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Abstract

Necrotizing enterocolitis (NEC) is a severe disease of the gastrointestinal tract in premature 

infants, characterized by a disrupted intestinal epithelium and an exaggerated pro-inflammatory 

response. Since the activation of Toll-like receptor-4 (TLR4) blocks cell migration and 

proliferation and contributes to an uncontrolled inflammatory response within the intestine, this 

receptor has been identified as a key contributor to the development of NEC. Toll-like receptor-9 

(TLR9) has been shown to sense bacterial genome components (CpG DNA) and to play an anti-

inflammatory role in NEC. We present in vitro results demonstrating direct inhibition of TLR4 

activation by CpG DNA, and we develop a mathematical model of bacteria–immune interactions 

within the intestine to investigate how such inhibition of TLR4 signaling might alter inflammation, 

associated bacterial invasion of tissue, and resulting outcomes. The model predicts that TLR9 can 

inhibit both the beneficial and detrimental effects of TLR4, and thus a proper balance of action by 

these two receptors is needed to promote intestinal health. The model results are also used to 

explore three interventions that could potentially prevent the development of NEC: reducing 

bacteria in the mucus layer, administering probiotic treatment, and blocking TLR4 activation. 

While the model shows that these interventions would be successful in most cases, the model is 

also used to identify situations in which the proposed treatments might be harmful.
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1. Introduction

Necrotizing enterocolitis (NEC) is a devastating gastrointestinal tract disease that is among 

the leading causes of neonatal mortality (Guner et al., 2009). The disease primarily affects 

premature infants, which in part reflects the immature intestinal barrier function and 

immune/inflammatory responses. In healthy infants, the intestinal epithelial barrier, which 

separates the contents of the intestinal lumen from the blood and tissue, is intact. In infants 

with NEC, a compromised epithelial barrier and immature immune response can lead to 

exaggerated inflammation and bacterial translocation from the intestinal lumen into the 

circulation, potentially resulting in systemic sepsis and subsequent multi-organ failure 

(Hunter et al., 2008).

The gut of the newborn is sterile at birth (Gregory et al., 2011). Immediately following birth, 

the intestinal lumen is colonized with a dense and rapidly diversifying population of 

bacteria, known as the normal flora, that is essential for the maturation of the immune 

system and for the developmental regulation of the intestinal physiology (Collado et al., 

2012). The first components of the normal flora to appear are facultative anaerobes, such as 

enterobacteria, coliforms, lactobacilli, and streptococci; these are typically followed by 

anaerobes, including bifidobacteria, bacteroides, clostridia, and eubacteria. Common 

bifidobacteria include B. infantis, B. longum, and B. breve. The mode of delivery (i.e., 

vaginal or cesarian) as well as nutrition type (i.e., breast fed vs. formula fed) are key factors 

that cause differential colonization and composition of the neonatal gut (Turroni et al., 

2012). Once the normal flora is established in the early years of life, it is thought that this 

composition of flora is not changed throughout the rest of life (Collado et al., 2012). In 

general, the normal flora (also known as commensal bacteria) are beneficial for the host and 

promote health by enhancing digestion efficiency, limiting pathogenic bacterial colonization, 

and triggering the development and maturation of the immune system. Host defense 

mechanisms prevent uncontrolled inflammatory responses to commensal bacteria by 

limiting direct contact between bacteria and the epithelium. Such mechanisms provide 

immune tolerance to commensal bacteria but trigger an immune response to foreign bacterial 

populations (Ohland and MacNaughton, 2010). However, since the composition of 

commensal bacteria populations can vary greatly between helpful and harmful bacteria at 

various times or within different individuals (Hooper and Macpherson, 2010), the host is 

challenged with determining the appropriate response to these microorganisms (Duerkop et 

al., 2009). The mucus layer, intestinal macrophages, and blood macrophages are three 

important defense mechanisms that help to maintain homeostasis in the gut. However, the 

inflammatory response by which macrophages eliminate bacteria also can cause collateral 

tissue damage and must be moderated by anti-inflammatory mechanisms to avoid negative 

outcomes. An ideal balance of these defense mechanisms should protect the host from 

invading pathogens across a broad range of conditions, whereas an imbalance that emerges 

in particular situations, such as in immature states, would result in disease, such as NEC.

Despite the advances that several studies have made to clarify the pathogenesis of NEC, 

there is still uncertainty regarding how specific gastrointestinal components contribute to the 

emergence of this multifactorial disease. Although numerous factors must be considered to 

gain a comprehensive understanding of NEC, studies showing that TLR4 is increased in the 
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bowel of humans with NEC and that TLR4 signaling in the intestinal epithelium is required 

for NEC (Sodhi et al., 2012) have motivated the use of computational modeling in this paper 

to explore how enterocyte Toll-like receptors (TLRs), which are activated by membrane 

components or DNA of bacteria, affect the pathogenesis of NEC. TLR4 molecules sense 

bacteria and release antimicrobial agents that protect against bacterial translocation 

(Kubinak and Round, 2012), but they also promote potentially damaging inflammation. 

Hackam and colleagues have shown that TLR9 molecules suppress TLR4 activation within 

the newborn small intestinal mucosa, potentially reducing inflammatory damage but also 

compromising their antibacterial effects (Gribar et al., 2009; Afrazi et al., 2011; Sodhi et al., 

2011). Computational modeling offers a means to explore how these competing effects 

interact, which long-term outcomes are expected in different parameter regimes, and how 

attempts at therapeutic intervention can influence system dynamics. In the remainder of the 

introduction, we provide some additional background information on biological components 

that are relevant to our model. We present the computational model in Section 2. In Section 

3, we give results on stable steady state solutions of the model, including how these states 

depend on key model parameters. We start with a core model lacking TLR4 or TLR9 and 

subsequently introduce first TLR4 and then TLR9 to the model to illustrate how each of 

these elements contribute to the system’s long-term behavior. The paper concludes with a 

discussion in Section 4.

1.1. Intestinal mucus layer

A layer of mucus lines the apical side of the epithelium in order to prevent direct contact of 

luminal bacteria with epithelial cells. This is the first key barrier that intestinal bacteria 

encounter. The composition of the mucus inhibits effective or rapid movement of bacteria. 

However, in areas of inflammation, the mucus layer tends to be thinner, often allowing 

pathogenic bacteria to penetrate the mucus and reach the epithelium (Corazziari, 2009).

Several antimicrobial proteins, such as defensins and cathelicidins, are released into the 

mucus layer and eliminate bacteria (Duerkop et al., 2009). These proteins are expressed 

constitutively but are also induced in the presence of bacteria. For example, dendritic 

(immune) cells residing in the intestinal tissue can extend protrusions through the epithelial 

layer and sample the bacterial contents of the lumen. If bacteria are sensed, these dendritic 

cells trigger the release of antimicrobial proteins or IgAs. Antimicrobial proteins promote 

bacterial killing by compromising the integrity of bacterial cell walls (Ohland and 

MacNaughton, 2010; Duerkop et al., 2009). Bacteria-specific IgAs are secreted into the 

intestinal lumen, where they trap pathogens by surrounding them with a hydrophilic shell 

that is repelled from the epithelium (Ohland and MacNaughton, 2010; Duerkop et al., 2009; 
Leser and Molbak, 2009). Antimicrobial proteins also target normal microflora in order to 

prevent an unnecessary or harmful inflammatory response in the gut (Meyer-Hoffert et al., 

2008).

1.2. Intestinal and blood macrophages

In some cases, the mucus layer is insufficient to prevent bacterial penetration of the 

intestinal epithelium or inhibit an inflammatory response against commensal bacteria. 

Instead, bacteria (pathogenic or commensal) may enter epithelial cells or pass through 
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spaces between them. Ideally, these bacterial invaders will be eliminated by intestinal 

macrophages, which are macrophages positioned in the intestinal lamina propria that 

respond directly to the presence of bacteria in the intestinal tissue. Intestinal macrophages 

can phagocytose and kill microorganisms but do not release pro-inflammatory cytokines in 

large quantities, unlike macrophages in other tissues (Smith et al., 2005; Smythies et al., 

2005). In this way, bacteria may be eliminated without causing much damage to the gut 

(Smith et al., 2005). However, it is hypothesized that intestinal macrophages are 

dysfunctional in very low birth weight infants, contributing to increased bacterial 

translocation (Sherman, 2010). In particular, in the normal fetus, intestinal macrophages 

undergo progressive inflammatory down-regulation, but in the case of preterm deliveries, 

this down-regulation is incomplete, resulting in an increased risk of a severe inflammatory 

response to bacteria (Maheshwari et al., 2011).

If neither the mucus layer nor intestinal macrophages is effective at preventing bacteria from 

entering the blood and tissue, an overly robust inflammatory response ensues, including the 

activation of blood macrophages and the systemic secretion of pro-inflammatory cytokines. 

An inflammatory response is necessary to destroy harmful bacteria, but inflammation also 

causes injury to the intestinal barrier and inhibits epithelial cell proliferation and migration. 

Thus, as a result of a widespread pro-inflammatory response, the rate of bacterial 

translocation may be increased and the ability to repair the intestinal barrier may be 

impaired.

1.3. TLR4 and TLR9 signaling

TLR4 is expressed on both the apical and basolateral surfaces of enterocytes (intestinal 

epithelial cells) and can facilitate bacterial translocation across the epithelium (Neal et al., 

2006). TLR4 is the main receptor for lipopolysaccharide (LPS), which is a component of the 

outer membrane of Gram-negative bacteria. Gram-negative bacteria are the primary type of 

bacteria that have been identified as being central to the pathogenesis of NEC (Hunter et al., 

2008). If the mucus layer and intestinal macrophage defense mechanisms are not successful 

at preventing bacterial translocation, the activation of TLR4 by LPS can result in a 

widespread pro-inflammatory response. In particular, following TLR4 activation, the nuclear 

factor κ-light-chain-enhancer of activated B cells (NF-κB) is translocated to the nucleus. 

