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Abstract

The branching angle and diameter ratio in epicardial coronary artery bifurcations are two 

important determinants of atherogenesis. Murray’s cubed diameter law and bifurcation angle have 

been assumed to yield optimal flows through a bifurcation. In contrast, we have recently shown a 

diameter law (HK diameter model), based on minimum energy hypothesis in an entire tree 

structure. Here, we derive a bifurcation angle rule corresponding to the HK diameter model and 

critically evaluate the streamline flow through HK and Murray-type bifurcations. The bifurcations 

from coronary casts were found to obey the HK diameter model and angle rule much more than 

Murray’s model. A finite element model was used to investigate flow patterns for coronary artery 

bifurcations of various types. The inlet velocity and pressure boundary conditions were measured 

by ComboWire. Y-bifurcation of Murray type decreased wall shear stress-WSS (10%–40%) and 

created an increased oscillatory shear index-OSI in atherosclerosis-prone regions as compared 

with HK-type bifurcations. The HK-type bifurcations were found to have more optimal flow 

patterns (i.e., higher WSS and lower OSI) than Murray-type bifurcations which have been 

traditionally believed to be optimized. This study has implications for changes in bifurcation 

angles and diameters in percutaneous coronary intervention.
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 INTRODUCTION

The large epicardial coronary artery bifurcations are predisposed to atherosclerosis (Nichols 

and O’Rourke, 1998; Asakura and Karino, 1990; Debakey et al., 1985) and restenosis after 

percutaneous coronary intervention (PCI) (Tanabe et al., 2004; Sharma and Kini, 2006) 

because of abnormal biomechanical stimuli (e.g., low wall shear stress-WSS and high 

oscillatory shear index-OSI) (Moore et al., 1994; Thubrikar and Robicsec, 1995; Malek et 

al., 1999; Kleinstreuer et al., 2001; Cheng et al., 2006; Suo et al., 2007; Huo et al., 2007; 

2008; 2009a). The branching angle (between the two daughter vessels) and diameter ratio 

(large to small daughter vessels) are two important factors that affect the hemodynamic 

parameters at bifurcations (Ku, 1997).

Eighty-five years ago, Murray first derived a cubed diameter expression (Murray, 1926a) as 

 (where Dm, Dl, and Ds are the diameters of mother and large and small 

daughter vessels) and a corresponding bifurcation angle model (Murray, 1926b) as a 

consequence of minimum energy hypothesis in a single bifurcation. Murray diameter model 

has support for small arteries (50 < diameter < 500 μm) of rat cardiovascular system (Zamir 

et al., 1983) and arterioles (diameter < 100 μm) of swine heart (VanBavel and Spaan, 1992; 

Kaimovitz et al., 2008). In large epicardial coronary artery bifurcations, however, a smaller 

exponent has been validated for swine (VanBavel and Spaan, 1992; Kaimovitz et al., 2008) 

and patients (Hutchins et al., 1976; Finet et al., 2008). The epicardial coronary artery 

bifurcations agree well with the prediction of HK diameter model ( ), which is 

derived from minimum energy hypothesis in a tree structure (Huo and Kassab, 2009b; 

2012). Consequently, the bifurcation angle corresponding to HK diameter model should be 

different from Murray angle rule (Murray, 1926b). In the present study, a bifurcation angle 

rule (HK angle rule) is derived to complement the HK diameter model (see Appendix A), 

based on blood volume conservation and minimum energy hypothesis, and is validated by 

computed tomography (CT) measurements (Wischgoll et al., 2009).

The objective of the study is to investigate the distribution of WSS and OSI at coronary 

bifurcations of various branching angles and diameter ratios. We hypothesize that a 

bifurcation obeying HK diameter and angle models has higher WSS and lower OSI at 

atherosclerosis-prone sites than Murray models. To test the hypothesis, we compare the flow 

patterns computationally in large epicardial coronary artery bifurcations according to HK 

and Murray diameter models and their respective angle rules. A detailed hemodynamic 

analysis is first carried out in coronary artery bifurcations obtained from coronary casts, 

which conform to the HK diameter model and angle rule. The Y-type bifurcation is also 

made to comply with Murray diameter model and angle rule for further analysis. A 3-D 

finite element (FE) model is used to solve the continuity and Navier-Stokes equations with 

inlet flow boundary condition and outlet pressure boundary conditions. The time-averaged 

WSS and OSI are analyzed and computed for different cases. The implications and 
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limitations of the model simulations are discussed in relation to coronary intervention that 

may alter the bifurcation angles and diameter ratios.

