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Abstract

Ames hypopituitary dwarf mice are deficient in growth hormone, thyroid-stimulating hormone, 

and prolactin. The phenotype of these mice demonstrates irregularities in the immune system with 

skewing of the normal cytokine milieu towards a more anti-inflammatory environment. However, 

the hematopoietic stem and progenitor cell composition of the bone marrow (BM) and spleen in 

Ames dwarf mice has not been well characterized. We found that there was a significant decrease 

in overall cell count when comparing the BM and spleen of 4–5 month old dwarf mice to their 

littermate controls. Upon adjusting counts to differences in body weight between the dwarf and 

control mice, the number of granulocyte-macrophage progenitors, confirmed by 

immunophenotyping and colony-formation assay was increased in the BM. In contrast, the 

numbers of all myeloid progenitor populations in the spleen were greatly reduced, as confirmed by 

colony-formation assays. This suggests that there is a shift of myelopoiesis from the spleen to the 

BM of Ames dwarf mice; however, this shift does not appear to involve erythropoiesis. The 

reasons for this unusual shift in spleen to marrow hematopoiesis in Ames dwarf mice are yet to be 

determined but may relate to the decreased hormone levels in these mice.
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Introduction

The pituitary gland secretes several hormones including: growth hormone (GH), prolactin 

(PRL) and thyroid-stimulating hormone (TSH). These hormones are secreted by three 

specific adenohypophyseal cell types: samatotrophs which produce GH in response to GH-

releasing hormone, lactotrophs which produce PRL in response to estrogen, progesterone, 

and thyrotropin-releasing hormone, and thyrotrophs which produce TSH in response to 

thyrotropin-releasing hormone. These hormones are essential for growth, maintaining blood 

pressure, some aspects of pregnancy, child birth, and nursing, kidney function, pain relief, 

regulating body temperature and the function of sex organs and thyroid glands. The Ames 

dwarf mice are used to study the role of hypopituitarism on various biological functions. 

Ames dwarf mice are homozygous for a recessive loss of function mutation at the Prop1 

locus (Prop1df/df).[1–3] The loss of function mutation at Prop1 interferes with development 

of the adenohypophyseal cell types, thus leading to deficiencies in GH, PRL and TSH. 

These hormone deficiencies also lead to suppressed circulating levels of insulin-like growth 

factor 1 (IGF-1), thyroid hormones (e.g. thyroxin and triiodothyronine), insulin and 

glucose.[1,4] Therefore, Ames dwarf mice demonstrate increased insulin sensitivity, glucose 

tolerance and hypothyroidism.

This significant alteration to the physiology of hypopituitary mice leads to a very unique 

phenotype. First, Prop1df/df mice are dwarfs that demonstrate a significantly longer lifespan 

than Prop1+/+ or Prop1+/df littermates with an ~50% longer lifespan in males and a >60% 

longer lifespan in females.[4,5] Second, they have delayed occurrences of fatal neoplastic 

diseases suggesting that these mice do age like normal mice, but differences in the aging 

phenotype do not occur until the mice are much older.[5,6] Finally, hypopituitary mice 

demonstrate a significant reduction in the number of bone marrow cells, splenocytes and 

thymocytes even after adjusting for differences in body weight between dwarf mice and 

their littermate controls.[7–12]

B cell development in the bone marrow of ~1–4 month old hypopituitary mice is defective 

as indicated by a decrease in pre-, pro- and total B cell numbers when compared to littermate 

controls.[9,12,13] T cell development is also deficient in these mice as indicated by a 

reduction in double positive (CD4+CD8+) T cells in the thymus and the abnormal presence 

of double positive T cells in the lymph nodes.[9,12,13] In addition to abnormal T and B cell 

development, functional studies have shown that both cell-mediated and humoral immunity 

is compromised in hypopituitary mice.[7,10,11] Ames dwarf mice have an overall reduction in 

the ability of T cells to respond to super antigen compared to their littermate controls. 