This signaling cascade can trigger the secretion of antimicrobial factors and IgAs (Duerkop 

et al., 2009; Vaishnava et al., 2008) as well as the production and release of various pro-

inflammatory cytokines (Xavier and Podolsky, 2000). If an overwhelming inflammatory 

response occurs, increased damage and bacterial translocation typically result and contribute 

to the development and severity of NEC.

TLR4 expression is significantly elevated in the bowels of humans with NEC (Chan et al., 

2009) and in experimentally induced NEC, relative to control conditions (Leaphart et al., 

2007). If TLR4 is blocked, bacterial translocation is reduced significantly (Neal et al., 2006). 

In fact, Leaphart et al. (2007) observed that in mice whose TLR4 signaling was blocked 

(TLR4-mutant mice, in which the gene coding for TLR4 contains a point mutation that 

nullifies downstream intracellular signaling), there was no response to LPS. Experiments 

have provided a measure of NEC severity in the presence or absence of TLR4 (Gribar et al., 
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2009). In wild type mice, NEC severity was between 2 and 3 (severe), but in TLR4-mutant 

mice, NEC severity was nearly 0 (normal) (Leaphart et al., 2007). Interestingly, levels of 

TLR4 expression in the gut increase prior to birth and do not decrease to a normal level until 

the day of birth (Gribar et al., 2009), which could partly explain the primary development of 

NEC in preterm infants. Similarly, Lotz et al. (2006) noted rapid TLR4 signaling after LPS 

stimulation in fetal intestinal epithelial cells (IECs) that was completely absent from adult 

IECs. Claud et al. (2004) observed significantly higher pro-inflammatory cytokine secretion 

in response to bacterial infection in immature IECs compared with mature IECs, likely due 

to the increased TLR4 activity in immature enterocytes.

Repair of the injured epithelial layer requires the efficient migration of epithelial cells into 

the site of injury. TLR4 activation increases the adhesion of enterocytes to the underlying 

matrix, which in turn restricts normal cell migration. For example, in a scrape wound assay 

of intestinal epithelial cells, migration was normal under control conditions but significantly 

impaired in the presence of LPS (Leaphart et al., 2007). TLR4 activation inhibits enterocyte 

proliferation (Sodhi et al., 2010), which is a process that is also needed for normal injury 

repair. These observations suggest that TLR4 activation contributes to intestinal injury and 

also inhibits healing (Leaphart et al., 2007; Qureshi et al., 2005; Afrazi et al., 2011).

Although several harmful effects of TLR4 have been identified related to cell migration and 

the inflammatory response, the majority of infants express TLR4 but do not develop NEC. 

When expressed at a normal level, TLR4 signaling plays an important role in establishing 

optimal proliferation and protection against apoptosis in the colon (Afrazi et al., 2011; Sodhi 

et al., 2011). It has been hypothesized that the connection between TLR4 and the 

development of intestinal inflammation is influenced by multiple factors, including the type 

of effector cells, developmental factors, and region of the intestine (Afrazi et al., 2011). 

Moreover, TLR4 signaling has been shown to protect against pathogenic infections as well 

as to induce tolerant responses to commensal bacteria (Kubinak and Round, 2012). Thus, the 

means by which TLR4 responsiveness is maintained at an appropriate level to maintain 

homeostasis and host protection is an important topic for both experimental and 

computational investigation.

TLR9 is a Toll-like receptor that recognizes demethylated DNA, which is DNA that contains 

several CpG motifs (regions of DNA where a cytosine nucleotide occurs next to a guanine 

nucleotide, separated by only one phosphate). These motifs are characteristic of the bacterial 

genome and hence serve to alert the host to the presence of bacterial infection. Studies have 

shown that TLR9 activation with CpG DNA can limit TLR4 signaling in enterocytes and 

reduce intestinal inflammation in NEC (Gribar et al., 2009; Sodhi et al., 2011), unlike the 

activation of inflammation by TLR9 in other contexts. Interestingly, TLR9 and TLR4 are 

reciprocally expressed in the developing intestine (Gribar et al., 2009). That is, when TLR4 

levels are high (pre-birth), TLR9 levels are very low, whereas at birth TLR9 levels are 

elevated and TLR4 levels are low.

Gribar et al. (2009) explored the potentially beneficial effects of altering the expression of 

TLR4 and TLR9 in the infant intestine. CpG DNA attenuated TLR4 signaling in enterocytes 

(but not in inflammatory cells), and the amount of bacterial translocation to mesenteric 
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lymph nodes decreased significantly when CpG DNA was added to intestinal epithelial cells 

treated with LPS. Moreover, activation of TLR9 by CpG DNA reduced the severity of 

experimental NEC (Gribar et al., 2009). These observations suggest that promoting the 

activation of TLR9 may be a strategy for treating infants with NEC. It is hypothesized that 

probiotics (nonpathogenic bacteria species that are beneficial to the host and are the same 

species that comprise the normal flora of the gut and breast milk) may be a successful 

treatment for NEC in part because probiotic bacterial DNA can activate TLR9, which in turn 

inhibits the activation of TLR4. Another potential beneficial mechanism of probiotics 

involves their interference with the activation of NF-κB in gut epithelial cells. In particular, 

commensal bacteria (and probiotics) have been shown to inhibit the translocation of NF-κB 

into the nucleus, thereby blocking the release of pro-inflammatory cytokines (Xavier and 

Podolsky, 2000; Neish et al., 2000).

1.4. Computational model

The transfer of nutrients, growth factors, and immunoglobulins from mother to child, which 

would normally protect the infant from bacteria that colonize the intestinal tract, is 

interrupted in infants born prematurely (Edde et al., 2001). As a result, these premature 

infants often experience sustained inflammation and bacterial translocation, which can lead 

to severe diseases. The majority of premature infants never progress to NEC, although up to 

15% of all low birth weight, premature infants have been shown to develop NEC (Lin et al., 

2008b). Mathematical models (Arciero et al., 2010; Reynolds et al., 2006; Kim et al., 2012) 

combined with experimental observations (Gribar et al., 2009; Hackam et al., 2005) can be 

used to investigate potential physiological mechanisms and developmental factors that 

contribute to NEC and to identify possible treatment strategies for the disease. Importantly, 

these models are designed to include factors that may contribute to the pathophysiology of 

NEC, but they predict a wide range of health and disease states that are consistent with the 

clinical observation that NEC often does not develop even among its most susceptible 

population in the majority of cases. A previous theoretical model was focused on predicting 

and understanding the factors that contribute to NEC (Kim et al., 2012); the focus of the 

current study is to evaluate components of the inflammatory response that may impact the 

development of NEC. In particular, the model presented in this study is used to predict 

conditions under which TLR4 and TLR9 activation affect health or disease outcomes for a 

premature infant. The model represents the interactions between a bacterial population and 

certain major elements of the immune response in the mucus layer and intestinal tissue. We 

consider several levels of model complexity, sequentially adding components to identify how 

they contribute to long-term outcomes.

2. Methods

2.1. Model development

A system of ordinary differential equations is used to track the number of bacteria in the 

mucus layer of the intestine and in a combined blood/tissue compartment, the rate of 

bacterial translocation from intestine to blood/tissue, and the effects of macrophage 

activation and inflammation, which are provoked by bacteria. The present model is based on 

our previously published work (Arciero et al., 2010). Our prior mathematical model was 
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altered to include immune mechanisms in the mucus layer that help to limit direct contact 

between bacteria and the epithelium (Hooper and Macpherson, 2010; Lan et al., 2005) as 

well as mechanisms for the activation and interaction of enterocyte TLR4 and TLR9. The 

focus of our study is the investigation of TLR effects on the combined mucus/blood/tissue 

system in the context of NEC. In a departure from our previous model (Arciero et al., 2010), 

an intestinal lumen compartment is not explicitly included in this model; instead, bacteria 

are assumed to enter the mucus layer from the lumen at a fixed rate. Also, the population of 

inflammatory cells tracked in Arciero et al. (2010) is replaced by a pro-inflammatory 

cytokine population in this study. This simplification of considering the immune response as 

a lumped response is sufficient for the purposes of this model but could be altered in the 

future to include more detailed interactions between immune cells and cytokines. A 

schematic illustration of the model compartments and quantities tracked in the model is 

given in Fig. 1A, and model dynamics are depicted in Fig. 1B.

2.1.1. Mucus layer compartment—The dynamics of the number of bacteria in the 

mucus layer (BM) is described by Eq. (1)

(1)

According to this equation, bacteria enter the mucus layer from the intestinal lumen at a 

constant rate BM,source (Duerkop et al., 2009). Increasing this parameter value in Eq. (1) 

signifies an increase in bacteria in the system and can be used to simulate differing degrees 

of infection. Using a constant positive value for BM,source is reasonable since bacteria are 

always present in the mucus. A larger value of BM,source could be used to represent ischemic 

injury, which is typical at least in some animal models of NEC and causes the mucus layer 

to be permissive to bacteria.

Dendritic cells sample the contents of the mucus layer and are effective at killing 

phagocytosed bacteria (Smith et al., 2005; Hooper and Macpherson, 2010) at a rate that we 

treat as saturating, based on the finite size of the dendritic cell population. In the second term 

of Eq. (1), we combine this effect with the destruction of bacteria in the mucus layer by 

antimicrobial proteins; for example, after an E. coli infection was induced in rat intestine, 

bacterial translocation into the blood and liver was significantly lower in rats given 

lactoferrin (an antimicrobial protein present in mother’s milk) than in control-treated rats 

(Edde et al., 2001). We note that the amount of mRNA coding for antimicrobial proteins 

increases with development stage, with the least amount in the fetus and the highest amount 

in the adult (Hecht, 1999). This observation clearly contributes to the susceptibility of 

premature infants to NEC. The parameter value used for kAD in this model is smaller than 

the value that would be used in a corresponding adult model of intestinal interactions.

