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Highlights 

1. RavA-ViaA form a chaperone-like complex interacting with respiratory chains.  

2. RavA-ViaA are induced under oxygen-limiting conditions. 

3. RavA-ViaA interact with the flavin-containing subunit of fumarate reductase. 

4. RavA-ViaA modulate the activity of the fumarate reductase complex. 
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Abstract 

RavA is a MoxR AAA+ protein that functions together with a partner protein that we termed 

ViaA containing a von Willebrand Factor A (VWA) domain. However, the functional role of 

RavA-ViaA in the cell is not yet well-established. Here, we show that RavA-ViaA are 

functionally associated with anaerobic respiration in Escherichia coli through interactions with 

the fumarate reductase (Frd) electron transport complex. Expression analysis of ravA and viaA 

genes showed that both proteins are co-expressed with multiple anaerobic respiratory genes, 

many of which are regulated by the anaerobic transcriptional regulator Fnr. Consistently, the 

expression of both ravA and viaA was found to be dependent on Fnr in cells grown under 

oxygen-limiting condition. ViaA was found to physically interact with FrdA; the flavin-

containing subunit of the Frd complex. Both RavA and the Fe-S-containing subunit of the Frd 

complex, FrdB, regulate this interaction. Importantly, Frd activity was observed to increase in 

the absence of RavA and ViaA. This indicates that RavA and ViaA modulate the activity of the 

Frd complex, signifying a potential regulatory chaperone-like function for RavA-ViaA during 

bacterial anaerobic respiration with fumarate as the terminal electron acceptor.  

[187 words] 
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Introduction 

The MoxR family of AAA+ ATPases is relatively unknown, although it is diverse and 

widespread among bacteria and archaea [1]. The experimental evidence gathered on various 

MoxR proteins suggests that they have regulatory and chaperone-like roles in the maturation of 

protein complexes participating in a variety of biological processes including metabolism, cell 

morphology and development, tolerance against various types of stress, and pathogenesis [1-4]. 

A characteristic of the MoxR AAA+ ATPases is that their genes co-occur in close proximity 

with one or more genes whose proteins contain the von Willebrand factor A (VWA) domain [1]. 

The VWA domain features the conserved MIDAS (Metal Ion-Dependent Adhesion Site) motif, 

which binds a single divalent cation, usually Mg
2+

, and mediates protein-protein interactions [5].  

The functional characterization of the MoxR protein RavA (Regulatory ATPase variant 

A) and its corresponding VWA protein ViaA (VWA interacting with AAA+ ATPase) in 

Escherichia coli is an ongoing effort in our laboratory. RavA belongs to the eponymous RavA 

subfamily of the MoxR family [1]. The ravA and viaA genes are organized in a pattern that is 

typical of this subfamily with ravA positioned immediately upstream of viaA and with both genes 

forming a single operon [6]. In aerobically grown cells, the ravAviaA operon is induced by the 

stationary phase sigma factor, σ
S
 [6]. RavA has been characterized extensively by our group both 

biochemically and biophysically. It forms a hexameric complex [6, 7], which is typical for most 

AAA+ ATPases [8]. In vitro, the ATPase activity of RavA is optimal at neutral pH and 37 C, 

which is enhanced in the presence of ViaA [6]. In stationary phase cells, RavA was found to 

mainly localize to the cytoplasm, while ViaA was found to be localized to both the cytoplasm 

and the inner membrane [9]. 

Although little is known about their cellular function, several interaction partners for 
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RavA have been identified that suggest its involvement in potential regulatory roles in different 

biological processes. For example, RavA associates with and modulates the activity of the 

inducible lysine decarboxylase (LdcI) [6, 7, 10, 11], a major acid stress response protein in E. 

coli [10, 12]. The alarmone, ppGpp, was found to bind and inhibit the activity of LdcI, and the 

interaction of RavA with LdcI prevented this binding of ppGpp to LdcI [7]. This supports a 

potential role of RavA, and possibly ViaA, in bacterial acid stress response [7]. In addition, 

RavA and ViaA were functionally linked with bacterial respiration when they were shown to 

sensitize the cell to aminoglycosides [9, 13]. The identification of null mutations that suppressed 

this phenotype, and subsequent immunoprecipitation experiments, revealed that RavA and ViaA 

interact with specific subunits of the NADH:ubiquinone oxidoreductase I (Nuo complex) [9]. 

The Nuo complex, commonly known as Complex I, is a major player in the aerobic respiration 

of E. coli [14, 15]. It is also important in anaerobic respiration utilizing fumarate and 

dimethylsulfoxide [16].  

High-throughput studies have revealed functional links between RavA-ViaA with several 

pathways that are directly or indirectly related to bacterial respiration. These include iron-sulfur 

(Fe-S) cluster biosynthesis, iron transport, and anaerobic electron transport [9, 17]. In this study, 

we present evidence that supports a regulatory role of the RavA-ViaA proteins in the activity of 

the anaerobic respiratory complex fumarate reductase (Frd). The E. coli fumarate reductase 

complex catalyzes the final step of anaerobic respiration when fumarate acts as the terminal 

electron acceptor [18]. The complex is formed by four subunits (FrdABCD) [19, 20] with FrdC 

and FrdD being the membrane-spanning subunits, while the flavoprotein FrdA and the iron-

sulfur cluster-containing protein FrdB comprising the soluble part of the complex. During 

anaerobic respiration, menaquinol (MQH2) in the membrane donates electrons to the fumarate 
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reductase complex [21]. The membrane spanning FrdCD subcomplex anchors the FrdAB 

components to the membrane and, along with FrdB, provide binding sites for the quinones. The 

electrons then traverse through the three iron-sulfur clusters present in FrdB to the FAD cofactor 

in the FrdA active site where they are used to reduce fumarate to succinate [20-23]. Here, we 

find ViaA to interact with free FrdA through its C-terminal VWA domain and with RavA 

through its N-terminal α-helical rich domain. Importantly, the interaction of RavA-ViaA with 

FrdA results in a decrease in Frd activity. A model of the effect of RavA-ViaA on the maturation 

of the Frd complex is proposed. 

 

Results 

ravA and viaA display similar co-expression profiles as those of the Fnr-inducible genes 

We had earlier demonstrated that RavA-ViaA interact with LdcI and the Nuo complex [2, 6, 9]. 

However, given that we postulated that RavA-ViaA might have chaperone-like activity [1, 2], 

further studies were carried out to identify new interacting partners for this system. Initially, co-

expression profiling was performed to identify genes that co-express with both ravA and viaA. 

This approach is based on the principle that genes are organized in a network of distinct, 

functional modules or hubs with highly coordinated expression patterns that correspond to 

specific biological processes [24-27]. Thus, genes that are functionally associated have a higher 

likelihood of sharing common transcriptional regulatory elements and of displaying similar 

expression profiles in response to the same physiological signals or external environmental 

stimuli. 

The co-expression profiles for ravA and viaA genes were constructed by data-mining a 

public collection of 445 E. coli microarray datasets collected across multiple experimental 
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conditions, and then genes that displayed highly similar co-expression patterns with ravA and 

viaA were identified. Our analysis yielded a total of 62 genes that co-express with ravA and 56 

that co-express with viaA (Fig. 1A; Table 1). Of these, 32 genes co-express with both ravA and 

viaA. Given that ravA and viaA are in the same operon [1, 6], genes that are co-expressed with 

both ravA and viaA were considered as the most reliable candidates for functional association 

and were examined further. 

One important trend uncovered in our analysis is that many of the genes that co-express 

with both ravA and viaA are involved in anaerobic respiration. These include frdA, frdB, and 

frdC, which encode three of the four subunits of the fumarate reductase complex (FrdABCD); 

nirB and nirD, which encode the large and small subunits, respectively, of the nitrite reductase 

complex (NirDB2); hybO, which encodes the small subunit of hydrogenase 2 (HybABOC); and 

nrfA, which is the structural gene for cytochrome c552 and a component of the formate-dependent 

nitrite reductase complex (NrfDCBA). 

A second group of genes falls under protein maturation and modification, all of which – 

hypA, hypB, hypC and hypD – are involved in the insertion of Ni
2+

 ion for the maturation of the 

membrane-bound hydrogenase 3 (HycDCFGBE), and, thus, are also associated with 

anaerobiosis. Hydrogenase 3 works in conjunction with formate dehydrogenase H (FdhF) in both 

mixed acid fermentation and anaerobic respiration. Other genes that co-express with both ravA 

and viaA participate in various metabolic pathways (gpmM, mtlD, pfkA, ansB, aspA, selA, pepE, 

pldB, and udp), biosynthesis of cofactors and prosthetic groups (hemC, hemX, and menD), and 

transport of metabolites across the cell membrane (dcuA, dcuB, and nikA). 

 Importantly, 14 out of the 32 genes that co-express with ravA and viaA are inducible by 

the transcriptional regulator Fnr (marked with * in Fig. 1A). In E. coli, Fnr regulates the 
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expression of a large number of genes during the transition from aerobiosis to anaerobiosis [28, 

29]. The co-expression of genes under Fnr control suggested that Fnr was also likely to regulate 

the expression of both ravA and viaA. 

 

Fnr enhances the expression of RavA and ViaA during oxygen-limiting conditions 

To determine whether the expression of RavA and ViaA was indeed regulated by Fnr, WT along 

with the null mutants fnr::kan
R
 and rpoS::kan

R
 were grown in liquid media under aerobic or 

oxygen-limiting conditions. Cell growth was monitored by measuring OD600 at specific time 

points. When cells were grown aerobically, all three strains shared almost identical growth 

profiles (Fig. S1). On the other hand, during oxygen-limiting growth, fnr::kan
R
 exhibited a 

minor growth lag from early log to late log phase, and both fnr::kan
R
 and rpoS::kan

R
 had only 

a slightly lower cell count per unit volume compared to WT upon reaching stationary phase (Fig. 

S1). These relatively small differences in growth between WT and the two mutants helped to 

minimize changes in experimental protocol, which were made to accommodate their different 

growth profiles. 

