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PT -breaking threshold in spatially asymmetric Aubry-André and Harper models:
Hidden symmetry and topological states
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Aubry-André-Harper lattice models, characterized by a reflection-asymmetric sinusoidally varying nearest-
neighbor tunneling profile, are well known for their topological properties. We consider the fate of such models
in the presence of balanced gain and loss potentials ±iγ located at reflection-symmetric sites. We predict that
these models have a finite PT -breaking threshold only for specific locations of the gain-loss potential and
uncover a hidden symmetry that is instrumental to the finite threshold strength. We also show that the topological
edge states remain robust in the PT -symmetry-broken phase. Our predictions substantially broaden the possible
experimental realizations of a PT -symmetric system.
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I. INTRODUCTION

When is the spectrum of a non-Hermitian Hamiltonian
purely real or has only complex-conjugate pairs? Numerous
authors have addressed this question, starting with Bender
and co-workers who showed that (continuum) Hamiltonians
invariant under combined parity- and time-reversal operations
(PT symmetric) fit the bill [1–3]. Such Hamiltonians faithfully
model open systems with balanced gain and loss in which the
parity operator (P) exchanges the gain region with the loss re-
gion, whereas the time-reversal operator (T ) transforms a gain
region into a lossy region. Concurrent with their experimental
realizations in coupled waveguides [4–8], resonators [9],
microcavities [10], and lasers [11–14], discrete PT systems
with a parity-symmetric tunneling term H0 = PH0P = H

†
0

and a balanced gain-loss potential V = PT VPT �= V † have
been intensely studied in the past five years [15–20]. In
particular, site-dependent tunneling Hamiltonians, of interest
for perfect-state transfer and quantum computing [21], have
been theoretically [22] and experimentally [23–25] explored.
All of these experimentally investigated systems have been
subject to a the stringent constraint of a reflection-symmetric
tunneling amplitude profile.

Generically, the spectrum of a PT -symmetric Hamiltonian
H = H0 + V is real when the strength γ of the balanced
gain-loss potential is smaller than a positive threshold γPT set
by H0. The emergence of complex-conjugate eigenvalues at
the exceptional point γ = γPT is called PT -symmetry break-
ing [26,27]. When γ > γPT, the eigenfunctions with complex
eigenvalues become increasingly asymmetrical [28]. It has
long been known that a purely real or complex-conjugate-pairs
spectrum is equivalent to the existence of an antiunitary
operator A = UT that commutes with the Hamiltonian H

[29–31]. Thus, in principle, reflection symmetry is not a nec-
essary constraint U �= P . Indeed there are several proposals,
based on supersymmetric quantum mechanics, for continuum
models where the complex potential V (x) �= V ∗(−x) is not
reflection symmetric (or antisymmetric) [32,33]. Nonetheless,
all experimental realizations ofPT -symmetric systems to date
have abided by the reflection-symmetry constraint.

On a separate front, one-dimensional Aubry-André-Harper
(AAH) models have been extensively explored in recent years.
These lattice models initially arose in the condensed-matter

physics where the model parameters—the lattice constant,
the on-site potential, the tunneling amplitudes, and the type
and the strength of disorder—are primarily determined by
Coulomb interaction and thus cannot be varied beyond a few
percent. However, the lattice realizations in coupled waveguide
arrays are far more protean [27], and thus, recent studies have
focused on experimental realizations of AAH models in such
settings.

Consider an N -site tight-binding lattice with site-dependent
tunneling profile tk = J [1 + λ cos(2πβk + φ)]. Here J > 0
denotes the energy scale associated with the tunneling rate,
and dimensionless λ characterizes the strength of the tunneling
modulation. When β = 1/2, this model is known as the
dimer model or the Su-Schrieffer-Heeger (SSH) model; it
describes the transport of charge carriers in acetylene [34,35].
For a rational value of β, the one-dimensional AAH model
is related to the Hofstadter-butterfly problem [36] which
describes the behavior of two-dimensional electron gas in a
magnetic field in the presence of a periodic potential. When
β is irrational, the AAH model describes one-dimensional
quasicrystals [37–40]. For an infinite lattice, when β is rational,
the tunneling amplitude is periodic, and the corresponding
AAH model has robust topological edge states [41] and is
related to topological insulators [42–45]. We emphasize that
a lattice with tunneling profile tk is not, in general, reflection
symmetric [46].