TLR4 molecules respond directly to LPS. We do not explicitly track LPS in the model, but 

the third term in Eq. (1) represents the effects of TLR4 activation by LPS on mucus layer 

bacteria. Specifically, if activated TLR4 molecules (represented by variable RE in the model) 

sense bacteria (LPS) in the mucus layer, the TLR4 molecules trigger the release of 
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antimicrobial substances into the mucus to destroy bacteria. A saturated form for this term is 

chosen to reflect the limited ability of TLR4 to trigger this antimicrobial release.

Some bacteria are able to penetrate the mucus and enter the blood and tissue by crossing the 

epithelial layer (Deitch, 1994), as has been observed in both animal (Wenzl et al., 2001) and 

human studies (Papoff et al., 2012; Deitch, 1989). The rate of translocation is given by 

variable ε, which appears in the fourth term in Eq. (1). The rate of bacterial translocation 

across the epithelial layer tends to be higher in premature infants due to incomplete 

development of the epithelium as well as damage to the layer caused by an exaggerated 

inflammatory response, as we discuss next.

2.1.2. Epithelial cell layer—The rate of bacterial translocation, ε, evolves according to 

Eq. (2)

(2)

A nonzero rate of translocation (ε0) is specified for the intestinal epithelium under baseline 

conditions (first term), as in Arciero et al. (2010). If the intestinal epithelium is injured, the 

bacteria are able to breach the epithelial barrier more easily (Samel et al., 2002). Bacterial 

translocation across the epithelium initiates a full-blown immune response, which can cause 

additional damage to the epithelial layer and promote a positive feedback cycle between 

inflammation and damage. The risk factors for bacterial translocation are also risk factors for 

NEC, especially an impaired epithelial barrier. To assess how bacterial translocation 

contributes to the pathogenesis of NEC, the model includes a simplified representation of the 

effects of inflammation on bacterial translocation. Specifically, the rate of translocation in 

the model is increased in the presence of blood/tissue pro-inflammatory cytokines, P, with a 

gain f, since cytokines initiate and sustain an inflammatory response that damages the 

intestinal epithelium (Edelson et al., 1999; Bianchi and Manfredi, 2009). Although 

antiinflammatory cytokines are not explicitly included in this model, parameter f is also 

assumed to take into account the inhibitory action of anti-inflammatory cytokines.

Activated TLR4 molecules (RE) and TLR9 molecules (IE) on the epithelium are represented 

in the model using Eqs. (3) and (4)

(3)

(4)

The ligands recognized by TLRs are not specific to pathogenic bacteria, and thus commensal 

bacteria may also activate TLRs (Rakoff-Nahoum et al., 2004). The first and second terms of 
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Eq. (3) represent TLR4 activation in the presence of bacteria (LPS) and pro-inflammatory 

cytokines, respectively. Specifically, term 1 of Eq. (3) defines the activation of a constant, 

inactive TLR4 population, TI, by BM. Blood/tissue pro-inflammatory cytokines, P, can 

trigger signaling processes that may affect TLR4 expression (term 2). Enterocyte TLR9 

molecules (denoted by IE) appear in the denominator of these terms to encode the inhibitory 

effect of TLR9 on TLR4 activation. An ongoing decay of activated TLR4 molecules is also 

assumed (third term).

The method by which TLR9 (IE) is activated has been debated in the literature (Ivory et al., 

2008; Hackam et al., 2005), and thus two methods of TLR9 activation are included in the 

model (Eq. (4)). Specifically, TLR9 molecules may be activated intracellularly once bacteria 

have been internalized by TLR4 (first term) or extracellularly in the presence of bacteria in 

the mucus layer (second term). In term 2, α11 is small, and so we use a linear term to 

approximate a saturating term. A natural decay of these receptors is also assumed (term 3).

2.1.3. Blood/tissue compartment—Eq. (5) gives the rate of change of bacteria in the 

blood/tissue compartment (B)

(5)

A numerical threshold T, which was introduced in a previous model (Arciero et al., 2010), is 

used in the first term of Eq. (5) to represent the translocation of bacteria across the 

epithelium into the blood/tissue as well as the effects of intestinal macrophages, which are 

not explicitly tracked in the model. The threshold term included here is identical to that used 

previously (Arciero et al., 2010)

(6)

that is, bacteria in the mucus are assumed to be internalized only once the product of BM and 

ε exceeds a certain threshold value (given by parameter T) (Hooper and Macpherson, 2010). 

If the product does not exceed the threshold, the bacteria that exit the mucus layer are 

assumed to be eliminated in the epithelium by intestinal macrophages and prevented from 

entering the blood compartment. Although separate populations for pathogenic and 

commensal bacterial species are not defined in this model as they were in Arciero et al. 

(2010), the use of a threshold function takes into account that the continuous exposure of the 

epithelium to commensal bacteria in the mucus layer does not trigger a destructive immune 

response. Experimental observations by Han et al. (2004) provide support for using a 

threshold function since bacterial translocation behaved like a step function, remaining 

negligible over a wide range of bacterial population sizes before becoming significant at 

large population levels. Intestinal macrophages do not produce pro-inflammatory cytokines 

(Smythies et al., 2005; Lotz et al., 2006; Smith et al., 2005), and thus an inflammatory 

response is not evoked by this mechanism and a simple representation of intestinal 

macrophage effects is reasonable. If the threshold T is exceeded, then bacteria enter the 
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blood and are eliminated by blood macrophages (here assumed to be proportional to pro-

inflammatory cytokines, P) at rate k5 (second term in Eq. (5)).

Note that alternative, smooth functional forms of the threshold term could be chosen to 

achieve the same effect. For example, using (εBM − T)/(1 − e−β(εBM − T)) in place of [εBM − 
T]+ gives the same qualitative results. We used the latter function so that the model can 

generate solutions in which no bacteria enter the blood/tissue compartment, which makes it 

easy to classify aseptic outcomes. If the max function (Eq. (6)) were not used, then a very 

small amount of bacteria would always enter the blood/tissue compartment, and we would 

lose this unambiguous differentiation between aseptic and septic outcomes.

Blood cytokine levels are typically elevated in infants suffering from NEC, and it is 

hypothesized that studying the pattern of cytokine expression will yield important insights 

into the pathophysiology of the disease (Edelson et al., 1999; Harris et al., 1994). The rate of 

change of pro-inflammatory cytokines in the blood/tissue compartment is given by Eq. (7)

(7)

Pro-inflammatory cytokine production is activated by bacteria in the blood (first term in Eq. 

(7)) (Haller et al., 2000; Lan et al., 2005; Gribar et al., 2009; Ivory et al., 2008). A TLR4 

threshold, TRE, is introduced in the second term of Eq. (7), using the max function (Eq. (6)). 

If the number of TLR4 molecules that are activated exceeds TRE, then a full inflammatory 

response is triggered, leading to cytokine production (Akira et al., 2001; Lotz et al., 2006; 
Edelson et al., 1999; Smith et al., 2005). If the level of activated TLR4 molecules is below 

TRE, then [RE − TRE]+ = 0, such that TLR4 molecules sense bacteria in the mucus and 

antimicrobial protein production is triggered, but an overly robust inflammatory response 

does not ensue. A natural decay of cytokines is also assumed (third term in Eq. (7)).

2.2. Experimental procedure

2.2.1. TLR4 and TLR9 staining in IEC6 and RAW cells—IEC6 enterocytes and RAW 

macrophages (a mouse leukaemic monocyte macrophage cell line commonly used for in 
vitro work studying macrophage biology) were plated upon glass coverslips. Enterocytes 

were treated with LPS (50 µg/ml) and CpG (4 µM) either separately or simultaneously, and 

TLR4 and TLR9 expression were subsequently assessed, at 4, 8, and 16 h. Cells were 

stained for both TLR4 and TLR9 via immunofluroesence. Briefly, cells were fixed in 4% 

Paraformaldehyde for 20 min followed by 20 min in 0.1% Triton-X solution. Non-specific 

binding was blocked with 1% BSA 0.15 M Glycine 5% donkey serum for 1 h. Cells were 

stained with primary antibodies for TLR4 and TLR9 (Imgenex) at 1:100 for 1 h. Cells were 

washed 3 × with PBS and treated with fluorescent secondary antibodies for detection. 

Stained coverslips were imaged on a Zeiss LSM 710 confocal microscope to perform 

imaging using Zen 2009 software.

2.2.2. PCR analysis—IEC6 enterocytes and RAW macrophages were plated upon glass 

coverslips. Enterocytes were treated with either LPS (50 µg/ml) and CpG (4 µM) separately 
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or simultaneously at various timepoints between 4 and 16 h. Cells were harvested and 

subjected to RNA isolation using a RNeasy RNA isolation kit (Qiagen). cDNA transcripts 

were made via Reverse Transcriptase kits (Qiagen). RT-PCR analysis was performed using 

an iQ5 CFX96 Real-time system Thermocycler (Bio-Rad). The primers that were utilized 

are listed in Table 1, where F denotes the forward sequence and R denotes the reverse 

sequence. Multiple comparison procedures were conducted on the PCR data using one-way 

ANOVA followed by Dunn’s post hoc test.

2.3. Parameter values

The model parameters represent rates and relative magnitudes of different types of 

interactions of bacteria with TLR4, TLR9, and inflammatory cells. Values for several 

parameters, including ε0, εmax, k5, τ, and f, were taken directly from related earlier works 

(Arciero et al., 2010; Reynolds et al., 2006). Other parameter values were varied over a wide 

range to assess different behaviors that can be generated by the model. Since this study aims 

to explore the range of biologically feasible outcomes of the immune response to lumenal 

bacteria rather than to fit a specific data sample, an optimization procedure is not used to 

select a specific set of parameter values. However, our results are biologically relevant 

because the mechanisms included in the model are all directly based on experimental and 

clinical observations. Table 2 provides a list of parameter values, units, and descriptions for 

the model, given by Eqs. (1)–(7).