Ectopic pituitary transplants restored Ames dwarf mice to immunocompetence by enhancing 

the number of lymphocytes and their natural killer activity suggesting that restoring PRL 

levels alters the immunodeficiency seen in Ames dwarf mice.[14] These findings are also 

observed in other pituitary dwarf syndromes such as the Snell-Bagg/Snell dwarf mice and in 

mice and humans in which GH, PRL, thyroxine, and IGF-1 functions were 

impaired.[8,11,13–15] However, it is important to note that in the Snell-Bagg dwarf mice, the 

differences seen in the immune system are dependent on when the mice were weaned.[16]
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A microarray analysis of 34,000 genes in the peripheral blood leukocytes from 7 month old 

Ames dwarf mice identified 6 main genes which had altered expression in Ames dwarf mice 

compared to littermate controls: casp3, bcl2, IL4, mapk14, TGFβ1 and pcrk.[17] The 

function of these genes suggests that Ames dwarf mice may have functional changes in 

apoptosis, B and T cell homeostasis, prostaglandin synthesis, humoral immunity, chemokine 

activity, complement activation, and wound healing suggesting that Ames dwarf mice have 

several anti-inflammatory pathways activated. This is further supported by the fact that 

Ames dwarf mice have increased levels of adiponectin that can act as an anti-inflammatory 

factor.[18–20] GH regulates the level of adiponectin produced by adipose tissues and in the 

absence of GH signaling adipose tissue increases its release of adiponectin and reduces the 

secretion of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNFα) and 

interleukin (IL)-6.[21] Interestingly, disruption of GH receptor in adipose tissue alone results 

in normal adiponectin levels unlike what occurs in global GH receptor knockout mice 

suggesting that GH indirectly regulates adiponectin levels.[22]

Although it has been fairly well established that pituitary hormonal deficiencies lead to 

abnormalities in the immune response, little is known of what is occurring to the 

hematopoietic stem cell (HSC) and the hematopoietic progenitor cell (HPC) populations in 

the bone marrow and spleen of hypopituitary mice. It has been previously published that 

there was an increase in a Lin−Sca1+CD45+ population and a trend increase in clonogeneic 

progenitor cells in the bone marrow of Ames dwarf mice when compared to littermate 

controls.[23] In this paper, through the utilization of a more extensive panel of markers for 

immunophenotyping and by colony-formation assays, we examined HSC and HPC 

composition of the bone marrow and spleen in greater detail to elucidate alterations in 

hypopituitary Ames dwarf mice.

Materials and Methods

Mice

Non-obese diabetic (NOD)/ severe combined immunodeficiency (SCID) mice (8–10 week 

old females) were obtained from an on-site breeding core facility at Indiana University 

School of Medicine. Male and female Ames dwarf (Prop1df) homozygous (df/df) and 

littermate control (+/df) mice were bred at Southern Illinois University then transferred to 

Indiana University School of Medicine. Details of the animal husbandry were described 

previously.[24] Briefly, Ames df/df mice were produced by mating heterozygous females and 

homozygous mutant males. All breeding protocols were approved by the Southern Illinois 

University Laboratory Animal Care Committee. All further animal procedures were 

approved by the Indiana University Committee on Use and Care of Animals. Animals were 

maintained under temperature-and light-controlled conditions (21–24°C, 12 hour light/12 

hour dark cycle). Animals were group-housed according to age, sex and genotype. Mice 

were fed ad libitum. Mice were between 4–5 months of age at time of use. Immediately 

following euthanization, mice were weighed utilizing a Mettler PM2000 scale (Mettler 

Toledo; Columbus, OH) and femurs and spleens excised.
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Flow Cytometry

Immunophenotyping of stem and progenitor cells was performed by flushing femurs of 

Ames dwarf (df/df) or littermate control (+/df) mice and incubating the bone marrow cells 

with fluorochrome conjugated anti-mouse antibodies in PBS at room temperature for 25 

minutes. One μg antibody was used per one million cells for each antibody. All antibodies 

were purchased from either BD Biosciences (San Diego, CA) or BioLegend (San Diego, 