In this paper, we investigate the fate of N -site AAH
models—ones that are experimentally realizable in coupled
waveguides or resonators—in the presence of one active gain
potential +iγ at site m0 and a balanced loss potential −iγ

at its reflection-symmetric counterpart site m̄0 = N + 1 − m0

[47–49]. Our four primary results are as follows. (i) When
β = 1/p, the model has a positive threshold γPT(m0) if and
only if the lattice size N and the gain location m0 both satisfy
N+1 = 0 mod p and m0 = 0 mod p. (ii) When β = q/p is
rational, where p,q are co-prime and q > 1, the same pattern
holds irrespective of the value of q; when β is irrational, the
threshold is zero. (iii) When β = q/p, interspersed among
its p bands, the model has p − 1 localized edge modes
that continue to have real energies past the PT transition.
(iv) Our predictions are unaffected when the tight-binding
lattice approximation is relaxed and thus are valid in realistic
coupled optical waveguides. This paper provides a pathway
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to investigate PT -symmetry breaking in lattice models with
topological states.

The paper is organized as follows. In Sec. II we introduce
the notation and summarize the properties of a finite Hermitian
AAH model. We present numerical results for the PT -
symmetry-breaking threshold γPT(m0,φ) for a wide range of
lattice parameters and summarize the findings. In Sec. III, we
present a perturbative analysis of the PT -symmetry-breaking
threshold and show that, due to a hidden symmetry of the
eigenfunctions of the AAH model, the threshold γPT is positive,
although the underlying system is reflection asymmetric. In
Sec. IV we consider the smallest such lattice, a dimer lattice
with N = 5 sites. After an analytical solution, we present the
dynamics obtained via the beam-propagation method (BPM),
which show that our predictions will remain valid in realistic
samples. We conclude the paper with a brief discussion in
Sec. V.

II. LATTICE MODEL AND THE PT -PHASE DIAGRAM

The Hermitian tunneling Hamiltonian for an N -site lattice
with nearest-neighbor tunneling and open boundary conditions
is given by

H0(λ,β,φ) = −
N−1∑
k=1

tk(|k〉〈k + 1| + |k + 1〉〈k|), (1)

tk = J [1 + λ cos(2πβ + φ)], (2)

where |k〉 denotes a single-particle state localized at site k. The
parity (reflection) operator P on the lattice in the site basis is
given by Pab = δa,b̄ where b̄ = N + 1 − b. The time-reversal
operator is T = ∗ where ∗ denotes complex conjugation. The
Hamiltonian H0(λ,β,φ) is not, in general, invariant under the
PT operation. The trivial exceptions are a uniform lattice
λ = 0 or a dimer model β = 1/2 with an even number of
lattice sites.

Since the tunneling function tk(λ,β,φ) is periodic in β and
φ, without loss of generality, we consider β ∈ [0,1) and φ ∈
[0,2π ). It is also straightforward to show that

H0(−λ,β,φ) = H0(λ,β,φ + π ), (3)

H0(λ,1 − β,φ) = H0(λ,β,2π − φ). (4)

Therefore, it is sufficient to restrict ourselves to λ � 0 and
β � 1/2. The general band structure of the AAH Hamiltonian
H0(λ,β,φ) is highly intricate where the number of bands
is determined by β and the locations of band degeneracies
are determined by λ and φ [36–41]. Note that, when λ � 1,
the tunneling amplitude tk changes sign from positive to
negative along the lattice. In addition, for λ � 1 and a rational
β = q/p, the tunneling amplitude vanishes at k = 0 mod p

and φ = arccos(−1/λ). For such parameters, the N -site chain
splits into pieces of size p, and the corresponding Hamiltonian
H0 becomes block diagonal. In order to avoid such cases,
whose behavior can be trivially understood, we confine
ourselves to modulation strengths 0 � λ < 1. In the presence
of reflection-symmetric gain-loss potentials ±iγ at sites m0

and m̄0, the lattice Hamiltonian becomes H = H0 + V with

V = iγ (|m0〉〈m0| − |m̄0〉〈m̄0|) = PT VPT �= V †. (5)