The expression levels of RavA and ViaA in each strain were then analyzed by Western 

blotting. Under aerobic condition, WT cells displayed the expected RavA expression profile as 

reported previously [6], with minimal expression during log phase that increases to optimum at 

stationary phase (Fig. 1B). Interestingly, under oxygen-limiting condition, RavA expression was 

significantly enhanced in WT cells at all growth phases, which indicates that oxygen starvation is 

likely an important inducer of RavA protein expression. Importantly, unlike in the WT cell line, 

the expression of RavA in fnr::kan
R
 cells did not increase during oxygen-limiting growth. Thus, 

Fnr was deemed necessary for the enhanced expression of RavA when oxygen is limiting. 
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Furthermore, as previously reported in aerobically grown rpoS::kan
R
 cells, the expression of 

RavA was severely compromised due to the loss of 
S
 [6]. In contrast, under oxygen-limiting 

condition, the expression of RavA in rpoS::kan
R
 closely resembles that of WT, although the 

further increase in RavA levels after 6 hours observed in WT was not observed in rpoS::kan
R
 

(Fig. 1B). This strongly supports the conclusion that the expression of RavA during oxygen 

starvation is largely dependent on Fnr and not 
S
, but 

S
 might have some role at later time 

points. 

Like RavA, the expression of ViaA shows a similar dependence on Fnr in cells during 

oxygen starvation. In WT cells, ViaA expression was significantly enhanced and the deletion of 

σ
S
 did not affect this enhancement; however, in the absence of Fnr, no such enhancement was 

observed (Fig. 1B). It is interesting to note that ViaA expression during oxygen-limiting growth 

was higher in log phase compared to stationary phase – the reverse of RavA. This was most 

apparent in WT and fnr::kan
R
 cells (Fig. 1B). In contrast, ViaA expression was largely 

unchanged in rpoS::kan
R
 cells during oxygen starvation from log phase to stationary phase 

(Fig. 1B). Since both ravA and viaA are on the same operon [6] and there is no recognizable 

promoter upstream of viaA, the difference in the expression profiles of RavA and ViaA likely 

reflects the presence of additional regulatory elements affecting either mRNA or protein levels 

that are dependent on 
S
. 

Overall, our results clearly illustrate that, under oxygen-limiting conditions, Fnr 

functionally replaces 
S
 and becomes the primary regulator for the expression of both RavA and 

ViaA, which makes both the ravA and viaA genes novel constituents of the Fnr regulon. 

However, 
S
 continues to play a role in RavA and ViaA expression under these conditions.  
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Identification of potential Fnr-binding sites in the native promoter region of ravAviaA 

The Fnr-induced expression of RavA and ViaA cells during oxygen-limiting growth indicates the 

existence of regulatory elements in the ravAviaA promoter region for Fnr binding. Identification 

of such elements would further validate the results of Figure 1. 

 Using knowledge-based sequence motifs recognition software such as Virtual Footprint 

[30], SCOPE [31] and PromoScan [32], our initial analysis of the genomic sequence of this 

region to identify potential binding sites of various transcriptional regulators revealed two 

potential Fnr binding sites: one centered at -72.5 (TTAACCTGGCTCAA; bolded bases 

represent perfect matches to the Fnr consensus sequence) and another one located further 

upstream at -188.5 (TTGCTTATTATCAG) (Fig. 2A,B). Both sites are similar to the Fnr 

consensus sequence TTGATnnnnATCAA (n represents any base) [33], but they lack the 

characteristic palindromic sequences that flank the two ends. 

To further examine these two potential binding sites for Fnr, three linear DNA substrates 

of the same length but encompassing different parts of the ravAviaA promoter region (R-1, R-2 

and R-3; Fig. 2C) were synthesized by PCR for use in EMSA assays with FnrD154A. The FnrD154A 

mutant, which has the same affinity and specificity for the Fnr consensus sequence as its WT 

counterpart [34], was used so that the EMSA experiments could be performed under aerobic 

conditions. As shown in Fig. 2D, the inclusion of FnrD154A in the sample induced significant band 

shifts for DNA substrates R-1 (which has both the -72.5 and -188.5 Fnr binding sites) and R-2 

(which retains only the -72.5 site). In contrast, band shift was reduced for substrate R-3, which 

lacks both supposed Fnr binding sites. As both R-1 and R-2 displayed very similar band shifts in 

the presence of FnrD154A, the -188.5 site did not appear to be necessary for binding. In other 

words, the interaction between FnrD154A and the ravAviaA promoter appears to be largely 
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mediated through the -72.5 site. 

To provide additional proof that the interaction between FnrD154A and the DNA substrates 

R-1 and R-2 was specific, EMSA was repeated using the following substrates: F-1 as negative 

control and H-1, H-2 and H-3 as positive controls (Fig. 2E-G). Substrate F-1 encompasses the 

entire fepDGC promoter region, which carries four binding sites for the Fe
2+

-sensing Fur [35-37] 

but none for Fnr. Substrate H-1 encompasses the hypBCDE promoter region that is internal to the 

hypA gene. It contains two Fnr binding sites – one centered at -43.5 (TTGATCTGGTTTGC; 

bolded bases represent perfect matches to the Fnr consensus sequence) and the other one further 

upstream at -149.5 (TTGATCGAACAGCA) [38]. Following the same scheme used in 

examining the Fnr binding sites from the ravAviaA promoter, substrates H-2 (only the -43.5 site 

is retained) and H-3 (all Fnr binding sites removed) were also synthesized. As shown in Fig. 2G, 

FnrD154A did not interact with either F-1 or H-3, as neither substrate carries Fnr binding sites. On 

the other hand, H-1 contains both Fnr binding sites, and it interacted strongly with FnrD154A, 

resulting in a significant band shift. For substrate H-2, removal of the upstream -149.5 Fnr 

binding site severely reduced its interaction with FnrD154A. Thus, the binding of FnrD154A to 

substrates R-1, R-2 and H-1 was indeed specific. 

With binding of Fnr to the ravA promoter established, a β-galactosidase transcriptional 

reporter based colorimetric assay was used to evaluate each of the two identified Fnr-binding 

sites in regulating the expression of RavA and ViaA. The lacZ gene that encodes β-galactosidase 

was placed downstream of the native ravA (i.e. ravAviaA) promoter to create pPravA-lacZ. Two 

additional plasmids were also used for determining the influence of each of the two Fnr-binding 

sites: pPravAm1-lacZ, which has the -72.5 Fnr site replaced with a 14-bp non-native sequence 

comprised of a NheI restriction site flanked by random bases on both ends; and pPravAm2-lacZ, 
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which has the -188.5 Fnr site mutated, while its -72.5 site retains its native sequence (Fig. 2H; 

see Methods for details). E. coli EDCM 367 cells (MG1655 lacZ
-
, lacY

-
) transformed with these 

constructs were grown under oxygen-limiting condition, and the cell lysates generated from them 

subjected to the Miller assay to measure the β-galactosidase activity. A lacZ construct lacking 

the ravA promoter (p∆P-lacZ) was used to observe background color development unrelated to 

β-galactosidase production. An EDCM 367 Δfnr strain transformed with pPravA-lacZ was used as 

a control for Fnr-independent lacZ transcription due to the activity of other unidentified 

transcriptional regulators on the native ravA promoter. As shown in Figure 2I, the presence of 

Fnr in the cell contributes to about 50% increase in β-galactosidase activity, and correspondingly 

in lacZ expression, while under the control of the native ravA promoter. This difference accounts 

for the expression of lacZ that is Fnr-dependent, and agrees with our RavA-ViaA expression 

profile during oxygen-limiting growth as discussed above (Fig. 1B). Importantly, abolishment of 

the -72.5 Fnr recognition sequence in pPravAm1-lacZ led to a complete loss of the Fnr-dependent 

lacZ expression despite the presence of Fnr, and resulted in a β-galactosidase activity which 

resembles that obtained from the EDCM 367 Δfnr + pPravA-lacZ control. In contrast, abolishment 

of the -188.5 site resulted in only a mild reduction in Fnr-dependent lacZ expression, which 

remained ~24% higher than that of EDCM 367 Δfnr + pPravA-lacZ. Thus, the -72.5 Fnr site is 

revealed to be the primary site for the Fnr-dependent induction of the ravA promoter, while the -

188.5 site plays a secondary role. This is consistent with our EMSA result, which shows that 

binding of FnrD154A to the ravA promoter occurs primarily on the -72.5 Fnr site (Fig. 2D). 

In the time course analysis for RavA levels (Fig. 1B) some amount of RavA was 

observed to be present in the absence of Fnr. Similarly, a basal level of β-galactosidase activity 

was observed in the Fnr knockout strains (Fig. 2I). It is conceivable, not accounting for post-



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

14 

translational regulation of the protein levels, that other transcription factors may play a part in the 

expression and regulation of the ravAviaA operon. Along with the Fnr-binding sites mentioned 

above, a seven nucleotide sequence centered 96 nucleotides upstream of the RavA open reading 

frame was found to match the consensus sequence for the NarL transcription factor (Fig. 2A) 

[39]. However, the mutation of this proposed recognition sequence had no effect on β-

galactosidase activity (not shown). 

 

ViaA physically interacts with uncomplexed FrdA in oxygen-starved cells and the 

interaction is modulated by RavA 

Next, given that RavA and ViaA are induced primarily by Fnr under oxygen-limiting conditions 

(Fig. 1 and 2), we carried out experiments to identify physical interactors of RavA and ViaA 

under these conditions, particularly those that are also upregulated by Fnr. To this end, strains 

that express endogenous C-terminally SPA-tagged proteins were used [40], followed by the 

detection of RavA and/or ViaA bound to the isolated protein complexes through Western 

blotting. The SPA-tag is a dual-affinity tag consisting of 3xFLAG and a calmodulin binding 

peptide motif separated by a cleavage site for tobacco etch virus (TEV) protease. The choices of 

proteins to be tagged were based on the results of our co-expression profiling for ravA and viaA, 

as well as, on the several high-throughput studies that we previously carried out [9, 17]. 

