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Abstract We consider the initial and boundary value problem for a system of
partial differential equations describing the motion of a fluid-solid mixture under
the assumption of full saturation. The ability of the fluid phase to flow within the
solid skeleton is described by the permeability tensor, which is assumed here to be
a multiple of the identity and to depend nonlinearly on the volumetric solid strain.
In particular, we study the problem of existence of weak solutions in bounded
domains, accounting for non-zero volumetric and boundary forcing terms. We
investigate the influence of viscoelasticity on the solution functional setting and on
the regularity requirements for the forcing terms. The theoretical analysis shows
that different time regularity requirements are needed for the volumetric source
of linear momentum and the boundary source of traction depending on whether
or not viscoelasticity is present. The theoretical results are further investigated
via numerical simulations based on a novel dual mixed hybridized finite element
discretization. When the data are sufficiently regular, the simulations show that
the solutions satisfy the energy estimates predicted by the theoretical analysis.
Interestingly, the simulations also show that, in the purely elastic case, the Darcy
velocity and the related fluid energy might become unbounded if indeed the data
do not enjoy the time regularity required by the theory.

1 Introduction

In this paper we consider a nonlinear system of partial differential equations (PDEs)
often encountered when modeling fluid flow through deformable porous media.
Historically, petroleum engineering has been the main applied field driving the
theoretical development of porous media flow [3,17]. More recently, similar ap-
proaches have been applied to the modeling of fluid flow through biological tis-
sues, with applications spanning from bio-engineering [16,32,38] to physiology
[9,11,28].

Mechanical properties of biological tissues differ significantly from those of
rocks. In particular, since most of biological tissues are composed by both elastin
and collagen, the deformable matrix within the porous medium exhibits both elas-
tic and visco-elastic behaviors [22]. Interestingly, material properties and volume
fractions of elastic and collagen vary in health and disease, thereby motivating a
detailed investigation of their influence on the physical system and, consequently,
on the solution of the PDEs describing this system.

The precise system considered in this paper is described in Section 2. The
mathematical model describes the motion of a fluid-solid mixture under the as-
sumption of full saturation. The ability of the fluid phase to flow within the solid
skeleton is described by the permeability tensor, which is assumed here to be a
multiple of the identity and to depend nonlinearly on the volumetric solid strain.
We study the problem of existence of weak solutions in bounded domains, ac-
counting for non-zero volumetric and boundary forcing terms. Specifically, we
consider mixed boundary conditions, including the case where the Dirichlet and
Neumann portions of the boundary may intersect. We investigate the influence of
viscoelasticity on the solution functional setting and on the regularity requirements
for the forcing terms. The results obtained via the theoretical analysis are further
explored via numerical simulations of one-dimensional test cases that serve as
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simplified benchmark examples while retaining the main features of the full prob-
lem, in particular the nonlinearity in the permeability constitutive equation.

Several theoretical approaches have been developed to study poroelastic sys-
tems, as briefly reviewed in Section 3.1. However, to the best of our knowledge,
this article presents the first study that simultaneously accounts for non-zero,
mixed boundary data, nonlinear dependence of the permeability on the volumet-
ric solid strain, and elastic and viscoelastic effects in the solid component. Al-
though it is true that viscoelasticity provides some additional time regularity of
the displacement, it does not necessarily simplify the analysis. Rather, in some
instances it brings up new technical points that must be addressed, as discussed in
Section 3.1. The computational method used to investigate numerically the theo-
retical findings is also a novel contribution of this article. The algorithm combines
a Backward Euler method for the discretization in time, a dual mixed hybridized
finite element method for the discretization in space and a fixed-point iteration for
the nonlinearity in the permeability which couples fluid and solid equations. The
proposed numerical method avoids direct differentiation in the computation of
gradient quantities which appear in the definition of the energies provided by the
theoretical analysis, thereby allowing for high accuracy in the simulation results.

The main existence results are provided by Theorems 1 and 2 for the viscoelas-
tic and purely elastic case, respectively. It is interesting to notice the different re-
quirements for the time regularity of the volumetric source of linear momentum
and the boundary source of traction, namely L2 time regularity for the viscoelastic
case and H1 for the elastic case. Interestingly, our numerical investigation shows
that the Darcy velocity and the related fluid energy might become unbounded in
the purely elastic case if the data do not enjoy sufficient time regularity.

The paper is organized as follows. In Section 2 we describe the mathemat-
ical model considered in the article and its interpretation from the engineering
viewpoint. The theoretical study on the existence of solutions is presented in Sec-
tion 3, whereas the numerical method and the simulation results are discussed in
Section 4. Conclusions are outlined in Section 5.

2 Mathematical model

2.1 Balance equations

Let Ω be an open subset of R3 representing the spatial domain occupied by the
fluid-solid mixture, and let x be the position vector of each point in the body with
respect to a fixed Cartesian reference frame. The symbol n will be used to denote
the unit normal vector to Ω . Let Vs(x, t) and Vf (x, t) be the volumes occupied by
the solid and the fluid components, respectively, in every representative elemen-
tary volume V (x, t) centered at x ∈Ω at time t. Then, the volumetric fraction φ of
the fluid component, also called porosity, and its increment ζ with respect to its
baseline value φ0, also called fluid content, are defined as

φ(x, t) =
Vf (x, t)
V (x, t)

and ζ (x, t) = φ(x, t)−φ0(x). (1)

Under the assumption of fully saturated mixture, the volumetric fraction of the
solid component is given by 1−φ(x, t). Moreover, under the assumptions of neg-
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ligible inertia, small deformations and intrinsic incompressibility of each mixture
component [1,21,30,34,43] the motion of the poro-elastic material is governed
by the following equations for the balance of mass (of the fluid component) and
linear momentum (for the fluid-solid mixture):

ζt +∇ ·v = S(x, t) and ∇ ·T+F = 0 in Ω × (0,T ) (2)

where T is the stress tensor of the mixture (also known as total stress), v is the
discharge velocity, F is a body force per unit of volume and S is a net volumetric
fluid production rate. Here the partial derivative with respect to time has been
denoted by the subscript t. This notation will be used throughout the paper.

Remark 1 In continuum mechanics, the source terms S and F should be written as

S = φS f , F = ρf−ρ f S f v−ρ f φS f ut , (3)

where ρ = ρ f φ +ρs(1− φ) is the density of the mixture, ρ f and ρs are the spe-
cific densities of the fluid and solid components, u is the solid displacement field
and S f and f are given data. Our analysis is performed under the simplifying as-
sumption that S and F (rather than S f and f) are given functions. This assumption
is justified by the facts that (i) the few existing theoretical studies accounting for
non-zero mass and momentum sources in poro-elastic systems adopt the same as-
sumption, see [6,51,55] and references therein, and (ii) assuming S and F given
is a necessary preliminary step towards the more realistic case where S f and f are
prescribed.

2.2 Constitutive equations

The balance equations are completed with the following constitutive equations for
the total stress, the discharge velocity and the fluid content:

1. total stress:

T = Te +δTv− pI, (4)

where Te and Tv are the elastic and viscoelastic stress contributions, respec-
tively, defined as

Te = 2µeε(u)+λe(∇ ·u)I and Tv = 2µvε(ut)+λv(∇ ·ut)I, (5)

where ε(w) is the symmetric part of the gradient of the vector field w, namely
ε(w) = (∇w+∇wT )/2, p is the Darcy fluid pressure, u is the solid displace-
ment, I is the identity tensor, λe and µe are the Lamé elastic parameters, and λv
and µv are the viscoelastic parameters. The parameter δ ≥ 0 indicates the ex-
tent to which the model includes viscoelastic effects for the solid component,
with δ = 0 corresponding to the purely elastic case;
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2. discharge velocity:

v =−K∇p, with K = kI and k = kre f fk(φ), (6)

where K is the permeability tensor, and kre f is a reference value for the per-
meability of the mixture. Here we assume that K depends on the porosity and
that is a multiple of the identity tensor. The particular form of the relation-
ship between the permeability k and the porosity φ is represented by the func-
tion fk(φ) and it depends on the geometrical architecture of the pores inside
the matrix and the physical properties of the fluid. Many studies have consid-
ered k to be constant, i.e. fk(φ) = 1 and k = kre f , leading to a linear coupling
between the equations for linear momentum and mass balance. However, in
many applications k is definitely not a constant. For example, if a Newtonian
fluid flows in the interstitial spaces of a pack of spherical particles, then the
Carman-Kozeny formula states that

kre f =
Cck

µ f
, fk(φ) =

φ 3

(1−φ)2 , (7)

where Cck is a constant depending on the geometric properties of the pack of
particles and µ f is the fluid viscosity [26]. On the other hand, if a Newtonian
fluid flows inside cylindrical pores, then the formula for capillary beds states
that

kre f =
Ccb

µ f
, fk(φ) = φ

2, (8)

where Ccb is a constant depending on the geometric properties of the capillary
bed and µ f is the fluid viscosity [9]. The theoretical analysis in Section 3
is performed without specifying a particular expression for k, but assuming
that k is bounded (See Assumption 3.1). In the numerical study presented in
Section 4, simulations are performed using the Carman-Kozeny permeability
law, where upper and lower bounds have been artificially imposed to meet the
theoretical Assumption 3.1;

3. fluid content:

ζ = ∇ ·u, implying that φ = φ0 +∇ ·u. (9)

We remark that equation (9) is a particular instance of the more general expres-
sion ζ = c0 p+α∇ ·u, where c0 is the constrained specific storage coefficient
and α is the Biot-Willis coefficient. Under the assumption of incompressibil-
ity for the fluid and solid components of the mixture (cf. [17]), the coefficients
reduce to c0 = 0 and α = 1. As a consequence, the permeability k reduces to
be a function of ∇ ·u only (rather than a function of both p and ∇ ·u). Thus,
k = k(φ) = k(φ(∇ ·u)) is abbreviated in the following theoretical and numer-
ical analysis as k = k(∇ ·u).
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2.3 Boundary conditions

Let us denote by ∂Ω = ΓD ∪ΓN the boundary of Ω , with ΓD = ΓD,p ∪ΓD,v and
Γ D∩Γ N possibly nonempty. We consider the following boundary conditions:

Tn = g, v ·n = 0 on ΓN , (10)

u = 0, p = 0 on ΓD,p , (11)

u = 0, v ·n = ψ on ΓD,v . (12)

Here g and ψ are given functions of space and time. The subscripts in the bound-
ary partition reflect the type of associated boundary conditions. More precisely,
the subscripts N and D indicate conditions imposed on stress and displacement,
respectively, whereas the subscripts p and v indicate conditions imposed on Darcy
pressure and velocity, respectively.

2.4 Initial conditions

In order to specify the initial conditions, it is useful to distinguish between the
viscoelastic case, i.e. δ > 0, and the purely elastic case, i.e. δ = 0.

When δ > 0, time derivatives appear in both the equations for linear momen-
tum and mass balance, requiring an initial condition on the whole displacement
field, namely

u = u0 in Ω at t = 0 (case δ > 0). (13)

When δ = 0, only the fluid content ζ in the mass balance equation undergoes
time differentiation. Since ζ = ∇ ·u by equation (9), only a condition on ∇ ·u is
required, namely

∇ ·u = d0 in Ω at t = 0 (case δ = 0). (14)

However, in order to obtain a priori estimates for the solutions in the case δ =
0, we will need to consider only those d0 for which there exist an u0 such that
∇ ·u0 = d0, as explained in Remark 3.

3 Existence of solutions

3.1 Main challenges and related literature

The mathematical model described in Section 2 has inspired many theoretical in-
vestigations. The two-dimensional linear problem with constant permeability and
without viscoelastic effects is addressed in [55]. This fundamental work studies a
weak form of the problem (and associated solutions); a version of Rothe’s method
is utilized, which involves both temporal and spatial discretization. The work in
[55] provides a general strategy for the linear analysis (especially in the δ = 0
case), and we follow the conventions presented therein. However, in our case,
the well-posedness analysis is greatly complicated by the presence of nonlinear
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coupling via the permeability k = k(∇ ·u), here depending on the dilation of the
structure. Additionally, uniqueness comes easily in the linear dynamics and does
not depend on the regularity properties of the solution nor the dimension of the
space; this is certainly not the case for the dynamics considered here.

A linear elastic version of the model in Section 2 is also considered in [40],
but with a different (and stronger) notion of solution than that in [55]. In [40] a
Galerkin method is proposed for purely homogeneous boundary conditions for
the pressure and displacement. This allows for a nice notion of strong solution
coming from the viability of smoother test functions. For this linear result, the
(null) Dirichlet boundary conditions are critical since the proof of the main the-
orem therein requires elliptic regularity [40, p.44] (an issue with which we must
contend below).

Another fundamental work on the linear Biot dynamics is [51]. In this study,
the author develops a functional framework for the dynamics of the system, in
the context of semigroup theory for implicit evolution equations. This approach
accommodates general boundary conditions, as well as effects due to partial sat-
uration. Various well-posedness theorems are developed (depending on parameter
values) and notions of “strong” and “weak” solutions are discussed in relation to
the various notions of differentiability for the fundamental quantities. This paper
also deals with an effect known as secondary consolidation, which is pertinent in
geoscience applications. Although this involves an additional (time-differentiated)
term in the elasticity equation, the work therein does not fully address the effects
of viscoelasticity on the solutions as we do here. Two subsequent papers address
nonlinear effects in the Biot model above. Specifically, [54] addresses a (mono-
tone, nonlinear) permeability depending on pressure (rather than dilation, as in our
model); the analysis there seems motivated by geoscience applications, and the
techniques do not generalize to the nonlinear coupling considered in the present
paper (where the monotonicity property is lost). A second nonlinear paper [52]
incorporates nonlinear plasticity into the model (which may allow for hysteresis
effects). In some sense, the results there allow for a semigroup generation for a
linear model incorporating viscoelastic effects.

The study presented in [6] is the first contribution (to our knowledge) address-
ing the nonlinear Biot model (without viscoelasticity) illustrated in Section 2,
with permeability depending on dilation. However, the analysis is performed in
the case of null boundary conditions for both pressure and elastic displacement.
The boundary consists of a single piece upon which zero Dirichlet conditions are
prescribed (the approach, as in [51], allows for inhomogeneous terms via a trans-
lation argument). The strategy in [6] relies on the Rothe’s method (as in [55]), but
uses the simplified structure of the pressure-to-dilation operator B (see Section 3.3
below) coming from [51]. Existence of solutions is shown (in a weak sense, simi-
lar, though not identical, to [55]); uniqueness is addressed via strong assumptions
on the a priori regularity of the pressure, and the structure of the permeability.
Some numerical results are also provided. The analysis in [6] is illustrative in its
handling of the nonlinear coupling, but is simplified in comparison to the analy-
sis here by considering homogeneous clamped/Dirichlet boundary conditions. In
our analysis we consider physical boundary conditions coming from applications
(non-homogeneous, mixed Dirichlet-Neumann boundary conditions) and address
the associated technical issues. Moreover, we provide a unified framework for
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both the elastic and viscoelastic cases, along with the associated energy estimates
and identities (when available). Our assumptions on the permeability (with re-
spect to the existence of solutions) mirror those in [6], and are motivated by many
biological and biomedical applications, see e.g. [9,11,16,28,32,38].

Subsequent papers [7] and [8] address the stationary problem, where mean-
ingful statements can be made about uniqueness of solutions and associated reg-
ularity (the two issues not being unrelated). These papers allow for more general
boundary conditions, and consider other notions of solutions, but the techniques
seem to be restricted to the stationary case (steady flows). The papers in [6–8] do
not appear to have specific applications in mind, and thus provide general analysis
and some corresponding numerical results.

Our work complements, extends, and (in some sense) goes beyond the afore-
mentioned studies, in the sense that:

– We consider a physical problem with no simplifying assumptions on the do-
main boundary, (i.e., we include the case when Γ D ∩Γ N 6= /0), and the asso-
ciated boundary conditions (i.e., Neumann and Dirichlet for both solid and
fluid components). This leads to an elliptic problem for the Lamé system with
mixed boundary conditions. Other analyses of the nonlinear Biot model above
do not seem to accommodate such conditions, and for many biological and
biomedical applications boundary data are the fundamental drivers of system
dynamics.

– We address the critical need of elliptic regularity (corresponding to the station-
ary elasticity problem with mixed boundary conditions) in the construction of
solutions. In previous studies, boundary conditions were not the focus in the
well-posedness analysis.

– We allow for fully general Ω -distributed forces, as well as Dirichlet/Neumann
data, for both the pressure and displacement dynamics. We track the regular-
ity properties of the data and note their effect on the solutions. Additionally,
we note that such effects vary between the elastic and viscoelastic cases, as
discussed in Remark 5 and shown in the simulation results in Section 4.6.

– Our approach accounts for viscoelastic effects in the solid, i.e. δ > 0, but also
allows to study the purely elastic case, i.e. δ = 0. Our investigation is moti-
vated by the fact that the viscoelastic properties of biological tissues often vary
with age and disease, and, interestingly, our analysis shows that the system dy-
namics fundamentally changes as viscoelastic effects vanish.
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3.2 Preliminary notions and definition of solutions

For the theoretical analysis, it is useful to rewrite the problem as follows:

∇ ·T(u, p) =−F in Ω × (0,T ) (15)
∇ ·ut −∇ · (k(∇ ·u)∇p) = S in Ω × (0,T ) (16)

∇ ·u = d0 in Ω , for t = 0 (17)
T(u, p)n = g on ΓN× (0,T ) (18)

u = 0 on ΓD× (0,T ) (19)
∇p ·n = 0 on ΓN× (0,T ) (20)

p = 0 on ΓD,p× (0,T ) (21)
−k(∇ ·u)∇p ·n = ψ on ΓD,v× (0,T ) (22)

where
T(u, p) = [2ε(u)+(∇ ·u)I]+δ [2ε(ut)+(∇ ·ut)I]− pI

and where the Lamé elastic parameters and the viscoelastic coefficients have been
normalized to unity and where the source terms in the volume, i.e. F and S, and on
the boundary, i.e. g and ψ , are given functions of space and time. We remark that
the normalization of parameters to unity is not essential to the analysis, but it sig-
nificantly simplifies the description of the steps in the existence proof. For the sake
of completeness, the theoretical estimates are reported for the non-normalized
physical parameters in Section 3.6.

Notation: Norms ‖ · ‖ are taken to be L2(D) for a domain D. Inner products in
L2(D) are written as (·, ·), whereas 〈·, ·〉 will denote the inner product on the
boundary L2(∂D). A subscript will denote the domain where the context does
not immediately make it clear, e.g. 〈u,w〉ΓN . The Sobolev space of order s defined
on a domain D will be denoted by Hs(D), with Hs

0(D) denoting the closure of
C∞

0 (D) in the Hs(D) norm (which we denote by ‖ · ‖Hs(D) or ‖ · ‖s,D). When s = 0
we may further abbreviate the notation to ‖ · ‖ (as described above). We make use
of the standard notation for the trace of functions γ[w] as the map from H1(D) to
H1/2(∂D). We will make use of the spaces L2(0,T ;U) and Hs(0,T ;U), where U
is a topological vector space. These norms (and associated inner products) will be
denoted with the appropriate subscript, e.g., || · ||L2(0,T ;U).

The principal spaces we consider are of the form

H1
Γ∗(Ω) = { f ∈ H1(Ω) : γ[ f ]

∣∣∣
Γ∗
= 0}.

In this case we have H1
Γ∗(Ω)⊃H1

0 (Ω) for any Γ∗ ⊂ Γ ≡ ∂Ω . The primary spaces
in our analysis below are

V ≡ H1
ΓD,p

, V≡ (H1
ΓD
(Ω))3, V≡V ×V, (23)

for the pressure p and displacement u, respectively. The norms in these spaces
are inherited from H1(Ω) and (H1(Ω))3, respectively. . For simplicity we will
introduce a bilinear form associated with the elasticity operator:

a(u,w) = (∇ ·u,∇ ·w)+(∇u,∇w)+(∇u,(∇w)T ). (24)
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In this notation, we interpret ∇u as the Jacobian of u, i.e. (∇u)i j = D jui, and we
utilize the Frobenius scalar product:

(A,B) =
∫

Ω

(Ai jBi j)dΩ ,

sometimes also denoted by (A : B). Notice that, when A = B, we write (A : A) =
(Ai j,Ai j) = ||A||2. We topologize the space V via a(·, ·), which is to say that we
take the norm induced by a(·, ·) as the norm on V (see Assumption 3.1 below).