CA). For bone marrow HSC and HPC analysis the following panel of antibodies were used: 

FITC-conjugated anti-mouse lineage cocktail (anti-CD3/Gr-1/CD11b/B220/Ter-119; 

BioLegend), PE-Cy7-conjugated anti-mouse Sca1 (clone D7), APC-H7-conjugated anti-

mouse c-Kit (clone 2B8), PE-conjugated anti-mouse CD34 (clone RAM34), APC-

conjugated anti-mouse Flk2 (clone A2F10.1), PerCp-Cy5.5-conjugated anti-mouse FcγR 

(clone 2.4G2) and BV421-conjugated anti-mouse IL-7R (clone SB/199) all purchased from 

BD Biosciences with their appropriate isotype controls. Long term-hematopoietic stem cells 

(LT-HSC) were defined as Lin−Sca1+c-Kit+CD34−Flk2−. Short term (ST)-HSCs are defined 

as Lin−Sca1+c-Kit+CD34+Flk2−. Multipotent progenitors (MPP) were defined as 

Lin−Sca1+c-Kit+CD34+Flk2+. Common myeloid progenitors (CMP) were defined as 

Lin−Sca1−c-Kit+CD34intFcγRlo. Granulocyte-macrophage progenitors (GMP) were defined 

as Lin−Sca1−c-Kit+CD34hiFcγRhi. Megakaryocyte-erythrocyte progenitors (MEP) were 

defined as Lin−Sca1−c-Kit+CD34loFcγRlo. Common lymphoid progenitors (CLP) were 

defined as Lin−Sca1loc-KitloFlk2+IL-7R+. Data were acquired on an LSRII flow cytometer 

(BD Biosciences). Single color compensation and isotype controls were included in each 

experiment. Data analysis was performed using FlowJo 7.6.3 software (TreeStar, WA). 

Gates were determined using fluorescence minus-one controls. An example of the gating 

strategy to determine the percent of each population is given in Supplementary Figure 1. The 

percent of each population was used to calculate the absolute number of each phenotype of 

stem and progenitor cells per femur. Once the number of cells per femur was determined the 

number of cells for the dwarf mouse was adjusted based on the difference in weight using 

the following formula: [(average weight of littermate control mice/individual dwarf mouse 

weight)* the number of cells per femur].

HPC assays

For HPC assays performed in agar, bone marrow cells flushed from the femurs of Ames 

dwarf (df/df) or littermate control (+/df) mice were plated at 5x104 cells/mL in 0.3% semi-

solid agar medium with 10% FBS (Fisher Scientific; Watham, MA) that did or did not 

contain 10ng/mL recombinant mouse granulocyte macrophage colony-stimulating factor 

(rmGM-CSF; R&D Systems; Minneapolis, MN), 10ng/mL recombinant mouse macrophage 

colony-stimulating factor (rmM-CSF; R&D Systems), 10ng/mL recombinant mouse 

interleukin-3 (rmIL-3; R&D Systems) and 50ng/mL recombinant mouse stem cell factor 

(rmSCF; R&D Systems). Colonies were scored after 6 days of incubation at 5% CO2 and 

lowered (5%) O2 in a humidified chamber. For HPC assays performed in methylcellulose, 

bone marrow cells flushed from femurs or splenocytes isolated from spleens of Ames dwarf 

(df/df) or littermate control (+/df) mice were plated at 2.5x104 (spleen) or 5x104 (bone 

marrow) cells/mL in 1% methylcellulose culture medium with 0.1mM hemin (Sigma-

Aldrich; St. Louis, MO), 30% FBS, 1U/mL recombinant human erythropoietin (rhuEPO; 

R&D Systems), 50ng/mL rmSCF (R&D Systems), and 5% vol/vol pokeweed mitogen 
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mouse spleen cell conditioned medium. Colonies were scored after 6 days of incubation at 

5% CO2 and lowered (5%) O2 in a humidified chamber, and granulocyte-macrophage 

colony-forming units (CFU-GM), erythrocyte burst-forming unit (BFU-E), and granulocyte, 

erythrocyte, monocyte, megakaryocyte CFU (CFU-GEMM) progenitors were distinguished 

by examining the morphology of the colonies. For both the agar and methylcellulose assays, 

total number of colonies per femur or spleen was calculated. Once the number of colonies 

per femur/spleen was determined, the number of colonies for the dwarf mouse was adjusted 

based on the difference in weight of the Ames dwarf.