3. Results

Experimental studies have identified TLR4 as a significant factor contributing to the 

pathogenesis of NEC (Gribar et al., 2009; Sodhi et al., 2010; Afrazi et al., 2011). 

Specifically, TLR4 activation leads to increased death of epithelial cells, reduced capacity 

for intestinal cell migration and proliferation, and increased inflammation. The deleterious 

effects of TLR4 have been shown to be dampened by the activation of TLR9 (Gribar et al., 

2009; Afrazi et al., 2011; Leaphart et al., 2007). In this study, the time course of TLR4 

expression was measured in lysates of IEC6 cells in the presence or absence of LPS and 

CpG DNA. TLR4 is the main receptor for LPS, and TLR9 is the main receptor for CpG 

DNA. The enterocytes are not from an immature cell line, but, based on this data and 

additional experimental evidence (Sodhi et al., 2012; Gribar et al., 2009; Liu et al., 2009), 

we hypothesize that the relationships observed here will also apply to, and perhaps be more 

pronounced in, immature enterocytes. The asterisk above the 16 h data in Fig. 2 is used to 

indicate that there is a significant difference between TLR4 expression in the presence of 

LPS at 16 h and TLR4 expression in the presence of LPS + CpG at 16 h (p < 0.05), 

identifying an inhibitory effect of TLR9. In addition, at 16 h, the TLR4 LPS + CpG 

expression level is not significantly different from media (control). Overall, the experimental 

data provide evidence for the increased TLR4 expression in the presence of LPS and the 

decreased expression of TLR4 due to the inhibitory effects of CpG DNA (TLR9).

With these studies and observations as motivation, we used our computational model to 

elucidate the specific contributions of TLR4 and TLR9 to the dynamics of quantities 
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relevant to NEC and to the long-term steady states achieved. As outlined in Fig. 3, the model 

was used to investigate the range of possible outcomes in the following three cases:

1. no TLR4, no TLR9;

2. with TLR4, no TLR9;

3. with TLR4, with TLR9.

In this study, an outcome is defined as healthy if no bacteria are present in the blood (B = 0 

× 106 cells/g) and if the rate of bacterial translocation is at its baseline value (ε = ε0) at 

steady state. To be consistent with existing literature, we classify disease states as aseptic 

death or septic death (Reynolds et al., 2006; Arciero et al., 2010). An aseptic death outcome 

corresponds to no bacteria in the blood (B = 0 × 106 cells/g) but an elevated rate of bacterial 

translocation at steady state (ε > ε0), implying sustained inflammation. Increased 

inflammation, and hence an increased rate of bacterial translocation (above baseline), may 

occur due to increased TLR4 activation; despite this, bacteria will not successfully enter the 

blood/tissue compartment if the threshold (T) is not exceeded, often due to the elimination 

of bacteria that breach the epithelial barrier by intestinal macrophages. Septic death is 

defined as a steady state with bacteria present in the blood (B > 0 × 106 cells/g). Although 

the exact relation between model predictions and clinical diagnoses is not established here, 

model predictions of aseptic and septic death may roughly represent beginning stages of 

NEC and full-blown cases of NEC, respectively. As indicated in Fig. 3, health or disease can 

emerge in the model due to the effects of TLR4, and the additional inclusion of TLR9 can 

push the system toward health or disease depending on the balance of model components. 

The conditions that determine the steady state behavior of the model will be explored across 

these three cases.

3.1. Case 1: absence of both TLR4 and TLR9

In the absence of TLR4 (RE) and TLR9 (IE), the model includes killing of mucus layer 

bacteria by dendritic cells, bacterial translocation from the mucus layer to the blood/tissue if 

the combined mucus layer bacterial population and epithelial permeability becomes 

sufficiently large, and a pro-inflammatory response to the presence of bacteria in the blood/

tissue, which eliminates bacteria but also increases epithelial permeability. To assess the 

contributions of TLR4 and TLR9 to system dynamics, it is useful to first see how this 

reduced system behaves. With RE and IE pinned at 0, the model simplifies to a system of 

four differential equations, corresponding to the NEC model in an earlier work (Arciero et 

al., 2010). The system can be further reduced to two ODEs, for BM and ε, if we make a 

quasi-steady state approximation and set P and B to be functions of εBM that satisfy dB/dt = 

dP/dt = 0. This reduction does not alter the number and values of the equilibria, but it could 

alter their stability (we note that it does not in fact alter the stability here).

The resulting nullclines for BM and ε are shown in Fig. 4. To generate the ε nullcline, we 

consider two components. For one component, we have ε = ε0, P = 0, and B = 0. These 

conditions indeed give dB/dt = dP/dt = dε/dt = 0 as long as ε0BM < T, so this component is 

defined for BM ∈ [0,T/ε0). The other component corresponds to ε > ε0 with P, B > 0, which 

requires εBM > T. The number and location of intersections of the ε and BM nullclines (i.e., 
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critical points) depend on the model parameter values. Here, the effects of BM,source, 

representing the intensity of the bacterial invasion, and kAD, encoding the effectiveness of 

the dendritic cell response, are examined. In each panel of Fig. 4, the dashed black curve 

corresponds to εBM = T. Three possible dynamics for Case 1 are depicted in Fig. 4: a single 

healthy steady state, bistable steady states, or a single disease steady state. Each of these 

cases arises over a range of BM,source and kAD values.

In the first column (Fig. 4A and D), the BM nullcline (blue) intersects the ε nullcline (red) at 

one point along the line ε = ε0. This steady state is healthy since the rate of bacterial 

translocation at steady state is at its baseline value (ε = ε0) and the intersection point of the 

nullclines is located to the left of (below) the dashed black curve, indicating that εBM < T at 

steady state, as needed for consistency. This configuration and an associated stable health 

state are predicted to arise for 0 × 106 cells/g/h ≤ BM,source ≤ 1.65 × 106 cells/g/h (when kAD 

= 1 × 106 cells/g/h). The BM nullcline plotted in Fig. 4A and D depicts the largest value of 

BM,source (to within 0.01 × 106 cells/g/h) within that range. The shaded region in panel A 

corresponds to shifted positions of the BM nullcline that would still yield health.

The second column of Fig. 4 (Fig. 4B and E) illustrates a configuration, which occurs for 

values of BM,source in the range 1.66 × 106 cells/g/h ≤ BM,source ≤ 1.74 × 106 cells/g/h (with 

kAD = 1 × 106 cells/g/h), that yields a prediction of bistability, as indicated by the three 

intersection points of the nullclines. Two BM nullclines (blue), one for BM,source = 1.66 × 

106 cells/g/h and the other for BM,source = 1.74 × 106 cells/g/h, are shown in Fig. 4B to 

outline the region where BM nullclines that give bistability may lie. In this region (shaded), 

the prediction of a health or septic death outcome depends on the initial value of BM. For 

example, for values of BM,source in this range, if BM(0) = 0 × 106 cells/g, health is predicted, 

but if BM(0) = 20 × 106 cells/g, a disease steady state is predicted. Note that intersection 

points on ε = ε0 lie to the left of/below the curve εBM = T, while intersections with ε > ε0 lie 

to the right of/above this curve, such that all are self-consistent.

Finally, in the third column (Fig. 4C and F), the single intersection point corresponds to a 

septic death prediction when BM,source ≥ 1.75 × 106 cells/g/h (kAD = 1 × 106 cells/g/h). In 

this shaded region, the BM nullcline will always intersect the upper branch of the ε nullcline 

once, corresponding to an elevated rate of bacterial translocation (ε > ε0) and presence of 

bacteria in the blood (εBM > T). The second row of Fig. 4 provides a zoomed version of the 

graphs in the top row to depict how the system behavior for the three ranges of BM,source 

results from the shape and location of the nullclines with respect to the threshold curve.

In Case 1, septic death is predicted when the threshold T is exceeded, implying either BM or 

ε has increased sufficiently for their product to exceed and remain above threshold at steady 

state. The parameter values chosen for BM,source, kAD, or kPM affect whether or not this 

threshold is crossed. If the rate of entrance of bacteria into the mucus layer, BM,source, is 

increased (as would occur with the introduction of an infection), the BM nullcline shifts to 

the right and steady states may be created through a saddle-node bifurcation to yield 

bistability (Fig. 4B) or may merge through a subsequent saddle-node bifurcation to ensure 

septic death (Fig. 4C).

Arciero et al. Page 13

J Theor Biol. Author manuscript; available in PMC 2016 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A decrease in kAD will also cause the BM nullcline to shift to the right. A low value of kAD 

corresponds to a weak response by dendritic cells, causing bacterial levels in the mucus 

layer to remain high. The effects of varying BM,source or kAD are summarized with three 

sample nullclines in the ε − BM phase plane in Fig. 5A. Health and disease predictions are 

summarized in kAD−BM,source parameter space in Fig. 5B. The two curves in Fig. 5B 

separate health and septic death regions for initial conditions of BM(0) = 0 × 106 cells/g 

(blue) and BM(0) = 20 × 106 cells/g (magenta). Points to the left of each curve are 

combinations of parameter values for which the corresponding initial condition yields a 

healthy steady state outcome, whereas for points to the right of each curve, this initial 

condition gives a septic death outcome. The points in between the two curves correspond to 

the region of bistability, since health is predicted for BM(0) = 0 × 106 cells/g but septic death 

is predicted for BM(0) = 20 × 106 cells/g in this region.