 As shown in Figure 3A, among the 22 proteins that were successfully SPA-tagged, ViaA 

(untagged; MW = 56 kDa) was observed to interact strongly with SPA-tagged FrdA. FrdA is the 

flavin adenine dinucleotide (FAD)-binding component of the fumarate reductase complex 

(FrdABCD) that is involved in anaerobic respiration [18]. No ViaA was observed when FrdA-

SPA pull-down was repeated in viaA cells (Fig. 3B), which confirms the validity of the 
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observed ViaA-FrdA interaction. None of the SPA-tagged proteins interacted with RavA, with 

the only exception being LdcI-SPA (data not shown), which agrees with our previous report [6]. 

In addition, we had previously shown that RavA only interacts weakly or transiently with ViaA 

[6], and accordingly, no ViaA was brought down with RavA-SPA, and vice versa (data not 

shown). 

 In the FrdA-SPA strain, the expression of the Fe-S cluster-containing subunit of fumarate 

reductase, FrdB, was compromised due to the introduction of the SPA tag (Fig. 3B). Similarly, 

given that both frdC and frdD are located downstream of frdB, expression of FrdC and FrdD 

were presumed to be compromised as well; however, antibodies against these two proteins were 

not available for us to test this. Hence, the interaction between ViaA and FrdA-SPA does not 

require endogenous FrdBCD as ViaA seems to bind free FrdA. 

 To further investigate this observation, the FrdA-SPA strain was transformed with 

plasmids that overexpress either the FrdB alone or the FrdBCD subunits of the Frd complex, and 

the immunoprecipitation experiments were repeated. No interaction was observed between FrdA 

and ViaA in the presence of FrdB or FrdBCD (Fig. 3C; IP). We interpret these results to mean 

that ViaA binds free FrdA and not FrdA in an FrdAB or FrdABCD complex. 

 In light of the interaction of FrdA-SPA with ViaA, the potential role of RavA in 

modulating this interaction was also investigated. The immunoprecipitation experiments were 

repeated for FrdA-SPA strain transformed with the plasmids pRV or pRK52QV. The pRV plasmid 

expresses wild type ViaA and RavA. The pRK52QV plasmid expresses WT ViaA and a mutant 

RavA in which the lysine residue of the Walker A motif is mutated to glutamine, rendering the 

protein ATPase inactive. As shown in Fig. 3D, protein levels were the same (input), however, 

more ViaA and RavA bound FrdA-SPA in the presence of ATPase deficient RavA. We speculate 
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that RavA ATPase activity disrupts or weakens the ViaA-FrdA interaction. 

 

ViaA associates with RavA through its N-terminal domain and with FrdA through its C-

terminal VWA domain 

The pulldowns in Figure 3 point towards ViaA as the common partner binding to FrdA and 

RavA in a potential tertiary complex, as RavA alone is not pulled down by FrdA. To verify 

direct interactions among FrdA and ViaA and to identify the role of ViaA domains in mediating 

the transient RavA-ViaA-FrdA complex formation, co-immunoprecipitation experiments were 

performed with purified proteins. A schematic of the ViaA domain arrangement is shown in Fig. 

4A. This was obtained based on sequence alignment of ViaA from several bacterial species and 

on partial protease digestion (not shown). The VWA domain of ViaA is at the C-terminus [6] 

(CTV). The N-terminal domain of ViaA (NTV) appears to be novel with little sequence 

similarity to any characterized protein. The purified isolated NTV domain was stable (see 

below), but CTV was highly insoluble and was fused to a NusA tag to stabilize it (see Methods). 

 Pulldown experiments were carried out with the FrdA-SPA construct used as the bait. 

Figure 4B depicts the results whereby purified RavA, ViaA, and its CTV and NTV domains 

were used as prey for the pulldowns with either FrdA-SPA bound to anti-FLAG M2-affinity 

beads or using the beads without any bound protein. After washing, proteins were eluted using 

TEV protease. The protease cleaves the FLAG-tag moiety of the SPA-tag fused to the C-terminal 

of FrdA. In the instance where no protein was bound onto the beads, mock elutions were 

performed under the same conditions. No significant interaction was observed between RavA 

and FrdA, consistent with the results in Fig. 3A and 3D. On the other hand, ViaA eluted with 

FrdA, thus showing a direct interaction between the two proteins. More specifically, despite 
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some basal level of association with the beads, an increase in NusA-CTV co-elution was seen in 

the presence of FrdA while the NTV did not bind FrdA-SPA at all. Also, NusA alone did not 

bind FrdA. These pulldowns show that ViaA associates with FrdA through its VWA domain.  

 Based on the above results, since CTV in ViaA binds FrdA, we speculated that NTV in 

ViaA binds RavA. We initially biochemically characterized the NTV domain. Like ViaA, NTV 

(theoretical MW of 36 kDa) was found as a mainly monomeric protein by size exclusion 

chromatography (Fig. 5A) and sedimentation equilibrium analytical ultracentrifugation (Fig. 5B). 

NTV was found to be enriched in α–helices (32%) and β-sheets (22%) at 20˚C as measured by 

circular dichroism spectroscopy (Fig. 5C) and to be highly stable with a Tm of 66.1˚C under the 

conditions tested (Fig. 5D). Next, we made use of our previous observation that RavA ATPase 

activity is enhanced by ViaA [6] to check for the potential interaction of NTV with RavA. RavA 

ATPase activity was tested in the presence of ViaA and its different domain constructs. The 

activity of RavA (measured at 0.5 µM protomer concentration) was increased to similar levels by 

equimolar concentration of full length ViaA protein or NTV (Fig. 5E). The presence of NusA-

CTV or NusA had no significant effect on RavA ATPase (Fig. 5E). Hence, the results indicate 

that ViaA associates with RavA through its NTV segment. Further, by measuring the ATPase 

activity enhancement of RavA at different concentrations of the full length ViaA protein or the 

NTV domain (Fig. 5F), we obtained apparent dissociation constants of 0.15 µM and 0.55 µM for 

the ViaA-RavA and NTV-RavA associations, respectively.  

 Taken together, the results of Figures 4 and 5 show that ViaA can be considered as an 

adaptor protein that interacts with RavA via its NTV and with FrdA via its CTV.  

 

RavA-ViaA regulate the activity of the Frd complex in E. coli 
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Both the physical interaction between ViaA and FrdA-SPA, and the antagonistic effect of RavA 

on the FrdA-ViaA interaction suggest that RavA-ViaA might functionally modulate the activity 

of the Frd complex. To test this possibility, inverted membrane vesicles were isolated from 

anaerobically grown MG1655 cells expressing different levels of RavA and/or ViaA. The 

isolated vesicles containing the Frd complex were then examined for differences in fumarate 

reductase activity in vitro by measuring the oxidation of benzyl viologen (BV) in the presence of 

fumarate (see Methods). 

 As shown in Figure 6A, vesicles isolated from ravAviaA and ravAviaA + p11 (p11 is 

an empty vector) strains showed an increase greater than 43% in Frd activity compared to WT 

vesicles. In contrast, addition of RavA and ViaA (ravAviaA + pRV) resulted in reduction of Frd 

activity to near WT levels. As a control, assay performed in the absence of fumarate or with 

vesicles from frdA::kan
R
 strain did not show any fumarate reductase activity, which highlights 

the specificity of this assay in capturing only the activity of the Frd complex. Importantly, 

neither RavA nor ViaA had any observable effects on the expression levels of FrdA (and 

presumably FrdB, FrdC, and FrdD) (Fig. 6B). Hence, RavA and ViaA play a role in mediating 

the rate of fumarate reduction by the Frd complex by possibly regulating its maturation and 

assembly.  

 

Discussion 

In this study, we elucidated a novel functional association of the MoxR protein RavA and its 

VWA partner, ViaA, from E. coli with the fumarate reductase complex during anaerobiosis. The 

interaction between the RavA-ViaA system and the Frd complex modulates the activity of the 

complex (Fig. 6). This association was revealed due to our observation that RavA and ViaA are 
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overexpressed under oxygen-limiting conditions. Though other transcription factors may also be 

responsible, the expression of RavA-ViaA during oxygen starvation was found to be primarily 

inducible by the transcriptional regulator Fnr, which also regulates the expression of the Frd 

complex as well as other proteins involved in anaerobiosis [29, 41].Our finding of the regulation 

of the ravAviaA promoter by Fnr is consistent with a recent high throughput study based on a 

ChIP-chip approach [42]. 

Importantly, the role of 
S
 in the induction of RavA-ViaA expression is significantly 

diminished and is largely relinquished to Fnr during oxygen-limiting growth. This coincides with 

a previous report in which the expression of 
S
 in E. coli MC4100 and MG1655 was shown to 

decrease during anaerobiosis [43]. Nevertheless, our data indicates that 
S
 does have a role in 

modulating the expression of RavA and ViaA under oxygen limiting conditions. Under these 

conditions, RavA expression is induced in log phase but then drastically further increases in 

stationary phase. However, ViaA expression peaks at log phase and then decreases in stationary 

phase (Fig. 1B). In the absence of 
S
, this biphasic opposing regulation of RavA and ViaA is not 

observed to a significant extent (Fig. 1B). Hence, 
S
 differentially modulates the expression of 

ViaA and RavA under oxygen starvation. Under these conditions, 
S
 might, for example, induce 

a protease that degrades ViaA but not RavA. Alternatively, given that ravA-viaA form an operon, 


S
 might indirectly regulate the translation of the ravA-viaA mRNA.  

In a previous report, we had shown that RavA and ViaA interact both physically and 

functionally with specific subunits of the NADH:ubiquinone oxidoreductase I (Nuo complex) 

[9]. RavA-ViaA interact primarily with the FMN (flavin mononucleotide)-binding NuoF subunit 

under aerobic conditions, and with the fused NuoCD subunit under anaerobic conditions [9]. 

Importantly, the Nuo complex is known to be involved in both the aerobic and the anaerobic 
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respiration of E. coli [14, 15]. It has also been shown that the coupling between the Nuo complex 

and the Frd complex is important for the electron transfer from NADH to fumarate during 

anaerobic respiration of E. coli [16]. Taken together, our results support a potential regulatory 

role of RavA-ViaA in the anaerobic utilization of fumarate via its interaction with both the Nuo 

and Frd complexes.  

