) in 
order to establish an opinion regarding a sensor. This agent can 
act in an active or passive manner while collecting evidences 
about the behaviors of the sensors. In an active manner, the TA 
can query the individual sensor for information directly; whereas 
in the passive role, it can simply observe the data being sent to the 
middleware layer. Each sensor participating in the tracking 
process is assigned a corresponding agent to monitor the sensor’s 
behavior when the sensor is registered with the tracking system. 
This assignment is done by the tracking middleware during 
through service registration. In the case of failure of an agent, the 
tracking middleware is responsible for triggering an event process 
to create a replacement agent. This replacement agent will fill the 
void left by the failed agent and begin anew, the process of 
calculating the accuracy or responsiveness of the given sensor.  
These agents will then attempt to determine the respective 
accuracy or responsiveness of a sensor.  

3.1 Accuracy-related Trust Framework 
To evaluate the accuracy-related trust of a specific sensor, we 
need to examine the evidences collected by the sensor’s TA. 
These evidences are used to compute the B, D, U tuple for that 
sensor. This tuple is then compared with a trust threshold value in 
order to determine whether the evidences collected prove that the 
sensor is trustworthy, untrustworthy, or undecidable. We define 
this comparison between the threshold value and the given tuple 
via the “>” operator as indicated by the equation below. In this 
equation, we define the trust (𝒕𝒕𝑺𝑺) of a sensor’s (𝑺𝑺𝒊𝒊) data with 
respect to an object (𝑶𝑶𝑗𝑗)and the given threshold, 𝜹𝜹𝑺𝑺 ,. \This 
threshold is determined by the tracking middleware by averaging 

1 We assume that each physical sensor is wrapped as a software 
service in this paper. 



trust tuples of obtained from other TAs for a particular sensing 
modality. The initial threshold value for the tracking system is 
established as {0, 0, 0}. This is also the default value associated 
with the threshold in the case in which no other TAs are present 
and thus, no global threshold can be determined due to 
insufficient information. This method allows for the tracking 
system to dynamically adapt based upon the current tracking 
infrastructure and account for the presence of mobile, or transient, 
sensors. 

𝑎𝑎𝑆𝑆�𝑆𝑆𝑖𝑖 ,𝑂𝑂𝑗𝑗� >  𝛿𝛿𝑆𝑆  
If the above inequality is met then the sensor can be classified as 
trustworthy and its corresponding evidence associated with the 
belief is incremented. Similarly, if the inequality is not met then 
the evidence associated with the disbelief is incremented. Finally, 
if sufficient data is not available then the evidence associated with 
the uncertainty part is incremented. The modification of these 
evidences and associated normalization is indicated below. The 
tuples created by using the below algorithm are used in the 
selection process as discussed in the next subsection. 

Input: Sensor Set S, Object O 
Output: B, D, U – S[n] 

for each sensor 𝑆𝑆[n] in S (where n = {0, … , S.length})  
   |    if SUFFICENT_DATA_AVAILABLE(𝑆𝑆[n]]) then 
   |    |     if  𝑆𝑆[n].  𝑎𝑎ctual(𝑂𝑂) ≤ 𝑆𝑆[n]. 𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒(𝑂𝑂) then 
   |    �    �    evidence(𝑆𝑆[n])belief + + 
   |    |     elseif 𝑆𝑆[n]. 𝑎𝑎𝑎𝑎𝑎𝑎ual(𝑂𝑂) > 𝑆𝑆[n]. 𝑒𝑒𝑥𝑥𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒𝑒𝑒(𝑂𝑂) then 
   |    |     |   evidence(𝑆𝑆[n])disbelief + + 
   |    else evidence(𝑆𝑆[n])uncertainty + + 
   |   B = evidence(𝑆𝑆[n])belief / sum(evidence(𝑆𝑆[n]]) 
   |   D = evidence(𝑆𝑆[n])disbelief / sum(evidence(𝑆𝑆[n]]) 
   |   U = evidence(𝑆𝑆[n])uncertainty / sum(evidence(𝑆𝑆[n]]) 
   |   return {B, D, U } 

end  

3.2 Sensor Selection 
We are proposing an improved sensor selection algorithm, shown 
below, that makes use of a selection criterion, C. C in this case is 
based on the accuracy – but in theory, it could be any type of 
selection criterion that can filter the sensors accordingly and thus, 
provide the output of a subset of sensors (Si).  