 MATERIALS AND METHODS

 Animal Preparation

To compare various bifurcation diameter models and angle rules, studies were performed on 

five normal Yorkshire porcine of either sex with body weight of 34.3–42.1 kg. The 

experimental procedures of the animal preparation were described previously (Kassab et al., 

1993; 2009). The animal protocols were approved by the Institutional Animal Care and Use 

at Indiana University-Purdue University, Indianapolis.

Briefly, the coronary pressure and flow waves in the main trunk of LAD (left anterior 

descending) epicardial arterial tree were measured by the ComboMap system (Model 6800, 

Volcano Corporation). The LAD artery, right coronary artery (RCA) and left circumflex 

(LCx) artery were cannulated for construction of arterial cast with a polymer (Microfil, Flow 

Tech, Carver, MA) (Choy and Kassab, 2008). After Microfil was allowed to harden for ~60 

min, the hearts were kept in the refrigerator in saline solution until the day of CT scan. Scans 

were made axially (120 mAs, 120 kV, 0.6 × 0.6 × 1.0 mm) on a 16-slice scanner (Siemens 

Somatom Sensation 16), resulting in ~200 slices of 512 × 512 pixels each (Wischgoll et al., 

2009).

 Bifurcation Angles

Based on blood volume conservation and minimum energy hypothesis (see the derivation in 

Appendix A), a bifurcation angle rule (HK angle rule) as a function of diameter ratio ( ) is 

given as:

[1]

where α, β, and γ are the angle between daughter vessels, the angle between mother and 

larger daughter vessels, and the angle between mother and smaller daughter vessels, 

respectively. If angle α is < 60° or ≥ 60°, a bifurcation is defined as Y or T bifurcations (see 

Appendix A), respectively; as shown in Figs. 1a and b. The morphometric data of coronary 
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artery bifurcations were extracted from CT images of porcine casts (Wischgoll et al., 2009), 

based on which we evaluated the HK bifurcation angle rule (see Appendix A).

 Geometrical Models

We generated FE meshes for bifurcations of HK, Murray, and Finet types in the LAD 

arterial tree, as shown in Table 1, where HK-type refers to a bifurcation whose vessel 

diameters and bifurcation angles obey HK diameter model (Huo and Kassab, 2009b) and 

angle rule (Eq. 1) and are consistent with morphometric data from casts in Fig. 1. Murray-

type refers to an artificial Y bifurcation whose vessel diameters and bifurcation angles obey 

Murray’s cubed law (Murray CD, 1926a) and angle rule (Murray CD, 1926b). Finet-type 

refers to an artificial T bifurcation whose vessel diameters and bifurcation angles obey Finet 

diameter model (Finet et al., 2008) and angle rule (Eq. A6 in Appendix A). There is 

negligible difference between HK and Finet models for Y-type bifurcation and between HK 

and Murray models for T-type bifurcation. Numerical simulations were carried out in 

comparison between bifurcations of the three types.

 3-D FEM Model

The governing equations were formulated for bifurcations, each vessel of which was 

assumed cylindrical with rigid and impermeable wall. The equations of continuity and 

Navier-Stokes can be written as:

[2]

[3]

where v⃗ = uêx + vêy + wêz, P, ρ, and μ represent velocity, pressure, blood mass density, and 

viscosity, respectively.

 Numerical Method

The Navier-Stokes and continuity equations were solved using Galerkin FE method (Huo et 

al., 2009a). A FORTRAN program was used to implement the FE method. A mesh 

dependency was conducted such that the relative error in two consecutive mesh refinements 

was < 1% for the maximum velocity of steady state flow with inlet flow velocity equal to the 

time-averaged velocity over a cardiac cycle. A total of almost 300,000 linear tetrahedral 

finite elements (element edge of 0.2 mm) and 55,000 nodes were necessary to accurately 

mesh the computational domains. The backward method was used for the time integration. 