Short-term engraftment studies

Recipient NOD/SCID mice received a single dose of 3.5Gy of total body irradiation 

(TBI, 137Cs source) followed 24 hours later with an i.v. injection of 1x105 bone marrow 

cells isolated either from the femurs of Ames dwarf (df/df) or littermate control (+/df) mice. 

Peripheral blood was collected from the tail vein into heparinized microcapillary tubes 

(Fisher Scientific; Pittsburg, PA, USA) 1 and 2 months post transplantation. Following lysis 

of red blood cells using lysis buffer (0.155M NH4Cl, 0.01M KHCO3, 0.1mM EDTA in 

H2O; Sigma-Aldrich), cells were washed, blocked with both human and mouse gamma 

globulin, stained with PE-conjugated anti-mouse H-2Kk, and fixed prior to flow analysis on 

a FACSCalibur utilizing BD CellQuest™ Pro software to determine percent H-2Kk+ cells. 

This was done to determine the percentage of cells that were Ames in origin since Ames 

mice are H-2Kk+ and NOD/SCID mice are not. Three female littermate controls (+/df) and 

dwarf (df/df) mice were used for these experiments. The bone marrow from each mouse was 

transplanted into 5 recipients. Therefore, there was a total of 15 NOD/SCID mice each that 

received either +/df bone marrow or df/df bone marrow.

Statistical analysis

For the body weight, cells counts, flow cytometry experiments and colony assays all data are 

the mean ± SEM of 9 individual mice per group from 3 separate experiments. For Ames 

bone marrow engraftment studies, the average percent H-2Kk+ cells of 15 individual mice 

per group was calculated ± SEM. Student’s two-tailed t test was used to compare Ames 

dwarf mice to their littermate controls. P <0.05 was considered significant.

Results

As has been previously published utilizing multiple different hypopituitary dwarf mouse 

models [7–12], Ames dwarf mice demonstrate a significant reduction in body weight (2.47 

fold less) and in the number of bone marrow cells (2.3 fold less) and splenocytes (4.16 fold 

less) when compared to littermate controls (Figure 1). The reduction in nucleated cells in the 

bone marrow correlates well with the overall difference in body weight between the two 

groups of mice; however, there is a greater reduction in the number of cells in the spleen 

then can be explained by the difference in weight (Figure 1D) suggesting that there is an 

abnormality that is occurring in the spleen of Ames dwarf mice either in the recruitment or 

maintenance of cell numbers within this organ.
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Ames dwarf mice are known to have abnormalities in both B and T cell development 

demonstrated by lower numbers of pre-, pro- and total B cells in the bone marrow and a 

reduction of double positive T cells in the thymus.[9,12] However, whether these changes in 

T and B cell numbers were due to changes in HSC and HPC numbers in the bone marrow 

and spleen has not been fully investigated. First we examined HSC and HPC population 

changes in the bone marrow via immunophenotyping. Bone marrow cells from the femurs of 

Ames dwarf and littermate control mice were stained with antibodies against lineage 

markers, Sca1, c-Kit, CD34, Flk2, FcγR, and IL-7R in order to examine the long-term (LT)-

HSC, short-term (ST)-HSC, multipotent progenitor (MPP), common myeloid progenitor 

(CMP), granulocyte-macrophage progenitor (GMP), megakaryocyte-erythrocyte progenitor 

(MEP), and common lymphoid progenitor (CLP) populations by flow cytometry. When 

examining the percent population of HSCs and HPCs in the bone marrow, we found 

significant increases in the percent CMP and GMP populations but no change in the LT-