Increasing kPM corresponds to an immune system that is increasingly sensitive to bacteria in 

the blood. As kPM is increased, the ε nullcline shifts upward and changes shape, causing the 

number of steady states to increase from one to three. Two ε nullclines corresponding to 

increasing values of kPM are shown in the phaseplane in Fig. 5C. While a strong immune 

response is often thought to be beneficial, it also causes increased damage to the epithelial 

layer. Thus, increased sensitivity of the immune response can transform a system from a 

potentially healthy state to a disease state. Fig. 5D gives a summary of health, aseptic death, 

and septic death predictions in the kPM − BM,source parameter space when BM(0) = 20 × 106 

cells/g. If BM(0) = 0 × 106 cells/g, increasing kPM does not change the steady state 

prediction of health for the parameter ranges shown in the figure, and thus this case is not 

depicted in Fig. 5D.

3.2. Case 2: presence of TLR4 and absence of TLR9

Since TLR4 has been shown to be a key contributor to NEC (Gribar et al., 2009; Hackam et 

al., 2005; Sodhi et al., 2010), the previous NEC model in Arciero et al. (2010) is extended to 

include several mechanisms by which TLR4 (RE, see Eq. (3)) acts. To isolate the effects of 

TLR4 in the system that are independent of TLR9, we set IE = 0, and the model reduces to a 

system of five differential equations (Eqs. (1)–(5)).

As in Case 1, all of the model equations in Case 2 can be expressed at steady state in terms 

of BM and ε. The BM nullcline and ε nullcline can be used to assess changes in the possible 

steady states of the model, as illustrated in Fig. 6 (color-coding as in Fig. 4). The nullclines 

shown in Fig. 6A correspond to the case when neither threshold is crossed (i.e., εBM < T and 

RE < TRE), and a healthy steady state is predicted. Note that although the TRE threshold 

cannot be explicitly depicted in the ε − BM phase plane, we use direct simulations of the 

model to determine whether or not TRE has been crossed.

In the center panel (Fig. 6B), the slope of the ε nullcline is positive, and the nullclines 

intersect at a point at which ε > ε0. This indicates that there is sustained inflammation in the 

system, which occurs because RE > TRE. Since the εBM product (at steady state) is to the left 

of the black dashed curve, this panel depicts an aseptic death prediction: no bacteria remain 

in the blood at steady state but ε > ε0. The curves depicted in panels A and B were generated 

under the assumption εBM < T, and a portion of the ε nullcline is colored grey in each to 
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illustrate a region that is inconsistent with this assumption. In Fig. 6C, both thresholds are 

exceeded and a septic death outcome is predicted regardless of BM(0).

The results in Fig. 6 were generated using a single kAD value (kAD = 1 × 106 cells/g/h); in 

Fig. 7, parameters kAD, BM,source, and a1 are varied to determine their effects on model 

predictions in the presence of TLR4. Parameter kAD is the rate at which dendritic cells and 

antimicrobial proteins destroy bacteria in the mucus layer. This parameter is varied since the 

success of this immune response may vary with developmental stage. Parameter BM,source is 

varied to reflect differing degrees of infection. In Fig. 7A, increasing BM,source (or 

decreasing kAD) causes a rightward shift in the BM nullcline and a simultaneous upward 

shift of the ε nullcline. Moderate increases in BM,source cause an increased inflammatory 

response such that RE exceeds the TRE threshold, leading to an aseptic death prediction. 

Significant increases in BM,source cause εBM to increase above T due to both increased 

inflammation and bacteria entering the mucus layer; once T is exceeded, septic death is 

predicted by the model. A summary of health, aseptic, and septic death predictions is shown 

in Fig. 7B in kAD − BM,source parameter space. The results from Case 1 are also provided 

(blue) to illustrate that the health region predicted in the absence of TLR4 shrinks 

substantially and that the previously healthy parameter sets yield aseptic outcomes when the 

roles of TLR4 are considered (Case 2). As in Fig. 5B, regions to the left and right of the 

curves are labeled as health, aseptic, or septic.

The results in Fig. 7A–B are given for a fixed activation rate of TLR4 (a1 = 0.1/h). However, 

these outcomes are sensitive to variations in the rate of bacterial activation of TLR4 (a1). 

Fig. 7C shows the upward shift in the ε nullcline as a1 is increased (BM,source = 1.6 × 106 

cells/g/h). The ε nullcline saturates near εmax = 0.21/h as a1 is increased, demonstrating that 

uncontrolled activation of TLR4 leads to overwhelming inflammation, which is a 

characteristic of NEC. The kAD −BM,source parameter space in Fig. 7D includes the effect of 

increasing a1 (a1 = 0.1/h (green) and 0.5/h (magenta)). The blue curve included in the figure 

shows the division between health and septic death when TLR4 is absent (Case 1). The point 

labeled A represents combinations of parameter values that would yield a healthy outcome 

in Case 1 but an aseptic outcome for Case 2. Point B corresponds to a case that was septic 

for Case 1 and aseptic in Case 2. Interestingly, increasing a1 significantly impacts 

predictions of health by converting a large previously healthy parameter region into an 

aseptic region due to its effect of increasing inflammation in the system. However, 

increasing a1 only weakly affects the boundary between aseptic and septic states, converting 

some borderline aseptic parameter sets to septic outcomes by yielding increased epithelial 

damage and associated bacterial translocation into the blood.

3.3. Case 3: presence of both TLR4 and TLR9

In Case 2, the effects of TLR4 but not TLR9 were included; as a result, the model tended to 

evolve toward disease outcomes, with a possibility of septic death and especially aseptic 

death due to uncontrolled inflammation. Several control mechanisms exist to prevent such 

tendencies from emerging under most circumstances. The action of enterocyte TLR9 is an 

example of such a control mechanism. In intestinal epithelial cells, it has been observed that 

Arciero et al. Page 15

J Theor Biol. Author manuscript; available in PMC 2016 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the activation of TLR9 leads to the inhibition or dampening of TLR4 signaling (Sodhi et al., 

2011).

In Case 3, the full model of six differential equations (Eqs. (1)–(7)) is used to simulate the 

interactions among bacteria, TLR4, TLR9, and the immune response. The effects of 

parameters BM,source, kAD, and a1 on BM and ε nullcline positions are similar to Cases 1 and 

2; the overall effects of these parameters are summarized in Figs. 8 and 9.

In Fig. 8A, the kAD − BM,source parameter space is divided into health, aseptic, and septic 

regions by curves representing Case 1 (blue), Case 2 (red), and Case 3 (black) with a1 = 

0.1/h. Simulating the model in the presence of both TLR4 and TLR9 transforms the 

previously aseptic region predicted in Case 2 to an entirely healthy region. In fact, even a 

small portion of the septic region predicted in Case 2 is predicted to be healthy when both 

TLR4 and TLR9 are included in the model (Case 3). This panel highlights the role of TLR9 

in promoting homeostasis in a normal system, since TLR9 restores health in cases that were 

aseptic (points A and B) or septic (point C) in its absence.

In panels 8B–D, the time series for εBM, ε, and RE are shown for the parameter values that 

correspond to point B in Fig. 8A. Note that the combination of parameter values for point B 

correspond to septic death in Case 1, aseptic death in Case 2, and health in Case 3. In Fig. 

8B, the time course of εBM is shown relative to a dotted line that indicates the threshold 

value T = 1.1 × 106 cells/g/h; in Fig. 8D, the time course of RE is shown relative to a dotted 

line that indicates the TLR4 threshold value TRE = 0.65[RE].

In Fig. 8B, the blue curve (Case 1) remains above the dotted T line, indicating that T is 

exceeded even at steady state and that bacteria are able to enter the blood. Permeability is 

also predicted to remain elevated for Case 1 (panel C). These combined results indicate a 

model prediction of septic death. TLR4 is absent in this case, and thus the blue curve 

corresponding to RE is omitted in panel D. The red curves in these panels correspond to 

Case 2, with TLR4 present but TLR9 absent. In Fig. 8B, we see that εBM < T and thus 

bacteria do not enter the blood/tissue. As observed in Fig. 8D, RE > TRE, which leads to 

increased inflammation, as evidenced by the elevated value of ε in panel C. From these 

panels, we observe that TLR4 molecules are able to keep BM in check and keep εBM below 

T, but since P > 0, ε > ε0 and an aseptic death steady state is predicted.

The black curves in Fig. 8B–D represent Case 3, which includes both TLR4 and TLR9. In 

this case, TLR9 reins in TLR4 (and thus P) such that εBM remains below T (Fig. 8B). As a 

result, B remains lower than it was previously and thus, after an elevated transient, RE falls 

below TRE (Fig. 8D). Since neither threshold is exceeded at steady state, bacteria are not 

present in the blood and ε = ε0. This example shows that the addition of TLR9 brings the 

levels of activated TLR4 below the TRE threshold, thereby reducing overall inflammation in 

the system and restoring health. A summary of the steady state outcomes at all three points 

labeled in Fig. 8A is provided in Table 3.

The a1 − BM,source parameter space in Fig. 9 is divided into health, aseptic, and septic 

regions for Case 1 (blue), Case 2 (red), and Case 3 (black). The blue curve is vertical since 

TLR4 is absent in Case 1, and thus the resulting reduced model does not depend on a1. The 
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harmful effects of TLR4 are evident, particularly at high levels of TLR4 activation (high a1) 

when a significant portion of the original health region (Case 1) is converted to aseptic death 

outcomes. Interestingly, for low a1 values, there are regions of predicted septic death for 

Case 1 that become healthy in Case 2, even without TLR9, indicating an important role for 

TLR4 that was not obvious without running simulations in the presence and absence of the 

receptor. The addition of TLR9 (Case 3) reduces the degree of inflammation caused by 

TLR4 and expands the region where health is predicted. Even the inclusion of TLR9, 

however, cannot restore health in a part of the parameter region made aseptic by TLR4. 