In the case of constant permeability, the model is linear, as in [40], and one has
access to both a “strong” notion of solution (classically differentiable in time) and
a “weak” notion of solutions (only distributionally differentiable in time). Here,
our notion of solution depends critically on the parameter δ . We dispense with
the usage of the words “strong” and “weak” for solutions, owing to the confusion
it causes with the associated weak forms of the solutions. In both cases δ > 0
(viscoelastic case, or VE) and δ = 0 (elastic case, or E), solutions will satisfy a
weak form of (15)–(22). Our notion of an E-solution (δ = 0) here follows that in
[55] (and it is closely related to the notion in [6]). For a VE-solution (δ > 0), we
extend this notion in a natural way as specified below.

Definition 1 [VE-Solution] A solution to (15)–(22) (with δ > 0) is represented by
the pair of functions u ∈ H1(0,T ;V) and p ∈ L2(0,T ;V ) such that:
(a) the following relations are satisfied for any w ∈ V, q ∈V , and f ∈C∞((0,T )):

δ

∫ T

0
a(ut ,w) f dt +

∫ T

0
a(u,w) f dt−

∫ T

0
(p,∇ ·w) f dt

=
∫ T

0
〈g,w〉ΓN f dt−

∫ T

0
(F,w) f dt (25)∫ T

0
(k(∇ ·u)∇p,∇q) f dt+

∫ T

0
(∇ ·ut ,q) f dt

=−
∫ T

0
〈ψ,q〉ΓD,v f dt +

∫ T

0
(S, p) f dt (26)

(b) the initial conditions u(x,0) = u0 ∈ V and ∇ ·u(x,0) = d0 ∈ L2(Ω) are given,
and we require ∇ ·u0 = d0 (in the L2(Ω) sense).

Definition 2 [E-Solution] A solution to (15)–(22) (with δ = 0) is represented by
the pair of functions u ∈ L2(0,T ;V) and p ∈ L2(0,T ;V ) such that:
(a) the following relations are satisfied for any w ∈ V, q ∈V , and f ∈C∞

0 ((0,T )):∫ T

0
a(u,w) f dt−

∫ T

0
(p,∇ ·w) f dt

=
∫ T

0
〈g,w〉ΓN f dt−

∫ T

0
(F,w) f dt (27)∫ T

0
(k(∇ ·u)∇p,∇q) f dt−

∫ T

0
(∇ ·u,q) f ′ dt

=−
∫ T

0
〈ψ,q〉ΓD,v f dt +

∫ T

0
(S, p) f dt (28)
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(b) for every q∈V , the term (∇ ·u(t),q) uniquely defines an absolutely continuous
function on [0,T ] and the initial condition (∇ ·u(0),q) = (d0,q) is satisfied.

Definition 3 [Energy and data] Energy functionals for solutions and data are de-
fined as follows:

E(u(t))≡1
2
[
||∇ ·u(t)||2 + ||∇u||2 +(∇u,∇uT )

]
(29)

E(p(t)) = Eu(p(t))≡ (k(∇ ·u)∇p,∇p) (30)

DATA0

∣∣∣T
0
≡
∫ T

0

[
||g(t)||2L2(ΓN)

+ ||ψ(t)||2L2(ΓD,v)
+ ||S(t)||2L2(Ω)+ ||F(t)||

2
L2(Ω)

+ ||gt(t)||2L2(ΓN)
+ ||Ft(t)||2L2(Ω)

]
dt + sup

[0,T ]

[
||F(t)||2 + ||g(t)||2L2(ΓN)

]
(31)

DATAδ

∣∣∣T
0
≡
∫ T

0

[
||g(t)||2L2(ΓN)

+ ||ψ(t)||2L2(ΓD,v)
+ ||S(t)||2L2(Ω)+ ||F(t)||

2
L2(Ω)

]
dt

(32)

Remark 2 The test functions of the form w(x) f (t), with w∈V and f ∈C∞
0 ((0,T )),

are dense in L2(0,T ;V); similarly, test functions of the form q(x) f (t), with q ∈V
and f ∈C∞

0 ((0,T )), are dense in L2(0,T ;V ).

Remark 3 (Initial Conditions) When δ > 0, owing to the time dynamics in the
elasticity equation (15), an initial condition on the displacement u0 ∈ V is pre-
scribed. Since the mass balance equation (16) requires a specification of d0 =
∇ ·u(0) ∈ L2(Ω) for the fluid content ζ = ∇ ·u, we introduce a compatibility con-
dition between d0 and u0 requiring that ∇ ·u0 = d0. On the other hand, when δ = 0,
the momentum equation does not involve any time derivative on the displacement
and therefore only the initial condition d0 = ∇ ·u(0)∈ L2(Ω) would suffice. How-
ever, in obtaining the a priori estimates for the solutions described below (i.e., in
the process of constructing the solutions—see Lemma 7 and Lemma 10) it will
be necessary to consider only those d0 ∈ L2(Ω) such that there exists an u0 ∈ V
satisfying ∇ ·u0 = d0, since terms of the form ||u0||V appear on the right hand side
of the estimates. This is in line with [55], though for the approach taken in [51]
for weak solutions, it is enough to specify d0 independently of any reference to a
preimage in V.

Remark 4 The notion of data in Definition 3 is fundamentally different depending
on whether the parameter δ is strictly positive or is equal to zero. When δ > 0, the
notion of time differentiability for the solution is stronger than in the case δ = 0, as
shown by the fact that identities (25)–(26) include time derivatives of u, whereas
identities (27)–(28) do not. As a consequence, time regularity requirements on the
data are significantly weaker in the case δ > 0 than in the case δ = 0, as shown
by the comparison between (32) and (31).

Remark 5 Volumetric and boundary forcing terms analogous to our F,S,g,ψ are
also included in [6,51,55]. In [55], the author does not consider viscoelastic ef-
fects and his assumptions on data mirror our DATA0. In [6], (i) no assumptions
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are placed directly on the body force F, and (ii) homogeneous boundary condi-
tions are imposed on pressure and displacement. We note that [6] appeals to [51]
in dealing with F via a simple translation argument (see [51, p. 323–324]) and this
argument is not applicable to the viscoelastic case (δ > 0). Additionally, we em-
phasize that the regularity requirements mirror those of our DATA0 when utilizing
the translation described in [51] in order to obtain equivalence for well-posedness
of the homogeneous and inhomogeneous cases of F and g. Indeed, (i) the spatial
and temporal regularity of F(t) must match that of (−E )1/2(u(t)) (where E is the
elasticity operator introduced in Section 3.3 below), and, (ii) either ∇ ·ut must be
well defined in L2(Ω), which does necessarily follow directly from the equations,
or the boundary data g(t) must be differentiable in the sense of H1(0,T ;L2(ΓN)).

We now list our baseline assumptions on the domain, as well as the permeability
function k(·):
Assumption 3.1 We assume:

1. ΓD is a set of positive measure, so by Korn’s inequality:

E(u(t))≥ c||u(t)||2(H1(Ω))3 .

2. ΓD,p is a set of positive measure, so by Poincare’s inequality:

||v||L2(Ω) ≤CP||∇v||L2(Ω), ∀v ∈V.

3. The scalar function k(·) : R→R is continuous on R. We assume k(s)≥ κ > 0
∀s ∈ R, so there is a constant C(κ) so that:

||p||1 ≤C(κ)E(p(t)).

Additionally, we assume: k(s)≤ κ̂ < ∞ ∀s ∈ R.
4. We assume the boundary Γ is such that Lemma 2 holds. (See the following

section and discussion.)

3.3 Elasticity operator

In the analysis of the momentum equation, we consider a given p ∈ L2(Ω) (and
thus ∇p ∈V′, with V′ denoting the dual space of V) and produce a corresponding
u ∈ V which satisfies the stationary elasticity equation. Define E : V→ V′ to be
the elasticity operator given by

E (u) =−∇ · (2ε(u)+(∇ ·u)I) , ∀ u ∈ (C∞
0 (Ω))3

with domain

D(E )≡ {u ∈ V : ∇ · (2ε(u)+(∇ ·u)I) ∈ L2(Ω)}.

Note that the boundary conditions for the operator E are built into the space V;
the operator E is specified by the bilinear form a(·, ·) on V×V as given by (24).

We remark that we can also write

E (u) =−∇ ·Te(u), ∀ u ∈ (C∞
0 (Ω))3,
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where the purely elastic stress Te(u) has been defined in (5), here including elastic
constant normalized to unity for the purpose of simplifying the exposition of the
theoretical analysis. It is known that E : V→V′ is an isomorphism [12,51]. This
resulting lemma is classical (see e.g., [12,29] and references therein), but in this
functional setup we directly cite [51]:

Lemma 1 Given p ∈V (so p|ΓN ∈ L2(ΓN)), g ∈ (L2(ΓN))
3, and F ∈ (L2(Ω))3, the

elasticity problem
−∇ · (2ε(u)+(∇ ·u)I) =−∇p−F ∈ V′

u = 0 on ΓD

Te(u)n = g+ p
∣∣
ΓN

n on ΓN

(33)

is well-posed with a solution u ∈ V.

Mixed-type boundary conditions for the elasticity operator E are important
for many applications.

Remark 6 In [6] the boundary is composed of a single Dirichlet (clamped) com-
ponent upon which both pressure p and displacement u are zero. In this case, or
when ΓN ∩ΓD = /0 (see [51]), elliptic theory recovers full

(
H2(Ω)

)3∩V regularity
of the displacement u when p ∈V ; from this, ∇ ·u ∈ H1(Ω), which is used freely
in [6].

Unlike in [6] (and to a certain extent [51]), we will not obtain full (H2(Ω))3

regularity of the solution u accompanying (33). However, some elliptic regularity
is recovered:

1. In [39, p.347], for the Lamé system in polyhedral domains, given p ∈ V ,
F ∈ (L2(Ω))3, and g ∈ (H1/2(ΓN))

3 and under certain geometrical assump-
tions on the boundary Γ (in particular that ΓN and ΓD do not meet tangentially
and the supremum of their dihedral angles is strictly less than π , one obtains
the regularity u ∈ (H3/2+ε(Ω))3 for the displacement (an analogous result is
obtained for 2-D polygonal domains [39]).

2. Additionally, in the limiting case, when one only assumes that Γ is C1,1, the
results from [49] provide H3/2−ε(Ω) regularity of solutions for scalar elliptic
problems (with analogous assumptions on the data; in fact, the Neumann data
can be taken only in H−ε(Ω)).

3. Other regularity theorems for the Lamé system with mixed boundary condi-
tions are available in [37,47] (and references therein), for instance, in weighted
Sobolev spaces.

Remark 7 In [39], geometrical assumptions provide maximal elliptic regularity
(for data analogous to what is considered herein), that is, a 3/2+ ε (Sobolev ex-
ponent). In the more general case of [49] (for scalar elliptic equations with ap-
propriately regular data) elliptic regularity is recovered up to (not including) 3/2.
Such a result should also hold for the Lamé system. In the construction of solu-
tions below, we only utilize elliptic regularity of (H1+ε(Ω))3 corresponding to
solutions of (33).

https://www.researchgate.net/publication/225634678_Well-posedness_and_Regularity_for_the_Elasticity_Equation_with_Mixed_Boundary_Conditions_on_Polyhedral_Domains_and_Domains_with_Cracks?el=1_x_8&enrichId=rgreq-c4ee538054e8611df1f5fed453bc3f16-XXX&enrichSource=Y292ZXJQYWdlOzMwNDE0OTA2OTtBUzozNzUwNTgzNjQxNTc5NTNAMTQ2NjQzMjI5MDc1Nw==
https://www.researchgate.net/publication/266919624_About_the_Lame_system_in_a_polygonal_or_a_polyhedral_domain_and_a_coupled_problem_between_the_Lame_system_and_the_plate_equation_I_Regularity_of_the_solutions?el=1_x_8&enrichId=rgreq-c4ee538054e8611df1f5fed453bc3f16-XXX&enrichSource=Y292ZXJQYWdlOzMwNDE0OTA2OTtBUzozNzUwNTgzNjQxNTc5NTNAMTQ2NjQzMjI5MDc1Nw==
https://www.researchgate.net/publication/266919624_About_the_Lame_system_in_a_polygonal_or_a_polyhedral_domain_and_a_coupled_problem_between_the_Lame_system_and_the_plate_equation_I_Regularity_of_the_solutions?el=1_x_8&enrichId=rgreq-c4ee538054e8611df1f5fed453bc3f16-XXX&enrichSource=Y292ZXJQYWdlOzMwNDE0OTA2OTtBUzozNzUwNTgzNjQxNTc5NTNAMTQ2NjQzMjI5MDc1Nw==
https://www.researchgate.net/publication/229635115_Mixed_Boundary_Value_Problems_for_Lame's_System_in_Three_Dimensions?el=1_x_8&enrichId=rgreq-c4ee538054e8611df1f5fed453bc3f16-XXX&enrichSource=Y292ZXJQYWdlOzMwNDE0OTA2OTtBUzozNzUwNTgzNjQxNTc5NTNAMTQ2NjQzMjI5MDc1Nw==
https://www.researchgate.net/publication/300527745_Description_of_Three-Dimensional_Elasticity?el=1_x_8&enrichId=rgreq-c4ee538054e8611df1f5fed453bc3f16-XXX&enrichSource=Y292ZXJQYWdlOzMwNDE0OTA2OTtBUzozNzUwNTgzNjQxNTc5NTNAMTQ2NjQzMjI5MDc1Nw==
https://www.researchgate.net/publication/300527745_Description_of_Three-Dimensional_Elasticity?el=1_x_8&enrichId=rgreq-c4ee538054e8611df1f5fed453bc3f16-XXX&enrichSource=Y292ZXJQYWdlOzMwNDE0OTA2OTtBUzozNzUwNTgzNjQxNTc5NTNAMTQ2NjQzMjI5MDc1Nw==
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In the analyses [6,51] the authors utilize a map B which takes as input pressure
information p and gives ∇ · u as output. Clearly the boundary conditions are an
issue here. In [51] this B map is defined on a direct sum space which incorporates
boundary conditions (and allows for lower regularity of p); in [6] homogenous
boundary conditions are considered to drastically simplify the analysis.

Here we analyze the problem in our setup, i.e., with mixed boundary condi-
tions. We can consider a continuous map B : V → L2(Ω) such that

Bp = ∇ ·u,

where u is the solution to (33). Based on the discussion above, we have:

Lemma 2 Given p∈V the corresponding elliptic solver E −1(−∇p+F) = u lies
in (H1+ε(Ω))3 ∩V for some ε > 0 (depending on the domain) with associated
bound. Thus, we have Bp = ∇ ·u ∈ Hε(Ω), which yields that

B : V → Hε(Ω), continuously.

Remark 8 This fact will be critical to invoke compactness results when passing to
the limit in time on approximate solutions below.

There are additional properties of the B operator (reminiscent of [51]) that we
will take advantage of. The B mapping is injective:

Lemma 3 For p ∈V , if Bp = 0 (in the sense of L2(Ω)), then p = 0.

Proof Suppose that Bp = 0 in L2(Ω). Then (Bp,q) = 0 for all q ∈ H1
0 (Ω). But

then (u,∇q) = 0 for all such q. This means that

(E −1(∇p),∇q) = 0,

for all q ∈H1
0 (Ω). From this we infer that E −1(∇p) = 0 ∈ L2(Ω). Since the elas-

ticity problem is well-posed, we have that ∇p = 0. However, owing to the fact that
p ∈V , we must have that p≡ 0. Thus Ker(B) = {0}.

We also have the following additional result, which we state as a lemma (see
[51, pp. 325–326]):

Lemma 4 Suppose that pn ∈V (so the trace p
∣∣
Γ

is defined) with pn→ p in L2(Ω)

(e.g., if pn ⇀ p in V ). Then Bpn→ Bp in L2(Ω).

Remark 9 In considering limit passage of time-discretized approximate solutions
we will not obviously have the analogous result; namely, if p∆ t→ p∈L2(0,T ;L2(Ω))
Bp∆ t does not necessarily converge strongly to Bp in the same sense. The pres-
ence of viscoelastic terms does not change this fact. Aubin’s compactness criteria
must be invoked, which requires Lemma 2.
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3.4 Existence of solutions: main theorems

To show existence of solutions to both (25)–(26) and (27)–(28) we follow these
steps:

1. We introduce approximate problems corresponding to spatial and temporal
discretizations in both cases δ = 0 and δ > 0. We again follow the approach
presented in [55].

2. We adapt a technique described in [6] for solving a weak form of the fully
discretized versions of (25)–(26) and (27)–(28).

3. A priori estimates are obtained for the discretized solutions (and later for the
solutions themselves in Section 3.5), i.e., a priori bounds on the approximate
solutions which are uniform with respect to the discretization parameters.

4. We then utilize compactness results to extract limit points which solve the
weak form of the appropriate equations.

Remark 10 Various approximation techniques have been proposed to study the
well-posedeness of PDE systems similar to that in (15)–(22). In [40], a method
based on the Galerkin approximation is utilized. However, the physical boundary
conditions we consider prevent us from easily solving the ODE system associ-
ated with (15)–(22), despite the fact that, at least for δ > 0, we obtain sufficient
regularity for ut (i.e., u is differentiable in time into (L2(Ω))3). A discrete-based
approach is also presented in [6], but it is greatly streamlined and simplified via
the homogeneous Dirichlet boundary conditions for both pressure and displace-
ment. In our work, we follow closely the discrete-based approach presented in
[55], where the model in (15)–(22) is considered under the assumption of constant
permeability, and we utilize techniques from [6] to treat the nonlinearity arising
from the fact that k = k(∇ ·u).

3.4.1 The viscoelastic case: δ > 0

Theorem 1 [Existence of VE-Solutions] Consider (15)–(22) with δ > 0. Let As-
sumption 3.1 hold, and consider data of the form:

F ∈ L2
(

0,T ;
(
L2(Ω)

)3
)
, S ∈ L2(0,T ;L2(Ω)), (34)

g ∈ L2
(

0,T ;(H1/2(ΓN))
3
)
, ψ ∈ L2 (0,T ;L2(ΓD,v)

)
. (35)

Then, there exists a VE-solution (in the sense of (25)–(26)) satisfying

sup
t∈[0,T ]

E(u(t))+
∫ T

0

[
E(p(t))+E(u(t))+E(ut)

]
dt

≤C1

[
E(u(0))+

(
1

1+δ

)
DATAδ

∣∣T
0

]
exp
(

C2T
1+δ

)
.

Step 1: The discretized problem

Let us partition the time interval [0,T ] into r sub-intervals, yielding ∆ t = T/r and
ti = i∆ t, i = 0,1, ...,r. We will solve the problem iteratively, i.e., by solving an

https://www.researchgate.net/publication/245381879_A_Galerkin_Method_for_Biot_Consolidation_Model?el=1_x_8&enrichId=rgreq-c4ee538054e8611df1f5fed453bc3f16-XXX&enrichSource=Y292ZXJQYWdlOzMwNDE0OTA2OTtBUzozNzUwNTgzNjQxNTc5NTNAMTQ2NjQzMjI5MDc1Nw==
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approximate problem on (ti−1, ti] we will have data to feed into the problem on
(ti, ti+1]. Define gi by

gi ≡ 1
∆ t

∫ ti

ti−1

g(x, t)dt,

with Fi,ψ i,Si defined analogously. We now define a (time-scaled) weak form of
the temporal semi-discretized problem when δ > 0 as:

δa(ui−ui−1,w)+ [∆ t]a(ui,w)−[∆ t](pi,∇ ·w)

= [∆ t]〈gi,w〉ΓN − [∆ t](Fi,w) (36)

[∆ t]2(k(∇ ·ui)∇pi,∇q)+[∆ t](∇ ·ui−∇ ·ui−1,q)

= − [∆ t]2〈ψ i,q〉ΓD,v +[∆ t]2(Si,q) (37)

u(0) = u0, ∇ ·u0 = d0 (38)

This means that for all (w,q) ∈ V×V , we have

(δ +∆ t)a(ui,w)−[∆ t](pi,∇ ·w)

= δa(ui−1,w)+ [∆ t]〈gi,w〉ΓN − [∆ t](Fi,w) (39)

[∆ t]2(k(∇ ·ui)∇pi,∇q)+[∆ t](∇ ·ui,q)

= [∆ t](∇ ·ui−1,q)− [∆ t]2〈ψ i,q〉ΓD,v +[∆ t]2(Si,q), (40)

along with the initial conditions (38). The problem in (39) and (40) is further
discretized in space. To this end, let us consider a basis B for V and a basis B for V,
and let Vh and Vh denote finite dimensional subspaces of V and V corresponding
to finite spans in B and B, respectively, each parametrized by a parameter h. We
also set Vh =Vh×Vh.