FIG. 1. (a) Schematic of an AAH lattice with N = 8 sites,
denoted by solid circles. The tunneling amplitude tk/J is periodic
with period p = 1/β = 3. Also shown are balanced gain-loss
potentials ±iγ , denoted by red and blue solid circles, respectively, at
reflection-symmetric sites; the vertical dashed line is the lattice center.
(b) Spectrum En(φ) of an N = 20 lattice with the same periodicity
shows 1/β = 3 bands, each with [Nβ] = 6 extended states; [x]
denotes the largest integer smaller than x. The two remaining midgap
states are localized for all φ’s except φ = {π/3,4π/3} shown by
dashed vertical lines.

Figure 1 encapsulates the typical properties of Hamiltonian
H0. Panel (a) shows the reflection-asymmetrical tunneling
profile tk/J for an N = 8 site lattice with tunneling modulation
strength λ = 0.5, inverse tunneling period β = 1/3, and phase
φ = 0. The neutral sites on the lattice are indicated by solid
black circles, the solid red circle at m0 = 3 denotes the gain
site, and the loss site at its reflection-symmetric location
m̄0 = 6 is denoted by the solid blue circle. Panel (b) shows the
energy spectrum En(φ)/J for an N = 20 site AAH model with
β = 1/3. In addition to the three bands of extended states that
are expected at β = 1/3, there are two edge-localized states
with energies that lie in the two band gaps. The midgap states
are localized for all values of phases except φ = {π/3,4π/3},
denoted by dotted vertical lines.

These are generic features of the spectrum for β = q/p,
which corresponds to the tunneling profile period of p,
and lattice size N = Mp − 1. Each of the p bands has
[Nβ] = (M − 1) extended states, and the remaining (p − 1)
midgap states are localized for almost all φ’s. When
N + 1 = 0 mod p, it is straightforward to show that

PT H0(λ,β,φ)PT = H0(λ,β,2πβ − φ). (6)

Thus, H0 becomes PT symmetric if and only if
φ = {πβ,πβ + π}. These are precisely the φ values at
which the midgap states become extended. In the following
sections, we will see that the topological midgap states do
not participate in the PT -symmetry breaking and retain their
localized character past the symmetry-breaking transition.

We now present the PT -phase diagram for this model.
Naively, the reflection-asymmetric nature of the tunneling
Hamiltonian H0 will imply, via perturbation theory, that an
infinitesimal gain-loss potential Eq. (5) will lead to a complex
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FIG. 2. Threshold γPT/J as a function of gain-potential location
1 � m0 � N/2 and phase φ for an N = 59 lattice. (a) When
β = 1/3, γPT = 0 for all gain locations except m0 = {3,6, . . .}.
(b) When β = 1/4, a positive γPT is obtained only when m0 =
{4,8, . . .}. These results show that, contrary to naive expectations,
a reflection-asymmetric AAH Hamiltonian has a positive threshold
γPT(m0,φ)/J ∼ 1 > 0.

spectrum. This expectation is indeed confirmed by numerical
results for all lattice configurations except when β = q/p is
rational and the lattice size N and gain-site location m0 satisfy
N + 1 = 0 mod p and m0 = 0 mod p.

Figure 2 shows the PT -threshold strength γPT(m0,φ) for
a lattice with N = 59 sites and tunneling modulation strength
λ = 0.5. Panel (a) shows the results for a tunneling profile with
spatial period p = 3. The threshold strength is zero except
when the gain location is an integer multiple of the tunneling
period m0 = 0 mod 3. Panel (b) shows that a similar behavior
is obtained for β = 1/4. Note that this nonzero threshold
results only for periods p such that N + 1 = 0 mod p.
Thus, for example, when β = q/p = q/7, the PT -breaking

threshold for an N = 59 site lattice is identically zero for any
m0 and any q � 1. In general, the nonzero threshold γPT/J

first decreases as the gain-potential site m0 moves in from
the end of the lattice and increases again as it approaches
the lattice center m0 → N/2 [50]. These results are
qualitatively similar for large N , and the maximum threshold
strength remains the same in the thermodynamic limit
N 	 1.