Three cardiac cycles were required to achieve convergence for the transient analysis. A 

constant time step was employed, where Δt = 0.004 s with 125 total time step per cardiac 

cycle. Although blood is a suspension of particles, it behaves as a Newtonian flow in tubes 

with diameters > 1 mm (Nichols et al., 1998). The experimentally-measured flow velocity 

wave, as shown in Fig. 1c, was set as the boundary condition at the inlet of mother vessel, 
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which has a blunt velocity profile. The pressure wave was computed in each vessel of the 

entire LAD arterial tree (including the cast bifurcations in Figs. 1a and b) in the arrested 

heart in the absence of vascular tone through Womersley-type numerical analysis (Huo and 

Kassab, 2006). Since there is an approximate phase difference of  cardiac cycle between 

arrested and beating hearts (Nichols et al., 1998), the pressure wave was adjusted and used 

as the boundary condition at each outlet of daughter vessels. The viscosity (μ) and density 

(ρ) of the solution were assumed as 4.0 cp and 1.06 g/cm3, respectively, to mimic blood flow 

with a hematocrit of about 45% in these arteries. After the velocity and pressure of the blood 

flow were calculated, WSS and OSI were determined from the velocity field (Huo et al., 

2009a).

 RESULTS

Numerical simulations are performed for Y and T bifurcations of various types, as shown in 

Table 1. Figures 2a and 2b show the time-averaged WSS over a cardiac cycle at Y arterial 

bifurcations of HK and Murray types corresponding to Table 1. Accordingly, Figures 2c and 

2d show the OSI distribution. There are three surface regions (surface regions A–C in Fig. 

2b) with low WSS and high OSI at the Y bifurcation: A) the surface region in the smaller 

daughter and mother vessels opposite to the carina of daughter vessels, B) the surface region 

in the larger daughter and mother vessels opposite to the carina of daughter vessels, and C) 

two joint surface regions (anterior and posterior) of mother and two daughter vessels lateral 

to the carina of daughter vessels, which penetrate into the carina of daughter vessels.

Figures 3a–d show the distribution of time-averaged WSS and OSI at T arterial bifurcations 

of HK and Finet types in correspondence with Table 1. Because of the small diameter ratio 

in T bifurcation, the smaller daughter vessel has very small effect on the surface region in 

the larger daughter vessel opposite to the carina of daughter vessels. Therefore, there are 

only two surface regions (surface regions A and B in Fig. 3b) with low WSS and high OSI at 

the T bifurcation: A) the surface region in the smaller daughter vessel opposite to the carina 

of daughter vessels and B) two joint surface regions (anterior and posterior) of mother and 

large daughter vessels lateral to the carina of daughter vessels, which penetrate into the 

carina of daughter vessels.

Figures 4a–c and 4d–f show mean ± SD values of WSS and OSI (averaged over all nodes in 

the corresponding region) at surface regions A–C at Y bifurcations of HK and Murray types. 

Regions A–C have surface areas of 0.94, 1.45, and 0.76 mm2, respectively, whereas surface 

area in Region C only corresponds to one of two joint surface regions. At surface regions A–

C, the Y bifurcation of HK type has, on average, higher WSS and lower OSI (less 

atherosclerosis-prone) than that of Murray type (more atherosclerosis-prone). WSS 

decreases on surface regions B and C of Murray bifurcation (about 40% and 20%, 

respectively) as compared with that in HK bifurcation. OSI has a value of 0.09 and 0.02 on 

surface regions B and C of Murray bifurcation, but equals to zero at proportional surfaces of 

HK bifurcation. There is no significant difference (relative error of WSS and OSI is < 3%) 

on surface region A.
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Figures 5a–b and 5c–d show comparisons of WSS and OSI (averaged over all nodes in the 

corresponding region) at surface regions A and B between T bifurcations of HK and Finet 

types. Regions A and B have surface areas of 0.43 and 0.68 mm2, respectively. Similar to the 

Y bifurcation, the T bifurcation of HK type is less atherosclerosis-prone than that of Finet 

type. There is a decrease of WSS on surface regions A and B of Finet bifurcation (about 

40% and 10%, respectively) from HK bifurcation. OSI increases significantly on surface 

regions A and B of Finet bifurcation.

 DISCUSSION

The major finding of this study is that Y and T coronary artery bifurcations obeying the HK 

diameter model and angle rule have higher WSS and much lower OSI at atherosclerosis-

prone sites (i.e., regions A–C) than those of Murray and Finet types. We elaborate on these 

findings as well as discuss potential implications on interventions that may alter coronary 

bifurcation diameters or angles.