We will consider (36)–(38) on Vh; that is, with ui−1
h (i = 2, ..r) as given data

from the previous iteration, we can solve (39)–(40) on Vh yielding (ui
h, pi

h). The
initial condition u0

h is obtained as the projection of u0 ∈ V onto Vh, with its di-
vergence providing d0,h via the compatibility condition. We note that (u1

h, p1
h) are

obtained by solving (36)–(38) on Vh with u0, g0, F0, ψ0, and S0 given as data—
this is to say p0 is not explicitly solved for in this scheme.

Step 2: Solving the fully discretized problem

In [55], the assumption of constant permeability allows for a straightforward ap-
proach to the algebraic equations arising from the weak form of the discretized
problem. Here, owing to the nonlinearity k = k(∇ ·u), the solution of (36)–(38) is
nontrivial. We utilize a fixed point method, as in [6]. Given (ui−1, pi−1,ψ i,gi,Fi,Si),
the problem consists in finding (pi

h,u
i
h)∈Vh satisfying (36)–(38). More precisely:

Lemma 5 Consider data of the form (ui−1, pi−1,ψ i,gi,Fi,Si)—with (pi−1,ui−1)∈
Vh (with the understanding that at time t = 0, we take the projection of u0 ∈ V
onto Vh). Then there is a solution (pi

h,u
i
h) ∈ Vh which satisfies (36)–(38) for all

test functions (w,q) ∈ Vh.
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Proof (of Lemma 5) We define a map Gδ : Vh → Vh by the bilinear form below
(corresponding to the weak form of the discretized problem): for (pi,ui) ∈ Vh(

Gδ

[
pi

ui

]
,

[
q
w

])
=(δ +∆ t)a(ui,w)+ [∆ t](∇ ·ui,q) (41)

− [∆ t](pi,∇ ·w)+ [∆ t]2(k(∇ ·ui)∇pi,∇q)

−δa(ui−1,w)− [∆ t](∇ ·ui−1,q)

− [∆ t]〈gi,w〉ΓN +[∆ t](Fi,w)+ [∆ t]2〈ψ i,q〉ΓD,v − [∆ t]2(Si,q)

for all (q,w) ∈ Vh. (Note: Gδ defines an operator on the whole Vh, namely on Vh
and Vh simultaneously.) We now note the following:(

Gδ

[
pi

ui

]
,

[
pi

ui

])
= (δ +∆ t)2E(ui)+ [∆ t]2E(pi) (42)

−δa(ui−1,ui)− [∆ t](∇ ·ui−1, pi)

− [∆ t]〈gi,ui〉ΓN +[∆ t](Fi,ui)

+ [∆ t]2〈ψ i, pi〉ΓD,v − [∆ t]2(Si, pi)

from which it follows that:(
Gδ

[
pi

ui

]
,

[
pi

ui

])
≥C1

[
(δ +∆ t)||ui||21 +κ[∆ t]2||pi||21

]
(43)

−C2

[
[∆ t]||ui−1||1 +[∆ t]2||ψ i||L2(ΓD,v)

+[∆ t]2||Si||L2(Ω)

]
||pi||1

−C3

[
δ ||ui−1||1 +[∆ t]||gi||L2(ΓN)

+[∆ t]||Fi||L2(Ω)

]
||ui||1.

We have used Korn’s lemma, Poincare’s inequality, the trace theorem, and the
lower bound on k(·) (embodied in the constants Ci and κ). Finally, using Young’s
inequality, taking ∆ t sufficiently small (depending on δ ), we have:(

Gδ

[
pi

ui

]
,

[
pi

ui

])
≥C(δ ,κ) · [∆ t]2

∣∣∣∣∣∣∣∣ [pi

ui

] ∣∣∣∣∣∣∣∣2
Vh

(44)

− c · [∆ t]
[
||gi||2L2(ΓN)

+ ||Fi||20 + ||ui−1||21
]

− c · [∆ t]2
[
||ψ i||2L2(ΓD,v)

+ ||Si||20
]
.

Thus the mapping Gδ : Vh→ Vh has the property that(
Gδ

[
pi

ui

]
,

[
pi

ui

])
≥ 0

when∣∣∣∣∣∣∣∣ [pi

ui

] ∣∣∣∣∣∣∣∣2
Vh

≥
c
[
||gi||2L2(ΓN)

+ ||Fi||20 + ||ui−1||21 +[∆ t]
(
||ψ i||2L2(ΓD,v)

+ ||Si||20
)]

C(δ ,κ)[∆ t]
.
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Continuity of Gδ on Vh follows straightforwardly from the definition (41) and
from the uniform upper bound on the permeability k(s)≤ κ̂ . With these two prop-
erties of Gδ established on Vh (noting that Vh is finite dimensional), we may
utilize a corollary to Brouwer’s fixed point theorem [53, Corollary A.12.], which
guarantees that there exists a point (pi,ui) ∈ Vh satisfying:(

Gδ

[
pi

ui

]
,

[
q
w

])
= 0

for all (q,w) ∈ Vh. Moreover, (pi,ui) has the property that:

∣∣∣∣∣∣∣∣ [pi

ui

] ∣∣∣∣∣∣∣∣2
Vh

≤
c
[
||gi||2L2(ΓN)

+ ||Fi||20 + ||ui−1||21 +[∆ t]
(
||ψ i||2L2(ΓD,v)

+ ||Si||20
)]

C(δ ,κ)[∆ t]
.

(45)
We have thus produced a weak solution of the discretized problem (36)–(38)

on Vh (for each i, i = 1, ...,r) from the data given at the previous iterate i− 1.
Moreover, this solution enjoys an a priori bound via (45).

Remark 11 The estimate in (45) appears singular as ∆ t → 0. However, we need
the fixed point argument only to guarantee the existence of a solution to the (non-
linear) finite dimensional discretized problem (36)–(38). We will appeal to other
a priori estimates obtained via direct “multiplier” methods (see Lemma 7, and
Lemma 10).

We note that the above result holds for any h > 0, and hence we label the solutions

(pi
h,u

i
h) ∈ Vh ⊂V ×V

with (45) providing a uniform bound in h(> 0); namely,∣∣∣∣∣∣∣∣[pi
h

ui
h

]∣∣∣∣∣∣∣∣
V×V
≤Ci−1(δ ,κ,∆ t),

where the subscript i− 1 denotes dependence on the solution and data from the
previous time step.

Step 3: Limit passage in space

Lemma 6 Consider data of the form (ui−1, pi−1,ψ i,gi,Fi,Si)—with (pi−1,ui−1)∈
V. Then there is a solution (pi,ui) ∈ V ×V which satisfies (36)–(38) for all test
functions (w,q) ∈ V.

Proof (of Lemma 6) From the uniform bound in the previous section we extract
a subsequence (maintaining the same label) and weak limit point (pi,ui) ∈V ×V
such that

(pi
h,u

i
h)⇀ (pi,ui) in V ×V.

We now proceed to show that these limit points are solutions to (39)–(40) con-
sidered on the entire space V ×V, that is, for all test functions q ∈ V and w ∈ V.
We proceed to pass to the limit in (40). First, since ui

h ⇀ ui in V ≡ (H1
ΓD
)3, we

have that ∇ ·ui
h ⇀ ∇ ·ui in L2(Ω). Therefore |(∇ ·ui

h,q)− (∇ ·ui,q)| → 0 forall
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q∈V . Secondly, we deal with the nonlinear term (k(∇ ·ui
h)∇pi

h,∇q). Noting that
pi

h ⇀ pi in V , then, due to the compactness of the Sobolev embedding V ↪→ L2(Ω),
we have that

pi
h→ pi in L2(Ω).

We now show that ∇ · ui
h → ∇ · ui in L2(Ω). Indeed, recalling that ui−1 ∈ V is

given as data, let ui,∗ ∈ V be the corresponding elasticity solution for pi, i.e., ui,∗

solves (in the weak sense):
−(δ +∆ t)E (ui,∗) =−[∆ t]∇pi−δE (ui−1)− [∆ t]Fi Ω

ui,∗ = 0 ΓD

T(ui,∗)n = [∆ t]gi +[∆ t](pi)n ΓN

. (46)

We also denote ui,∗
h ∈ V as the solution to (46) corresponding to ∇pi

h, with pi
h ∈

Vh. We note that by Lemma 4 we have that ∇ · ui,∗
h → ∇ · ui,∗ in L2(Ω) (since

pi
h → pi in L2(Ω)). Moreover, by considering the weak form of (46) (given pi

h)
on Vh providing the solution ui,∗

h , and recalling that ui
h also satisfies (39) with

test functions from Vh, we see that ui,∗
h = ui

h (in the same sense) for all h. Since
∇ ·ui

h ⇀ ∇ ·ui, and ∇ ·ui
h = ∇ ·ui,∗

h → ∇ ·ui,∗ in L2(Ω), then ∇ ·ui,∗ = ∇ ·ui ∈
L2(Ω) and ∇ ·ui

h→ ∇ ·ui, as desired.
By the bounds 0 < κ ≤ k(s)≤ κ̂ for all s ∈R, as well as the continuity of k(·),

we may utilize the fact that k(·) : L2(Ω)→ L2(Ω) is a Nemytskii operator [50].
Thus k(∇ ·ui

h)→ k(∇ ·ui).
We choose a test function q ∈V ∩W 1,∞(Ω) and consider:∣∣(k(∇ ·ui)∇pi,∇q

)
−
(
k(∇ ·ui

h)∇pi
h,∇q

)∣∣
=
∣∣(k(∇ ·ui)∇[pi− pi

h],∇q
)
−
(
[k(∇ ·ui

h)− k(∇ ·ui)]∇pi
h,∇q

)∣∣
≤ κ̂|(∇[pi− pi

h],∇q)|+ ||∇q||L∞(Ω)||∇pi
h|| · |k(∇ ·ui)− k(∇ ·ui

h)|
→ 0,

since pi
h ⇀ pi in V and k(∇ · ui

h)→ k(∇ · ui). By the density of V ∩W 1,∞(Ω)

in V , we have shown that the weak limit points (pi,ui) satisfy (39)–(40) for all
(q,w) ∈V ×V with given data (pi−1,ui−1) ∈ V and gi,Fi,ψ i and Si.

In this way, we can iteratively define a solution {(pi,ui)}r
i=1 for all discrete

time levels ti = i∆ t. We must now pass to the limit in time, that is considering
∆ t→ 0.

Step 4: Limit passage in time

The key step for obtaining solutions is the following set of upper bounds that are
uniform in r.

https://www.researchgate.net/publication/246867803_Montone_Operators_in_Banach_Space_and_Nonlinear_Partial_Differential_Equations?el=1_x_8&enrichId=rgreq-c4ee538054e8611df1f5fed453bc3f16-XXX&enrichSource=Y292ZXJQYWdlOzMwNDE0OTA2OTtBUzozNzUwNTgzNjQxNTc5NTNAMTQ2NjQzMjI5MDc1Nw==
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Lemma 7 For each i= 1, ...,r solutions to (36)–(38) on V×V enjoy the estimates

[∆ t]
r

∑
i=1
||pi||21 ≤C (47)

||ui||21 ≤C (48)

[∆ t]
r

∑
i=1
||ui||21 ≤C (49)

[∆ t]
r

∑
i=1

∣∣∣∣∣∣∣∣ui−ui−1

∆ t

∣∣∣∣∣∣∣∣2
1
≤C (50)

where the constant C above depends on T , E(u0), and DATAδ

∣∣T
0 (see below (121)).

Proof (of Lemma 7) The proof of estimates (47)-(50) relies upon the utilization
of the discrete test functions pi and [ui−ui−1] in (39)–(40). We explicitly show
these calculations in Lemma 10 corresponding to the analogous Step 4 for the
more delicate δ = 0 case.

Remark 12 For δ > 0, a priori estimates may also be obtained in the continuous
setting, as shown in Section 3.5. This has the advantage of producing so-called
“energy identities” as intermediate points in the estimation. Note that, in contrast,
for δ = 0 one only obtains energy inequalities by limit passage on discrete esti-
mates (as below).

Remark 13 The final uniform estimate (50) on the difference quotient is one of the
ways in which the δ > 0 case distinguishes from the δ = 0 case, where no such
estimate holds. Having this bound provides additional regularity for the velocity
ut , even though one must associate the weak limit of the difference quotients with
the time derivative of the displacement.

We extend the solution (as piecewise constant) to the whole time interval (0,T ]
using the more convenient notation

p[r] =pi in (ti−1, ti], i = 1, ...,r (51)

u[r] =ui in (ti−1, ti], i = 1, ...,r . (52)

We also utilize this notation for the data, i.e., we construct F[r],g[r],S[r] and ψ [r] as
above on [0,T ].

The a priori estimates above yield that the piecewise (in time) constant solution
to (36)–(38) on V ×V enjoys the bounds

||p[r]||L2(0,T ;V ) ≤C (53)

||u[r]||L2(0,T ;V) ≤C (54)

||(u[r])∆ t ||L2(0,T ;V) ≤C (55)

sup
t∈[0,T ]

||u[r](t)||V ≤C, (56)
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with (ui)∆ t ≡ [∆ t]−1[ui−ui−1] being the difference quotient with respect to a fixed
∆ t. These estimates are uniform in [r] (i.e., as ∆ t→ 0) and therefore we can extract
weak limit points p ∈ L2(0,T ;V ), u ∈ L∞((0,T ];V), and u] ∈ L2(0,T ;V), with u]

being the weak limit for the sequence (u[r])∆ t ∈ L2(0,T ;V).
We note one additional estimate (not following from energy methods) which

is the result of Lemma 2:

||u[r]||L2(0,T ;(H1+ε (Ω))3) ≤C, (57)

with C being equivalent to those above. Following [55], we provide the following
definition which will be used when testing (25) and (26):

Definition 4 Let f (t) ∈C∞([0,T ]). Define:

f i ≡ f (ti), i = 1, ...,r,

f r+1 ≡ f r = f (T ),

f [r] ≡ f i+1 in (ti, ti+1], i = 0, ...,r−1,

( f [r])+
∆ t ≡

f i+2− f i+1

∆ t
in (ti, ti+1], i = 0, ...,r−1,

satisfying the following properties:

‖ f [r]− f‖L2(0,T ) ≤C · [∆ t], ‖( f [r])+
∆ t − f ′‖L2(0,T ) ≤C · [∆ t], (58)

where f ′ denotes the derivative of f with respect to its sole scalar argument t.

We know that the sequence {(pi,ui)} satisfies the system (39)–(40) for any
(q,w) ∈V. Let q ∈W 1,∞(Ω)∩V and multiply the aforementioned relations by f i,
simplify, and sum i = 1, ..,r to obtain:

δ

r

∑
i=1

a
(
(ui)∆ t ,w

)
f i · [∆ t]+

r

∑
i=1

a(ui,w) f i · [∆ t]−
r

∑
i=1

(pi,∇ ·w) f i · [∆ t]

=
r

∑
i=1
〈gi,w〉ΓN f i · [∆ t]−

r

∑
i=1

(Fi,w) f i · [∆ t]

r

∑
i=1

(k(∇ ·ui)∇pi,∇q) f i · [∆ t]+
r

∑
i=1

(∇ · (ui)∆ t ,q) f i · [∆ t] (59)

= −
r

∑
i=1
〈ψ i,q〉ΓD,v f i · [∆ t]+

r

∑
i=1

(Si,q) f i · [∆ t].
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We can identify the sums as integrals in time:

δ

∫ T

0
a
(
(u[r])∆ t ,w

)
f [r] dt +

∫ T

0
a(u[r],w) f [r] dt−

∫ T

0
(p[r],∇ ·w) f [r] dt

=
∫ T

0
〈g[r],w〉ΓN f [r] dt−

∫ T

0
(F[r],w) f [r] dt∫ T

0
(k(∇ ·u[r])∇p[r],∇q) f [r] dt +

∫ T

0
(∇ · (u[r])∆ t ,q) f [r] dt (60)

= −
∫ T

0
〈ψ [r],q〉ΓD,v f [r] dt +

∫ T

0
(S[r],q) f [r] dt.

Using the estimates in (58), and adding and subtracting appropriate terms, it is
possible to pass to the limit on the linear terms, thereby identifying weak limit
points. For those terms not involving the quotient (u[r])∆ t , this proceeds exactly as
in [55, pp. 202–204]. More attention is required when passing to the limit on the
nonlinear term showing that∫ T

0
(k(∇ ·u[r])∇p[r],∇q) f [r]dt→

∫ T

0
(k(∇ ·u)∇p,∇q) f (t)dt.

Remark 14 This is the step in the proof where the nonlinearity most significantly
affects the limit passage in the construction of weak solutions. In this step, the
elliptic regularity in Lemma 2 is crucial. We require that B : V → Hε(Ω) in order
to gain compactness via the Aubin-Lions Lemma.

To do this, we will consider a particular choice of “antiderivative” of (u[r])∆ t (fol-
lowing [6, p. 1260]) which will allow us to use the Aubin-Lions Lemma for a
stronger convergence of ∇ ·u[r] as r→ ∞. Given the estimates in (53), we have:

Lemma 8 For the sequence u[r] ∈V (as in (53)–(56)) such that u[r]⇀u in L2(0,T ;V),
we also have that ∇ ·u[r]→ ∇ ·u in L2(0,T ;L2(Ω)).

Proof (of Lemma 8) We introduce the piecewise linear function:

L[∇ ·u[r]] = L[∇ ·ui], on (ti−1, ti], i = 1, ...,r, (61)

where

L[∇ ·ui] =

[
∇ ·ui−∇ ·ui−1

∆ t

]
(t− ti−1)+∇ ·ui−1

=(∇ ·u)∆ t(t− ti−1)+∇ ·ui−1, on (ti−1, ti]. (62)

With this notation, we have:

d
dt

(
L[∇ ·u[r]]

)
= (∇ ·u[r])∆ t . (63)
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Owing to Lemma 7, we immediately obtain the uniform bound in r:∣∣∣∣∣∣∣∣ d
dt

(
L[∇ ·u[r]]

)∣∣∣∣∣∣∣∣
L2(0,T ;L2(Ω))

= ||(∇ ·u[r])∆ t ||L2(0,T ;L2(Ω)) ≤C. (64)

Now we note that:

||L[∇ ·ui]||ε ≤ [∆ t] · ||(∇ ·ui)∆ t ||ε + ||∇ ·ui−1||ε . (65)

Moreover, via the continuous mapping B : L2(Ω)→ Hε(Ω) (see Section 3.3),
with ∇p[r] ∈ L2(0,T ;L2(Ω)), Lemma 7 implies that

||L[∇ ·u[r]]||L2(0,T ;Hε (Ω)) ≤C, (66)

where C has the same dependencies as in (53)–(56). Thus, we know that there
exist v ∈ L2(0,T ;Hε(Ω)) and v′ ∈ L2(0,T ;L2(Ω)) such that

L[∇ ·u[r]]⇀ v

and
d
dt

(
L[∇ ·u[r]]

)
⇀ v′.

By the Aubin-Lions Lemma, possibly along a subsequence, we have L[∇ ·
u[r]]→ v in the sense of L2(0,T ;L2(Ω)). From the piecewise structure of L[∇ ·u[r]]
we have that

L[ f [r](t)]→ f (t) as r→ ∞

for any f (t) piecewise continuous. Thus, due to the uniqueness of the limit v = ∇ ·
u, the weak convergence u[r] ⇀ u∈V is improved to strong convergence (possibly
along a subsequence):

∇ ·u[r]→ ∇ ·u in L2(0,T ;L2(Ω)).

We now consider the difference∫ T

0
(k(∇ ·u[r])∇p[r],∇q) f [r]dt−

∫ T

0
(k(∇ ·u)∇p,∇q) f (t)dt (67)

=
∫ T

0
(k(∇ ·u[r])∇p[r],∇q)[ f [r]− f ]dt (68)

+
∫ T

0
(k(∇ ·u[r])∇[p[r]− p],∇q) f dt (69)

+
∫ T

0

(
[k(∇ ·u[r])− k(∇ ·u)]∇p,∇q

)
f dt. (70)

We note that, as r→ ∞, from the properties of f [r] it follows that∣∣∣∣∫ T

0
(k(∇ ·u[r])∇p[r],∇q)[ f [r]− f ]dt

∣∣∣∣≤ κ̂||p[r]||L2(0,T ;V )||q||V || f − f [r]||L2(0,T )→ 0,
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from the weak convergence p[r] ⇀ p in L2(0,T ;V ) it follows that∣∣∣∣∫ T

0
(k(∇ ·u[r])∇[p[r]− p],∇q) f dt

∣∣∣∣≤C(κ̂)

∣∣∣∣([p[r]− p],q f )
)

L2(0,T ;V )

∣∣∣∣→ 0,

and by the Nemytskii property of k(·), since ∇·u[r]→∇·u strongly in L2(0,T ;L2(Ω)),
and considering that q ∈V ∩W 1,∞(Ω), f ∈C∞([0,T ]) it follows that∣∣∣∣∫ T

0

(
[k(∇ ·u[r])− k(∇ ·u)]∇p,∇q

)
f dt
∣∣∣∣

≤C(q, f )||k(∇ ·u[r])− k(∇ ·u)||L2(0,T ;L2(Ω))||∇p||L2(0,T ;L2(Ω))→ 0.