Indeed, we see that even if parameters can be tuned so that the combined presence of TLR4 

and TLR9 can be beneficial (e.g., a1 = 0.1/h), there may be other parameter tunings such that 

their negative effects dominate (e.g., a1 ≥ 0.2/h), pointing to a possible mechanism for how 

an overactive TLR system can promote the emergence of NEC.

When both TLR4 and TLR9 are included in the model, TLR9 generally has beneficial 

effects; however, Point A in Fig. 9A represents an example of a situation in which the effects 

of TLR9 can be harmful (see also Fig. 10, where the same point is labeled, and especially 

Fig. 10B, which provides a zoomed view of the transition curves). Specifically, at Point A, 

the system is healthy in the presence of TLR4 (Case 2) but septic if TLR9 is included (Case 

3). As can be seen more clearly from the temporal dynamics shown in Fig. 9B–D, this 

transition occurs when TLR9 inhibits TLR4 just enough so that the level of bacteria in the 

mucus becomes sufficiently high to cause the product of ε and BM to exceed threshold (T). 

Bacteria can then enter the blood and invoke an immune response, causing RE to increase 

above TRE in Case 3; however, in this parameter regime, the TLR4 response in the presence 

of TLR9 is insufficient to combat the bacteria, and sepsis results.

The parameter space from Fig. 9A is duplicated in Fig. 10 and supplemented with an 

additional curve (green) that illustrates the effect of increasing kIE, which is a key parameter 

promoting TLR9 activation. Increasing kIE could correspond to administering a probiotic 

therapy or drug that favors TLR9 activation over TLR4 since probiotics are composed of a 

DNA sequence that is recognized by TLR9 receptors. Promoting TLR9 activation can 

restore aseptic regions to health (Cases 2 and 3) and also achieve healthy outcomes in a 

portion of the previously septic regions. The inset in panel B is included to highlight several 

parameter regimes in which the inclusion of TLR4, the inclusion of TLR4 and TLR9, or the 

enhancement of TLR9 via increased kIE can lead to interesting effects. These outcomes are 

summarized in Table 4. Importantly, the correct balance of activation and inhibition of 

receptors and immune responses is necessary to maintain homeostasis and protect the host 

against infection, but this balance may depend on the severity of the bacterial invasion.

4. Discussion

TLR4 signaling contributes to the development of NEC by triggering increased 

inflammation and blocking processes such as proliferation and cell migration that are needed 

to repair the damaged epithelial layer (Sodhi et al., 2010; Leaphart et al., 2007). A model 

system of six ordinary differential equations is used in this study to simulate interactions 

among bacteria in the mucus layer, bacteria in the blood, the rate of bacterial translocation 

across the epithelium, pro-inflammatory cytokines, enterocyte TLR4, and enterocyte TLR9, 
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with the goal of identifying how these interactions shape long-term health or disease 

outcomes. The data obtained in this study (Fig. 2) combined with additional experimental 

observations (Gribar et al., 2009; Sodhi et al., 2012) provide evidence for the central 

assumption underlying this model: an increase in TLR4 expression due to the presence of 

LPS can be attenuated by the response of TLR9 molecules to CpG DNA. While these data 

provide insight into the necessary mechanisms to include in a computational model, little 

data are available that would allow us to specify quantitative values for model parameters; 

therefore, we investigate the effects of varying several key parameters, building up from a 

model lacking TLR4 and TLR9, to a model including TLR4 alone, to a model with both 

types of TLR molecules included, to allow for the elucidation of specific contributions of 

each. Model results demonstrate a sensitive interplay among mucus layer dynamics, the 

severity of infection, and TLR activation. In particular, we showed how the relative 

promotion of health and disease by the combined TLR effects in the model depends on the 

rate of TLR4 activation by mucus layer bacteria. We also uncovered parameter regimes 

exhibiting unexpected outcomes, such as a direct promotion of health by TLR4 alone and 

the conversion of a state that is septic with TLR4 present into a healthy state by the inclusion 

of TLR9, which might not have been easily identified in an experimental setting. Fig. 3 gives 

a general summary of our findings, illustrating that TLR4 itself can promote health or 

disease, while the additional inclusion of TLR9 can promote health in place of disease, 

convert healthy states to disease, or maintain outcomes that occurred in its absence, 

depending on the balance of effects in the model.

Previous studies have established both deleterious and protective roles for TLR4 in the 

intestine (Sodhi et al., 2011). Our model is consistent with these observations, and its 

predictions of health or death are largely dependent on parameter values. For example, there 

are values of parameter a1 (the parameter governing TLR4 activation) for which the presence 

of TLR4 alone can expand the health region and the additional inclusion of TLR9 further 

expands the predicted region of health. However, for large values of a1, an aseptic death 

outcome may be predicted despite the combined effects of TLR4 and TLR9. We hypothesize 

that these effects of parameter values on system behavior could relate to the developmental 

status of the neonate in the context of NEC. For example, final maturation in the womb may 

bring about a balance of parameters that yields a healthy outcome whereas premature birth 

may correspond to a case of imbalanced parameters resulting in aseptic death despite the 

inhibitory effects of TLR9 on TLR4.

A “NEC scare” condition almost always precedes full-blown NEC and occurs if an infant’s 

bowel is suspected to be damaged. “NEC scare” infants or any infant that presents symptoms 

of NEC are managed with fluid resuscitation, total parenteral nutrition, bowel rest, and 

intravenous antibiotics (Petty and Ziegler, 2005). In many cases, there is no lasting damage 

to the bowel and no further treatment is needed. Although “NEC scare” is not explicitly 

addressed or defined in terms of model predictions, perhaps the point at which the threshold 

for bacterial translocation is first exceeded could be interpreted as the point at which an 

infant is expressing symptoms of “NEC scare”.

In full-blown cases of NEC, current therapy includes surgical resection of the necrotic area 

combined with supportive care for the infant (Guner et al., 2009) and is inadequate in many 
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cases. Since surgical intervention for NEC is a very invasive procedure with a high rate of 

morbidity, computational studies can be used to explore possible effects of potential 

inflammation-modulating treatments for NEC. Here, several possible interventions are 

discussed in terms of key parameters affecting the system: reducing bacteria population in 

the lumen and mucus layer (parameter BM,source), administering probiotic treatment or CpG 

DNA (parameter kIE), and blocking TLR4 activation (parameter a1). The model predicts that 

these interventions would be successful at restoring health in previously aseptic or septic 

steady state cases under most circumstances. However, the model is also used to show 

situations in which these interventions are not successful; a summary of these scenarios is 

provided in Table 5 and described in detail below for all three model cases considered. As a 

brief example, as stated in Table 5, the proposed treatment of decreasing BM,source would not 

be successful in Case 2 if a1 is too high since inflammation becomes too high and aseptic 

death is predicted (justified by Fig. 7D). The results in Table 5 highlight the concept that 

testing of treatment strategies across multiple conditions is crucial when evaluating their 

potential effects.

4.1. Reducing bacterial population in lumen and mucus layer

Not surprisingly, in model Cases 1, 2, and 3, a decrease in the rate at which bacteria enter 

the mucus layer (defined here by parameter BM,source) will almost always restore health. 

This effect can be seen, for example, from Figs. 7B and 8A, in which a decrease in the 

parameter BM,source causes any point in kAD−BM,source parameter space to enter the healthy 

steady state region. However, there are important exceptions to consider. For example, 

values of parameters kPM and a1 can affect the health predictions in Case 1 and 2, 

respectively. If the rate of pro-inflammatory cytokine production due to blood/tissue bacteria 

condition (kPM, Fig. 5D) or the rate of TLR4 activation by mucosal bacteria bowel is 

suspected to be damaged. (a1, Fig. 7D) is elevated sufficiently, then BM,source must be 

extremely small to achieve a health outcome. It should be noted that BM,source = 0 is not 

possible since there is always some degree of bacteria residing in the intestinal lumen after 

birth. While a low value of BM,source could correspond to treatment with antibiotics, 

antibiotics have not demonstrated efficacy in NEC since they increase TLR4 activation upon 

destroying bacterial components.

An intervention that could boost the host’s ability to recognize and destroy foreign bacteria 

in the mucus layer (i.e., an increase in parameter kAD) would have a similar effect on the 

system as decreasing BM,source (see Figs. 5A and 7A). Such an intervention may correspond 

to administering supplemental IgA. The low incidence of NEC among breastfed infants 

could relate to the immune bolstering effects of breast milk, whereas infants fed formula 

would be modeled using systems with lower kAD values.

4.2. Administering probiotic treatment

Probiotic treatment in the context of NEC has been modeled previously (Arciero et al., 

2010), and the effects of probiotics on NEC have been investigated in several experimental 

and clinical settings (Bin-Nun et al., 2005; Dani et al., 2002; Lin et al., 2008a; Fernandez-

Carrocera et al., 2012; Mihatsch et al., 2012; Wang et al., 2012). Model predictions and 

experimental results have suggested that probiotics can decrease the incidence of NEC in the 
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majority of cases but may trigger sepsis in a few situations. While these observations are 

encouraging, there is still insufficient evidence to recommend probiotics as a routine 

treatment for NEC (Mihatsch et al., 2012). Thus, the efficacy and safety of probiotics as a 

treatment for NEC should continue to be a subject of further study (AlFaleh et al., 2011), 

ideally with help from computational models.