 Theory of Bifurcation Design

Murray’s cubed law (1926a) that stems from the minimum energy hypothesis is assumed to 

be the principles of design of fluid transport systems in zoology (LaBarbera M, 1990) and 

botany (McCulloh et al., 2003). In cardiovascular system, an agreement between 

experiments and Murray diameter model has only been found in small arteries (Zamir et al., 

1983) and arterioles (VanBavel and Spaan, 1992; Kaimovitz et al., 2008). On the other hand, 

we reported a smaller exponent of ~2.1 for Dm ≥ 200 μm, an even smaller exponent of ~1.7 

for 100 ≤ Dm < 200 μm, and a monotonic increase to ~3 as Dm decreased from 100 μm to 

the precapillary arterioles (Kaimovitz et al., 2008) consistent with other coronary data 

(VanBavel and Spaan, 1992). Since atherosclerotic lesions typically predominate around 

bifurcations of large epicardial coronary arterial trees (Asakura and Karino, 1990) as 

opposed to smaller intramyocardial vessels (Scher AM, 2000), Murray’s cubed law (1926a) 

may be less relevant to an optimal distribution of WSS and OSI at epicardial coronary artery 

bifurcations.

Murray (1926b) proposed a relationship between bifurcation angles and diameters of mother 

and daughter vessels, based on the minimum energy hypothesis. A similar bifurcation angle 

rule consistent with HK diameter model (Eq. 1) was derived in Appendix A. We also 

determined an angle rule based on Finet diameter model (Eq. A6 in Appendix A). In 

comparison with morphometric data from CT measurements (Wischgoll et al., 2009), the 

HK, Murray, and Finet bifurcation angle rules have a relative error of 44±17%, 115±26%, 

46±17% (mean ± standard error) at bifurcations of various diameter ratios as shown in Fig. 

A1(b). Although Finet angle rule has a similar mean value to HK angle rule, it cannot be 

applied to bifurcations with diameter ratio < 0.37.

Epicardial coronary artery bifurcations with diameter ratios ( ) of 0.6–1.0 are often treated 

in PCI. The median bifurcation angle α (diameter ratio = 0.8) predicted by HK, Murray, and 

Finet rules has a value of 50°, 75°, and 51°, respectively. A human study has shown a 

median bifurcation angle of ~50° (Dzavik et al., 2006), which agrees well with the 
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prediction of HK and Finet angle rules as shown in Fig. A1(b). In diameter ratios of 0.6–1.0, 

the bifurcation angle α predicted by HK, Murray, and Finet rules has a value of 51°±1°, 75°

±1°, and 54°±8° (mean ± standard deviation), respectively. The angiographic measurements 

for coronary bifurcations show a bifurcation angle of 60°±28° (Finet et al., 2008) or 60°±20° 

(Godino et al., 2010). This is also in better agreement with HK and Finet angle rules than 

Murray angle rule (Murray CD, 1926b). Therefore, Murray angle rule may not be suitable 

for investigation of the optimal angles of large epicardial coronary artery bifurcations.

 Hemodynamic Parameters

There is a relationship between low WSS/high OSI and intimal hyperplasia after stenting 

(Chen et al., 2011). Figures 4 and 5 show the highest WSS and the lowest OSI at all sites in 

coronary bifurcations of HK type. Conversely, Y bifurcation of Murray type and T 

bifurcation of Finet type have less favorable distribution of hemodynamic parameters; i.e., 

lower WSS and higher OSI. It is also found that an increase of bifurcation angle decreases 

WSS and increases OSI significantly around the carina and an increase of daughter 

diameters mainly changes these parameters at surface sites opposite to the carina, as 

compared with coronary bifurcations of HK type.

 Critique of Model

Morphometric data obtained from microscope measurements (Kassab GS, 2006; 2007) and 

CT scans (Fig. A1–b) show substantial scatter for individual bifurcation diameters and 

angles albeit the mean values tend to agree with HK diameter model and angle rule. The 

flow patterns in the large epicardial arterial tree comprised of bifurcations of various types 

need to be considered. Furthermore, the effects of vessel compliance and branching on wave 

propagation and reflection (Nichols and O’Rourke, 1998; Van De Vosse1 and Stergiopulos, 

2011) requires a computational fluid-structure model (Huo et al., 2009a) to compare the 

distribution of hemodynamic parameters between HK- and Murray-type coronary 

bifurcations.