Step 5: Limit point identification

Thus, we have the following identity for the weak limits (identified above), which
holds for all test functions of the form w f and q f with w ∈ V, q ∈V ∩W 1,∞(Ω),
and f ∈C∞([0,T ]):

δ

∫ T

0
a
(

u],w
)

f dt+
∫ T

0
a(u,w) f dt−

∫ T

0
(p,∇ ·w) f dt

=
∫ T

0
〈g,w〉ΓN f dt−

∫ T

0
(F,w) f dt (71)∫ T

0
(k(∇ ·u)∇p,∇q) f dt+

∫ T

0
(∇ ·u],q) f dt

= −
∫ T

0
〈ψ,q〉ΓD,v f dt +

∫ T

0
(S,q) f dt.

We must now identify the weak limit for the difference quotient (in time) u] with
the distributional derivative in time of u. Now, consider the test function w f i, as
above. Then

r

∑
i=1

a(ui−ui−1,w) f i = a(ur,w) f r−a(u0,w) f 1−
r−1

∑
i=1

a(ui,w)( f i+1− f i). (72)

Due to the fact that ( f [r])+
∆ t = 0 on (tr−1, tr], we have that

r−1

∑
i=1

a(ui,w)( f i+1− f i) = ∆ t
r−1

∑
i=1

a(ui,w)
f i+1− f i

∆ t
=
∫ T

0
a(u[r],w)

[
( f [r])+

∆ t

]
dt.

Again, using the linear nature of this term and the boundedness of the sequences
in (53), we see that as r→ ∞:

δ

r

∑
i=1

a
(
(ui)∆ t ,w

)
f i · [∆ t] → (73)

δa(u(T ),w) f (T )−δa(u0,w) f (0)−δ

∫ T

0
a(u,w) f ′ dt.
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But, since this holds for all f ∈C∞
0 (0,T ), this implies that

δ

r

∑
i=1

a
(
(ui)∆ t ,w

)
f i · [∆ t] → δ

∫ T

0
a(ut ,w) f dt,

where ut is the distributional derivative in time. From this we can infer that:∫ T

0
a(ut ,w) f dt =

∫ T

0
a(u],w) f dt.

Step 6: Properties of the solution

Since functions of the form w f with w ∈ V and f ∈ C∞([0,T ]) are dense in
L2([0,T ];V), it follows that ut = u] in the sense of L2(0,T ;(L2(Ω))3). More-
over, since u] is the weak limit of the sequence (u[r])∆ t ∈ L2(0,T ;V), we have
that u] ∈ L2(0,T ;V), which, by uniqueness of limits, implies that ut ∈ L2(0,T ;V)
as well.

Remark 15 This identification and additional regularity for ut ∈ L2(0,T ;V) is
possible because δ is strictly positive and, indeed, it cannot be attained in the
case δ = 0 considered below. The original work in [55], as well as the model con-
sidered in [6], only deal with the case δ = 0, and consequently identify ∇ ·ut in
the weaker space L2(0,T ;V ′), as in Step 5 of Section 3.4.2 below.

Remark 16 The test function ( f [r])+
∆ t is used in both viscoelastic and purely elastic

cases, but for different reasons. When δ > 0, it is needed to identify the weak
limit of the sequence in (50). In contrast, when δ = 0, it is used to perform the
summation by parts in the time-discretized pressure equation (40).

Thus, we have constructed a solution u ∈ L2(0,T ;V), ut ∈ L2(0,T ;V) and p ∈
L2(0,T ;V ) which satisfies (25)–(26). Additionally, we note that u ∈ H1(0,T ;V)
and so ∇ · u ∈ H1(0,T ;L2(Ω)). Thus, by [18], it follows that u ∈ C([0,T ];V)
and ∇ ·u ∈C([0,T ];L2(Ω)). We note that the property u ∈ L∞([0,T ];V) actually
follows from the a priori bound in (56) in the limit; additionally, this can be seen in
Section 3.5 utilizing specific test functions: as ut ∈ L2(0,T ;V), and test functions
of the form w f (·) (as above) are dense in this space, we may consider both u and
ut as valid test functions in (25)–(26). This provides energy estimates, as well as
energy identities, for solutions (the calculations and formal statements have been
detailed in Section 3.5).
Remark 17 Obtaining a priori estimates is more subtle in the δ = 0 case as we can-
not utilize ut as a test function in (27)–(28), since functions in L2(0,T ;

(
L2(Ω)

)3
)

are not valid “multipliers” for the elasticity/momentum equation.

Step 7: Recovery of initial condition

To recover the initial condition from the constructed solution we start from the
momentum equation (25). For any w ∈ V, we can define

G(t)≡ δa(u(t),w) (74)
H(t)≡ − (a(u(t),w)+(p(t),∇ ·w)+ 〈g(t),w〉ΓN − (F(t),w) (75)

F(t)≡
∫ t

0
H(τ)dτ (76)
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and note that F(t) is absolutely continuous on [0,T ] with F ′(t) = H(t) a.e. (0,T ).
Utilizing these definitions in (25), we obtain∫ T

0
(G′(t)−F ′(t)) f (t) dt = 0 ∀ f ∈C∞

0 (0,T ), (77)

and this implies that G and F differ by a constant, i.e. G−F = c. By considering
f ∈ C∞([0,T ]) with f (0) = 1 and f (T ) = 0, recalling (72)–(73), and integrating
by parts in time in (25), we obtain

−δ

∫ T

0
a(u,w) f ′dt−δa(u0,w) =

−
∫ T

0
a(u,w) f dt +

∫ T

0
(p,∇ ·w) f dt +

∫ T

0
〈g,w〉ΓN dt−

∫ T

0
(F,w) f dt

for all w ∈ V. This can be rewritten as

−
∫ T

0
G f ′dt +

∫ T

0
H f dt = δa(u0,w).

Integrating by parts in time and using (77) we have:∫ T

0
H f dt +

∫ T

0
F ′ f dt− [(F(t)+ c) f (t)]

∣∣T
0 = δa(u0,w). (78)

By identifying F ′ = H a.e. t, choosing T = 0 and recalling that f (0) = 1, from
(78) it follows that c = δa(u0,w) and, consequently

δa(u(t),w)−δa(u0,w) =∫ T

0

[
− (a(u(t),w)+(p(t),∇ ·w)+ 〈g(t),w〉ΓN − (F(t),w)

]
dt

for all w ∈ V and a.e. (0,T ). Choosing T = 0, we see that

a(u(0),w) = a(u0,w), w ∈ V,

which yields that u(0) = u0 in the sense of V. Additionally, this yields that ∇ ·
u(0) = ∇ ·u0, and, since ∇ ·u0 = d0 by the compatibility of initial conditions, we
have satisfied both initial conditions.

This completes the proof of Theorem 1.

3.4.2 The elastic case: δ = 0

Theorem 2 [Existence of E-Solutions] Consider (15)–(22) with δ = 0. Let As-
sumption 3.1 hold, and consider data of the form:

F ∈ H1
(

0,T ;
(
L2(Ω)

)3
)
, S ∈ L2(0,T ;L2(Ω)), (79)

g ∈ H1
(

0,T ;(H1/2(ΓN))
3
)
, ψ ∈ L2 (0,T ;L2(ΓD,v)

)
. (80)

Then there exists an E-solution (in the sense of (27)–(28)) satisfying

sup
t∈[0,T ]

E(u(t))+
∫ T

0

[
E(p(t))+E(u(t))

]
dt ≤C1

[
E(u(0))+DATA0

∣∣T
0

]
eC2T .
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Step 1: The discretized problem

We utilize the same partition of [0,T ] into r sub-intervals, yielding ∆ t = T/r and
ti = i∆ t, i = 0,1, ...,r. As in the case δ > 0, we define

ψ
i ≡ [∆ t]−1

∫ ti

ti−1

ψ(x, t)dt,

with Si defined analogously. However, due to their higher time-regularity, we de-
fine

ĝi ≡ g(x, ti),

with F̂i defined analogously. We now define a weak form of the temporal semi-
discretized problem when δ = 0 as:

a(ui,w)− (pi,∇ ·w) = 〈ĝi,w〉ΓN − (F̂i,w) (81)

[∆ t](k(∇ ·ui)∇pi,∇q)+(∇ ·ui,q) (82)

= (∇ ·ui−1,q)− [∆ t]〈ψ i,q〉ΓD,v +[∆ t](Si,q)

∇ ·u(0) = d0 (83)

for all (w,q) ∈ V×V .

Remark 18 Depending on whether δ > 0 or δ = 0, the resulting natural choice for
the time scaling of the temporal semi-discretized weak problem noticeably differs.
This is clear when comparing (36)–(38) with (81)–(83).

Step 2: Solving the fully discretized problem

The solution of the discretized problem in the case δ = 0 mirrors that of δ > 0. In
the δ = 0 case, we again take the projection of u0 onto Vh, resulting in u0

h; since
∇ · u0 = d0, we set d0,h = ∇ · u0

h (see Remark 3). In (81)–(83), we observe that
(u1

h, p1
h) are obtained from the data ∇ ·u0

h = d0,h, ψ0, S0, ĝ0, and F̂0.
We similarly define a map G0 : Vh → Vh by the bilinear form below: for

(pi,ui) ∈ Vh(
G0

[
pi

ui

]
,

[
q
w

])
= a(ui,w)− (pi,∇ ·w)+ [∆ t](k(∇ ·ui)∇pi,∇q)

+(∇ ·ui,q)− (∇ ·ui−1,q) (84)

+[∆ t]〈ψ i,q〉ΓD,v − [∆ t](Si,q)−〈ĝi,w〉ΓN − (F̂i,w)

for all (q,w)∈Vh. The analysis of G0 in relation to the corresponding problem on
Vh (and associated estimates) proceeds precisely as in Step 2 for the δ > 0 case.
Thus there exists a point (pi

h,u
i
h) ∈ Vh satisfying:(
G0

[
pi

h
ui

h

]
,

[
q
w

])
= 0
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for all (q,w) ∈ V. Moreover, (pi
h,u

i
h) has the property that:

∣∣∣∣∣∣∣∣ [pi
h

ui
h

] ∣∣∣∣∣∣∣∣2
Vh

≤
c
[
||ĝi||2L2(ΓN)

+ ||F̂i||20 + ||ui−1||21 +[∆ t]
(
||ψ i||2L2(ΓD,v)

+ ||Si||20
)]

C(κ)[∆ t]
.

(85)
We have also, then, produced a weak solution of the approximate problem (81)–
(83) on Vh (for each i, i = 1, ...,r) from the data given for i−1, and this solution
enjoys a uniform bound in Vh ⊂V ×V with respect to h via (85).

Step 3: Limit passage in space

Since the additional time regularity due to the viscoelastic term does not influence
the passage to the limit in space, we can proceed analogously to what described in
Step 3 for the δ > 0 case, thus obtaining a solution to (81)–(83) on V as stated in
the following Lemma.

Lemma 9 Consider data of the form (ui−1, pi−1,ψ i, ĝi, F̂i,Si)—with (pi−1,ui−1)∈
V. Then there is a solution (pi,ui)∈V×V that satisfies (81)–(83) for all test func-
tions (w,q) ∈ V.

Step 4: Limit passage in time

The passage to the limit in time is more subtle in the δ = 0 case, owing to the
natural lack of smoothness in time for solutions. Analogously to Lemma 7, the
key step is obtaining the following set of upper bounds that are uniform in r.

Lemma 10 For each i = 1, ...,r solutions to (81)–(83) on V ×V enjoy the esti-
mates

[∆ t]
r

∑
i=1
||pi||21 ≤C (86)

||ui||21 ≤C (87)

[∆ t]
r

∑
i=1
||ui||21 ≤C (88)

where the constant C above depends on T , E(u0), and DATA0
∣∣T
0 (as in (124)).

Proof (of Lemma 10) The following identities will be useful for the analysis:

a(wi,wi−wi−1) =
1
2

a(wi,wi)− 1
2

a(wi−1,wi−1)+
1
2

a(wi−wi−1,wi−wi−1)

(89)
j

∑
i=1

(
Gi,wi−wi−1)= (G j,w j)− (G1,w0)−

j−1

∑
i=1

(Gi+1−Gi,wi), (90)

where G and w are arbitrary functions.
For each i = 1, ...,r, let us test (81) for the solution (pi,ui) with w = ui−ui−1:

a(ui, [ui−ui−1])− (pi,∇ · [ui−ui−1]) = 〈ĝi, [ui−ui−1]〉ΓN − (F̂i, [ui−ui−1]).
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Using (89) and simplifying we have:

1
2

a(ui,ui)+
1
2

a(ui−ui−1,ui−ui−1)− (pi,∇ ·ui) (91)

=−(pi,∇ ·ui−1)+
1
2

a(ui−1,ui−1)+ 〈ĝi, [ui−ui−1]〉ΓN − (F̂i, [ui−ui−1]).

Testing (83) with q = pi, we have:

[∆ t](k(∇ ·ui)∇pi,∇pi)+(∇ ·ui, pi) (92)

= (∇ ·ui−1, pi)− [∆ t]〈ψ i, pi〉ΓD,v +[∆ t](Si, pi).

Adding (91) and (92), we have the identity:

1
2

a(ui,ui)+
1
2

a(ui−ui−1,ui−ui−1)+ [∆ t](k(∇ ·ui)∇pi,∇pi) (93)

=
1
2

a(ui−1,ui−1)− [∆ t]〈ψ i, pi〉ΓD,v +[∆ t](Si, pi) (94)

+ 〈ĝi, [ui−ui−1]〉ΓN − (F̂i, [ui−ui−1]). (95)

From this key identity, we perform a summation on the index i, with i = 1, . . . , j,
and utilize (90). This results in:

j

∑
i=1

{
E(ui)+E(ui−ui−1)

}
+

j

∑
i=1

E(pi)[∆ t] (96)

=
j

∑
i=1

E(ui−1)+
j

∑
i=1

{
(Si, pi)−〈ψ i, pi〉ΓD,v

}
[∆ t]

− (F̂ j,u j)+(F̂1,u0)−
j−1

∑
i=1

([F̂i+1− F̂i],ui)

+ 〈ĝ j,u j〉ΓN −〈ĝ
1,u0〉ΓN +

j−1

∑
i=1
〈[ĝi+1− ĝi],ui〉ΓN .

We will now utilize the structure (and regularity assumptions) of ĝi, F̂i, ψ i, and
Si to obtain a priori bounds, uniform in [r]. Using (i) Cauchy-Schwarz in space,
(ii) the trace theorem, (iii) Bochner’s Theorem and Cauchy-Schwarz in time, (iv)
Young’s inequality as |ab| ≤ εa2 + C

ε
b2, and (v) the lower bound on k(·) (see

Assumption 3.1), we obtain:

|〈ψ i, pi〉[∆ t]|=

∣∣∣∣∣[∆ t]−1
〈∫ ti

ti−1

ψ(t)dt, pi
〉

ΓD,v

[∆ t]

∣∣∣∣∣
≤C

∣∣∣∣∣∣∣∣∫ ti

ti−1

ψ(t)dt
∣∣∣∣∣∣∣∣

0,ΓD,v

||pi||1

≤C[∆ t]1/2||ψ||L2(ti−1,ti;L2(ΓD,v))||p
i||1

≤Cε ||ψ||2L2(ti−1,ti;L2(ΓD,v))
+ εE(pi)[∆ t].
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The term (Si, pi)Ω is handled similarly (using Poincare’s inequality, rather than
the trace theorem). By the regularity of g, it follows that:

ĝi+1− ĝi =
∫ ti

ti−1

gt(x, t) dt a.e. on ΓN . (97)

Using Korn’s inequality, following analogous steps as above we obtain:∣∣∣〈[ĝi+1− ĝi],ui〉
ΓN

∣∣∣= ∣∣∣∣∣
〈∫ ti+1

ti
g′(t)dt, ui

〉
ΓN

∣∣∣∣∣
≤C

∣∣∣∣∣∣∣∣∫ ti+1

ti
g′(t)dt

∣∣∣∣∣∣∣∣
0,ΓN

||ui||1

≤C[∆ t]1/2||g′||
L2
(

ti,ti+1;(L2(ΓN))
3
)||ui||1

≤C
{
||g′||2L2(ti,ti+1;(L2(ΓN))3) +E(ui)[∆ t]

}
.

The term (F̂i+1− F̂i,ui) is handled similarly. Summing the previous results, and
simplifying (96) we have:

j

∑
i=1

E(ui)+
j

∑
i=1

E(pi)[∆ t]≤ C
{

E(u0)+
j−1

∑
i=1

E(ui)+
j−1

∑
i=1

E(ui)[∆ t]+ ε

j−1

∑
i=1

E(pi)

(98)

+ ||g′||2
L2
(

0,T ;(L2(ΓN))
3
)+ ||F′||L2(0,T ;(L2(Ω))3)

+ ||g||2
C
(
[0,T ];(L2(ΓN))

3
)+ ||F||2

C
(
[0,T ];(L2(Ω))

3
)

+ ||ψ||2L2(0,T ;L2(ΓD,v))
+ ||S||2L2(0,T ;L2(Ω))

}
.

Simplifying, using the embedding H1(0,T ;(L2(D))3) ↪→C([0,T ];(L2(D))3), and
possibly scaling ε (at the cost of up-scaling C ), we then have:

E(u j)+
j

∑
i=1

E(pi)[∆ t]≤ C1 +C2

j−1

∑
i=1

E(ui)[∆ t], (99)

where C1 is a scalar multiple of

E(u0)+ ||g||2H1(0,T ;(L2(ΓN))3) + ||F||
2
H1
(

0,T ;(L2(Ω))
3
)+

||ψ||2L2(0,T ;L2(ΓD,v))
+ ||S||2L2(0,T ;L2(Ω)),

and C2 is a constant which does not depend on u0 or [∆ t].

Remark 19 The Ci depend on: the Poincare constant for Ω , the Korn constant, the
trace constant, and the lower bound on the permeability κ . (See Assumption 3.1
and Section 3.6.)
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Finally, we employ the discrete version of Gronwall’s Lemma on (99) to obtain:

E(u j)≤ C1eC2 j,

from which the final conclusion of Lemma 10 follows.

Extending the solution to the whole time interval (0,T ] in a piecewise fashion, as
before, we have:

p[r] =pi in (ti−1, ti], i = 1, ...,r (100)

u[r] =ui in (ti−1, ti], i = 1, ...,r . (101)

The a priori estimates above yield that the spatially and temporally discretized
solution to (81)–(83) on V ×V enjoys the bounds

||p[r]||L2(0,T ;V ) ≤C (102)

||u[r]||L2(0,T ;V) ≤C (103)

sup
t∈[0,T ]

||u[r](t)||V ≤C, (104)

which are uniform as r→ ∞ (∆ t → 0). Again, from the elliptic regularity associ-
ated with the B mapping, we also have the estimate

||u[r]||L2(0,T ;(H1+ε (Ω))3) ≤C,

where the C here is as above. From the bounds in (102)–(104) we identify weak
limit points u ∈ L2(0,T ;V) and p ∈ L2(0,T ;V ). In (81)–(83), we now consider
test functions w f and q f with w ∈ V, q ∈V , and f ∈C∞([0,T ]). We multiply by
the appropriate test function and sum each relation from i = 1 to i = r, utilizing
the notation introduced in Definition 4.

Note that:

r

∑
i=1

(∇ ·ui−∇ ·ui−1,q) f i = (∇ ·ur,q) f r− (∇ ·u0,q) f 1−
r−1

∑
i=1

(∇ ·ui,q)( f i+1− f i).