Our current working model of the effect of RavA-ViaA on the assembly of the Frd 

complex is depicted in Figure 7. We had shown previously that ViaA tends to associate with the 

bacterial inner membranes [9]. Hence, we speculate that an initial interaction occurs between the 

flavoenzymatic FrdA subunit of the Frd complex and ViaA at the inner membranes. This occurs 

with free FrdA in the absence of FrdB, as the presence of FrdB precludes this association. 

Though RavA was not observed to directly bind FrdA, a tertiary complex of RavA-ViaA-FrdA 

was clearly seen when the ATPase deficient mutant of RavA was used (Fig. 3D). ViaA acts as an 

adaptor in this complex by using its N-terminal domain to bind to RavA and its C-terminal VWA 

domain to bind FrdA (Fig. 4 and 5). The ATPase activity of RavA seems to facilitate the 

disassembly of the ViaA-FrdA association (Fig. 3D). If FrdB is then available, the free FrdA can 

associate with FrdB, after which the FrdAB subcomplex interacts with FrdCD to form the 

complete Frd complex [18]. The association of RavA-ViaA with FrdA leads to the regulation of 

the Frd activity as seen in Figure 6A. We propose that ViaA captures free FrdA to maintain its 

stability or to allow for the proper covalent attachment of cofactors to FrdA or FrdB proteins 

before their assembly into the full Frd complex. The association of ViaA with FrdA might also 

be required to delay the assembly of the FrdAB subcomplex and provide time for the FrdCD 

subcomplex to form and insert into the inner cell membrane [18]. 

Such an interactive system of an ATPase and VWA partner has recently been observed in 
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the chemolithoautotroph Acidithiobacillus ferrooxidans [44]. The CO2 assimilating RuBisCo 

enzyme of A. ferrooxidans is activated by the MoxR AAA+ CbbQ protein. Importantly, the 

VWA domain-containing CbbO protein is required to bind to RuBisCo via the VWA domain to 

recruit CbbQ to its substrate [44].  

Considering that MoxR proteins generally act as chaperones for specific targets [1, 2], it 

is tempting to speculate that RavA-ViaA fulfill this function by regulating the maturation process 

of specific Frd and Nuo subunits or the assembly of these subunits into respiratory subcomplexes 

or the assembly of Frd and Nuo complexes into a supercomplex. In this regard, it is interesting to 

note that the Frd complex works in conjunction with the Nuo complex in the electron transfer 

from NADH to fumarate during the anaerobic respiration of fumarate [16, 18]. In conclusion, the 

proposed cellular activity of RavA-ViaA adds to a developing pattern of how MoxR AAA+ 

ATPases might function in nature. 

 

Materials and Methods 

Bacterial strains and plasmids 

All bacterial strains and plasmids used are listed in Table 2. Primers used in the construction of 

these strains and plasmids are also listed in Table 2. All knockout (KO) mutants of the ravA/viaA 

open reading frames were constructed as previously described [6] by employing lambda red 

recombination [45] and P1 phage transduction [46]. EDCM 367 cells were generously provided 

by Dr. Christophe Merlin (University of Lorraine) [47]. MG1655 frdA::kan
R
, MG1655 

rpoS::kan
R
 and EDCM frdA::kan

R
 were constructed via P1 phage transduction. The required 

frdA and rpoS KO cassettes that carry the kan
R
 gene were obtained from BW25113 frdA::kan

R
 

and rpoS::kan
R
, respectively, both of which came from the KEIO collection [48, 49]. All 
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DY330 strains expressing C-terminal SPA-tagged proteins were a generous gift from Dr. 

Andrew Emili (University of Toronto) and were constructed using the protocols described in 

Zeghouf et al. [50]. DY330 FrdA-SPA viaA::cat was constructed by P1 phage transduction. 

The required viaA KO cassette was obtained from MG1655 viaA::cat that was used in a 

previous study [6]. 

The plasmid pRV (p11-ravAp-ravAviaA) was constructed as described in our previous 

work [6]. The plasmid pRK52QV was generated by QuikChange site-directed mutagenesis 

(Stratagene) using the primers RavA K52Q F and RavA K52Q R (Table 2). Similarly, for the 

plasmids pfrdB (p11-frdp-frdB) and pfrdBCD (p11-frdp-frdBCD), all inserts were PCR-

amplified using the common forward primer FrdB NheI F (Table 2). The reverse primers FrdB 

XbaI R and FrdD XbaI R (Table 2) were used for pfrdB and pfrdBCD, respectively. The inserts 

were then cloned into p11-frdp using the restriction enzymes NheI and XbaI (New England 

Biolabs). All constructs were verified by DNA sequencing. 

For high, inducible expression of desired proteins, T7 promoter controlled constructs 

(Table 2) were created using common amplification and cloning techniques. Proteins for 

overexpression include the FrdA-SPA fusion in the pET3aTr vector, NusA-ViaA fusion in the 

pETm-60 vector, N-terminal of ViaA (NTV, residues 1-311) in p11, fusion of C-terminal of 

ViaA (residues 312-483) with NusA (NusA-CTV) in pETm-60 and the RavA protein in p11. 

The plasmid pPravA-lacZ (Table 2) was constructed with the cloning vector pETm-60 

[51]. Expression of lacZ is placed under the control of the ravA promoter immediately upstream. 

To construct the plasmid, a fragment that contains the T7 promoter, lacI, and 5' half of the nusA 

gene in the original pETm-60 was first removed using StuI and BglI, and the modified vector re-

ligated by blunt-end ligation. Next, a 363-bp fragment immediately upstream of the ravA ORF, 
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which covers the ravA native promoter, was PCR-amplified using the primers ravAp NcoI F and 

ravAp BamHI R (Table 2). The ravA promoter was cloned into the modified pETm-60 with NcoI 

and BamHI. Finally, lacZ was PCR-amplified from genomic DNA of E. coli using the primers 

LacZ BamHI F and LacZ NotI R (Table 2). The amplified lacZ gene was then cloned directly 

downstream of the ravA promoter with BamHI and NotI to give pPravA-lacZ. To generate 

mutations in the ravA promoter in pPravA-lacZ, the primers ravAp(fnrm1) F and ravAp(fnrm1) R 

(Table 2) were used to replace the consensus fnr sequence (5'-TTGCTTATTATCAG-3') 

centered at -72.5, in respect to the transcription start site, with 5'-AGAAGCTAGCAACA-3'. 

Both primers contained the recognition sequence for NheI (5'-GCTAGC-3'), which allowed for 

digestion and ligation of the PCR product to form circular plasmids. A similar strategy was used 

to replace putative Fnr recognition site centered at -188.5 (5'-TTAACCTGGCTCAA-3') with 5'-

CAAAGCTAGCAAAC-3', using the primers ravAp(fnrm2) F and ravAp(fnrm2) R. A seven 

nucleotide site centered at -96 (5'-TACTCCT-3') matching the consensus NarL recognition 

sequence [39] was replaced with 5'-GCTAGCA-3' using the primer pair ravAp(NarLm) F and 

ravAp(NarLm) R. 

 

Protein production and purification 

The E. coli BL21 Gold (DE3) pLysS (Stratagene) strain was used for high-level expression of 

desired protein constructs. The NusA-ViaA, NTV, NusA-CTV, RavA and FrdA-SPA proteins 

were induced by addition of 1 mM IPTG to cell cultures grown to mid-log phase at 37ºC. The 

cultures were grown overnight (~16 hrs) at 18ºC. After induction, cells were harvested by 

centrifugation and stored at -80ºC. 

 Nickel affinity chromatography was performed to purify NusA-ViaA, NTV, NusA-CTV, 
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and RavA constructs each of which contained a cleavable polyhistidine (6xHis) tag. As the CTV 

separated from the NusA protein was not soluble, the NusA-CTV fusion protein was stored at -

80ºC for further use without removing the NusA-tag. Tobacco etch virus (TEV) protease was 

used in a 1:20 molar ratio to cleave the 6xHis-tags from NTV and RavA proteins, and to remove 

the NusA (containing the 6xHis tag) moiety of the NusA-ViaA fusion. Additionally, ion 

exchange chromatography with Mono S 5/50 HR or Mono Q 5/50 HR columns was performed to 

further purify RavA and NTV samples, respectively. ViaA protein was separated from NusA 

using the HiTrap Heparin HP column. 

 

Size exclusion chromatography 

For size exclusion chromatography, the Superose 6, 10/300 GL column (GE Healthcare) was 

used for RavA, ViaA and FrdA proteins. The Superdex 200 10/300 column (GE Healthcare) was 

used for the NTV and NusA-CTV constructs. Proteins were run in the SEC buffer: 25 mM 

HEPES (pH 7.5), 300 mM NaCl, 1 mM MgCl2, 1 mM DTT, 5% (v/v) glycerol. Elution fractions 

were collected and visualized using SDS-PAGE.  

 

Co-expression profiling of ravA and viaA in E. coli 

The expression levels of ravA and viaA were compared across different experimental conditions 

to identify genes with similar expression profiles. To this end, a large compendium composed of 

445 microarray datasets was obtained from the M3D public database (Build 4 of E. coli 

expression data) [52]. These data were available in the form of Robust Multi Array (RMA) 

normalized profiles [53], which enables the direct comparison of the expression profiles of 

different protein-encoding genes across multiple experimental conditions. The Pearson 
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correlations, used for comparing the similarity of expression profiles, were computed for all 

4,125 genes present on the Affymetrix chip against both ravA and viaA. This allowed the 

identification of genes that exhibit the most similar expression profiles to the seed set of genes. 

Due to the large number of conditions in the compendium, a conservative cut-off of 0.5 was 

adopted as the correlation threshold to identify the functional links to the seed genes. All 

functional annotations were obtained from publicly available online databases, such as EcoCyc 

[54], UniProtKB [55] and RegulonDB [56]. 