 Implications for Coronary Interventions

Coronary artery bifurcation lesions are estimated to be 18–20% of all PCIs (Sharma and 

Kini, 2006). The major adverse cardiac events occur more frequently (22.7% vs. 6.2%) in 

patients with bifurcation angles ≥ 50° after crush stenting (Dzavik et al., 2006). An increase 

of bifurcation angle induces a stronger oscillatory flow velocity in the direction 

perpendicular to the centerline of mother vessel, which may decrease in-stent 

reendothelialization and promote thrombosis-occlusion at the carina of daughter vessels after 

bifurcation stenting (Chen et al., 2009; Nakazawa et al., 2010). The decreased WSS and 

increased OSI due to an increase of bifurcation angle may explain why the carina of 

daughter vessels is vulnerable to restenosis (Tanabe et al., 2004; Sharma and Kini, 2006). On 

the other hand, an increase of daughter diameters leads to flow reversal at surface regions 

opposite to the carina, which may cause greater intima hyperplasia (Nakazawa et al., 2010). 

An increase of daughter diameters can result in different types of lesions and restenosis as 

compared to an increase of bifurcation angle based on the Lefevre’s classification of 

bifurcation lesions after bifurcation stenting (Lefevre et al., 2000).
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A change of bifurcation angles and diameters may be caused by coronary intervention, 

particularly for bifurcation stenting. If the mother diameter is unchanged, an increase of 

bifurcation angle (similar to a decrease of daughter diameters) leads to low WSS and high 

OSI near the carina while an increase of daughter diameters (similar to a decrease of 

bifurcation angle) affects surface regions opposite to the carina. An increase of both angle 

and diameter (e.g., Y bifurcation of Murray type and T bifurcation of Finet type vs. HK-type 

bifurcation) induces even worse hemodynamic conditions at bifurcations.
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Refer to Web version on PubMed Central for supplementary material.
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 APPENDIX A

 Theory of Bifurcation Angles

Figure A1(a) shows a bifurcation, whedLm ) is added to Lm Ll (and Ls are at positions 

indicated by the dashed lines). If we assume blood volume conservation over a bifurcation 

(i.e., ) or mass conservation for a constant blood 

density, an infinitesimal increase of volume in mother vessel ( ) should be equal to 

a decrease of volume in daughter vessels , which can be 

written as:

[A1]

Applying the same principle of volume conservation to an infinitesimal increment of the two 

daughter vessels, we obtain:

[A2]

[A3]

Solving Eqs. [A1–A3], we obtain:

[A4]

From the HK diameter model (Huo and Kassab, 2009b),  at a bifurcation so 

that Eq. [A4] is written as:
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[A5]

Equation [A5] represents bifurcation angles as a function of diameter ratio ( ) (HK angle 

rule). Hence, for a given diameter ratio, the optimal angles are constrained by Eq. [A5], 

which is clearly different than those provided by Murray (Murray CD, 1926b). Furthermore, 

from the Finet diameter model (Finet et al., 2008), Dm =0.678 =Dl +Ds = at a bifurcation so 

that Eq. [A4] can be written as:

[A6]

which leads to Finet angle rule. When the area-preservation model (i.e., ) is 

considered, cos (α) = 1 in Eq. [A4], i.e., α = 0° or 180° which is non-physical. Therefore, 

the area-preservation model is not included in the study.

Figure A1(b) shows a comparison between HK (Eq. A5), Murray (1926b), Finet (Eq. A6) 

angle rules and CT measurements obtained from a previous study (Wischgoll et al., 2009). 

There is a relative error (|αactual − αtheory|/αactual) of 44 ± 17%, 115 ± 26%, 46 ± 17% (mean 

± standard error) at bifurcations of various diameter ratios when αtheory corresponds to HK, 

Murray, and Finet angle rules, respectively. Finet angle rule only applies to bifurcations with 

diameter ratio > 0.37 because the absolute value of the right-hand term in Eq. [A6] is > unity 

when diameter ratio is ≤ 0.37.

The bifurcation angle α has a value of 60° ± 28° (mean ± standard deviation), based on 

angiographic measurements for coronary bifurcations in which mother vessel diameters vary 
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from 1.8 to 6.2 mm (Finet et al., 2008). Hence, it is reasonable to define a coronary 

bifurcation as Y or T bifurcations If angle α is < 60° or ≥ 60°, respectively.
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Figure 1. 
(a–b) Coronary bifurcations with angle α of (a) 44° (Y bifurcation) and (b) 71° (T 

bifurcation) obtained from casts of porcine LAD arterial tree. The bifurcation angles α, β, 

and γ refer to the angles between daughter vessels, between mother and larger daughter 

vessels, and between mother and smaller daughter vessels, respectively. Bifurcation angles 

obey the angle rule (Eq. 1) and diameters comply with the HK diameter model as 

, where Dm, Dl, and Ds are the mother, large and small daughter vessel 
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diameters, respectively. (c) In vivo pulsatile flow velocity waveform measured at the inlet of 

porcine LAD arterial tree, which serves as inlet boundary condition for the flow simulation.
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Figure 2. 
(a–b) Time-averaged (over a cardiac cycle) WSS (Unit: Dynes·cm−2) at Y bifurcations of (a) 