Now, due to the fact that ( f [r])+
∆ t = 0 on (tr−1, tr], we have that

r−1

∑
i=1

(∇ ·ui,q)( f i+1− f i) =∆ t
r−1

∑
i=1

(∇ ·ui,q)
f i+1− f i

∆ t
=
∫ T

0
(∇ ·u[r],q)

[
( f [r])+

∆ t

]
dt.

We then identify the sums as appropriate integrals of piecewise functions on [0,T ];
thus, (82) becomes:∫ T

0
(k(∇ ·u[r])∇p[r],∇q) f [r] dt−

∫ T

0
(∇ ·u[r],q)

[
( f [r])+

∆ t

]
dt (105)

=
∫ T

0
(S[r],q) f [r]dt−

∫ T

0
〈ψ [r],q〉 f [r]dt +(∇ ·u0,q) f 1− (∇ ·ur(T ),q) f r.
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Limit passage on the linear terms in both (81) and (82) proceeds exactly as before,
using the properties in Definition 4. However, owing to the loss of regularity in
the case δ = 0, we need to recover an estimate on

d
dt

L[∇ ·u[r]]

to secure limit passage on the nonlinear term (the analogue of Lemma 8).

Lemma 11 For the sequence u[r] ∈ V (as in (102)–(104)) such that u[r] ⇀ u in
L2(0,T ;V), we also have that ∇ ·u[r]→ ∇ ·u in L2(0,T ;L2(Ω)).

Proof (of Lemma 11) Consider q ∈V :∣∣∣∣∣
(

d
dt
(L[∇ ·ui]),q

)
L2(Ω)

∣∣∣∣∣= ∣∣((∇ ·ui)∆ t ,q)
∣∣ . (106)

Directly from (83), we see that∣∣((∇ ·ui)∆ t ,q)
∣∣≤ [∆ t]

(
κ̂||pi||1 + ||ψ i||L2(ΓD,v)

+ ||Si||L2(Ω)

)
||q||V . (107)

Summing on i = 1, ...,r, we infer that
d
dt

L[∇ ·u[r]] ∈ L2(0,T ;V ′) and∣∣∣∣∣∣∣∣ d
dt

L[∇ ·u[r]]

∣∣∣∣∣∣∣∣
L2(0,T ;V ′)

≤C(κ̂)·
[
||pi||L2(0,T ;V )+ ||ψ

i||L2(0,T ;L2(ΓD,v))
+ ||Si||L2(0,T ;L2(Ω))

]
.

(108)
Thus we have secured the bounds associated with:

L[∇ ·u[r]] ∈ L2(0,T ;Hε(Ω)) (109)
d
dt

L[∇ ·u[r]] ∈ L2(0,T ;V ′). (110)

Again, as in the proof of Lemma 8, we utilize the Aubin-Lions Lemma to guaran-
tee that ∇ ·u[r]→ ∇ ·u in the sense of L2(0,T ;L2(Ω)).

At this point, limit passage as r→ ∞ proceeds as in Step 4 in the δ > 0 case, and
we have that (27)–(28) is satisfied for any f ∈C∞

0 (0,T ), q ∈V and w ∈ V.

Step 5: Properties of the solution

The bounds (102)–(104) provide the solution (p,u) with the properties that: u ∈
L∞([0,T ];V), and thus ∇ ·u ∈ L∞([0,T ];L2(Ω)), as well as p ∈ L2(0,T ;V ) (see
Section 3.5 for more details). In light of (105) and the bounds in (102)–(104), we
also see that the following estimate holds for all q ∈V and f ∈C∞

0 (0,T ):∣∣∣∣∫ T

0
(∇ ·u,q) f ′ dt

∣∣∣∣≤ (111)[
κ̂||p||L2(0,T ;V )+||S||L2(0,T ;L2(Ω))+ ||ψ||L2(0,T ;L2(ΓD,v)

]
||q||L2(0,T ;V )|| f ||C([0,T ])

+

(
sup
[0,T ]
||u||V

)
||q||V |||| f ||C([0,T ]). (112)



Analysis of nonlinear poro-elastic and poro-visco-elastic models 33

This estimate implies that ∇ · ut ∈ L2(0,T ;V ′), and by the density of the set
{∇q : q ∈ H1

0 (Ω)} in (L2(Ω))3, we also have (via Stokes’ Theorem) that ut ∈
L2(0,T ;(L2(Ω))3). Combining this with the fact that u ∈ L2(0,T ;V), we have by
[18] that u ∈C(0,T ;(L2(Ω))3). Additionally, as ∇ ·ut ∈ L2(0,T ;V ′) with ∇ ·u ∈
L2(0,T ;L2(Ω))⊂ L2(0,T ;V ′), we know by [18, p. 302] that ∇ ·u ∈C([0,T ];V ′).

By the membership of u in L2(0,T ;V), taking test functions of the form w f (·)
(as above—which are dense in this space), we may consider u as a valid test
function in (27). However, ut is not a valid test function for the elasticity equation;
thus, a priori estimates on solutions must be handled in the discrete setting and
obtained via limit passage. Energy estimates have been detailed in Section 3.5,
where the final energy estimate on solutions is shown and (124) results.

Step 6: Recovering the initial condition

We follow [55] to recover the initial condition starting from the pressure equation
(28). For any q ∈V , we can define

G(t)≡ (∇ ·u(t),q) (113)
H(t)≡ − (k(∇ ·u)∇p,∇q)−〈ψ,q〉ΓD,v+(S,q) (114)

F(t)≡
∫ t

0
H(τ)dτ (115)

and note that F(t) is absolutely continuous on [0,T ] with F ′(t) = H(t) a.e. (0,T ).
Utilizing these definitions in (28) and performing integration by parts, for all

f ∈C∞
0 (0,T ) we obtain∫ T

0
(G(t) f ′(t)+F ′(t) f (t))dt =

∫ T

0
((G(t)−F(t)) f ′(t))dt = 0.

Thus G and F differ by a constant: G−F = c.
We return to (105) and consider f ∈C∞([0,T ]) with f (0) = 1 and f (T ) = 0;

completing the limit passage here we see that for such f :∫ T

0
(k(∇ ·u)∇p,∇q) f dt−

∫ T

0
(∇ ·u,q) f ′ dt

=
∫ T

0
(S,q) f dt−

∫ T

0
〈ψ,q〉ΓD,v f dt +(∇ ·u0,q) (116)

for all q ∈V . This can be rewritten as∫ T

0
H f dt +

∫ T

0
G f ′ =−(∇ ·u0,q).

Integrating by parts, we have:∫ T

0
H f dt−

∫ T

0
F ′ f dt +[(F(t)+ c) f (t)]

∣∣T
0 =−(∇ ·u0,q).

Then it follows (by choosing T = 0) that c = (∇ ·u0,q). Identifying F ′ = H a.e.
and since G = F + c, we have

(∇ ·u(t),q)− (∇ ·u0,q) =
∫ T

0

[
−(k(∇ ·u)∇p,∇q)−〈ψ,q〉ΓD,v +(S,q)

]
dt,
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for all q ∈ V and a.e. (0,T ). This implies that the initial condition ∇ · u(0) =
∇ ·u0 = d0 is satisfied for solutions to (27)–(28).

This completes the proof of Theorem 2.

3.5 A priori estimates

The energy estimates derived in this section are attained in two different ways
depending on the parameter δ . For δ > 0, the estimates are obtained by utilizing
u, ut , and p as test functions in (25)–(26). Utilizing u and ut (in the appropriate
sense) as test functions for δ > 0 is functionally justified after the solutions have
been constructed; this is not the case for δ = 0, as a(u,ut) cannot be written
with u ∈ L2(0,T ;V) and ut ∈ L2(0,T ;V′) only. Hence, for δ = 0 we use a priori
estimates on the discrete solutions (pi,ui) ∈ V ×V to (27)–(28) and then pass to
the limit.

3.5.1 Estimates for δ > 0

Thanks to the regularity of constructed solutions, the calculations below hold in
the appropriate functional setting (not just in the sense of distributions).

3.5.2 Energy identities: δ > 0

Using the test functions u, ut , and p in (25)–(26), we obtain the following formal
identities:

2E(u)+δ
d
dt

E(u)− (p,∇ ·u) = − (F,u)+ 〈g,u〉ΓN (117)

d
dt

E(u)+2δE(ut)− (p,∇ ·ut) = − (F,ut)+ 〈g,ut〉ΓN (118)

(∇ ·ut , p)+E(p) = (S, p)−〈ψ, p〉ΓD,v . (119)

Using Assumption 3.1 and a combination of trace theorem, Young’s inequality,
and Gronwall’s inequality, we obtain the a priori estimate:

E(u(t))≤
[
C1E(u(0))+

(
C1

1+δ

)
DATAδ

∣∣t
0

]
exp
(

C2t
1+δ

)
. (120)

Immediately from (120) it follows that∫ T

0
E(u)dt ≤

[
C1E(u(0))+

(
C1

1+δ

)
DATAδ

∣∣T
0

]1+δ

C2

[
exp
(

C2T
1+δ

)
−1
]
,

and finally

sup
t∈[0,T ]

E(u(t))+
∫ T

0

[
E(p(t))+E(u(t))+E(ut)

]
dt

≤C1

[
E(u(0))+

(
1

1+δ

)
DATAδ

∣∣T
0

]
exp
(

C2T
1+δ

)
. (121)
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3.5.3 Estimates for δ = 0

In what follows below, we may utilize u∈ L2(0,T ;V) and p∈ L2(0,T ;V ) as valid
test functions. We cannot, however, utilize ut ∈ L2(0,T ;V′) as a test function on
(27). The final a priori estimates on solutions are justified by considering solutions
(discretized in time) to (81)–(83), and completing the limit passage as in Step 4 of
Section 3.4.2 after making the appropriate calculations. Note that this will yield
cancellation of the terms involving (p[r],(∇ ·u[r])∆ t), but in the limit passage we
will obtain only inequalities.

3.5.4 Energy identities: δ = 0

By testing equation (28) with p, integrating in time we obtain:∫ T

0
(∇ ·ut , p)(V ′,V )dt +

∫ T

0
E(p)dt =

∫ T

0

[
(S, p)−〈ψ, p〉ΓD,v

]
dt. (122)

By testing equation (27) with u and integrating in time we obtain:

2
∫ T

0
E(u)dt =

∫ T

0
(p,∇ ·u)dt +

∫ T

0

[
〈g,u〉ΓN − (F,u)

]
dt. (123)

3.5.5 Final estimate: δ = 0

Consider the discrete pre-Grownall estimate in (99) applied to the discretized so-
lution (pi,ui). Utilizing Gronwall’s lemma, identifying sums up to r with integrals
of (p[r],u[r]) ∈V ×V, and using the weak lower semi-continuity of the norm, we
have our final a priori estimate on [0,T ] in the δ = 0 case:

sup
t∈[0,T ]

E(u(t))+
∫ T

0

[
E(p(t))+E(u(t))

]
dt ≤C1

[
E(u(0))+DATA0

∣∣T
0

]
eC2T

(124)

Remark 20 (A Priori Estimate: A Stronger Solution for δ = 0) Let us formally ad-
mit ut and pt as test functions in (27) and (28). In the case of constant permeability,
this yields estimates for “strong” solutions as in [40,51]. The key difference in this
case is the structure of the nonlinear term which does not allow pointwise control
of the pressure. The “formal identity” below follows from differentiating (15) with
δ = 0 and utilizing the test functions ut and pt :

2E(ut(t))+
1
2

∫
Ω

k(∇ ·u) d
dt
(|∇p|2)dΩ = (F,ut)+ 〈g,ut〉ΓN −〈ψ, pt〉ΓD,v . (125)

3.6 Sharp estimates (with respect to constants)

In this section we present the estimates obtained above with specific control of the
constants associated with permeability, Poincare’s inequality, Korn’s inequality,

https://www.researchgate.net/publication/245381879_A_Galerkin_Method_for_Biot_Consolidation_Model?el=1_x_8&enrichId=rgreq-c4ee538054e8611df1f5fed453bc3f16-XXX&enrichSource=Y292ZXJQYWdlOzMwNDE0OTA2OTtBUzozNzUwNTgzNjQxNTc5NTNAMTQ2NjQzMjI5MDc1Nw==


36 Lorena Bociu et al.

trace theorem, and Young’s inequality. Recall the system (15)-(16) from Section
3. We adjust the notation to be:

Ee(u(t)) =
1
2
[
λe||∇ ·u(t)||2 +2µe||∇u||2 +2µe(∇u,∇uT )

]
(126)

Ev(u(t)) =
1
2
[
λv||∇ ·u(t)||2 +2µv||∇u||2 +2µv(∇u,∇uT )

]
(127)

E(p(t)) =(k(∇ ·u)∇p,∇p). (128)

We note the following inequalities:

||p||1 ≤
C(P)

κ
E(p), ||u||1 ≤ C(K)E(u) (129)

tr[u]≤C(γ)||u||1, tr[p]≤C(γ)||p||1, (130)

where C(P) denotes the Poincaré constant, C(K) denotes the constant associated
with Korn’s inequality, and C(γ) denotes the constant associated with the trace
theorem.

Lemma 12 Let δ > 0. Then we have the estimate:

sup
t∈[0,T ]

[Ee(u(t))+δEv(u(t))]+
∫ T

0
[Ee(u)+δEv(ut)]dt +

∫ T

0
E(p)dt

≤C [eK1T + eK2T ], (131)

where

C ≡ [CEe(u(0))+δCEv(u(0))] (132)

+C(γ,P,κ−1)
∫ T

0

[
||F||20 + ||g||2L2(ΓN)

+ ||S||20 + ||ψ||2L2(ΓD,v)

]
K1 ≡C(γ,K,µe,λe) (133)

K2 ≡C(γ,K,µv,λv,δ
−1). (134)

Lemma 13 Let δ = 0. Then we have the estimate:

sup
t∈[0,T ]

Ee(u(t))+
∫ T

0
[E(p)+Ee(u)]dt ≤ C eK T (135)

where

C ≡ C(γ,K,µe,λe)Ee(u(0)) (136)

+C(γ,K,µe,λe) sup
[0,T ]

(
||g(t)||2L2(ΓN)

+ ||F(t)||20
)

+C(γ,P,κ−1)
∫ T

0

(
||g||2L2(ΓN)

+ ||gt ||2L2(ΓN)
+ ||ψ||2L2(ΓD,v)

)
+C(γ,P,κ−1)

∫ T

0

(
||F||20 + ||Ft ||20 + ||S||20

)
and

K ≡C(γ,K,P,µe,λe,κ
−1). (137)
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4 Numerical study

In this section we perform a numerical study of one-dimensional poro-elastic and
poro-visco-elastic models to investigate how the data regularity given in Definition
3 influences the theoretical estimates obtained in Section 3.6.

Various numerical approaches have been proposed for the solution of poro-
elastic models, whereas less attention has been devoted to the poro-visco-elastic
case. Time discretization is typically performed via a Backward Euler method;
spatial discretization has been addressed by means of various techniques, includ-
ing finite difference schemes [23,24] and finite element methods. Within the con-
text of finite element methods, two main approaches have been proposed. The first
approach is a two-field formulation of the problem in which the pair (u, p) is ap-
proximated using the Taylor-Hood finite element space [45]. The second approach
is a four-field formulation emanating from a least-squares variational principle in
which, together with the original pair (u, p), also the stress T and the Darcy fluid
velocity v are treated as independent variables of the problem. In the four-field
formulation, the Taylor-Hood finite element space is still used to approximate u
and p, whereas the Raviart-Thomas finite element space [4,46,48] is utilized to
approximate the pair (T,v). We refer to [55] for a theoretical analysis of the first
approach and to [31] for a description of the implementation of both approaches
and a comparison in the solution of several benchmark case studies in plane strain
conditions. We also refer to [41,42] for another finite element approach in which
the Raviart-Thomas finite element space for the approximation of v and p is cou-
pled with a Discontinuous Galerkin finite element formulation to treat the elastic
part of the Biot model in the incompressible limit.

In the present article, we adopt the Backward Euler scheme for time advance-
ment and the four-field finite element approach for spatial discretization. Our for-
mulation is an extension of the four-field method based on the use of dual mixed
hybridized finite elements (see [2,4]), with the addition of a solid pressure pa-
rameter to weakly enforce the dependence of the material porosity on the diver-
gence of the solid displacement (see also [9]). The four-field approach is adopted
to properly compute the gradients involved in the energy estimates; a hybridiza-
tion procedure is used to reduce the number of degrees of freedom involved in
the numerical computations. Our scheme is illustrated and implemented in the
one-dimensional case to allow, on the one hand, a preliminary validation against
analytical solutions in both linear and nonlinear models, and, on the other hand, to
perform a tractable and immediate verification of the theoretical energy estimates
obtained in Section 3.6 as a function of time regularity of problem data. The con-
vergence analysis of the numerical scheme and its extension to multiple spatial
dimensions go beyond the scope of the present article and are currently object of
an ongoing research activity.

4.1 The one-dimensional model

We consider the nonlinear boundary value/initial value problem (15)-(22) from
Section 2 in the computational domain Ω = (xstart , xend) of length L = xend−xstart
with boundary ∂Ω = {xstart , xend} and outward unit normal vector n such that
n(xstart) = −1 and n(xend) = +1. We also define the computational time domain
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t ∈ (tstart , tend) of length T = tend − tstart , in such a way that the one-dimensional
(1D) system to be solved in the space-time domain QT := Ω × (tstart , tend) is:

∂σ

∂x
= −F, (138)

∂ζ

∂ t
+

∂v
∂x

= S, (139)

with the constitutive equations:

σ = 2µe
∂u
∂x
−℘+δ

∂

∂ t

[
2µv

∂u
∂x
− λv

λe
℘

]
− p, (140)

℘

λe
+

∂u
∂x

= 0, (141)

ζ = −℘

λe
, (142)

v = −k
(
−℘

λe

)
∂ p
∂x

. (143)

Throughout this section, we use the symbol σ to indicate the one-dimensional
analogue of the total stress tensor T defined in Equations (4)-(5). System (138)-
(143) must be completed by suitable initial and boundary conditions. Similarly to
the general case described in Section 2, we prescribe

u(x, tstart) = u0(x) ∀x ∈Ω , (144)

and we consider the following sets of boundary conditions:

σn(x, t) = g(x, t), v(x, t)n(x) = 0 ∀x ∈ ΓN , ∀t ∈ (tstart , tend), (145)

u(x, t) = 0, p(x, t) = 0 ∀x ∈ ΓD,p, ∀t ∈ (tstart , tend), (146)

u(x, t) = 0, v(x, t)n(x) = ψ(x, t) ∀x ∈ ΓD,v, ∀t ∈ (tstart , tend). (147)

Note that ΓN ∪ΓD,p∪ΓD,v = ∂Ω = {xstart ,xend}, and that ΓN , ΓD,p and ΓD,v can be
empty (but not all of them simultaneously). Two differences appear by comparing
the 1D equations (138)-(143) with the multi-dimensional version (15)-(22). The
first difference is that the Lamé and viscous parameters are not scaled to unity
as to maintain the physical parameters of the problem. The second difference is
the introduction of the elastic pressure parameter ℘ that can be replaced in (9) to
write the porosity as

φ = φ0−
P

λ
. (148)

The use of (148) in (7) and (8) allows to evaluate the permeability without ex-
plicitly computing the derivative of the displacement field, thereby avoiding the
well-known degradation of the accuracy associated with numerical differentiation
(see [44], Chapt. 8). This aspect is treated in Section 4.3. Interestingly, the vari-
able ℘ is widely utilized in computational mechanics as it serves as Lagrange
multiplier to enforce material incompressibility (see [25]). Mathematically, this
amounts to a robust numerical treatment of the limit λe → +∞ and allows to
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avoid the occurrence of the locking phenomenon in the finite element discretiza-
tion (see [27] in the case of linear elasticity and Stokes flow). Volumetric locking
also affects the numerical treatment of poroelastic models. We refer to [41,42] for
a numerical approach to overcome locking based on the combined use of Discon-
tinuous Galerkin and mixed finite elements. Notice also that no boundary condi-
tions are required for the elastic pressure parameter ℘ because the total stress is
already prescribed on ΓN in (145).

4.2 Numerical algorithm

The numerical algorithm for the solution of the 1D problem described above is
composed by three main steps: (i) temporal semi-discretization; (ii) fixed-point
iteration; and (iii) dual mixed hybridized finite element approximation. The details
of each step are given in following subsections.