 

Expression analysis of RavA and ViaA in E. coli under aerobic and oxygen-limiting 

conditions 

E. coli MG1655 WT, fnr::kan
R
, rpoS::kan

R
 and ravAviaA were grown in Luria-Bertani (LB) 

media (10 g/L bacto-tryptone, 5 g/L yeast extract, and 10 g/L sodium chloride) at 37 C either 

aerobically in 200-mL culture flasks with vigorous shaking, or under oxygen-limiting condition 

in 60-mL disposable syringes sealed with sterile end caps with gentle agitation. All cultures were 

inoculated with single colonies grown overnight on LB-agar plates. Growth of cells was tracked 

by monitoring the changes in OD600 at specific time points. For each time point, an aliquot of the 

cells was harvested by centrifugation and flash-frozen in liquid nitrogen until use. To determine 

the levels of RavA and ViaA proteins in cells, the cell pellets collected were thawed on ice and 

then resuspended in 0.1 M potassium phosphate (pH 7.5) supplemented with 0.1 M sodium 

chloride. The volume of each sample was adjusted to give a final cell count of approximately 3.8 

 10
9
 cells/mL as determined by OD600. Cells were lysed by sonication, followed by treatment 

with 4 × SDS-PAGE sample buffer (200 mM TrisHCl, pH 6.8, 8% SDS, 0.4% bromophenol 

blue, 40% glycerol, and 400 mM -mercaptoethanol) and separated on 10% or 12% 
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polyacrylamide gels. The levels of RavA and ViaA were analyzed by Western blotting. A 70-

kDa cross-reacting band in the -ViaA blot was used as the loading control. 

 

Electromobility shift assay (EMSA) 

The E. coli Fnr mutant, FnrD154A, was expressed from the plasmid pPK824 (pET11a-fnrD154A) in 

strain PK22 lacking fnr (Table 2) and purified as described in [34], except that SP sepharose (GE 

Health Sciences) was used in place of BioRex-70 during the first round of purification. FnrD154A 

was used in this assay because it retains the same specificity and affinity as WT Fnr for binding 

to the Fnr consensus DNA sequence even under aerobic conditions [34]. All DNA substrates 

required were PCR-amplified using the appropriate primers listed in Table 2. 

To detect the binding of FnrD154A to the DNA substrates, 3 nM of DNA substrate was 

incubated with 60 nM FnrD154A in 20 mM Tris-acetate (pH 7.5) supplemented with 40 mM KCl, 

1 mM MgCl2 and 5% (v:v) glycerol for 30 minutes at 37 C. All samples were electrophoresed at 

4 C in a 4% polyacrylamide native gel supplemented with 10% polyethylene glycol with 20 

mM Tris-acetate (pH 8.0) as the running buffer. The gel was then incubated in 20 mM Tris-

acetate (pH 8.0) supplemented with the RedSafe DNA stain (Chembio) with gentle agitation at 

room temperature to stain the DNA bands contained within. Visualization of the DNA bands was 

done using the GelDoc 2000 (BioRad). 

 

-Galactosidase reporter assay 

To quantify the effect of Fnr on the recognized regulatory sequences in the RavA-ViaA promoter 

region, lacZ expression under the control of the native and mutated ravA promoter was 

monitored using previously established protocols [57]. The pPravA-lacZ plasmid (Table 2) that 
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expresses lacZ under the control of the native ravA promoter, a no-promoter control (pΔP-lacZ), 

promoter with mutated Fnr recognition sites (pPravAm1-lacZ and pPravAm2-lacZ) or a mutated NarL 

consensus matching sequence (pPravAm3-lacZ) were constructed as described above. These 

plasmids were introduced into the EDCM 367 (E. coli MG1655 lacZ
-
, lacY

-
) and pPravA-lacZ was 

also transformed into EDCM 367 Δfnr. 

Cells were inoculated from overnight starter cultures and then grown under oxygen-

limiting condition in LB supplemented with 1% (v/v) glycerol and 50 mM sodium fumarate in 

sealed, sterile tubes. The cultures were grown until their OD600 reached ~0.5. At which point, 

three 1-mL samples were collected for each culture. The cells were pelleted and lysed using the 

permeabilization solution (0.8 mg/mL cetyl trimethyl ammonium bromide (CTAB), 0.4 mg/mL 

sodium deoxycholate, 100 mM Na2HPO4, 20 mM KCl, 2 mM MgSO4, and 5.4 µL/mL β-

mercaptoethanol). The substrate solution (1 mg/mL ortho-nitrophenyl-β-galactoside (ONPG), 60 

mM Na2HPO4, 40 mM NaH2PO4, 20 µg/µL CTAB, 10 µg /mL sodium deoxycholate 2.7 µL/mL 

β-mercaptoethanol) was added to the lysed samples and the reaction was run for no more than 

120 minutes. 700 L of 1 M sodium carbonate was added to stop the reaction after sufficient 

color had developed. The samples were centrifuged to remove cell debris and 200 µL of 

supernatant was then transferred to a 96-well plate and the absorbance at 420 nm was measured. 

Miller units were calculated using the following formula [46]: 

Miller units = 1000×[(Abs450)/(OD600×cell culture volume used in mL×reaction time in minutes)] 

 

Immunoprecipitation by SPA-tagged bait proteins 

Endogenous Sequential Peptide Affinity (SPA)-tagging of proteins was carried out in E. coli 

DY330 using the protocols described in Zeghouf et al. [50]. Cells with confirmed incorporation 
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of the SPA-tags at the C-terminus of targeted proteins were grown in LB media at 30 °C in 

sealed sterile 50-mL centrifuge tubes for over 24 hours. Cells were then harvested by 

centrifugation at 4°C and resuspended in buffer A (25 mM TrisHCl, pH 7.5, 100 mM KCl, 10 

mM MgCl2 1 mM CaCl2, 0.2 mM EDTA, 1% Triton X-100, 10% glycerol, and 0.5 mM DTT) 

supplemented with 1 mg/mL lysozyme (BioShop) and 0.1 U/mL DNaseI (Fermentas). After 

incubation on ice for 15 minutes, cells were lysed by sonication. Total soluble proteins were 

isolated from the crude cell lysate by centrifugation. The SPA-tagged proteins and the stably 

associated proteins were purified using ANTI-FLAG M2 Affinity Beads (Sigma-Aldrich) 

following the manufacturer’s protocols, which were then analyzed by SDS-PAGE and Western 

blotting. 

 C-terminally SPA-tagged FrdA was also used as bait to verify interactions with purified 

proteins. An FrdA-SPA fusion construct, under the control of a T7 promoter in the pET3aTr 

plasmid, was induced using IPTG in BL21 Gold (DE3) pLysS cells. The expression was carried 

out for 16 hrs at 18ºC. Cells were harvested and resuspended in the lysis buffer mentioned above 

and lysed by sonication. After removal of cell debris, the supernatant collected from 1 mL of 

culture was incubated with 40 µL of ANTI-FLAG M2 affinity beads overnight at 4ºC. The beads 

were placed in Bio-Spin® chromatography columns and unbound protein was washed away with 

5 mL of buffer A. Next, 200 µL of buffer containing one of the following: 1 µM RavA, 1 µM 

ViaA, 1 µM NTV, 0.1 µM NusA-CTV or 0.1 µM NusA was added to the beads and incubated 

with gentle shaking for 4 hrs. The beads were again washed to remove unbound protein. Elution 

was performed overnight to release FrdA-SPA from the beads by incubation of beads in buffer A 

containing 200 µL of 0.1 mg/mL TEV protease. 
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Circular dichroism spectroscopy 

The NTV protein was prepared at 0.4 mg/mL in CD buffer (25 mM HEPES pH 7.5, and 50 mM 

NaF). 200 µL of sample was used with a 1 mm pathlength quartz cuvette. The Jasco J-810 

spectropolarimeter was used for measurement. For the thermal melt profile, the ellipticity was 

measured at 222 nm from 20ºC to 80ºC as temperature was increased by 1ºC/minute. 

Wavelengths scans were performed at 5ºC intervals from 250 nm to 200 nm at a 1 nm pitch and 

a speed of 50 nm/min. Wavelength scans were performed in triplicate and averaged. The curves 

were twice smoothened using the Savitzky-Golay algorithm with a convolution width of 25 [58]. 

To estimate the secondary structure composition, the BeStSel single spectrum analysis and fold 

recognition tool was utilized [59]. 

 

Western Blotting 

Samples to be analyzed were first separated using a 10% or 12% SDS-PAGE gels. The protein 

bands were then transferred onto an Amersham Hybond-P PVDF membrane (GE Healthcare) 

using the TE77X Semi-dry Transfer Unit (Hoefer Inc.) following manufacturer’s instructions. 

The membrane was then blocked, washed and incubated with the appropriate antibodies as 

required, using standard protocols. The polyclonal rabbit antibodies against RavA and ViaA 

were generated at the Division of Comparative Medicine, University of Toronto. The polyclonal 

rabbit antibodies against FrdA and FrdB in E. coli were generously provided by Professor Joel 

Weiner (University of Alberta, Edmonton, Canada). The monoclonal mouse antibody against the 

FLAG tag was purchased from Sigma-Aldrich. Commercially available monoclonal antibody 

against the calmodulin binding peptide (CBP) (EMD Millipore) was used to detect the FrdA-

SPA construct and a NusA monoclonal antibody (EMD Millipore) was used to detect either 
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NusA protein or the NusA-CTV fusion.  

 

Analytical Ultracentrifugation  

A sedimentation equilibrium run was performed on Beckman Optima XL-A analytical 

ultracentrifuge. The NTV construct was run at concentrations of 1.0 mg/mL, 0.5 mg/mL and 

0.25 mg/mL in a buffer containing 25 mM HEPES, 300 mM NaCl and 1 mM DTT. The 

experiment was run at 4ºC for 27 hours each at 14000 and 16000 rpm using An-60 Ti rotor. 

Protein concentrations across the length of the cell were measured using absorbance at 280 nm. 

Origin 4.1 software was used to analyze the data. The partial specific volume, solvent density 

and viscosity were calculated using SEDNTERP [60].  