Probiotic bacterial species often out-compete pathogenic bacteria in the lumen and help to 

restore the integrity of the epithelial barrier. Bacterial species contain a sequence of 

unmethylated DNA that is recognized differently from mammalian DNA; as a result, 

bacteria are identified and bound to certain receptors in the gut, such as TLR9 receptors, 

which in turn can inhibit TLR4. The effects of treatment with probiotics in Cases 1 and 2 

would be similar to the effects of decreasing BM,source, since probiotics are assumed to 

compete with pathogenic bacteria and decrease the rate at which bacteria enter the mucus 

layer. In Case 3, treatment with probiotics would also correspond to increasing parameter 

kIE, since probiotics promote the activation of TLR9. As shown in Fig. 10, an increase in kIE 

greatly increases the region of predicted health. However, in some instances, the model 

predicts that previously healthy cases become septic once kIE is increased, demonstrating 

that probiotic treatments may be harmful in some cases. Point B in Fig. 10B represents an 

example of this outcome, where sufficient activation of TLR4 is required to keep BM in 

check and thereby maintain εBM < T and B = 0. An increase in a1 could be used to boost 

TLR4 activation, but care would be needed to ensure that TLR9 activation is increased 

correspondingly to avoid aseptic death (e.g., switch from black to green in Fig. 10A). 

Although the conjectures about probiotics offered in this study do not specify probiotic type, 

it is important to note that different species of probiotics may have different effects in NEC. 

In addition, these probiotic effects most likely differ according to dosage, as observed in 

many clinical studies (Bin-Nun et al., 2005) and predicted by a previous mathematical 

model (Arciero et al., 2010). An important next step in utilizing this model will be the 

translation of the parameter values and regimes investigated mathematically into 

experimental and clinical terms to identify patient-specific cases in which probiotics should 

not be used as a treatment.

4.3. Blocking TLR4 activation

Experimental animal models have shown a significant reduction in the incidence of NEC 

when TLR4 is blocked; thus, administering an agent to block TLR4 activation is a potential 

therapeutic intervention for NEC. In the present model, TLR4 inhibition would correspond 

to decreasing the parameter a1 to weaken TLR4 activation by mucosal bacteria. In Cases 2 

and 3, a reduction in a1 can convert an aseptic death outcome into a health steady state in 

many cases (Fig. 9). However, for larger BM,source, the effects of altering a1 are more subtle. 

For some values ofBM,source, reductions in a1 can restore health in previously septic states 

since limiting inflammation preserves epithelial integrity and the corresponding influx of 

bacteria into the blood/tissue. With further reductions of a1, however, sepsis still results (e.g., 

near point A in Fig. 9A), due to an insufficient ability to eliminate bacteria. This effect may 

relate to the reason that TLR4 has been conserved evolutionarily and been thought to play a 

protective role in non-newborn states (Afrazi et al., 2011). Finally, for some levels of 
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infection (corresponding to very high BM,source), septic death is predicted regardless of 

whether or not TLR4 is blocked.

4.4. Concluding remarks

Tables 3–5 and Fig. 10 show the importance of obtaining an appropriate balance among the 

various immune response defense mechanisms. For example, preventing excessive entry of 

bacteria into the mucus layer is necessary to avoid an overly robust inflammatory response 

to commensal bacteria. Given the presence of mucus layer bacteria, bacterial destruction by 

intestinal macrophages (represented by the threshold T in the model) is also necessary to 

prevent bacteria from entering the intestinal tissue or systemic circulation. Finally, the body 

must be able to respond in an adequately robust, appropriate fashion to infections when the 

epithelial barrier is breached. However, the degree of inflammation must be regulated so that 

the body does not enter a continually inflamed, self-maintaining state (Vodovotz et al., 2008, 
2009; An et al., 2012); in terms of our model, activated TLR4 must decrease below TRE at 

some point in time to achieve a healthy outcome. The model presented in this study is used 

to describe cases in which these immune mechanisms work at an appropriate or 

inappropriate level, leading to various outcomes for the system. As part of this description, 

we have highlighted roles of particular system components in achieving healthy outcomes 

and ways that they can become unbalanced, resulting in detrimental effects.

Some of the regions predicted in the model are small and perhaps difficult to realize since 

they represent a very specific combination of parameter values. However, NEC is a disease 

that only affects a very small percentage of the premature infant population and thus, the 

question of what dictates whether an infant develops NEC may be related to the regimes 

identified in the model. More tightly linking model parameters to specific biological effects 

and using additional experiments to constrain the values of these parameters would be useful 

in undertaking a more quantitative investigation of the mechanisms that give rise to NEC.

Intestinal macrophages are an important mechanism of defense by which the immune 

system responds to an invading pathogen. As described earlier, instead of explicitly tracking 

the population of macrophages in the enterocyte in this model, we set a numerical threshold 

to take into account their effects on bacterial translocation from lumen to blood/tissue. This 

threshold value can be increased or decreased to simulate a system in which intestinal 

macrophages are more or less capable of eliminating bacteria in the mucus layer. 

Experimental studies have identified a different expression and activity of TLR4 and TLR9 

in macrophages than in enterocytes (Gribar et al., 2009); including TLR4 and TLR9 

populations associated with intestinal macrophages in a future model may provide additional 

insight into the pathogenesis of NEC. Expanding the model to include additional 

inflammatory mechanisms and explicit tissue damage may also help to unravel which 

responses or mechanisms contribute most significantly to NEC.

The current model is developed in the context of a premature infant. However, the model 

could be adapted to answer questions about both premature infants and full term infants by 

assigning different parameters to each population. For example, the baseline rate of bacterial 

translocation may be greater in premature infants than full term infants due to the immaturity 

of the intestinal layer. Similarly, the immune response of a premature infant is less selective 
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than that of a full term infant, which also exhibits more mechanisms of negative regulation 

to prevent chronic inflammation. Using and adapting the model to compare these two 

populations may help in better understanding the factors contributing to NEC and other 

chronic intestinal diseases.
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HIGHLIGHTS

► A mathematical model assesses the role of inflammation in 

necrotizing enterocolitis.

► The model demonstrates how bacteria–immune interactions can 

affect health outcomes.

► The model predicts a sensitive interplay between bacteria and 

receptor activation.

► The model identifies unexpected disease outcomes not easily 

detected by experiments.

► The model evaluates whether potential NEC treatment strategies 

could be effective.
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Fig. 1. 
A. Schematic of model (not to scale). B. Interactions of bacteria and the immune response in 

NEC are described using a compartmental model of the small intestine. Bacteria (gray) enter 

the mucus layer where they are recognized by enterocyte TLR4 (labeled) or dendritic cells 

and may be eliminated by antimicrobial proteins (red). Enterocyte TLR9 (labeled) activation 

inhibits TLR4 signaling, whereas enterocyte TLR4 activation triggers TLR9 signaling. 

Bacterial translocation (ε) across the intestinal epithelium (green) occurs via gaps in the 

layer or internalization. Pro-inflammatory cytokine (+) production is triggered in the lumped 

blood/tissue compartment (purple) if bacteria breach the epithelial barrier. The pro-

inflammatory cytokines trigger the elimination of bacteria in the blood but also cause 

damage to the epithelial layer, promoting an increased rate of bacterial translocation. (For 

interpretation of the references to color in this figure caption, the reader is referred to the 

web version of this paper.)
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Fig. 2. 
TLR4 expression on IEC6 enterocytes at 4, 8, and 16 h. All values are compared with 

control state (media, blue). TLR4 expression increases if LPS (red) is added to the system. 

TLR4 expression is decreased in the presence of CpG DNA (black). When both LPS and 

CpG DNA (green) are added to the system, the TLR4 expression decreases with time. The * 

denotes a statistically significant difference in TLR4 expression between LPS and LPS + 

CpG data groups at 16 h (p < 0.05). (For interpretation of the references to color in this 

figure caption, the reader is referred to the web version of this paper.)
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Fig. 3. 
Description of the three cases, or levels of model complexity, presented in this work and 

summary of the outcomes that may result. Case 1: no TLR4 and no TLR9 are present in the 

model. Whichever outcome, health or disease, occurs is considered a baseline result, which 

may possibly be modified by the inclusion of TLR4 or TLR4 plus TLR9. Case 2: with TLR4 

but no TLR9. A health state can be achieved if TLR4 activation leads to sufficient bacterial 

killing at the mucus layer level but does not lead to overwhelming inflammation; otherwise, 

a disease state results. Case 3: with TLR4 and with TLR9. Addition of TLR9 helps to lessen 

harmful effects of TLR4, and thus promotes health, in some scenarios, but may suppress its 

positive effects, and thus induce disease, in others.
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Fig. 4. 
Dynamics for Case 1 displayed in the ε−BM phaseplane. RE = IE ≡ 0. Red curves: ε 

nullcline (dε/dt = 0). Blue curves: BM nullcline (dBM/dt = 0). Dotted black curves: εBM = T. 

In each panel, kAD = 1. A. Shaded region corresponds to locations of BM nullcline for 0 × 

106 cells/g/h ≤ BM,source ≤ 1.65 × 106 cells/g/h, such that the BM and ε nullclines intersect at 

a healthy steady state. B. Shaded region corresponds to locations of BM nullcine yielding a 

bistable regime in which a health or disease steady state is predicted depending on BM(0). 