Figure 3 shows the typical dependence of positive γPT on
the tunneling period p and tunneling modulation strength λ; in
each case, only gain-potential locations m0 � N/2 that give
rise to a positive PT threshold are considered. Panels (a)
and (b) show the PT threshold on the (m0,φ) plane for the
same modulation strength λ = 0.5 and lattice size N = 111.
Consistent with the results in Fig. 2, the PT threshold varies
nonmonotonically with phase φ and is generally maximum
when the gain and loss locations are farthest apart or nearest to
each other. As the tunneling period is increased from 1/β = 4,
panel (a), to 1/β = 7, panel (b), we see that the region with
appreciable threshold value shrinks in size, but the maximum
value of γPT does not alter substantially.

Panel (c) in Fig. 3 shows the dependence of the PT -
threshold γPT(m0,φ) on tunneling modulation λ for a dimer
lattice with N = 61. When β = 1/2, the tunneling amplitude
on adjacent bonds alternates between two values J (1 ∓
λ cos φ) [34,35], and the tunneling profile is not reflection
symmetric for an odd N . At λ = 0.1, due to the small tunneling
modulation, the threshold γPT is essentially independent of
the phase φ, and its dependence on m0 is similar to that
for a uniform tunneling lattice; in particular, we see that
γPT/J → 0.5 when the gain and loss sites are closest to
each other [50]. As λ increases, the PT threshold, which is
proportional to the effective tunneling amplitude, is strongly
suppressed when cos φ = ±1 but remains unchanged from its
λ � 1 limit when |φ| ≈ π/2 mod 2π . As an aside, we note
for larger tunneling periods p > 2, the φ dependence of the
threshold γPT is not as easily characterized. Results in Figs. 2
and 3 might suggest that the threshold reaches a maximum at

FIG. 3. PT -threshold γPT(m0,φ)/J dependence on the tunneling period p = 1/β and modulation strength λ. (a) γPT(m0,φ) for an N = 111
lattice with λ = 0.5 shows a maximum when gain-loss sites are farthest from (m0 = 4) or closest to (m0 = 52) each other. (b) The same qualitative
behavior is observed for the same lattice with a longer tunneling period 1/β = 7. (c) Results for an N = 61 dimer lattice β = 1/2 show that,
as the modulation strength λ increases, the threshold γPT is monotonically suppressed from its value in the λ → 0 limit [50].
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φ = {π,π + πβ}; however, that is not true for all modulation
strengths.

Figures 2 and 3 capture all global features of the PT -phase
diagram. The detailed structure of the PT -threshold manifold
γPT(m0,φ) depends on the other two parameters (λ,β). We
emphasize that the PT -symmetry-breaking threshold is maxi-
mum when the distance between the gain site and the loss site
is maximum. Starting from gain-loss sites nearest to each other
m0 ∼ N/2, we expect that when the distance between them
d = (N + 1 − 2m0) is increased, the PT -symmetry-breaking
threshold γPT(d) will decrease. Our results, however, predict
otherwise. This surprising finding is due to open boundary
conditions that ensure complete reflection at the two ends of
the lattice.

What is the origin of the positive threshold γPT when the
underlying Hermitian Hamiltonian is not reflection symmet-
ric? In the following section, we present a hidden symmetry of
the eigenfunctions of H that is instrumental to a nonvanishing
threshold.