4.2.1 Temporal semi-discretization

We divide [tstart , tend ] into a finite number r≥ 1 of subintervals [ti−1, ti], i= 1, . . . ,r
of uniform length ∆ t = T/r, as in Sections 3.4.1 and 3.4.2. For any smooth func-
tion (in time) W = W (x, t), we let W i := W (x, ti), i = 0, . . . ,r; otherwise, should
W be discontinuous (in time) at t = ti, i∈ [1,r], we let W i :=W (x, t−i ), i= 1, . . . ,r.
We note that these definitions agree with those introduced in Sections 3.4.2 (func-
tions with H1-time regularity) and 3.4.1 (functions with L2-time regularity). Using
the Backward Euler (BE) method for the time discretization, we are led to the solu-
tion of the following sequence of r nonlinearly coupled boundary value problems:
Given ui and ℘i, i = 0, . . . ,r−1, solve:

∂σ i+1

∂x
= −F i+1, (149)

σ
i+1 = 2µe

∂ui+1

∂x
−℘

i+1− pi+1 +δ
1

∆ t

[
2µv

∂ui+1

∂x
− λv

λe
℘

i+1
]

−δ
1

∆ t

[
2µv

∂ui

∂x
− λv

λe
℘

i
]
, (150)

℘i+1

λe
+

∂ui+1

∂x
= 0, (151)

−℘i+1

λe∆ t
+

∂vi+1

∂x
= Si+1− ℘i

λe∆ t
, (152)

vi+1 = −k
(
−℘i+1

λe

)
∂ pi+1

∂x
(153)

(154)

for x in Ω , with

σ
i+1 n = gi+1 vi+1 n = 0 on ΓN (155)

ui+1 = 0 pi+1 = 0 on ΓD,p (156)

ui+1 = 0 vi+1 n = ψ i+1 on ΓD,v. (157)
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4.2.2 Fixed-point iteration

We adopt a Picard iteration to numerically deal with the nonlinear dependence of
the permeability k on−℘/λe in (153). This approach is similar to that used in [8].
Given u(0) = ui and ℘(0) =℘i, for each j ≥ 0 until convergence, solve:

∂σ ( j+1)

∂x
= −F i+1, (158)

σ
( j+1) = 2µe

∂u( j+1)

∂x
−℘

( j+1)− p( j+1)+δ
1

∆ t

[
2µv

∂u( j+1)

∂x
− λv

λe
℘

( j+1)

]

−δ
1

∆ t

[
2µv

∂ui

∂x
− λv

λe
℘

i
]
, (159)

℘( j+1)

λe
+

∂u( j+1)

∂x
= 0, (160)

−℘( j+1)

λe∆ t
+

∂v( j+1/2)

∂x
= Si+1− ℘i

λe∆ t
, (161)

v( j+1/2) = −k

 −℘( j)

λe

 ∂ p( j+1)

∂x
, (162)

(163)

for x in Ω , with

σ
( j+1) n = gi+1 v( j+1) n = 0 on ΓN (164)

u( j+1) = 0 p( j+1) = 0 on ΓD,p (165)

u( j+1) = 0 v( j+1) n = ψ i+1 on ΓD,v. (166)

The boxed term in (162) characterizes the adopted Picard iteration, where the per-
meability at the iteration level j + 1 is computed using the previously available
elastic pressure ℘( j). The algorithm described above is a (semi-implicit) variant
of the staggered (or loosely coupled) algorithm proposed and successfully utilized
in [9] for the numerical study of a problem similar to that considered in this work.
It is well known that the use and analysis of solution algorithms for the treat-
ment of solid-fluid interacting problems is a nontrivial subject and would require
a deeper investigation. Since such an investigation is not the main focus of this ar-
ticle, we postpone the examination of different solution maps to a future research.

4.3 The Dual Mixed Hybridized (DMH) finite element discretization

The choice of a suitable spatial discretization is a crucial and extremely delicate
issue for the problem at hand. This is due to the fact that our numerical study aims
at interpreting the theoretical estimates obtained in Section 3.6 which require the
evaluation of gradient quantities under different regularity conditions (in time) of
input data. Thus, it is extremely important to approximate gradients accurately.
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It is well-known that numerical differentiation is a very delicate process usually
affected by a degradation in the approximation accuracy (see, e.g., [44] Chapters 8
and 10). For this reason, the use of a dual mixed method where the dual variables
(the total stress σ and the discharge velocity v) are treated as independent variables
as well as the primal unknowns (the solid displacement u and the fluid pressure p)
appears to be a better option compared to a displacement-based method where the
sole primal variables are directly discretized.

In particular, we propose here a dual mixed hybridized (DMH) finite element
method which generalizes to the poro-elastic and poro-visco-elastic cases the ap-
proach proposed in [20,19] for linear incompressible elasticity and Stokes equa-
tions. We adopt the lowest-order Raviart-Thomas (RT) finite element pair [46] for
the dual and primal variables which provides:
i) equal-order optimal accuracy for the approximation of the pairs σ ,u and v, p in

the graph norm of the space H(div,Ω)×L2(Ω), where

H(div,Ω) :=
{

τ : Ω → R |τ ∈ L2(Ω),
∂τ

∂x
∈ L2(Ω)

}
(coinciding with H1(Ω) in the 1D case);

i) exact satisfaction of self-equilibrium at each element level;
iii) exact satisfaction of the action-reaction principle at the discrete level for each

internal and boundary interelement;
iv) weak satisfaction of Dirichlet boundary conditions.
To overcome the limitation in (iv) and to substantially reduce the computational
effort, we resort, in coding, to the hybridization technique (see [48]) that makes (in
1D) the DM-RT method completely equivalent to a standard nodal displacement
formulation (for more details on hybridization, we refer to [2,4]).

4.3.1 Finite element spaces

Let h > 0 be the spatial discretization parameter. We introduce the family of tri-
angulations {Th}h>0 defined for each h as the partition of Ω into subintervals
Kk = (xk−1,xk), k = 1, . . . ,Kh, Kh ≥ 1, in such a way that ∪Kk∈ThKk = Ω . On
each Kk we denote by ∂Kk the boundary of the interval and associate with ∂Kk the
unit normal vector nk such that nk = −1 at x = xk−1 and nk = +1 at x = xk. The
length of Kk is hk and we set h := max

Kk∈Th
hk. For a given integer q ≥ 0 we denote

by Pq(Kk) the set of polynomials of degree ≤ q defined on Kk. Let us define the
following finite element spaces:

Uh =
{

uh ∈ L2(Ω) such that uh ∈ P0(Kk)∀Kk ∈Th
}
, (167)

Vh =
{

jh ∈ L2(Ω) such that jh ∈ P1(Kk)∀Kk ∈Th
}
, (168)

Mh = {µh ∈ R such that |µk|<+∞∀xk ∈Th} . (169)

Moreover, to account for Dirichlet boundary conditions, we introduce the follow-
ing subspaces of Mh:

Mu
h,0 = {µh ∈Mh such that µh = 0 on ΓD} , (170)

Mp
h,0 =

{
µh ∈Mh such that µh = 0 on ΓD,p

}
, (171)
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where ΓD =ΓD,p∪ΓD,v. Let Uh := [σh, uh, ûh]
T and Ph := [vh, ph, p̂h]

T denote the
discrete elastic and fluid variables.

Let also U u
h :=Vh×Uh×Mu

h,0 and U p
h :=Vh×Uh×Mp

h,0 be the finite ele-
ment spaces for the triplets Uh and Ph, respectively. The pairs σh, uh (resp., vh, ph)
are the approximation of σ , u (resp., v, p) in the interior of each element Kk ∈Th.
The variables ûh (resp., p̂h) are the approximation of u (resp., p) at each node
of Th. The fundamental property of ûh (resp., p̂h) is that they are single-valued at
each node xk, k = 0, . . . ,Kh whereas uh (resp., ph) experience finite jump disconti-
nuities at each node. As shown below, the variables ûh (resp., p̂h) are the Lagrange
multipliers of the continuity constraint of σh (resp., vh) at each internal node xk,
k = 1, . . . ,Kh − 1. The dual-mixed hybridized finite element approximation of
(158)- (166) is:

Find (Uh,℘h, Ph) ∈ (U u
h ×Uh×U p

h ) such that:

A(m−1
u σh,τh)+B(uh,τh)−C(ûh,τh)+

mp

mu
D(℘h,τh)

+
1

mu
D(ph,τh) = qi

h ∀τh ∈Vh (172)

1
λe

(℘h,ξh)h +G(ξh, ûh) = 0 ∀ξh ∈Uh (173)

B(ξh,σh) =−(F i+1,ξh)h ∀ξh ∈Uh (174)

C(µh,σh) = gi+1
µh|ΓN ∀µh ∈Mu

h,0 (175)

A(k−1vh,τh)−B(ph,τh)+C(p̂h,τh) = 0 ∀τh ∈Vh (176)

− 1
λe∆ t

(℘h,ξh)h +B(ξh,vh) = (Si+1,ξh)h−
1

λe∆ t
(℘i

h,ξh)h ∀ξh ∈Uh

(177)

C(µh,vh) = ψ
i+1

µh|ΓD,v ∀µh ∈Mp
h,0 (178)

where:

mu := 2(µe +δ µv/∆ t), mp := (1+δλv/(∆ tλe))

( f ,g)h := ∑
Kk∈Th

∫
Kk

f gdx,

qi
h :=

δ

∆ t
HV

λe

1
mu

D(℘i
h,τh), HV := λv +2µv,
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and the bilinear forms A, B, C, D and G are defined as:

A(m−1
u Jh,τh) = ∑

Kk∈Th

∫
Kk

m−1
u Jhτhdx ∀(Jh,τh) ∈ (Vh×Vh)

B(qh,Jh) = ∑
Kk∈Th

∫
Kk

qh
∂Jh

∂x
dx ∀(qh,Jh) ∈ (Uh×Vh)

C(µh,Jh) = ∑
Kk∈Th

∫
∂Kk

µhJhnkds ∀(µh,Jh) ∈ (Mh×Vh)

D(qh,τh) = ∑
Kk∈Th

∫
Kk

qhτhdx ∀(qh,τh) ∈ (Uh×Vh)

G(µh,ξh) = ∑
Kk∈Th

∫
∂Kk

ξhµhnkds ∀(ξh,µh) ∈ (Uh×Mh).

The seven equations (172)-(178) constitute a linear algebraic system for the seven
scalar dependent variables in Uh, ℘h and Ph. The Dirichlet conditions on ΓD are
included in the standard essential manner through the definitions (170)-(171). The
spaces Uh and Vh are made of discontinuous functions over Th and are used to
approximate the primal and dual variables inside each element Ki. The spaces
Mu

h,0 and Mp
h,0 are made of functions defined only at the nodes of Th and are used

to approximate the primal variables at each node. In particular, the function ûh
(resp., p̂h) is the Lagrange multiplier that enforces the interelement continuity at
x = xk, k = 1, . . . ,Kh−1, of the normal component σhnk (resp., vhnk) and the
Neumann boundary condition on ΓN . In mechanical terms, ûh and p̂h are referred
to as interelement connectors (see [10] and the references cited therein).

4.3.2 Static Condensation

Looking at the structure of the discrete problem (172)-(178), one is tempted to
conclude that there is a proliferation of unknowns which reflects into a very ex-
pensive (and complicated) numerical coding. However, all equations except (175)
and (178) are completely local and, consequently, for each element Kk ∈ Th the
internal variables σh and uh, as well as vh and ph, can be eliminated in favor
of the nodal variables ûh and p̂h and the problem data. This elimination proce-
dure is referred to as static condensation and is the fundamental step that makes
the hybridized method efficient and computationally competitive with standard
displacement-based approaches. Static condensation can also be given an abstract
form based on the concepts of local lifting and local solver which allows to inter-
pret the elimination procedure as a (discrete) weak variational formulation of the
original differential problem where the unknown is the hybrid variable. Such in-
terpretation confers to the hybridization strategy a solid mathematical foundation
and allows to apply standard functional analysis techniques to study well posed-
ness and convergence of the hybridized finite element approximation (see [14]
and [13] for a discussion in the case of second-order elliptic problems with diffu-
sive and advective-diffusive operators).
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The application of static condensation to the problem at hand is far from trivial,
since we deal with a non-scalar problem coupling fluid and solid equations. Details
on the implementation are given below.

Consider a generic element Kk ∈ Th and omit for notational brevity the suffix
Kk from all the involved quantities (whenever possible). Equation (172) can be
written in matrix form as

m−1
u Aσ +BT u−CT û+m−1

u mpD℘+m−1
u Dp = δm−1

u
HV

∆ tλe
D℘

i.

The quantities σ and u are the column vectors (of dimension 2 and 1, respectively)
containing the degrees of freedom for the restrictions σh|Kk and uh|Kk . The quantity
û is the column vector (of dimension 2) containing the degrees of freedom of the
restriction û∂Kk

. The quantities ℘ and p are the column vectors (of dimension 1)
containing the degrees of freedom of the restrictions℘h|Kk and ph|Kk , respectively.
The quantities m−1

u A, B, C and D are the matrices (of dimension 2×2, 1×2, 2×2
and 2×1, respectively) corresponding to the restrictions to the element Kk of the
bilinear forms A, B, C and D, respectively.

Starting from the solid phase, we see that matrix A is invertible so that

σ = muA−1 [CT û−BT u
]
−A−1D [mp℘+p]+ ri (179)

where ri := δ
HV

∆ tλe
A−1D℘

i. If λe < +∞, we can eliminate ℘h in favor of ûh in

equation (173) to obtain
℘=−λeGû (180)

where G is the 1× 2 matrix defined as h−1
k [−1+1] such that the matrix-vector

product Gû is the constant approximation of −∂u/∂x over the element Kk. Other-
wise, if λe =+∞, equation (173) becomes∫

∂Kk

ûhnkds = 0 ∀Kk ∈Th (181)

which is the natural way to express material incompressibility in local weak form.
As commonly done in biomechanical calculations, we assume λe <+∞ (although
close to the incompressibile limit) so that we use (180) into (179) to obtain

σ = M û−muA−1BT u−A−1Dp+ ri, (182)

having set
M := A−1 (muC+λempDG) .

Eq. (174) yields
Bσ =−bi+1, (183)

having set
bi+1 = hkF i+1(xk).

Moving to the fluid phase, Eq. (176) yields

v =−k( j)A−1 [Cp̂−BT p
]

(184)
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where k( j) := kre f f (φ0−℘( j)|Kk/λe), while Eq. (177) yields

Bv− hk

λe∆ t
℘= li+1, (185)

having set

li+1 = hkSi+1(xk)−
hk

λe∆ t
℘

i.

Substituting (180) and (184) into (185) we are able to express the internal fluid
pressure ph|Kk as a function of the sole hybrid variables ûh|∂Kk

and p̂h|∂Kk
through

the following relation

k( j)BA−1BT p = k( j)BA−1Cp̂− hk

∆ t
Gû+ li+1.

Because of Assumption 3.1 on the permeability k, the 1×1 matrix Bp := k( j)BA−1BT

is symmetric and positive definite so that the above relation yields

p = Qp̂+Rû+B−1
p li+1, (186)

having set

Q := k( j)B−1
p BA−1C, R :=− hk

∆ t
B−1

p G.

We conclude the elimination procedure for the fluid phase by substituting (186)
into (184) to obtain

v = Lppp̂+Lpuû+bp (187)

Lpp =−k( j)A−1 [C−BT Q
]

(188)

Lpu = k( j)A−1BT R (189)

bp = k( j)A−1BT B−1
p li+1. (190)

We proceed similarly for the solid phase by substituting (182) and (186) into (183)
and obtain

muBA−1BT u = B
[
M −A−1DR

]
û−BA−1DQp̂+B

[
ri+1−A−1DB−1

p li+1]+bi+1.

The 1×1 matrix Bu := muBA−1BT is symmetric and positive definite so that the
above relation yields

u = R̃û+ Q̃p̂+B−1
u fi+1, (191)

having set

Q̃ :=−B−1
u BA−1DQ R̃ := B−1

u B
[
M −A−1DR

]
,

and
fi+1 := bi+1 +B

[
ri−A−1DB−1

p li+1] .
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We conclude the elimination procedure for the solid phase by substituting (186)
and (191) into (182) to obtain

σ = Luuû+Lupp̂+bu (192)

Luu = M −A−1
[
muBT R̃+DR

]
(193)

Lup =−A−1
[
muBT Q̃+DQ

]
(194)

bu = ri−muA−1BT B−1
u fi+1−A−1DB−1

p li+1. (195)

The above illustrated static condensation procedure corresponds to Gaussian elim-
ination, at the level of the element Kk ∈ Th, of the internal variables σh|Kk , uh|Kk
and vh|Kk , ph|Kk in favor of ûh|∂Kk

and p̂h|∂Kk
(see [2]). Over the last years, the

use of static condensation has been extended also to the class of Discontinuous
Galerkin (DG) methods, giving rise to the so-called Hybridized DG finite element
formulation. A complete overview and analysis of HDG methods applied to the
solution of an elliptic model problem in multiple spatial dimensions can be found
in [15].

4.4 The Linear Algebraic System

Having eliminated all the internal variables, it only remains to enforce the conti-
nuity of interelement normal stress and normal Darcy’s velocity and enforce the
Neumann boundary conditions, see (175) and (178). Without loss of generality,
we show these steps in the case where ΓD,p = {xstart}, ΓN = {xend} and ΓD,v = /0.
For each element Kk ∈ Th, k = 1, . . . ,Kh, and for any function ηh ∈ P1(Kk) we
set ηh(x) = η1τ1(x)+η2τ2(x) where η1, η2 are the degrees of freedom of ηh and
τ1, τ2 are the two (local) Lagrange basis functions (”hat functions”) associated
with nodes xk−1 and xk, respectively. Conditions (175) and (178) give rise to the
following 2Mh equations:

σ
2
Kk−1

(ûk−1, ûk, p̂k−1, p̂k) = σ
1
Kk
(ûk, ûk+1, p̂k, p̂k+1) k = 1, . . . ,Kh−1(196)

σ
2
Kk
(ûk−1, ûk, p̂k−1, p̂k) = gi+1 k = Kh, (197)

v2
Kk−1

(ûk−1, ûk, p̂k−1, p̂k) = v1
Kk
(ûk, ûk+1, p̂k, p̂k+1) k = 1, . . . ,Kh−1 (198)

v2
Kk
(ûk−1, ûk, p̂k−1, p̂k) = 0 k = Kh. (199)

Looking at the above relations, we see that conditions (175) and (178) are non-
local because, for each k = 1, . . . ,Kh − 1, they couple the degrees of freedom
ûk−1, ûk, ûk+1 with p̂k−1, p̂k, p̂k+1, giving rise to the following linear algebraic
block system [

Muu Mup
Mpu Mpp

][
û
p̂

]
=

[
bu
bp

]
(200)

in which Muu, Mup, Mpu and Mpp are tridiagonal square matrices of size equal to
Kh, û and p̂ are the vectors of nodal unknowns ûk = ûh(xk) and p̂k = p̂h(xk), both
of size Kh, and bu, bp are the load vectors, both of size Kh.
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Some comments about the solution of the linear system (200) are in order.
First, we notice that matrix Muu is symmetric and positive definite, whereas Mpp
is symmetric and negative definite. These properties ensure that system (200) is
uniquely solvable in the stationary case (equivalent to setting 1/∆ t = 0). Second,
to prove that system (200) is uniquely solvable also in the time-dependent case
we can follow the same arguments based on the saddle-point theory as in [21],
Chapter 3. Third, to enforce the homogeneous Dirichlet boundary on ΓD,p we
do not eliminate the rows and columns associated with the respective unknowns
(ûh(xstart) and p̂h(xstart)), rather, we set (using Matlab notation):

Muu(1, :) = 0, Muu(1,1) = 1, Mup(1, :) = 0, bu(1) = 0 (201)
Mpu(1, :) = 0, Mpp(1, :) = 0, Mpp(1,1) = 1, bp(1) = 0. (202)

This simplifies considerably the coding and can be extended in a straightforward
manner to multi-dimensions. Since we adopt a direct solver in numerical compu-
tations (the \ command in Matlab) the use of (201)-(202) amounts to enforcing
exactly the boundary conditions u(xstart , t) = p(xstart , t) = 0 for all t ∈ (tstart , tend).