 

RavA ATPase assay  

The ATPase activity of RavA, in the presence or absence of ViaA and its domains, was tested 

using the ATP/NADH coupled assay [61] . The ATPase buffer with the following final 

components was used: 0.2 mM NADH, 3 mM phosphoenolpyruvate, 4.7 U/mL pyruvate kinase, 

7.4 U/mL lactate dehydrogenase, 5 mM MgCl2, 25 mM HEPES, 50 mM NaCl. The relevant 

proteins were placed in ATPase buffer with 5 mM ATP. Unless indicated, 0.5 µM of proteins 

were used. The 150 µL reactions were carried out at 37ºC in a clear 96-well plate on the 

SpectraMax 340PC384 microplate reader, absorbance was measured at 340 nm for 20 minutes at 

20-second intervals.  

 

Fumarate reductase activity assay 

E. coli MG1655 WT, ravAviaA, ravAviaA + p11, , ravAviaA + pRV, ravAviaA + pRK52QV 
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and BW25113 frdA::kan
R
 were grown under oxygen-limiting condition inside sealed, sterilized 

containers in EZ-defined rich media [62] supplemented with 1% (v:v) glycerol and 50 mM 

sodium fumarate at 37 C over 16 hours. Cells were then harvested by centrifugation, re-

suspended in 0.1 M sodium phosphate buffer (pH 7) and lysed by two passages through a French 

Press (Thermo Spectronic) at 18000 lb/in
2
. Cell lysis by French Press generates inside-out 

membrane vesicles. Cell debris was removed by centrifugation. To isolate the membrane 

vesicles, the cleared cell lysate was subjected to ultracentrifugation at 150,000  g at 4 C for 1.5 

hours. The pelleted membrane vesicles were resuspended in 0.1 M sodium phosphate buffer (pH 

7), flash-frozen with liquid nitrogen, and stored at -80 C until use. 

 To measure the activity of endogenously expressed fumarate reductase in the isolated 

inside-out membrane vesicles, a modified version of the benzyl viologen (BV) colorimetric assay 

described in [63] was used. Briefly, 0.125 mM (final concentration) BV was first reduced with 

1.5 mM (final concentration) Na2S2O4 in 0.1 M sodium phosphate (pH 7), followed by the 

addition of 60 µg/mL of membrane vesicles. To initiate the reaction, 20 mM (final 

concentration) sodium fumarate was added and the mixture was homogenized by gentle pipetting 

to minimize oxidation of BV by air. Fumarate reductase activity was tracked by monitoring the 

loss of the purple color as BV was oxidized in the presence of fumarate. This was done by 

measuring absorbance at 500 nm of the reaction mixture in a standard 1-cm cuvette using the 

CARY300 UV-Vis Spectrophotometer (Agilent Technologies). Measurements were taken every 

second for 3 minutes at room temperature. Fumarate reductase activity was calculated using the 

equation 1 U = 1 mol BV oxidized/min, with the extinction coefficient of BV = 7.8  10
3
 M

-

1
cm

-1
 [63]. The results were then normalized to the amount of membrane vesicles used to allow 

comparison between samples. 
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Figure legends 

 

Figure 1. Co-expression profiles and expression analysis for RavA and ViaA  

(A) Shown are genes that have similar expression profiles as ravA and viaA. Single or multiple 

genes enclosed in rectangular boxes denote the constituents of monocistronic (only one gene 

included in its own box) or polycistronic operons (multiple genes in one box), respectively. 

Genes from the same polycistronic operon that are classified to a different co-expression 

category are linked with broken lines. All genes that are under the control of the transcriptional 

regulator Fnr are denoted with an asterisk (*). 

(B) Western blots of RavA and ViaA for aerobically grown cells (shown on the left) and cells 

grown under oxygen limitation (shown on the right). All strains were grown in LB media. The 

time points at which cells were harvested are as indicated at the top. The ravAviaA cells 

harvested after 24 hours of growth were used to provide a reference for expressed RavA and 

ViaA. A cross-reacting band in the -ViaA blots (at 70-kDa) that remains consistent at all the 

time points was used as the loading control. 

 

Figure 2. The ravAviaA promoter region and its regulation by Fnr 

(A) Sequence for the ravA and nearby kup (encodes the K
+
 transporter; shown here in reverse 

complement) open reading frames are colored in purple and green, respectively. The 
S
 

consensus sequence in red [64], transcription start site in blue [65] and the Shine-Dalgarno 

sequence in black box are indicated as shown. The potential Fnr binding sites are underlined with 

pink and a putative seven-nucleotide stretch of sequence matching the NarL consensus site is 

underlined in green. The genomic coordinates are given to the left of each line. 
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(B) Genetic layout for the ravA-viaA and kup genes is represented, highlighting the position of 

the 
S
 consensus sequence, the two putative Fnr binding sites (pink bars) and a site matching the 

NarL consensus sequence (green bar).  

(C, E, F) Schematic representations of the DNA substrates R-1, R-2 and R-3 for the ravAviaA 

promoter region (C), F-1 for the fepD promoter region (E), and H-1, H-2 and H-3 for the 

hypBCDE promoter region (F). Both putative and confirmed binding sites for Fnr are indicated 

with black boxes as illustrated and their DNA sequences are shown below. Bases that are 

underlined represent the half-sites (both putative and confirmed) that are crucial for Fnr binding 

[33, 38]. The genomic region covered by each DNA substrate is indicated at both ends with the 

corresponding E. coli K-12 genome coordinates. Bent arrows represent the transcriptional start 

sites (+1). 

(D, G) EMSA results using substrates R-1, R-2 and R-3 (D), and F-1, H-1, H-2 and H-3 (G). The 

absence (-) and presence (+) of FnrD154A in the reaction mixture are as indicated at the top. The 

origins of all DNA substrates used are as shown. The molecular weights of the DNA markers 

used are shown on the left of the gel. 

(H) The mutations made at the Fnr-binding sites within the ravA promoter region are listed. 

(I) A graph representing the β-galactosidase activity levels in cells grown under oxygen 

limitation are shown when under control of the indicated promoter region. Either EDCM 367 

(WT) cells or the EDCM 367 Δfnr (Δfnr) strains were used. β-galactosidase, encoded by lacZ, 

expression was under the control of no promoter (p∆P-lacZ), ravA native promoter (pPravA-lacZ) 

or the RavA promoters mutated at either of two Fnr-binding sites (pPravAm1-lacZ, pPravAm2-lacZ). 

P-values comparing the Δfnr + pPravA-lacZ, WT + pPravAm1-lacZ and WT + pPravAm2-lacZ with 

WT + pPravA-lacZ are indicated with * and noted at the top of the graph.  
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Figure 3. The interaction of ViaA with FrdA 

(A) Initial screen to identify physical interactors of ViaA in DY330 cells grown under oxygen 

limitation in LB. SPA tag was fused to the endogenous genes. The identities of bait proteins are 

as given at the top. “” denotes ViaA-SPA; “†” denotes cross-reacting bands in the -ViaA blot. 

The ViaA band is indicated by an arrow. 

(B) Confirmation of the interaction between ViaA and FrdA-SPA. Note that FrdB expression 

was abolished due to the introduction of the SPA tag. All cells were grown under oxygen 

limitation in LB. Identities of the strains are given at the top. Total refers to soluble proteins from 

total cell lysate; IP refers to proteins found in the immunoprecipitation of FrdA-SPA. 

(C) Western blots of total RavA, ViaA, FrdA-SPA, and FrdB in DY330 FrdA-SPA strain grown 

under oxygen limitation and after immunoprecipitation of FrdA-SPA. Sol. Ptn. = soluble 

proteins; IP = immunoprecipitation. 

(D) Western blots for total RavA, ViaA and FrdA in DY330 FrdA-SPA strain transformed with 

pRV or pRK52QV grown under oxygen limitation and after immunoprecipitation of FrdA-SPA.  

 

Figure 4. Pulldown assays mapping the interaction of ViaA domains with RavA and FrdA 

(A) A schematic of the ViaA protein showing the domain boundaries of NTV (residues 1-311) 

and CTV (312-483).  

(B) Western blots are shown for the immunoprecipitation performed with either FrdA-SPA 

bound onto FLAG-affinity beads or with empty beads. Purified RavA, ViaA, NTV, NusA-CTV 

or NusA proteins were added to the beads as indicated. The antibody used for detection is noted 

on the left with the respective detected protein indicated on the right. High and low exposure 
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blots are shown for clarity. 

 

Figure 5. Characterizing the interaction of NTV with RavA 

(A) Size exclusion chromatography (SEC) of the ViaA and FrdA proteins on Superose 6 column, 

and of NTV on Superdex 200 column. Molecular weight markers are indicated on the top of each 

panel with the elution volumes noted on the bottom.  

(B) The lower panel shows the analytical ultracentrifugation sedimentation equilibrium data for 

NTV at 14 µM at 4°C. The solid line is the theoretical fit to the data using a single species 

function. The molecular weight (MW) and the 95% confidence interval values are given. The 

upper panel displays residual deviations from the theoretical fit. 

(C) Shown are the CD wavelength scans for NTV as a function of temperature. 

(D) Thermal melt of NTV monitored by CD at 222 nm. The melting temperature (Tm) is given 

above the curve. 

(E) RavA (0.5 µM) ATPase activity rates in the presence of equimolar amounts of ViaA, NTV, 

NusA-CTV or NusA proteins. A * indicates that the difference from the ATPase activity of 

RavA alone is significant, p-value < 0.01. 

(F) Change in RavA ATPase activity as a function of ViaA (green) or NTV (blue) concentration. 

The data were fit to a single binding site model to obtain an apparent Kd.  

 

Figure 6. RavA-ViaA modulate fumarate reductase activity in oxygen-starved E. coli 

MG1655 

(A) Benzyl viologen (BV) assay on inverted membrane vesicles isolated from cells expressing 

different levels of RavA and ViaA. The strains used are identified below the graph. Three 
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independent experiments were conducted for each strain. 1 U = 1 mol BV oxidized per minute. 

P-values < 0.01 were obtained when comparing the ravAviaA, ravAviaA + p11, and 

ravAviaA + pRV Frd activities with WT activity. This is indicated with *. 