III. ORIGIN OF THE POSITIVE THRESHOLD:
HIDDEN SYMMETRY OF THE AAH MODEL

Let us recall how a positive PT -breaking threshold arises
in the case of traditional PT -symmetric Hamiltonians. If
the tunneling Hamiltonian is PT symmetric, so are its
eigenfunctions fα(k) with energies εα . In the presence of a
PT -symmetric potential Eq. (5), the first-order perturbative
correction to the eigenenergies εα is given by


1
α(γ,m0) = iγ (|fα(m0)|2 − |fα(m̄0)|2). (7)

Since the eigenfunctions fα(k) have equal weights on
reflection-symmetric sites (m0,m̄0), this correction as well as
all higher odd-order corrections vanish for for all gain locations

2n+1

α (γ,m0) = 0 for every m0 [51]. This property ensures a
real spectrum εα(γ ) for potential strength γ � γPT. But what
if H0 is not reflection symmetric? Its arbitrary eigenstate fα(k)
with energy εα satisfies the following difference equations at
reflection-symmetric sites (k,k̄):

tk−1fα(k − 1) + tkfα(k + 1) = −εαfα(k), (8)

tk̄−1fα(k̄ − 1) + tk̄fα(k̄ + 1) = −εαfα(k̄), (9)

where open boundary conditions are implemented by using
t0 = 0 = tN . It follows that if tk �= tk̄−1, the eigenfunctions,
in general, will not have equal weights on the reflection-
symmetric sites |fα(k)| �= |fα(k̄)|.

Figure 4 shows typical eigenfunctions of the Hamiltonian
H0(λ,β,φ) when the lattice size satisfies N + 1 = 0 mod p.
Panel (a) in Fig. 4 shows the GS wave functions fG(k) for
an N = 29 site lattice with tunneling period p = 3 (solid
line with open circles) and p = 5 (dashed line with open
squares). The results are for tunneling modulation strength
λ = 0.5 and phases φ = 0,π , respectively. As expected, both
ground-state profiles are reflection asymmetric about the
center site nc = 15. However, these wave functions have the
following hidden symmetry. Solid red circles show the p = 3
GS amplitudes at sites k = 0 mod p = {3,6, . . .}, whereas the
solid blue squares show the p = 5 GS amplitudes at sites

FIG. 4. Hidden symmetry of eigenfunctions of H0(λ,β,φ).
(a) N = 29 lattice with λ = 0.5 shows the reflection-asymmetric
ground state (GS) (β = 1/3,φ = 0: solid line; β = 1/5, φ = π :
dashed line). However, the amplitudes on sites k = 0 mod (1/β)
show reflection symmetry about the lattice center (red solid circles,
blue solid squares). (b) Lowest-energy midgap states for an N = 15
lattice with λ = 0.5, φ = 0, and β = {1/2,1/4} show that their wave
functions vanish at sites k ∝ 1/β. These states are unaffected by the
balanced gain-loss potential.

k = 0 mod p = {5,10, . . .}. In both cases the wave function
weights satisfy |fα(m0)| = |fα(m̄0)| if and only if m0 is an
integer multiple of the tunneling modulation period p. This
result is true for all eigenstates of H0(λ,β,φ) if and only
if the lattice size N satisfies N + 1 = 0 mod p. It ensures
that the reflection-counterpart site index m̄0 = N + 1 − m0

is also an integer multiple of the tunneling modulation period.
This hidden symmetry is instrumental to a positive PT
threshold that we observe when the gain potential is located
at sites m0 = 0 mod p. It also implies, via the perturbation
theory arguments [51], that the eigenfunctions of the total
Hamiltonian H = H0 + V continue to have this symmetry for
γ � γPT.