Input: Sensor Set S, Selection Criteria C 
Output: Subset of Sensors Si 

1. Identify the ground truth sensor 𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 in S. 
2. Apply the Accuracy Analysis to each sensor S[n] in S (where n = 

{0, …, S.length}) given the ground truth sensor 𝑆𝑆𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺.
3. Filter the sensors based upon the analysis of the selection criteria C. 

• If S[n].𝑏𝑏𝑒𝑒𝑎𝑎𝑏𝑏𝑒𝑒𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐺𝐺𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 meets/exceeds the C requirement then
add S[n] to Si. 

4. Repeat Step 3 until all sensors have been evaluated based upon the 
selection criteria. 

5. Return array of subset of sensors Si. 

This selection criterion is an evaluation of the required 
performance level versus the actual performance level of a given 
sensor. This required performance level is specified by the 
application domain due to specific constraints or requirements. In 
this case, we make use of the tuples associated with accuracy and 
evaluate each entry in these tuples with respect to the selection 
criteria, C. For this action, we are evaluating the belief we have in 
the given tuples with respect to accuracy-related trust components 
and the given selection criteria.    

4. EXPERIMENTATION
The approach described in section 3 has been implemented into an 
existing prototype indoor tracking system, the eDOTS [5]. This 
system was selected due in part to it being open and available, and 
providing the opportunity to discover and use different classes of 
tracking sensors. These extensions were then tested with the use 
of 20+ sensors (the vast majority being stationary Web Cameras 
attached to desktop machines) that were networked to machines 
running Windows 7 with 8 GiB of RAM. Three different types (of 
varying characteristics and qualities) of Web Cameras were used, 
to simulate vision-based tracking, along with mobile devices 
using wireless cards for signal strength trilateration.  

The accuracy was defined through physical measurements taken 
in the environment and recorded through markers placed for 
reference. This information was then compiled off-line and used 
to analyze the overall performance of the tracking system with 
respect to the accuracy provided. The unit of the location 
measurement for all experiments was in meters.  

The initial set of experiments was conducted in order to focus on 
the integration of trust-based accuracy into the tracking system. 
Each sensor upon registration was assigned a corresponding 
tracking accuracy agent (TA) that collected the specifications, per 
the service contract, and sampled the location data when 
available. These TAs then reported this data back to the 
middleware layer for analysis and ultimately a trust-based 
decision. These accuracy experiments were split into three 
categories based upon initial trust assignment: optimistic, 
pessimistic, neutral. In the optimistic approach the tracking 
system made the assumption that all sensors, upon registration, 
were trustworthy – and thus had a b, d, u tuple value of {1.0, 0, 
0}. In the pessimistic approach, all of the sensors were assumed to 
be untrustworthy – and thus had a tuple value of {0, 1.0, 0}. 
Finally, in the neutral approach, the system assumed that 
insufficient data was available for the sensors and thus a level of 
uncertainty persisted – and hence, a value of {0, 0, 1.0} was 
assigned for each sensor. 

The first experiment, to evaluate this trust-based accuracy, was to 
verify that the trust tuple associated with the accuracy was indeed 
being properly set and maintained for an individual sensor. To 
validate the existence of such tuples for each of the different 
categories, we identified a sensor that we knew to be trustworthy, 
in terms of its accuracy, and one that we knew to be 
untrustworthy, in terms of its accuracy, and ran our algorithm 
against these sensors. We achieved this identification of sensors 
through offline calibration of the sensor devices. In this test, only 
stationary sensors were used to mitigate the opportunity for 
additional error in regards to the location estimate into the final 
result. For each category and each sensor, we ran 100 data points 
through the algorithm and then examined the resulting trust 
scores. Tables 1, 2, and 3 highlight our findings for both the 
sensors in their respective categories – sensor A being the 
predefined trustworthy sensor and sensor B being the predefined 
untrustworthy sensor. 