4.5 Validation of the numerical method

The validity of the DMH method described in the previous sections is assessed
by means of four test cases (denoted by V1, V2, V3 and V4, defined in Sections
4.5.1-4.5.4), where numerical and analytical solutions are compared for various
spatial and temporal discretizations. In the following, we will consider uniform
spatial and temporal grid size parameters defined as h = L/Kh and ∆ t = T/r, re-
spectively. The accuracy of the approximation provided by the hybrid variables ûh
and p̂h is measured by computing the errors u− u∗h and p− p∗h, where u∗h and p∗h
are the conforming P1-interpolants of the nodal values ûk and p̂k, k = 0, . . . ,Kh,
computed by solving the DMH linear algebraic system (200). Standard error es-
timates valid for 2nd order elliptic problems predict an optimal convergence rate
of O(h2) in the L2 norm for u∗h and p∗h and for σh and vh, whereas the expected
convergence rate for uh and ph is only O(h) in the L2 norm (for all the theoretical
details, see [2,4,48]). In the following, for any function w = w(x, t), we consider
the norms

‖w‖Q := sup
t∈[tstart ,tend ]

‖w(t)‖L2(Ω), ‖w‖∞ := sup
t∈[tstart ,tend ]

‖w(t)‖∞.

If w does not depend on time, we simply have

‖w‖Q =

(∫ xend

xstart

w2(x)dx
)1/2

, ‖w‖∞ = sup
x∈(xstart ,xend)

|w(x)|.

Even though the poro-elastic and poro-visco-elastic models considered in this ar-
ticle go beyond the elliptic theory, it is still very interesting to compare the results
we obtain with those available in simpler cases. To facilitate this comparison, we
consider four test cases of increasing complexity, as summarized in Table 1 and
detailed in the following sub-sections.
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Test Case Permeability Data
V1 constant constant in space and time
V2 constant varying in space and time
V3 varying as in (7) varying in space, constant in time
V4 varying as in (7) varying in space and time

Table 1 Summary of the main features of the four test cases used for the numerical validation
of the DMH method.

4.5.1 Validation test case V1

Let us consider problem (138)-(143) with δ = 0 in the domain Ω = (0,1), so
that L = 1cm, with the boundary conditions u = p = 0 at xstart = 0, and σn = g1
and vn = ψ1 at xend = 1. We assume volumetric and boundary source terms to be
constant and given by

F1 = 0.3dynecm−3, S1 = 0.3s−1, g1 =−0.3dynecm−2, ψ1 =−3cms−1.

We also assume that porosity and permeability are constant and given by φ = φ0 =
0.5 and k = kre f = 1cm3 sg−1, respectively. In this case, the problem admits the
exact solution:

u(x) =
x

HA

[
F1

(
L− x

2

)
+g1

]
− x2

2HAkre f

[
ψ1−S1

(
L− x

3

)]
,

p(x) =
x

kre f

[
S1

(
L− x

2

)
−ψ1

]
, ℘(x) =− λe

HA
(σ(x)+ p(x)),

σ(x) = g1 +F1(L− x), v(x) = ψ1 +S1(x−L),

where HA = λe+2µe is the aggregate elastic modulus, with λe = µe = 1dynecm−2.
Since the exact solution is stationary, we solve directly the stationary problem
by setting 1/∆ t = 0. We consider decreasing grid sizes h = L/Kh, with Kh =
[5,10,20,40,80,160,320]T .

Numerical results (not reported here) show that σh and vh are exact up to ma-
chine precision and system conditioning. This accuracy is mathematically to be
ascribed to the fact that both σ and v belong to the finite element space (168).
Mechanically, it expresses the evidence that the DMH scheme satisfies the linear
stress patch test (see [27] and [56] for a discussion of this important issue). The
optimal accuracy of the hybrid variables is demonstrated in Fig. 1. Fig. 2 shows
the behavior of the approximation of the elastic pressure parameter. Linear con-
vergence is achieved in the L2 norm, consistently with the fact that we are using
a locally constant approximation of ℘ whereas second-order accuracy is obtained
in the L∞ norm. This result is consistent with theoretical conclusions valid in the
elliptic case where superconvergence of the internal variables is achieved at the
center of mass of each element Kk (cf. [2] and [4] for the proof).

4.5.2 Validation test case V2

Let us now consider problem (138)-(143) with δ = 1 in the domain Ω = (0,1),
so that L = 1cm, with the boundary conditions u = p = 0 at xstart = 0, and σn =
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Fig. 1 Validation test V1. Discretization errors for the hybrid variables. The convergence rate is
optimal and equal to O(h2) with respect to h.
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Fig. 2 Validation test V1. Approximation of the elastic pressure. Superconvergence (O(h2)) is
obtained at mesh midpoints.

g2(t) and vn = ψ2(t) at xend = 1. Now volumetric and boundary source terms
are not constant, neither in space nor in time. Thus, considering the time interval
(tstart , tend) = (0,T ), with T = 0.1s, and the spatial and temporal shape functions
χ(x) = sin(ωxx) and τ(t) = sin2 (ωtt) , with ωx = 8/L and ωt = 8/T , we assume
that the data are given by:

F2(x, t) =−{Ure f χ
′′(x)[HA τ(t)+δHV τ

′(t)]−Pre f τ(t)χ
′(x)},

S2(x, t) =Ure f τ
′(t)χ

′(x)− kre f Pre f χ
′′(x)τ(t),

g2(t) =Ure f χ
′(x)[HAτ(t)+δHV τ

′(t)]−Pre f τ(t)χ(L),

ψ2(t) =−kre f Pre f τ(t)χ ′(L),

with Ure f = 0.1cm, Pre f = 0.3dynecm−2, HA = λe + 2µe = 3dynecm−2, λe =

µe = 1dynecm−2 and HV = λv + 2µv = 0.5774dynescm−2. As in test case V1,
we assume that porosity and permeability are constant and given by φ = φ0 = 0.5
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and k = kre f = 1cm3 sg−1, respectively. In this case the problem admits the exact
solution:

u(x, t) =Ure f χ(x)τ(t),
p(x, t) = Pre f χ(x)τ(t),

σ(x, t) =Ure f χ
′(x)[HAτ(t)+δHV τ

′(t)]−Pre f χ(x)τ(t),

v(x, t) =−kre f Pre f χ
′(x)τ(t),

℘(x, t) =−λeUre f χ
′(x)τ(t),

which now depends on both space and time. We compute the numerical approxi-
mation of the solution considering uniform spatial and temporal grid size param-
eters defined as h = L/Kh and ∆ t = T/r, with Kh = [5,10,20,40,80,160,320]T
and r = [5,10,20,40,80,160,320]T .
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Fig. 3 Validation test V2. Discretization errors for the hybrid variables. The convergence rate is
sub-optimal for both variables and equal to O(h) with respect to h.

In this case, as illustrated in Figures 3-5, all the approximate variables con-
verge to the corresponding exact ones with linear rate with respect to h, except the
variable σh (approximate total stress) which continues to converge with an opti-
mal rate (O(h2)). The degradation of the convergence order of the DMH method
is to be ascribed to the choice of the Backward Euler method as time-advancing
scheme which is well-known to be only first-order accurate in time [44]. It is re-
markable to notice that the stress variable is not affected by such a degradation,
since a time derivative is present in the constitutive equation for the stress but not
in the equation for the balance of linear momentum (138). This is not the case for
the discharge velocity because the time derivative of the fluid content ζ appears
directly in the fluid mass balance equation (139).

4.5.3 Validation test case V3

Let us consider again problem (138)-(143) with δ = 0 in the domain Ω = (−1,1),
so that L = 2cm, with the boundary conditions u = p = 0 at xstart = −1, and
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Fig. 4 Validation test V2. Approximation of the elastic pressure.
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Fig. 5 Validation test V2. Discretization errors for the total stress and Darcy’s velocity. The
convergence rate is optimal for the stress (O(h2)) but is sub-optimal for the velocity (O(h)).

σn = g3 and vn = ψ3 at xend = 1. Volumetric and boundary source terms are given
by:

F3(x) =−[Ure f HA χ
′′(x)−Pre f χ

′(x)],

S3(x) =−kre f Pre f χ
′′(x)Θ(x)− kre f Pre fUre f χ

′(x)χ ′′(x)Ξ(x),
g3 =Ure f HAχ(xend)−Pre f χ(xend),

ψ3 =−kre f Pre f χ
′(xend)Θ(xend),

where:
χ(x) = sin(ωxx) , Φ(x) = φ0 +Ure f χ

′(x),

Θ(x) =
Φ3(x)

[1−Φ(x)]2
, Ξ(x) =

Φ2(x)[3−Φ(x)]
[1−Φ(x)]3

,

with ωx = 2π/L, Ure f = 0.1cm, Pre f = 1dynecm−2, HA = 3dynecm−2 and φ0 =
0.5. Unlike previous test cases, the porosity φ is now allowed to vary with the
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derivative of the displacement within the range [Φmin, Φmax], where 0 < Φmin <
Φmax < 1, in such a way that the permeability k, expressed by the nonlinear rela-
tion (7), satisfies

0 < kre f
Φ3

min
(1−Φmin)2 ≤ k(φ)≤ kre f

Φ3
max

(1−Φmax)2 . (203)

The above limitations on porosity and permeability are the same as those adopted
in [8]. Here we set Φmin = 0.125, Φmax = 0.875 and kre f = 1cm3 sg−1. In this case
the problem admits the exact solution:

u(x) =Ure f χ(x),
p(x) = Pre f χ(x),

σ(x) =Ure f HAχ
′(x)−Pre f χ(x),

v(x) =−kre f Pre f χ
′(x)Θ(x),

℘(x) =−λeUre f χ
′(x).

Since the problem is stationary, we compute directly the stationary solution by set-
ting 1/∆ t = 0 in the numerical code. The Picard iteration (158)-(157) is terminated
at the first value of j, say j∗, such that the maximum relative increment defined as
‖X ( j∗)−X ( j∗−1)‖/‖X ( j∗)‖ is less than a prescribed tolerance ε , where ε = 10−3

and X is any variable in the set
{

uh, ph, û∗h, p̂∗h,σh,vh
}

. We consider decreasing
grid sizes h = L/Kh, with Kh = [5,10,20,40,80,160,320,640,1280,2560]T .
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Fig. 6 Validation test V3. Discretization errors for the hybrid variables show that the conver-
gence rate (O(h2)) is optimal for both variables.

The simulation results are reported in figures 6-8. Interestingly, even in this
fully nonlinear case where porosity and permeability vary with the problem so-
lution, the asymptotic convergence rates for the various approximation errors are
the same optimal values as those in the basic linear test case V1 with constant
coefficients. This example demonstrates the ability of the proposed DMH method
to provide a reliable approximation of the nonlinear poro-elastic problem at hand.
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Fig. 7 Validation test V3. Approximation of the elastic pressure show that superconvergence
(O(h2)) is obtained at mesh midpoints.
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Fig. 8 Validation test V3. Discretization errors for the total stress and Darcy’s velocity show that
the convergence rate (O(h2)) is optimal for both variables.

4.5.4 Validation test case V4

This test case is the time dependent version of the previous test case V3. Let us
consider again problem (138)-(143) with δ = 1 in the space-time domain (−1,1)×
(0,T ), so that L = 2cm and T = 2s, with the boundary conditions u = p = 0 at
xstart = −1, and σn = g4(t) and vn = ψ4(t) at xend = 1. Porosity and permeabil-
ity are nonlinear functions of the solution, as described in test case V3. Now the
volumetric and boundary source terms are time-dependent and are given by:

F4(x, t) =−[Ure f χ
′′(x)(HAτ(t)+δHV τ

′(t))−Pre f τ(t)χ ′(x)],

S4(x, t) =Ure f χ
′(x)τ ′(t)−Pre f kre f χ

′′(x)τ(t)Θ(x, t)− kre f Pre fUre f χ
′(x)χ ′′(x)τ2(t)Ξ(x, t),

g4(t) =Ure f χ
′(xend)(HAτ(t)+δHV τ

′(t))−Pre f τ(t)χ(xend),

ψ4(t) =−kre f Pre fΘ(xend)χ
′(xend)τ(t),
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where:

χ(x) = sin(ωxx), τ(t) = sin(ωtt), Φ(x, t) = φ0 +Ure f χ
′(x)τ(t),

Θ(x, t) =
Φ3(x, t)

[1−Φ(x, t)]2
, Ξ(x, t) =

Φ2(x, t)[3−Φ(x, t)]
[1−Φ(x, t)]3

,

with ωt = 2π/T and all the other parameter values given as in test case V3. In this
case the problem admits the exact solution:

u(x, t) =Ure f χ(x)τ(t),
p(x, t) = Pre f χ(x)τ(t),

σ(x, t) =Ure f χ
′(x)(HAτ(t)+δHV τ

′(t))−Pre f χ(x)τ(t),

v(x, t) =−Pre f kre fΘ(x, t)χ ′(x)τ(t),

℘(x, t) =−λeUre f χ
′(x)τ(t).

We compute the numerical approximation of the solution considering uniform
spatial and temporal grid size parameters defined as h = L/Kh and ∆ t = T/r,
with Kh = [5, 10, 20, 40, 80, 160, 320, 640, 1280, 2560]T and r = [5, 10, 20, 40,
80, 160, 320, 640, 1280, 2560]T .

The simulation results are reported in the set of figures 9-12. This corresponds
to numerically solving the fully nonlinear coupled poro-visco-elastic system in the
case where the permeability is described by the Carman-Kozeny relation (7). We
see that the first-order temporal accuracy of the BE method spoils the superconver-
gence property of the DMH that was achieved in the stationary test case V3. In par-
ticular, the convergence of the hybrid variables reduces from a quadratic (Fig. 6) to
a linear rate (Fig. 9). No superconvergence at the mesh centers of mass is obtained
in the time dependent case (Fig. 10(b)) unlike the stationary case (Fig. 7(b)). The
Darcy velocity field suffers a similar reduction in the convergence rate which low-
ers from second order (Fig. 8(b)) to linear order (Fig. 12(a)). It is remarkable to
notice that the decrease in accuracy for the Darcy velocity occurs in correspon-
dance of small values of the discretization parameters, since for larger values of h
and ∆ t the slope of the error curve is close to the optimal value p = 2 (Fig. 12(b)).
This seems to indicate that problem nonlinearity drives a smooth transition of the
accuracy behaviour of the method as a function of the spatial and temporal dis-
cretization parameters, in such a manner that the degradation effect due to the BE
method can be actually experienced only in the limit of very small mesh param-
eter size. The accuracy of the approximation of the total stress is the sole to be
preserved from stationary to time dependent conditions (compare Fig. 8(a) with
Fig. 11). The reason for this exception is the same as that pointed out for test case
V2.

4.6 Numerical study of the influence of data regularity on the energy estimates

We are now in a position to use the DMH method to investigate numerically the
energy estimates obtained in Section 3.6. The 1D counterparts of the 3D expres-
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Fig. 9 Validation test V4. Discretization errors for the hybrid variables show that the conver-
gence rate (O(h)) is sub-optimal for both variables.
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Fig. 10 Validation test V4. Approximation of the elastic pressure shows that the convergence
rate is O(h) in both norms, so that no superconvergence is obtained at the mesh centers of mass.

sions for the energies given in (126), (127) and (128) are:

Ee(u(t)) =
1
2
(λe +4µe)‖

∂u(x, t)
∂x

‖2
0 ∀t ∈ (tstart , tend), (204)

Ev(u(t)) =
1
2
(λv +4µv)‖

∂u(x, t)
∂x

‖2
0 ∀t ∈ (tstart , tend), (205)

Ep(p(t)) =
∥∥∥∥√k

∂ p(x, t)
∂x

∥∥∥∥2

0
∀t ∈ (tstart , tend). (206)

To ensure an accurate and numerically stable evaluation of these quantities it is
convenient to express each energy as a function of the dual variables σ and v used
in the DMH formulation. The application of the BE advancing scheme yields the
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Fig. 11 Validation test V4. Discretization errors for the total stress show that the convergence
rate (O(h2)) is optimal in both norms.

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
1

p=1

log(h)

||
V

−
V

h
||

Q

p=2

(a) ‖v− vh‖Q

log(h)
10

-4
10

-3
10

-2
10

-1
10

0

||
V

-
V

h
||
∞

10
-4

10
-3

10
-2

10
-1

10
0

10
1

p=1

p=2

(b) ‖v− vh‖∞

Fig. 12 Validation test V4. Discretization errors for Darcy’s velocity show that the convergence
rate for higher values of h (and ∆ t) is close to optimal (O(h2)). However, as h,∆ t → 0, the
asymptotic convergence rate becomes sub-optimal (O(h)) because the time approximation error
dominates over the second-order spatial accuracy of the DMH method.

following form of the (approximate) energies at time t i+1, i = 0, . . . ,r−1:

E i+1
e =

1
2
(λe +4µe)‖ε i+1

h (x)‖2
0, (207)

E i+1
v =

1
2
(λv +4µv)‖ε i+1

h (x)‖2
0, (208)

E i+1
p =

∥∥∥∥∥∥ 1√
k(P i+1

h (x))
vh(x)

∥∥∥∥∥∥
2

0

, (209)

where

ε
i+1
h (x) =

1
Ae

[
σh(x)i+1 +BeP

i+1
h (x)+ pi+1

h (x)−δ
HvP i

h(x)
λe∆ t

]
,
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having set

Ae := 2µe

(
1+

δ µv

∆ tµe

)
, Be := 1+

δλv

∆ tλe
.

We notice that the evaluation of (207)-(209) does not require numerical differ-
entiation, in contrast with (204)-(206), and therefore it is expected that the high
accuracy provided by the DMH scheme in the approximation of the stress and the
pressure variables reflects into the evaluation of the energies.

It is important to recall that the energy estimates in Section 3.6 rely on different
time regularity requirements for the volumetric source of linear momentum and for
the boundary source of stress, corresponding to F and g in the 1D case, depending
on whether δ = 0 (poro-elastic model) or δ > 0 (poro-visco-elastic model). Thus,
we would like to utilize the DMH method to simulate and compare the behavior
of the energies characterizing the poro-elastic and poro-visco-elastic models in
the presence of data with different regularity in time. To this end, we introduce a
discontinuous function of time G defined as

G (t; ta, tb) := H (t− ta)−H (t− tb), (210)

where H (y−y) is the Heaviside function centered at y, and ta and tb are such that
tstart ≤ ta < tb ≤ tend , and a smooth function of time Gq defined as

Gq(t; ta, tb) :=
1
2
[tanh(q(t− ta))− tanh(q(t− tb))] , (211)

which is a double hyperbolic tangent temporal lifting of the function G . Here q is
a parameter that controls the slope of the lifting in the neighbourhood of t = ta and
t = tb. The larger q the steeper the lifting, with limq→+∞ Gq(t; ta, tb) = G (t; ta, tb)
for all t ∈ (tstart , tend). Consequently, we can define the functions:

S (x, t;xa,xb, ta, tb) := [H (x− xa)−H (x− xb)]G (t; ta, tb), (212)

Sq(x, t;xa,xb, ta, tb) := [H (x− xa)−H (x− xb)]Gq(t; ta, tb), (213)

that are both discontinuous in space but that obviously enjoy different regularity
in time. A portrait of S and Sq is provided in Fig. 13 having set xstart = tstart = 0,
xend = tend = 1, xa = ta = 1/3, xb = tb = 2/3 and q = 40.

In the following, the functions S and Sq (resp. G and Gq) are used to investi-
gate how the energies defined in (207)-(209) are influenced by the time regularity
in the volumetric (resp. boundary) data for the linear momentum (resp. stress) in
one-dimensional poro-elastic and poro-viscoelastic models. All the simulations
reported in the following sections are performed by adopting the expression (7)
for the permeability k, with the same limitation (203) as in Sect. 4.5. Analogously,
the characteristic elastic time constant is defined as τe = L

√
ρ/HA, with ρ de-

noting the fluid density (see [5] and [22]), in such a way that the viscous aggre-
gate modulus HV , via dimensional analysis, can be estimated as HV = HAτe. The
values of the main biophysical parameters used in the analysis are reported in
Tab. 2 whereas the initial and boundary conditions are described for each specific
case. The discretization parameters are Kh = 50 and NT = 200, so that we have
h = 4 ·10−2 cm and ∆ t = 10−2 s. The parameters of the square wave with compart
support in space and time are xa = −L/8 = −0.25cm, xb = +L/8 = +0.25cm,
ta =−T/8 =−0.25s and tb =+T/8 =+0.25s.

https://www.researchgate.net/publication/220222707_Modeling_Viscoelastic_Behavior_of_Arterial_Walls_and_Their_Interaction_with_Pulsatile_Blood_Flow?el=1_x_8&enrichId=rgreq-c4ee538054e8611df1f5fed453bc3f16-XXX&enrichSource=Y292ZXJQYWdlOzMwNDE0OTA2OTtBUzozNzUwNTgzNjQxNTc5NTNAMTQ2NjQzMjI5MDc1Nw==
https://www.researchgate.net/publication/245358858_Biomechanics_Mechanical_Properties_of_Living_Tissues?el=1_x_8&enrichId=rgreq-c4ee538054e8611df1f5fed453bc3f16-XXX&enrichSource=Y292ZXJQYWdlOzMwNDE0OTA2OTtBUzozNzUwNTgzNjQxNTc5NTNAMTQ2NjQzMjI5MDc1Nw==
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Fig. 13 Representation of the functions S (panel (a)) and Sq (panel (b)) in the space-time
domain ([1/3,2/3]× [1/3,2/3])⊂ ([0,1]× [0,1]) and for q = 40.