Next, we consider implications of this hidden symmetry to
localized midgap states that are, in some cases, topological
in nature. Panel (b) in Fig. 4 shows the lowest-energy
midgap state for an N = 15 lattice with β = 1/2 (solid
line) and β = 1/4 (dashed line); the results are for λ = 0.5
and phase φ = 0. These states are localized at one end of
the lattice. The surprising feature, shared by all localized
midgap states, is the presence of nodes precisely at sites
m0 = 0 mod p = {p,2p, . . .}. When the lattice size satisfies
N + 1 = 0 mod p due to the tunneling amplitude asymmetry
at the two ends of the lattice, it follows that a midgap state
must be localized at one end or the other but not equally
at both ends. Therefore, the hidden symmetry discussed in
the previous paragraph implies that its wave function must
vanish at sites m0 = 0 mod p. This result is true for all (p − 1)
localized midgap states. This remarkable property of the
localized states shows that a balanced gain-loss potential will
have no effect on them. In particular, the energies of these
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FIG. 5. BPM results for an array of N = 5 coupled waveguides. The width of each waveguide is Wg = 5 μm, and the distances d ∼ 10 μm
between the waveguides are chosen such that the tunneling ratio satisfies t1/t2 = 3/5. The left-hand panel in each row shows the space-and-
time-dependent intensity I (x,z); the initial state is a normalized Gaussian centered on the third waveguide (shown by a white half-circle). The
right-hand panel in each row shows the net intensity I (z) as a function of time t , or equivalently, the distance = ct/n0 along the waveguide.
The center panel shows the schematic of gain and loss locations. (a) The array is in the PT -broken phase when the gain location is the first
waveguide. (b) With the same gain-loss strength, the array is in the PT -symmetric phase when m0 = 2. (c) When the gain is doubled, the
system transitions into the PT -broken phase.

states remain real, and these localized topological states [41]
remain robust even when the gain-loss strength exceeds the
threshold γ > γPT(λ,β,φ; m0). In recent years, the presence
or absence of topological insulator states in PT -symmetric
Dirac and SSH models has been extensively studied [42–45].
Our results show that robust topological states occur in a wide
class of reflection-asymmetric Hamiltonians with a positive
PT -breaking threshold.

IV. ANALYTICAL AND BEAM PROPAGATION METHOD
RESULTS: N = 5 DIMER LATTICE

The smallest experimental realization of a lattice with re-
flection asymmetry and a positive PT -breaking threshold, say
in a coupled waveguide array, will require N = 5 waveguides
with a dimer tunneling profile t1 = J (1 − λ cos φ]) and t2 =
J (1 + λ cos φ) and gain-loss potentials ±iγ at reflection-

symmetric locations (m0,m̄0). This analytically solvable case
provides further insight into the results presented in this paper.

It is easy to check that, when m0 = 1, the characteristic
equation for the 5 × 5 Hamiltonian H = H0 + V has complex
coefficients and, therefore, thePT threshold at m0 = 1 is zero.
When m0 = 2, the corresponding equation is given by

x
[
x4 − x2

(
2t2

1 + 2t2
2 − γ 2

) + (
t4
1 + t4

2 + t2
1 t2

2

)] = 0. (10)
It follows from Eq. (10) that the eigenvalues of H (γ ) are either
purely real or occur in complex-conjugate pairs and the real
spectrum has a particle-hole symmetry in the PT -symmetric
phase γ � γPT [52]. The threshold gain-loss strength at which
the eigenvalues transition from real to complex-conjugate pairs
is given by

γPT(λ,φ) = J

√
2
(
t2
1 + t2

2

)
⎡
⎣1 −

√√√√1 − t2
1 t2

2(
t2
1 + t2

2

)2

⎤
⎦

1/2

.

(11)
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It follows from Eq. (11) that the threshold γPT is insensitive to
the tunneling modulation λ when t1 ≈ t2 and it is maximally
suppressed when cos φ = ±1 [see Fig. 3(c)].

It is also straightforward to show that the un-normalized
zero-energy edge-state eigenvector is given by |f 〉 = (t2

φ,0,

− tφ,0,1)T where tφ = t2/t1 is the ratio of tunneling amplitude
on the second bond to the tunneling amplitude on the first
bond [53]. Thus, the edge state has nodes at sites k =
0 mod 2 = {2,4}, is localized at the left end (right end) of
the lattice when tφ > 1(tφ < 1), and remains unaffected by the
PT potential.