Table 1. Empirical Accuracy Analysis (Optimistic) 
Sensor Name Belief Disbelief Uncertainty 

Sensor A 0.824 0.167 0.010 

Sensor B 0.175 0.815 0.010 



Table 2. Empirical Accuracy Analysis (Pessimistic) 
Sensor Name Belief Disbelief Uncertainty 

Sensor A 0.813 0.176 0.010 

Sensor B 0.098 0.892 0.010 

Table 3. Empirical Accuracy Analysis (Neutral) 
Sensor Name Belief Disbelief Uncertainty 

Sensor A 0.819 0.171 0.010 

Sensor B 0.152 0.838 0.010 

From Tables 1, 2, and 3, we can see that the algorithm 
appropriately determined the {B, D, U} tuples for the respective 
sensors. This analysis confirms the ground truth that we knew 
about each sensor going into the experiment regarding its 
trustworthiness, in terms of its accuracy. In each case, the 
algorithm provided a probability regarding the sensor’s 
performance at 0.810 or higher. The one concern with this 
approach was the lack of true modeling of the uncertainty in the 
sensor’s performance. We believe the reason behind the 
unchanging value of this parameter is due in part to the sample 
size that we were using to evaluate.  

The final experiment explored the actual location accuracy that 
this new selection technique provided to the modified eDOTS. In 
this experiment, we did not pre-flag sensors based upon their 
expected performance. Instead, we attempted to simulate a 
realistic tracking environment and made use of the sensors “as is” 
within the sensing infrastructure. In order to validate our work, we 
ran identical experiments for both before the integration of 
accuracy guided sensor selection and then after. A tracking path, 
for moving an object, was determined and mapped within the lab 
environment in an effort to have maximum sensor coverage. Our 
goal was to provide a scenario in which we were always being 
tracked by at least five different sensors.  

Figure 1 shows a visual representation of the output of the eDOTS 
without the presence of accuracy and responsiveness-guided 
sensor selection. This figure shows the prototype using its existing 
sensor selection technique in which the sensors are ranked based 
upon their modality classification [5]. The solid line in the figure 
represents the actual path of the object as it travelled through the 
environment. 

Figure 1. Without Accuracy and Responsiveness-guided 
Selection 

Figure 2 shows a visual representation of the output of the eDOTS 
with the presence of accuracy and responsiveness-guided sensor 
selection. This figure shows the prototype while using our 
proposed selection algorithm. The solid line in the figure 

represents the actual path of the object as it travelled through the 
environment. 

Figure 2. With Accuracy and Responsiveness-guided Selection 
The empirical data regarding the actual versus the estimate error 
encountered by the system is shown in Table 4. This data verifies 
that the new selection technique did slightly improve the accuracy 
of the system and with the previously stated real lack of any 
additional overhead in terms of cost demonstrated the 
effectiveness of our proposed techniques within a prototypical 
indoor tracking system. 

Table 4. Average Estimated Error 
Average Estimated Error (meters) 

eDOTS 1.35 

eDOTS (w/ Sensor 
Selection) 0.97 

5. CONCLUSION
This paper has described the infusion of trust into an indoor 
tracking system with the goal of improved sensor selection and 
ultimately improved location estimate accuracy. The empirical 
data collected provides a generic benchmark for the application of 
this selection criteria and its important role in event-driven task of 
identifying subsets of sensors for the purpose of tracking. Future 
work includes analyzing the cost-benefit tradeoff with respect to 
the inclusion of other QoS parameters and the sensor selection 
process. This future work also includes the integration of an 
optimization function and the analysis of learning techniques to 
adapt and build system benchmarks for the application, 
development, and deployment of indoor tracking systems based 
upon specific application domain needs. 
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