(B) Western blotting confirms that protein levels of FrdA remain unchanged upon changes in 

RavA and ViaA levels.  

 

Figure 7. Model of the function of RavA-ViaA in the modulation of the fumarate reductase 

respiratory complex assembly 

The Frd complex formation is shown along with the proposed contribution of the ViaA and 

RavA proteins in regulation of complex assembly. As the Frd operon is translated, the FrdC and 

FrdD proteins are targeted to the inner membrane while FrdA and FrdB are processed in the 

cytoplasm before they associate with the membrane-bound subunits. Free ViaA mainly 

associates with the bacterial inner membrane where ViaA interacts with FrdA (1). In the 

presence of FrdB, ViaA is not observed to associate with FrdA. The ViaA-FrdA interaction is 

modulated by RavA in an ATP-dependent manner (2). FrdB associates with FrdA (3) and this is 

followed by FrdAB interacting with FrdCD at the membrane (4) to form a functional respiratory 

fumarate reductase complex (5).  
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Table 1. Pearson correlation scores for ravA- and viaA-co-expressing genes and their 

functional annotations 

The following list contains genes that meet the stringent cut-off (correlation score  0.5) and are 

considered to co-express with ravA and/or viaA. The Pearson correlation scores corresponding to 

each of these genes are provided on the right. The b numbers and functional descriptions (if 

available) are also provided as shown. The genes are divided into three categories, depending on 

whether they co-express with both ravA and viaA (Category I), with ravA only (Category II), or 

with viaA only (Category III). A Venn diagram of the data is given in Figure 1A. 

Category I: Genes co-expressing with both ravA and viaA 

Gene Name b Number Description 
Correlation with 

ravA 

Correlation with 

viaA 

ansB b2957 Asn metabolism 0.65051 0.60753 

aspA b4139 Asp metabolism 0.54194 0.57059 

dcuA b4138 C4-dicarboxylate transport 0.66535 0.54888 

dcuB b4123 C4-dicarboxylate transport 0.56817 0.51744 

frdA b4154 Anaerobic respiration; Fermentation 0.69038 0.63405 

frdB b4153 Anaerobic respiration; Fermentation 0.64379 0.60204 

frdC b4152 Anaerobic respiration; Fermentation 0.61917 0.5964 

gpmM b3612 Glycolysis 0.59776 0.52958 

hemC b3805 Hem biosynthesis 0.51487 0.50138 

hemX b3803 Porphyrin biosynthesis 0.5281 0.54115 

hybO b2997 Anaerobic respiration 0.62005 0.58672 

hypA b2726 Protein modification; Anaerobic respiration 0.64622 0.5954 

hypB b2727 Protein maturation 0.69607 0.62498 

hypC b2728 Protein maturation; Anaerobic respiration 0.67458 0.63329 

hypD b2729 Protein modification; Anaerobic respiration 0.65885 0.59676 

menD b2264 Menaquinone biosynthesis 0.54297 0.50761 

mtlD b3600 Carbohydrate catabolism 0.50802 0.56832 

nikA b3476 Ni
2+

 transport 0.54464 0.55937 

nirB b3365 Anaerobic respiration; nitrate assimilation 0.57724 0.51632 

nirD b3366 Anaerobic respiration; nitrate assimilation 0.53498 0.51578 

nrfA b4070 Anaerobic respiration 0.53363 0.51896 

pepE b4021 Glycopeptide catabolism 0.65684 0.56658 

pfkA b3916 Glycolysis 0.56294 0.51026 

pldB b3825 Lipid biosynthesis 0.52289 0.59484 

selA b3591 Selenocysteine incorporation 0.69996 0.62336 

udp b3831 Nucleoside metabolism 0.50767 0.53799 

yhhN b3468  0.54876 0.5435 

yieE b3712  0.5822 0.53172 

yieF b3713 Xenobiotic metabolism 0.55289 0.55248 

yieP b3755 Transcription regulation 0.59788 0.57585 

yjjI b4380  0.70975 0.69532 

ysaA b3573 Electron transport chain 0.61717 0.56855 

     

Category II: Genes co-expressing with ravA only 

Gene Name b Number Description Correlation with ravA 

cpxR b3912 DNA-binding response regulator in two-component 

regulatory system with CpxA 

0.56566 

cydA b0733 cytochrome d terminal oxidase, subunit I 0.51738 

dcuC b0621 anaerobic C4-dicarboxylate transport 0.52104 

dmsA b0894 dimethyl sulfoxide reductase, anaerobic, subunit A 0.5548 
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elbB b3209 isoprenoid biosynthesis protein with amidotransferase-like 

domain 

0.50812 

epd b2927 D-erythrose 4-phosphate dehydrogenase 0.50287 

focA b0904 formate transporter 0.52822 

frdD b4151 fumarate reductase (anaerobic), membrane anchor subunit 0.50535 

galT b0758 galactose-1-phosphate uridylyltransferase 0.50055 

glgX b3431 glycogen debranching enzyme 0.52472 

lysU b4129 lysine tRNA synthetase, inducible 0.53954 

menF b2265 isochorismate synthase 2 0.52301 

nadK b2615 NAD kinase 0.54078 

nagA b0677 N-acetylglucosamine-6-phosphate deacetylase 0.55783 

nrfB b4071 nitrite reductase, formate-dependent, penta-heme 

cytochrome c 

0.51511 

pck b3403 phosphoenolpyruvate carboxykinase 0.50262 

pepP b2908 proline aminopeptidase P II 0.5116 

pflB b0903 pyruvate formate lyase I (inactive) 0.52252 

pgi b4025 glucosephosphate isomerase 0.53519 

pgk b2926 phosphoglycerate kinase 0.53232 

srlR b2707 GutR glucitol repressor 0.58033 

tpiA b3919 triosephosphate isomerase 0.57139 

viaA b3745 VWA-containing protein associated with RavA 0.84586 

yfbB b2263 (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-

carboxylate synthase 

0.50662 

ygdH b2795 hypothetical protein 0.5543 

yhbT b3157 predicted lipid carrier protein 0.52801 

yhdH b3253 predicted oxidoreductase, Zn-dependent and NAD(P)-

binding 

0.54479 

yihY b3886 predicted inner membrane protein 0.5313 

yjdK b4128 hypothetical protein 0.56851 

yqhD b3011 alcohol dehydrogenase, NAD(P)-dependent 0.55211 

    

Category III: Genes co-expressing with viaA only 

Gene Name b Number Description Correlation with viaA 

amiB b4169 N-acetylmuramoyl-l-alanine amidase II 0.52138 

cpdA b3032 cyclic 3',5'-adenosine monophosphate phosphodiesterase 0.53408 

envZ b3404 sensory histidine kinase in two-component regulatory system 

with OmpR 

0.53976 

glmU b3730 fused N-acetyl glucosamine-1-phosphate uridyltransferase 

and glucosamine-1-phosphate acetyl transferase 

0.52324 

gntR b3438 DNA-binding transcriptional repressor 0.5719 

gntX b3413 gluconate periplasmic binding protein with 

phosphoribosyltransferase domain, GNT I system 

0.50584 

hemD b3804 uroporphyrinogen III synthase 0.50487 

hypE b2730 carbamoyl phosphate phosphatase, hydrogenase 3 

maturation protein 

0.51627 

kdgK b3526 2-keto-3-deoxygluconokinase 0.54256 

murI b3967 glutamate racemase 0.51627 

nikC b3478 nickel transporter subunit 0.52011 

nikD b3479 nickel transporter subunit 0.50367 

pcm b2743 L-isoaspartate protein carboxylmethyltransferase type II 0.53129 

ravA b3746 MoxR AAA+ ATPase interacting with LdcI 0.84586 

tdcB b3117 catabolic threonine dehydratase, PLP-dependent 0.51152 

ubiH b2907 2-octaprenyl-6-methoxyphenol hydroxylase, FAD/NAD(P)-

binding 

0.51134 
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yhbU b3158 predicted peptidase, collagenase-like 0.54514 

yhiR b3499 Protein utilizing DNA as a carbon source 0.53345 

yiaF b3554 hypothetical protein 0.52386 

yicN b3663 hypothetical protein 0.62638 

yidF b3674 predicted DNA-binding transcriptional regulator 0.5513 

yiiM b3910 protein involved in base analog detoxification 0.53678 

yjjW b4379 predicted pyruvate formate lyase activating enzyme 0.5497 

zraS b4003 sensory histidine kinase in two-component regulatory system 

with ZraR 

0.54079 
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Table 2. List of bacterial strains, plasmids and primers 

Bacterial strains Genotype Reference 

MG1655 (WT) F-, rph-1, - [1] 

MG1655 

ravAviaA 

MG1655, ravAviaA 

This study 

MG1655 

fnr::kan
R
 

MG1655, fnr::kan
R
 This study 

MG1655 

rpoS::kan
R
 

MG1655, rpoS::kan
R
 This study 

PK22 BL21(DE3), crp-bs990, rpsL, fnr, zcj-3061::Tn10 [2] 

DY330 (WT) W3110, lacU169, gal490, pgl8,  []cI857 (cro-bioA) [3] 

DY330 RavA-SPA DY330, ravA-SPA::kan
R
 This study 

DY330 ViaA-SPA DY330, viaA-SPA::kan
R
 This study 

DY330 LdcI-SPA DY330, ldcI-SPA::kan
R
 This study 

DY330 FrdA-SPA DY330, frdA-SPA::kan
R
 This study 

DY330 FrdA-SPA 

viaA::cat 

DY330, frdA-SPA::kan
R
, viaA::cat This study 

DY330 HemC-SPA DY330, hemC-SPA::kan
R
 This study 

DY330 HemX-

SPA 

DY330, hemX-SPA::kan
R
 This study 

DY330 CysA-SPA DY330, cysA-SPA::kan
R
 This study 

DY330 CysB-SPA DY330, cysB-SPA::kan
R
 This study 

DY330 CysI-SPA DY330, cysI-SPA::kan
R
 This study 

DY330 CysJ-SPA DY330, cysJ-SPA::kan
R
 This study 

DY330 CysM-SPA DY330, cysM-SPA::kan
R
 This study 

DY330 CysN-SPA DY330, cysN-SPA::kan
R
 This study 

DY330 CysP-SPA DY330, cysP-SPA::kan
R
 This study 

DY330 NapA-SPA DY330, napA-SPA::kan
R
 This study 
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DY330 NapD-SPA DY330, napD-SPA::kan
R
 This study 