Bistability occurs for 1.66 × 106 cells/g/h ≤ BM,source ≤ 1.74 × 106 cells/g/h. C. Shaded 

region corresponds to locations of BM nullclines yielding a single disease steady state, as 

arises for BM,source ≥ 1.75 × 106 cells/g/h. D–F. Zoomed versions of panels A–C to clearly 

show nullcline and threshold intersections. (For interpretation of the references to color in 

this figure caption, the reader is referred to the web version of this paper.)
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Fig. 5. 
Dynamics for Case 1 as parameters BM,source, kAD, and kPM are varied. A. ε−BM phase 

plane with varied BM,source and kAD. The BM nullcline shifts rightward as BM,source is 

increased or kAD is decreased. This shows that altering the rate of bacterial entry into the 

mucus layer or the rate of bacterial killing by dendritic cells can change the stability of the 

steady state. B. A summary of health and disease steady states are given in kAD−BM,source 

parameter space. Combinations of parameter values to the left of the curves indicate healthy 

steady states and points to the right of the curve are septic death steady states. Two initial 

conditions are shown: BM(0) = 0 × 106 cells/g/h (blue) and BM(0) = 20 × 106 cells/g/h 

(magenta). Bistability is predicted in the region between the blue and magenta curves. C. ε

−BM phase plane with varied kPM. As more pro-inflammatory cytokines are activated (i.e., 

parameter kPM is increased), there is a shift in the ε nullcline and the position and 

classification of equilibrium points. D. Summary of health and disease steady states in the 

kPM−BM,source parameter space for BM(0) = 20 × 106 cells/g/h. The entire parameter space 
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(for the depicted ranges of parameter values) yields a health outcome if BM(0) = 0 × 106 

cells/g/h (not shown). In panels C and D, kAD = 1 × 106 cells/g/h. (For interpretation of the 

references to color in this figure caption, the reader is referred to the web version of this 

paper.)
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Fig. 6. 
Dynamics for Case 2, which includes TLR4 but not TLR9 (i.e., IE ≡ 0), displayed in the ε

−BM phaseplane. Red curves: ε nullcline (dε/dt = 0). Blue curves: BM nullcline (dBM/dt = 

0). Dotted black curves: εBM = T. A. Nullclines are shown for the case when εBM < T and 

RE < TRE. A healthy equilibrium point is predicted. B. Nullclines are shown for εBM < T 
and RE > TRE. An aseptic death steady state is predicted. In panels A and B, the grey portion 

of the ε nullclines indicate regions that are inconsistent with the assumption εBM < T. C. 

Nullclines are shown for the case when εBM > T and RE > TRE. A septic death steady state 

is predicted. (For interpretation of the references to color in this figure caption, the reader is 

referred to the web version of this paper.)
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Fig. 7. 
Dynamics for Case 2, which includes TLR4 but not TLR9, with parameters BM,source, kAD, 

and a1 varied. A. ε−BM phase plane with BM,source or kAD varied. The BM nullcline shifts 

rightward as BM,source is increased or kAD is decreased (with a1 = 0.1/h). The ε nullcline also 

changes shape or slope with changes in BM,source and kAD. B. Summary of health and 

disease steady states in kAD−BM,source parameter space (as in Fig. 5). Summary is provided 

for Case 1 (blue) and Case 2 (green) when a1 = 0.1/h. C. ε−BM phase plane with parameter 

a1 varied (kAD = 1 × 106 cells/g/h and BM,source = 1.6 × 106 cells/g/h). As TLR4 activation 

increases (increase in parameter a1), there is an upward shift of the ε nullcline. D. Summary 

of health and disease steady states are given in kAD−BM,source parameter space for a1 = 0/h 

(blue), 0.1/h (green), and 0.5/h (magenta). Point A is an example of a steady state that is 

predicted to be healthy in Case 1 but that is predicted to be aseptic when the effects of TLR4 

are considered (Case 2). Point B is an example of a septic steady state (Case 1) that becomes 
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aseptic in Case 2. (For interpretation of the references to color in this figure caption, the 

reader is referred to the web version of this paper.)
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Fig. 8. 
Comparison of steady states for Cases 1, 2, and 3. A. Summary of health and disease steady 

states in kAD−BM,source parameter space (as in Fig. 7B) for Case 1 (blue), Case 2 (red), and 

Case 3 (black) when a1 = 0.1/h. The addition of TLR9 to the system (Case 3) restores health 

to regions that were septic and aseptic in Cases 1 and 2. In particular, the entire region of 

parameters yielding aseptic death with TLR4 but without TLR9 becomes healthy when 

TLR9 is included. Three points are labeled to contrast predictions among the three cases: 

point A (BM,source = 1.5 × 106 cells/g/h, kAD = 1.5 × 106 cells/g/h), point B (BM,source = 2.2 

× 106 cells/g/h, kAD = 1.5 × 106 cells/g/h), and point C (BM,source = 2.27 × 106 cells/g/h, 

kAD = 1.5 × 106 cells/g/h). B. εBM versus time t for point B. Three cases are colored as in 

panel A. Dotted line is the value of the εBM threshold, T. C. ε versus time t. Colors as above. 

D. RE (activated TLR4) versus time t. Dotted line is the value of the RE threshold, TRE. 

Colors are as above. (For interpretation of the references to color in this figure caption, the 

reader is referred to the web version of this paper.)
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Fig. 9. 
Summary of health and disease steady states in a1−BM,source parameter space for Case 1 

(blue), Case 2 (red), and Case 3 (black) when kAD = 1. In most of the parameter space, the 

addition of TLR9 (black curves) expands the region of predicted health. Point A, given by 

BM,source = 1.92 × 106 cells/g/h and a1 = 0.02/h, is an example of a situation in which the 

presence of TLR4 alone would restore health to an otherwise septic system, yet the 

additional inclusion of TLR9 hinders the effects of TLR4 and thereby worsens the long-term 

outcome. B–D. Time courses, as in Fig. 8, for parameter values corresponding to point A. 

(For interpretation of the references to color in this figure caption, the reader is referred to 

the web version of this paper.)

Arciero et al. Page 37

J Theor Biol. Author manuscript; available in PMC 2016 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Summary of health and disease steady states in a1−BM,source parameter space, as in Fig. 9A, 

together with an additional curve (green) showing the effect of increasing parameter kIE to 

50 [IE]/h on the predicted steady states. A. Expanded view, with outcomes labeled in 

parameter regions where they occur. B. Zoomed view of the region outlined by dashed black 

lines in A. Labeled points A (BM,source = 1.92 × 106 cells/g/h and a1 = 0.02/h), B (BM,source 

= 1.97 × 106 cells/g/h and a1 = 0.1/h), C (BM,source = 1.95 × 106 cells/g/h and a1 = 0.195/h), 

D (BM,source = 1.6 × 106 cells/g/h and a1 = 0.15/h), and E (BM,source = 2.1 × 106 cells/g/h 

and a1 = 0.15/h) represent several possible effects of TLR4 and TLR9 on observed outcomes 

(see Table 4 for summary).
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Table 1

Primers used to determine effects of TLR4 and TLR9 activation.

Model Primer

mouse TLR4 (F)- GGACTGGGTGAGAAATGAGC

(R)- GCAATGGCTACACCAGGAAT

mouse TLR9 (F)- GCTGGGACGTCTGGTACTGT

(R)- ACCACGAAGGCATCATAAGG

rat TLR4 (F)- TGCTCAGACATGGCAGTTTC

(R)- GCGATACAATTCGACCTGCT

rat TLR9 (F)- CTTCTTTGCTCTGGCGGTAG

(R)- CGTCAGGTTCATCACAATGG

iNOS (F)- CTGCTGGTGGTGACAAGCACATTT

(R)- ATGTCATGAGCAAAGGCGCAGAAC

IL-6 (F)- CCAATTTCCAATGCTCTCCT

(R)- ACCACAGTGAGGAATGTCCA
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Table 2

Parameter values for NEC model.

Parameter Value Unit Description

BM,source 0–3 106 cells/g/h Rate at which bacteria enter mucus layer

kAD 0–2 106 cells/g/h Maximal rate of bacterial elimination by dendritic cells (DCs)

k3 6 106 cells/g Half saturation of DC bacterial elimination

kAT 0.03 1/h Maximal rate of bacterial elimination by TLR4

αEM 0.18 [RE] Half saturation of TLR4 killing

ε0 0.1 1/h Baseline rate of bacterial translocation Han et al. (2004)

εmax 0.21 1/h Maximum rate of bacterial translocation Han et al. (2004)

τ 24 h Time scale for epithelial repair

f 0.5 1/[P] Strength of effect of inflammation on bacterial translocation (ε)

a1 0–0.5 1/h Maximal rate of activation of TLR4 by bacteria in mucus layer

γ1 5 106 cells/g Half saturation of TLR4 activation by mucosal bacteria (BM)

k1 0.5 [RE]/[P]/h Maximal rate of TLR4 activation by pro-inflammatory cytokines (P)

αRE 2 1/[IE] Strength of inhibitory effect of TLR9 on TLR4 activation by BM and P

μRE 0.1 1/h Decay rate of TLR4

kIE 0–50 [IE]/h Maximal rate of activation of TLR9 by activated TLR4

γIE 10 [RE] Half saturation of TLR9 activation

α11 0.1 [IE]/h Rate of activation of TLR9 directly by bacteria

μIE 1 1/h Decay rate of TLR9

T 1.1 106 cells/g/h Epithelial barrier threshold

k5 25 1/h/[P] Rate of bacterial elimination by cytokines

kPM 0.8 [P]/h Max rate of production of P in response to blood/tissue bacteria (B)

γ12 1.2 106 cells/g Half saturation of P production

kPE 0.002 1/h Maximal rate of production of P by TLR4

TRE 0.65 [RE] Threshold for TLR4 to begin pro-inflammatory cytokine production

γPE 1 1/[IE] Strength of TLR9 inhibition of P production

μ4 0.05 1/h Decay rate of P
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Table 5

Summary of scenarios in which potential treatment strategies for NEC are not successful. Three proposed 

treatments for NEC are listed: reduce bacteria in the mucus layer (decrease BM,source), administer probiotics 

(increase kIE), and block TLR4 (decrease a1). In most cases, the model predicts that all three treatments will 

restore health in previously aseptic or septic cases. However, this provides a summary of scenarios in which 

proposed treatment is not predicted to restore a healthy steady state in each of the mathematical case studies.

Case Decreasing BM,source Increasing kIE Decreasing a1

1 BM(0) high (initially above T) NA NA

2 a1 too high (Fig. 7D) NA BM,source too high; decreased a1 too much (Fig. 9A)

3 a1 too high (Fig. 9A) Specific combination of BM,source and a1 (Fig. 
10A)

BM,source too high; decreased a1 too much (Fig. 9A)
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