Next, we test the validity of our predictions via the
BPM [54,55]. This method alleviates the constraint of the tight-
binding approximation by taking into account the nonzero
spatial dimension of a “single site.” With a realistic waveguide
array in mind [56], we obtain the time evolution of an initially
normalized wave packet localized in the center waveguide
ψ(x,0) = exp[−(x − x3)2/4σ 2]/(2πσ 2)1/4. Here x is the con-
tinuous coordinate transverse to the waveguide array, x3 is the
center of the third waveguide, and the initial wave-packet size
σ is set to half the width of the waveguide σ = Wg/2. We
remind the reader that, in this realization, the wave function
ψ(x,t) represents the slow-varying envelope of the electric
field E(x,z,t) that also has a rapidly varying part proportional
to exp(ik0z). The time evolution of ψ(x,t) is given by the
Maxwell wave equation in the paraxial approximation [54,55],

i
∂ψ

∂t
= − c

2k0n
2
0

∂2ψ

∂x2
+ ck0

[
1 − n(x)2

n2
0

]
ψ. (12)

Here c is the speed of light in vacuum, n0 is the cladding index
of refraction, n(x) = n0 + 
n(x) is the position-dependent
index of refraction, and the index contrast is 
n ∼ 10−4 �=
0 only within each waveguide. For 
n � n0, the effective
potential is proportional to the index contrast V (x) ∝ 
n. We
implement the gain and loss by adding imaginary parts ±iγ

to the real index contrast 
n. When the potential V (x) is not
real, the time evolution of the wave packet is not unitary, and
therefore the total intensity I (z) = ∫

dx|ψ(x,t = zn0/c)|2 is
not a constant; note that we have switched to the distance along
the waveguide z = ct/n0 as a stand-in for the time for it allows
an easier comparison with typical experimental setups.

Figure 5 shows the results of such an analysis. Each
row shows the space- and time-dependent intensity I (x,z) =
|ψ(x,z)|2 (left-hand panel), a schematic of the corresponding
five-site lattice (center panel), and the time dependence of the
total intensity I (z) (right-hand panel). The first row shows
that when the gain and loss potentials ±iγ are located
on the first and the last waveguides, respectively, the net
intensity I (z) increases monotonically with time, indicating

a PT -symmetry-broken phase. The second row shows the
results when the gain-loss are at sites m0 = 2 and m̄0 = 4,
respectively. It is clear from the I (x,z) plot that the wave
packet undergoes oscillations across the lattice along with
some amplification. This periodic behavior is also manifest
in the total intensity I (z) and shows that the system is in
the PT -symmetric phase for the same gain-loss strength.
The bottom row shows that, when the gain-loss strength is
doubled, the system enters the PT -broken phase as evidenced
by monotonically increasing net intensity I (z).

These results demonstrate that the nontrivial dependence
of the PT -breaking threshold on the gain location m0 for
reflection-asymmetric models is robust.

V. DISCUSSION

In this paper, we have discovered that a broad class
of Aubry-André-Harper models [37,41] with a reflection-
asymmetric tunneling profile can have a positive PT -
symmetry-breaking threshold. This occurs when β = q/p is
rational, and the lattice size N and the gain-potential location
m0 � N/2 both satisfy N + 1 = 0 mod p and m0 = 0 mod p.
These constraints ensure that the loss-potential location m̄

also satisfies m̄ = 0 mod p. Through the tight-binding analysis
of the lattice model and a BPM analysis of its continuum
counterpart, we have shown that our predictions remain
valid for realistic waveguide arrays. The AAH lattice models
investigated here are known to support topological states [41].
They thus provide an avenue for experiments in which the
interplay between PT -symmetry-breaking and topological
properties can be studied.

We note that this paper is based on an effective single-
particle Hamiltonian that permits amplification and decay.
Prima facie, these results predict the existence of topological
insulators with a positivePT -breaking threshold [42,43] since
our model makes no reference to the quantum statistics of
the particle. In reality, however, amplification of a single
degree of freedom is incompatible with the Pauli principle.
Thus, our results can apply to fermions only if the gain and
loss are associated with the bulk Fermi sea and not with
a single quantum degree of freedom. In the bosonic case,
amplification of a single degree of freedom is permitted,
and our results are directly applicable. We have also ignored
two-body interactions; they become important only in the
PT -broken phase as the on-site intensity (light) or density
(massive bosons) is amplified.
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