Parameter Value Units
xstart −1 cm
xend +1 cm
L 2 cm
tstart 0 s
tend 2 s
T 2 s
µe 1 dynecm−2

λe 1 dynecm−2

τe 1.1547 s
µv 1.1547 dynecm−2 s
λv 1.1547 dynecm−2 s
HA 3 dynecm−2

HV 3.4641 dynecm−2 s
Cck 1 cm2

µ f 1 gcm−1 s−1

kre f 1 cm3 sg−1

ρ 1 gcm−3

Φ0 0.5 [·]
Φmin 0.125 [·]
Φmax 0.875 [·]

Table 2 Model parameters used for the numerical investigation of the influence of data time reg-
ularity on the energies of the solution to poro-elastic and poro-visco-elastic models (see Sections
4.6.1 and 4.6.2).

4.6.1 Influence of time regularity in the volumetric source of linear momentum

Let us consider problem (138)-(143) in the spatio-temporal domain

QT = (xstart ,xend)× (tstart , tend) = (−1,1)× (0,2),

https://www.researchgate.net/publication/224010717_A_Mixture_Theory_for_the_Genesis_of_Residual_Stresses_in_Growing_Tissues_I_A_General_Formulation?el=1_x_8&enrichId=rgreq-c4ee538054e8611df1f5fed453bc3f16-XXX&enrichSource=Y292ZXJQYWdlOzMwNDE0OTA2OTtBUzozNzUwNTgzNjQxNTc5NTNAMTQ2NjQzMjI5MDc1Nw==
https://www.researchgate.net/publication/224010717_A_Mixture_Theory_for_the_Genesis_of_Residual_Stresses_in_Growing_Tissues_I_A_General_Formulation?el=1_x_8&enrichId=rgreq-c4ee538054e8611df1f5fed453bc3f16-XXX&enrichSource=Y292ZXJQYWdlOzMwNDE0OTA2OTtBUzozNzUwNTgzNjQxNTc5NTNAMTQ2NjQzMjI5MDc1Nw==
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so that L = 2cm and T = 2s. Let us assume that the volumetric sources of linear
momentum and mass are given by:

F(x, t) = FS (x, t;xa,xb, ta, tb), ∀(x, t) ∈QT , (214)
S(x, t) = 0, ∀(x, t) ∈QT , (215)

respectively, where S is the square wave function introduced in (212) and F :=
0.1HA/Ldynecm−3 is the maximum value of F . In addition, let us impose the
following initial and boundary conditions:

u(x, tstart) = 0, ∀x ∈Ω , (216)
u(xstart , t) = u(xend , t) = 0, ∀t ∈ (tstart , tend) (217)
p(xend , t) = p(xend , t) = 0 ∀t ∈ (tstart , tend). (218)

We remark that homogeneous boundary conditions are enforced on ∂Ω for solid
displacement and fluid pressure in order to allow the redistribution of stress and
fluid across the material. This choice has been made to better single out the sensi-
tivity of the biophysical system to the sole source term F . We also remark that F
has been chosen in such a way to satisfy the regularity requirements for Lemma 12
but not those for Lemma 13. Figures 14(a) and 14(b) illustrate the simulation re-
sults for the poro-elastic model (i.e. without solid viscoelasticity, δ = 0) and for
the poro-visco-elastic model (i.e. with viscoelasticity, δ = 1). Interestingly:

Case δ = 0: Fig. 14(a) shows two sharp peaks in Ep localized around the signal
switch-on time t = 0.75s and the signal switch-off time t = 1.25s, demonstrat-
ing that the lack of regularity in time of F reflects into a lack of regularity
in the fluid energy Ep when viscoelasticity is not included in the differential
model. Interestingly, the two peaks of Ep tend to increase in size as ∆ t tends
to zero. On the other hand, the time evolution of the elastic energy Ee shows
a rapid exponential increase at signal switch-on followed by a similarly fast
decay at signal switch-off, because of the lack of memory in system energy
storage.

Case δ = 1: Fig. 14(b) shows a remarkably different behavior of Ep and Ee with
respect to what reported in Fig. 14(a) . The peak of Ep around the signal
switch-on time has a much lower intensity than in the case δ = 0 (three or-
ders of magnitude smaller) and fluid energy relaxation occurs with two time
constants (corresponding to the time interval when the source is on and to the
time interval when it is off) that are much larger than in the case δ = 0.

The presence of a singularity in Ep when δ = 0 is further investigated by com-
paring the results obtained when progressively reducing the time regularity of F ,
as shown in Fig. 15. Specifically, we write F(x, t) = FSq(x, t;xa,xb, ta, tb) and we
compare the energies obtained when q = 0.1, 0.5, 1, 2.5, 5, 10, 20, 40, 50, 100, +∞.
Fig. 15 shows how the peaks in Ep get higher as F gets sharper (i.e. q→+∞). In
conclusion, when the dynamics is driven by a source F of linear momentum such
that F ∈ L2(tstart , tend ;L2(xstart ,xend)) but not Ft ∈ L2(tstart , tend ;L2(xstart ,xend)),
numerical simulations show that:

– if δ > 0, Ee and Ep are bounded functions of time for all t ∈ [tstart , tend ]. This
confirms experimentally the estimate (131) of Lemma 12;
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Fig. 14 Computed energies ‖F(t)‖2
0, Ee, Ev and Ep in the case where the system is driven by

the sole volumetric source F in the linear momentum balance equation. Left panel (a): δ = 0;
right panel (b): δ = 1.
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Fig. 15 Computed energies ‖F(t)‖2
0, Ee, Ev and Ep in the case where the system is driven by the

sole volumetric source F in the linear momentum balance equation and δ = 0, as a function of
the slope parameter q = 0.1,0.5,1,2.5,5,10,20,40,50,100,+∞. The value q =+∞ corresponds
to the case where F is non-smooth in space and time.

– if δ = 0, Ee is a continuous function of time for all t ∈ [tstart , tend ] while Ep
tends to +∞ at t = 0.75s and t = 1.25s as ∆ t tends to zero. This blow-up of
the fluid energy agrees with the fact that Ft /∈ L2(tstart , tend ;L2(xstart ,xend)) so
that the right-hand side of estimate (135) of Lemma 13 cannot be bounded.

The remaining figures of this section illustrate the space-time distributions of var-
ious biophysical quantities in the interesting case where F is defined as in (214).
The computed displacement u∗h is shown in Fig. 16. The left panel refers to the
case δ = 0 whereas the right panel refers to the case δ = 1. In both cases we see
that the displacement is a symmetric function with respect to x = 0 in accordance
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with the applied source and the homogeneous Dirichlet boundary conditions. The
behaviour of the displacement in the case without viscoelasticity reflects the ex-
ponential increase and decrease of the elastic energy and the same holds in the
viscous case where the time constant of increase and decrease of the displacement
are remarkably different.
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Fig. 16 Computed displacement u∗h in the case where the system is driven by the sole volumetric
source F in the linear momentum balance equation. Left panel (a): δ = 0; right panel (b): δ = 1.

The computed total stress σ∗h is the same in both cases δ = 0 and δ = 1 in ac-
cordance with linear momentum balance. Fig. 17 correctly reproduces the piece-
wise linear spatial variation of the stress within the time interval [0.75,1.25]s,
since the slope of σh is negative where F is positive. Fig. 18 shows the distri-
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Fig. 17 Computed total stress σh in the case where the system is driven by the sole volumetric
source F in the linear momentum balance equation. Left panel (a): δ = 0; right panel (b): δ = 1.

bution of the elastic pressure Ph in the purely elastic and viscoelastic regimes.
We remark that Ph is proportional to −∂uh/∂x; thus, the elastic pressure is an
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odd function with respect to x = 0 since the displacement is a concave function
of position with its maximum at x = 0. Consistently with what shown in Fig.16(a)
and Fig. 16(b) for the displacement, the elastic pressure behaves very differently
depending on whether δ = 0 or δ = 1. The computed fluid pressure p∗h (Darcy
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Fig. 18 Computed elastic pressure Ph in the case where the system is driven by the sole volu-
metric source F in the linear momentum balance equation. Left panel (a): δ = 0; right panel (b):
δ = 1.

pressure) is shown in Fig. 19. The behaviour of the variable is the result of the
fact that, at each time level, the mass balance equation (139) is supplied with a
right-hand side that is proportional to the time derivative of the elastic pressure,
since S = 0 in the present configuration. This explains the various changes of sign
of p∗h in the region of the space-time domain with t ≥ 0.75s. In particular, p∗h is
> 0 (resp. < 0) where ∂Ph/∂ t is > 0 (resp. < 0). The computed fluid velocity
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Fig. 19 Computed Darcy pressure p∗h in the case where the system is driven by the sole volu-
metric source F in the linear momentum balance equation. Left panel (a): δ = 0; right panel (b):
δ = 1.
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vh (Darcy velocity) is shown in Fig. 20. A remarkable difference between the two
regimes (elastic and visco-elastic) can be detected by inspecting the larger val-
ues (in module) attained by vh in the case δ = 0. This is the same aspect that
we noticed in the analysis of the fluid energy Ep. Also, the smoothness of the
velocity is rather different in the two cases, the viscoelastic regime being much
more regular than the purely elastic regime. Corner singularities (much larger in
the purely elastic case) are due to the homogeneous Dirichlet conditions for the
fluid pressure whereas the change of sign of the velocity agrees with Darcy’s law
and with the spatial distribution of p∗h. The two final sets of figures refer to the
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Fig. 20 Computed Darcy velocity vh in the case where the system is driven by the sole volu-
metric source F in the linear momentum balance equation. Left panel (a): δ = 0; right panel (b):
δ = 1.

computed porosity φh and permeability kh. We recall that these two quantities are
a by-product of the DMH simulation and are evaluated using (1) and (7) with the
following substitution

ζ =
∂u
∂x

=−P

λe
.

This avoids the use of numerical differentiation and improves the accuracy of the
method. Figs. 21 and 22 look quite similar: this is due to the fact that the applied
source is small enough to maintain the nonlinear Carman-Kozeny relation (7) for
hydraulic permeability in a neighborhood of φ = φ0 and k = kre f . In accordance
with this observation, we see that the profiles of the two quantities closely follow
those of the elastic pressure Ph with a larger deviation from φ0 (kre f ) in the elastic
regime than in the visco-elastic regime. This means that the fluid portion of the
mixture varies more considerably in the case of a poro-elastic medium than in the
case of a poro-visco-elastic medium.

4.6.2 Influence of time regularity in the boundary source of stress

Let us consider problem (138)-(143) in the spatio-temporal domain

QT = (xstart ,xend)× (tstart , tend) = (−1,1)× (0,2),
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Fig. 21 Computed porosity φh in the case where the system is driven by the sole volumetric
source F in the linear momentum balance equation. Left panel (a): δ = 0; right panel (b): δ = 1.
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Fig. 22 Computed permeability kh in the case where the system is driven by the sole volumetric
source F in the linear momentum balance equation. Left panel (a): δ = 0; right panel (b): δ = 1.

so that L = 2cm and T = 2s. Let us study the problem in the absence of volumetric
sources of linear momentum and mass, namely:

F(x, t) = 0 ∀(x, t) ∈QT , (219)
S(x, t) = 0, ∀(x, t) ∈QT , (220)

and let us impose the following initial and boundary conditions:

u(x, tstart) = 0, ∀x ∈Ω , (221)
u(xstart , t) = p(xstart , t) = vn(xend , t) = 0, ∀t ∈ (tstart , tend) (222)

σn(xend , t) = g G (t; ta, tb) ∀t ∈ (tstart , tend), (223)

where G is the square wave introduced in (210) and g := 0.01HA dynecm−2 is the
maximum value of g. We remark that now the problem dynamics is solely driven
by the boundary source term for the stress and that g has been chosen in such a
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way to satisfy the requirements of Lemma 12 but not those for Lemma 13. Fig-
ures 23-30 illustrate the simulation results for the poro-elastic model (i.e. without
solid viscoelasticity, δ = 0) and for the poro-visco-elastic model (i.e. with vis-
coelasticity, δ = 1). Interestingly:

Case δ = 0: Fig. 23(a) shows two sharp peaks in Ep localized around the signal
switch-on time t = 0.75s and the signal switch-off time t = 1.25s, demonstrat-
ing that also a lack of regularity in time of g reflects into a lack of regularity
in the fluid energy Ep when viscoelasticity is not included in the differential
model, as observed in the previous subsection for F . Also in this case, the
peaks in Ep tend to increase in size as ∆ t tends to zero. However, unlike the
case in which F lacks regularity, when the system is driven by the non-regular
boundary term g, the two peaks of Ep do not have equal size, suggesting a dif-
ferent response of the system at switch-on and switch-off times. We also note
that the time evolution of the elastic energy Ee shows a very similar behavior
to that observed when forcing the system with F .

Case δ = 1: When comparing Fig. 23(b) and Fig. 23(a), we notice that the peak
of Ep around the signal switch-on time has a lower intensity than in the case
δ = 0 (one order of magnitude smaller) and fluid energy relaxation occurs with
two time constants (corresponding to the time interval when the source is on
and to the time interval when it is off) that are much larger than in the case
δ = 0.
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Fig. 23 Computed energies ‖g(t)‖2
0, Ee, Ev and Ep in the case where the system is driven by the

sole boundary source g in the linear momentum balance equation. Left panel (a): δ = 0; right
panel (b): δ = 1.

The presence of a singularity in Ep when δ = 0 is further investigated by
comparing the results obtained when progressively reducing the time regularity of
g, as shown in Fig. 24. Specifically, we write g(t) = gGq(t; ta, tb) and we compare
the energies obtained when q = 0.1, 0.5, 1, 2.5, 5, 10, 20, 40, 50, 100, +∞. Fig.
24 shows how the peaks in Ep get higher as g gets sharper (i.e. q→ +∞). In
conclusion, when the dynamics is driven by a source g of linear momentum such
that g∈ L2(tstart , tend) but not gt ∈ L2(tstart , tend), numerical simulations show that:
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Fig. 24 Computed energies ‖g(t)‖2
0, Ee, Ev and Ep in the case where the system is driven by the

sole boundary source g in the linear momentum balance equation and δ = 0, as a function of the
slope parameter q = 0.1,0.5,1,2.5,5,10,20,40,50,100,+∞. The value q =+∞ corresponds to
the case where g is non-smooth in time.

– if δ > 0, Ee and Ep are bounded functions of time for all t ∈ [tstart , tend ]. This
confirms experimentally the estimate (131) of Lemma 12;

– if δ = 0, Ee is a continuous function of time for all t ∈ [tstart , tend ] while Ep
tends to +∞ at t = 0.75s and t = 1.25s as ∆ t tends to zero. This blow-up of the
fluid energy agrees with the fact that gt /∈ L2(tstart , tend) so that the right-hand
side of estimate (135) of Lemma 13 cannot be bounded.

The remaining figures of this section illustrate the space-time distributions of var-
ious biophysical quantities in the interesting case where g is defined as in (223).
In order to understand whether the peaks in Ep actually correspond to blow-ups, it
is particularly interesting to compare the space-time plots of the fluid pressure ph
and the Darcy velocity vh (approximation of−k∂ p/∂x). Their behavior is remark-
ably different depending on whether δ = 0 or δ = 1, exhibiting a similar trend to
that observed for the energy Ep. We also notice that, in the case δ = 0, the elas-
tic pressure ℘h (approximation of −HA∂u/∂x) is discontinuous in time and this
implies that the term ∂ut/∂x is not defined in the strong sense and that a weaker
definition of the solution is needed in the case δ = 0.

5 Conclusions

The study presented in this article synergistically combines theoretical and numer-
ical analyses to investigate the main features of the solutions to initial-boundary
value problems for nonlinear systems of partial differential equations often uti-
lized to describe the motion of a fluid through an elastic or viscoelastic porous
material. Our study identifies the presence of viscoelasticity in the solid phase as a
major determinant in the behavior of the solutions. From the theoretical viewpoint,
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Fig. 25 Computed total stress σh in the case where the system is driven by the sole boundary
source g in the linear momentum balance equation. Left panel (a): δ = 0; right panel (b): δ = 1.
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Fig. 26 Computed elastic pressure Ph in the case where the system is driven by the sole bound-
ary source g in the linear momentum balance equation. Left panel (a): δ = 0; right panel (b):
δ = 1.

existence of solutions to poro-visco-elastic models can be proved under less re-
strictive assumptions for data regularity when compared to the purely elastic case.
From the numerical viewpoint, the convergence of the computational scheme is
faster to be attained for poro-visco-elastic models when compared to their purely
elastic counterpart, as a consequence of the fact that solutions are smoother when
viscoelasticity is present.

The energy estimates predicted by the theory are confirmed by the numerical
experiments when the data are sufficiently regular. Interestingly, in the purely elas-
tic case, when the data do not enjoy sufficient time regularity for the estimates to
hold, the numerical experiments actually provide clues of energy blow-up, since:
(i) peaks appear in the energy Ep in correspondence to the time discontinuity of
the data; (ii) the peaks get higher as the time discretization parameter tends to
zero; and (iii) the behaviors of fluid pressure and Darcy velocity are much less
smooth in the purely elastic case than in the viscoelastic case.
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Fig. 27 Computed Darcy pressure ph in the case where the system is driven by the sole boundary
source g in the linear momentum balance equation. Left panel (a): δ = 0; right panel (b): δ = 1.
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Fig. 28 Computed Darcy velocity vh in the case where the system is driven by the sole boundary
source g in the linear momentum balance equation. Left panel (a): δ = 0; right panel (b): δ = 1.

These findings are extremely interesting from the application viewpoint. As
mentioned in the introduction, we focused on the role played by viscoelasticity on
the regularity of the solutions because of its importance in the modeling of biolog-
ical tissues, as the viscoelastic tone varies with age or disease status. Our findings
suggest that the lack of viscoelasticity may increase the susceptibility of the tissue
to localized damage (due to irregularity in the Darcy velocity and peaks in the
fluid energy) as volumetric sources of linear momentum and/or boundary sources
of traction experience sudden changes in time. We are currently working on apply-
ing these concepts to investigate the causes of hemorrhages in the optic nerve head
(ONH) tissue, where the intraocular pressure (IOP) acts as a boundary source of
traction [9]. Sudden changes in IOP physiologically occur with changes between
day and night. Our theoretical findings lead us to hypothesize that even these phys-
iological changes in IOP might induce pathological changes in the hemodynamics
of the ONH tissue if the viscoelasticity provided by the collagen fibers is not in-
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Fig. 29 Computed porosity φh in the case where the system is driven by the sole boundary
source g in the linear momentum balance equation. Left panel (a): δ = 0; right panel (b): δ = 1.
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Fig. 30 Computed permeability kh in the case where the system is driven by the sole boundary
source g in the linear momentum balance equation. Left panel (a): δ = 0; right panel (b): δ = 1.

tact. Similar considerations may be applicable to other biological tissues as well
as to bio-engineered tissues for application in Regenerative Medicine [33].

Interestingly, our findings might also be useful to understand the consequences
of gravitational changes on human tissues. As a matter of fact, sudden changes
in gravitational acceleration, such as those experienced by astronauts during mis-
sions, translate into sudden changes in the volumetric source of linear momentum,
which might increase tissue vulnerability to damage, as shown by our analysis.
These considerations are particularly relevant for the ONH tissue, whose patholog-
ical changes have been associated with the visual impairments/intracranial pres-
sure (VIIP) syndrome affecting many crew members during and after long-duration
space flights [36].

Based on the above considerations, we believe that the present article consti-
tutes a first attempt to combine in a novel cross-disciplinary unified framework the
theoretical analysis of nonlinear models in Continuum Mechanics, the develop-
ment of multi-field Finite Element discretization schemes and the computer sim-
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ulation of the Mechanobiological properties of Tissues and Materials. Next steps
of this research will be devoted to considering the problem of uniqueness of solu-
tions, to extending the numerical approach to multi-dimensional geometries and
to validating the proposed model against available data in human tissues such as
those investigated in [9].
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