HK and (b) Murray corresponding to Table 1. Symbol A refers to the surface region in the 

smaller daughter vessel opposite to the carina of daughter vessels. Symbol B refers to the 

surface region in the larger daughter vessel opposite to the carina of daughter vessels. 

Symbol C refers to the joint surface regions of mother vessel and two daughter vessels 

lateral to the carina of daughter vessels, which penetrates into the carina of daughter vessels. 

(c–d) OSI at Y bifurcations of (c) HK and (d) Murray. In Y bifurcations, HK type is similar 

to Finet type.
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Figure 3. 
(a–b) Time-averaged (over a cardiac cycle) WSS (Unit: Dynes·cm−2) at T bifurcations of (a) 

HK and (b) Finet corresponding to Table 1. Symbol A refers to the region in the smaller 

daughter vessel opposite to the carina of daughter vessels and Symbol B refers to the region 

in the larger daughter vessel lateral to the carina of daughter vessels. (c–d) OSI at T 

bifurcations of (c) HK and (d) Finet. In T bifurcations, HK type is similar to Murray type.
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Figure 4. 
(a–c) Mean ± SD WSS (averaged over all nodes in the corresponding region) at (a) region A, 

(b) region B, and (c) region C in Y bifurcations of HK and Murray. (d–f) Mean ± SD OSI 

(averaged over all nodes in the corresponding region) at (d) region A, (e) region B, and (f) 

region C in Y bifurcations of HK and Murray. Regions A–C correspond to regions marked 

by symbols A–C in Fig. 2b. Regions A–C have surface areas of 0.94, 1.45, and 0.76 mm2, 

respectively, where surface area in Region C only corresponds to one of two joint surface 

regions (anterior and posterior) of mother and two daughter vessels lateral to the carina of 

daughter vessels. OSI in regions B and C of HK-type bifurcations is zero.
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Figure 5. 
(a–b) Mean ± SD WSS (averaged over all nodes in the corresponding region) at (a) region A 

and (b) region B in T bifurcations of HK and Finet. (c–d) Mean ± SD OSI (averaged over all 

nodes in the corresponding region) at (c) region A and (d) region B in T bifurcations of HK 

and Finet. Regions A and B correspond to regions marked by symbols A and B in Fig. 3b. 

Regions A and B have surface areas of 0.43 and 0.68 mm2, respectively, where surface area 

in Region B only corresponds to one of two joint surface regions (anterior and posterior) of 

mother and two daughter vessels lateral to the carina of daughter vessels.
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Figure A1. 
(a) Schematic representation of a bifurcation with an infinitesimal perturbation of mother 

vessel length; (b) Relationship between bifurcation angle α (the angle between two daughter 

vessels) and diameter ratio Ds/Dl determined by HK, Murray, and Finet angle rules and 

measurements of CT scans.
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Table 1

Morphometric parameters for Y and T bifurcations in the LAD epicardial arterial tree

Morphometric parameters
Y bifurcations T bifurcations

HK Murray HK Finet

Mother diameter (mm) 3.63 3.63 3 3

Larger daughter diameter (mm) 2.89 3.12 2.89 2.89

Smaller daughter diameter (mm) 2.42 2.61 1.27 1.53

Angle α (degrees) 44 75 71 81

Angle β (degrees) 18 30 10 15

Angle γ (degrees) 26 45 61 66

HK-type refers to a bifurcation whose vessel diameters and bifurcation angles obey HK diameter model (Huo and Kassab, 2009b) and angle rule 
(Eq. 1), which is consistent with morphometric data from casts (Figs. 1a and b). Murray-type refers to an artificial Y bifurcation whose vessel 
diameters and bifurcation angles obey Murray’s cubed law (Murray CD, 1926a) and angle rule (Murray CD, 1926b). Finet-type refers to an 
artificial T bifurcation whose vessel diameters and bifurcation angles obey Finet diameter model (Finet et al., 2008) and angle rule (Eq. A6).
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