DY330 NapH-SPA DY330, napH-SPA::kan
R
 This study 

DY330 HypA-SPA DY330, hypA-SPA::kan
R
 This study 

DY330 HypB-SPA DY330, hypB-SPA::kan
R
 This study 

DY330 HypC-SPA DY330, hypC-SPA::kan
R
 This study 

DY330 HypD-SPA DY330, hypD-SPA::kan
R
 This study 

DY330 HycE-SPA DY330, hycE-SPA::kan
R
 This study 

DY330 HycG-SPA DY330, hycG-SPA::kan
R
 This study 

EDCM 367 (WT) MG1655 ∆(Plac-lacZY) [4] 

EDCM 367 ∆fnr EDCM 367, ∆fnr This study 

BL21 Gold (DE3) 

pLysS 

BL21 (DE3), pLysS(T7p20 orip15A)(Cm
R
) Stratagene 

Plasmids Description Reference 

p11 Cloning vector derived from pET15b(+) [5] 

pRV p11-ravAp-ravAviaA, for RavA and ViaA overexpression regulated by 

the native ravA promoter 

[6] 

pRK52QV p11-ravAp-ravA(K52Q)viaA, for the overexpression of RavA Walker A 

mutant and wildtype ViaA regulated by the native ravA promoter 

This study 

pPK824 pET11a-fnrD154A, for IPTG-induced expression of the mutant 

FnrD154A 

[2] 

p11-frdp p11-frdp; frd promoter control for similar plasmids carrying genes 

encoding the subunits of fumarate reductase 

This study 

pfrdB p11-frdp-frdB, for overexpressing FrdB regulated by the native frd 

promoter 

This study 

pfrdBCD p11-frdp-frdBCD, for overexpressing FrdB, FrdC and FrdD regulated by 

the native frd promoter 

This study 

pETm-60 Cloning vector [7] 

pPravA-lacZ pETm-60 (ravAp-lacZ) for β-galactosidase expression under native ravA 

promoter control 

This study 

pPravAm1-lacZ pETm-60 (ravAp
fnr1

-lacZ) β-galactosidase expression under control of 

ravA promoter mutant with replacement of the putative Fnr binding 

This study 
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sequence, centered at -72.5 from transcription start site. 

pPravAm2-lacZ pETm-60 (ravAp
fnr2

-lacZ) β-galactosidase expression under control of 

ravA promoter with replacement of the putative Fnr binding site situated 

at -188.5 from transcription start site. 

This study 

p∆P-lacZ pETm-60 vector backbone with β-galactosidase encoding lacZ gene but 

no promoters. 

This study 

pET3aTr Cloning vector [8] 

pET3aTr FrdA-

SPA 

Plasmid for the T7 inducible expression of FrdA-SPA fusion protein This study 

pETm-60 ViaA Plasmid for the T7 inducible expression of NusA-ViaA fusion protein This study 

p11-RavA Plasmid for the T7 inducible expression of RavA protein This study 

p11-NTV Plasmid for the T7 inducible expression of NTV construct This study 

pETm-60 CTV Plasmid for the T7 inducible expression of NusA-CTV fusion protein This study 

Primer name  Primer sequence (5' to 3') 

RavA K52Q F CGCCAGGTATTGCCCAAAGTTTGATCGCC 

RavA K52Q R GGCGATCAAACTTTGGGCAATACCTGGCG 

FrdABCD 

BamHI F 

GATTATTATTGGATCCGGCTGCCAGGATGC 

frdp NheI R  CATTATTATTGCTAGCCCTCCAGATTGTTTTTATCCCAC 

FrdA NheI R CATTATTATTGCTAGCTCAGCCATTCGCCTTCTCCTTC 

FrdB NheI R CATTATTATTGCTAGCTTAGCGTGGTTTCAGGGTCG 

FrdD NheI R CATTATTATTGCTAGCTTAGATTGTAACGACACCAATCAGCGTG 

FrdB NheI F GATTATTATTGCTAGCATGGCTGAGATGAAAAACCTGAAAATTG 

FrdB XbaI R CATTATTATTTCTAGATTAGCGTGGTTTCAGGGTCG 

FrdD XbaI R CATTATTATTTCTAGATTAGATTGTAACGACACCAATCAGCGTG 

FrdA BamHI F ACTGGGATCCGTGCAAACCTTTCAAGCCG 

SPA HindIII R GTCTAAGCTTCTACTTGTCATCGTCATCC 

ViaA NcoI F CATCCCATGGGAATGCTAACGCTGGATACGC 

ViaA BamHI R GTCTGGATCCTTATCGCCGCCAGCGTCTG 

NTV NdeI F ATGCCATATGCTAACGCTGGATACG 
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NTV BamHI R ATGGATCCATGTACCACCGGACGTTGC  

CTV NcoI F CATGCCATGGGA AAAGATTACGATGAACAGCC 

ravAp NcoI F ATTCCATGGCACGGCATCGCGTTCAAC 

ravAp BamHI R ATTGGATCCGTGGCGTCCTTTCGTCAAAAG 

LacZ BamHI F ATTGGATCCATGACCATGATTACGGATTCACTG 

LacZ NotI R ATTATTGCGGCCGCGACATGGCCTGCCCGGTT 

ravAp(fnrm1) F CAAAGCTAGCAAACAGAAAAATACCCCCCCTTTG 

ravAp(fnrm1) R GTTTGCTAGCTTTGTGTGGCCGCATTTAGGAGTAC 

ravAp(fnrm2) F GATTGCTAGCAACATGCTCATAGACTAGTCTTTCG 

ravAp(fnrm2) R GATTGCTAGCTTCTTCATTGCCCGCGATTACC 

ravApNarLm F GATTGCTAGCAAAATGCGGCCACATTAACC 

ravApNarLm R GATTGCTAGCCGATTTTGCCGTTAATCGTG 

Primer name for 

EMSA 
Primer sequence (5' to 3') Description 

ravAp NcoI F ATTCCATGGCACGGCATCGCGTTCAAC Forward primer for 

R-1 

ravAp BamHI R ATTGGATCCGTGGCGTCCTTTCGTCAAAAG Reverse primer for 

R-1 

ravAp(fnr1-2+) 

NcoI F 

ATTCCATGGTGCTCATAGACTAGTCTTTCGTTGAAATATGAAATG Forward primer for 

R-2 

ravAp(fnr1-2+) 

BamHI R 

ATTGGATCCAGGAGGAACACACTTTCACCACTTAATG Reverse primer for 

R-2 

ravAp(fnr1-2-) 

NcoI F 

ATTCCATGGAGAAAAATACCCCCCCTTTGAGAC Forward primer for 

R-3 

ravAp(fnr1-2-) 

BamHI R 

ATTGGATCCAATAGAAAGGGGACCAAAAACTTCTTCCG Reverse primer for 

R-3 

fepDp NcoI F ATTTATTCCATGGCATCATCTGGATCTGCACCG Forward primer for 

F-1 

fepDp BamHI R ATTTATTGGATCCGGCCTCCAGCACTACGGAAGCGG Reverse primer for 

F-1 

hypBp NcoI F ATTCCATGGCGACGTGTCATTTCGACATCATCGAC Forward primer for 

H-1 
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hypBp BamHI R ATTGGATCCGACACTGTGGACAGCGGC Reverse primer for 

H-1 

hypBp(fnr1-2+) 

NcoI F 

ATTCCATGGGGCCGCAAAACACGGCGCAAAAC Forward primer for 

H-2 

hypBp(fnr1-2+) 

BamHI R 

ATTGGATCCAAACGCGGAATGAGGGTTATGTTCATCACC Reverse primer for 

H-2 

hypBp(fnr1-2-) 

NcoI F 

ATTCCATGGCGCGGCAGCGTGGCGGAAG Forward primer for 

H-3 

hypBp(fnr1-2-) 

BamHI R 

ATTGGATCCAATGCAGGTCGCCTTCTTCAGTCTGG Reverse primer for 

H-3 

 

cat = chloramphenicol acetyltransferase gene; confers resistance to chloramphenicol. 

kan
R
 = kanamycin resistance gene 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

59 

References 

[1] Guyer MS, Reed RR, Steitz JA, Low KB. Identification of a sex-factor-affinity site in E. coli 

as gamma delta. Cold Spring Harb Symp Quant Biol. 1981;45 Pt 1:135-40. 

[2] Lazazzera BA, Bates DM, Kiley PJ. The activity of the Escherichia coli transcription factor 

FNR is regulated by a change in oligomeric state. Genes Dev. 1993;7:1993-2005. 

[3] Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL. An efficient recombination 

system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A. 

2000;97:5978-83. 

[4] Merlin C, Gardiner G, Durand S, Masters M. The Escherichia coli metD locus encodes an 

ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J Bacteriol. 

2002;184:5513-7. 

[5] Zhang RG, Skarina T, Katz JE, Beasley S, Khachatryan A, Vyas S, et al. Structure of 

Thermotoga maritima stationary phase survival protein SurE: a novel acid phosphatase. 

Structure. 2001;9:1095-106. 

[6] Snider J, Gutsche I, Lin M, Baby S, Cox B, Butland G, et al. Formation of a distinctive 

complex between the inducible bacterial lysine decarboxylase and a novel AAA+ ATPase. J Biol 

Chem. 2006;281:1532-46. 

[7] De Marco V, Stier G, Blandin S, de Marco A. The solubility and stability of recombinant 

proteins are increased by their fusion to NusA. Biochem Biophys Res Commun. 2004;322:766-

71. 

[8] Tan S, Kern RC, Selleck W. The pST44 polycistronic expression system for producing 

protein complexes in Escherichia coli. Protein Expr Purif. 2005;40:385-95. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

60 

 
Graphical abstract 