HSC, MPP, CLP, or MEP populations (Figure 2A). We also saw a decrease in the percent 

ST-HSC population. However, when we calculated the overall number of HSCs and HPCs 

and then adjusted cell numbers to the difference in body weight between the Ames dwarf 

mice and littermate controls, we saw no change in the number of ST-HSC and a very small, 

but significant, increase in LT-HSC (1.27 fold increase; Figure 2B). Most interestingly, we 

continued to see a significant increase in CMP (1.53 fold) and GMP (1.71 fold) suggesting 

that hematopoiesis in the bone marrow of Ames dwarf mice is skewed towards 

myelopoiesis. There was no significant difference in the CLP numbers suggesting that the 

difference in B and T cell development seen in Ames dwarf mice is most likely a later event 

in the maturation process of these cell populations.

To further characterize the progenitor populations in the bone marrow, colony-forming 

assays were utilized. First, bone marrow cells were placed in a semi-solid agar medium with 

or without GM-CSF, IL-3, M-CSF and SCF. The number of CFU-GM colonies per femur 

was calculated then adjusted for the difference in body weight between the Ames dwarf 

mice and littermate controls. There was a significant increase in the number of CFU-GM 

colonies following culture in IL-3 (2.36 fold increase) and M-CSF (2.52 fold increase) alone 

but not with GM-CSF alone when comparing Ames dwarf mice to littermate controls 

(Figure 3A). With the addition of SCF to the GM-CSF culture, which allows one to detect a 

more immature HPC population than that seen with only a colony-stimulating factor, we 

saw a significant increase in the number of CFU-GM colonies (1.48 fold increase) when 

comparing Ames dwarf mice to littermate controls. This is also true when combining IL-3 

with SCF (2.09 fold increase) thus there are significant increases in both immature and 

mature subsets of CFU-GM. Next, bone marrow cells were placed in methylcellulose culture 

medium in the presence of hemin, EPO, SCF, and pokeweed mitogen spleen cell 

conditioned media which allows one to detect erythroid (BFU-E) and multipotent (CFU-

GEMM) progenitors. The number of colonies per femur was calculated then adjusted for the 

difference in body weight between the Ames dwarf mice and littermate controls. While, 

there was a trend towards decrease in numbers of erythroid (1.86 fold decrease) and 

multipotent (2.23 fold decrease) progenitors in the Ames dwarf mice the differences were 

not significant (Figure 3B).
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To characterize HPC numbers in the spleen, splenocytes were placed in methylcellulose 

culture medium in the presence of hemin, EPO, SCF, and pokeweed mitogen spleen cell 

conditioned media. Numbers of colonies per spleen were calculated then adjusted for 

differences in body weight between the Ames dwarf mice and littermate controls. In contrast 

to bone marrow, there was a significant 7.56 fold decrease in CFU-GM, 1.93 fold decrease 

in BFU-E, and 3.49 fold decrease in CFU-GEMM in the Ames dwarf mice compared to 

littermate controls (Figure 3C) suggesting that the overall number of progenitor cells in the 

spleens of dwarf mice is greatly reduced. This correlated well with the reduced overall 

number of splenocytes seen in dwarf mice when compared to littermate controls. These 

findings suggest that the Ames dwarf mice may be shifting the location of some of their 

hematopoietic function from the spleen (in which we see an overall decrease in HPC 

numbers) to the bone marrow (in which we see an increase in immature and mature subsets 

of granulocyte macrophage progenitor numbers).

Finally, we assessed the short-term engraftment capability of the bone marrow of Ames 

dwarf mice in sublethally irradiated NOD/SCID mice. NOD/SCID mice were utilized as 

host animals due to the mixed background of the Ames dwarf mice used in the present 

study. Ames mice (H-2Kk+) have a different haplotype then NOD/SCID mice (H-2Kk−). 

Therefore, to determine the number of blood cells that originated from Ames mice 1 and 2 

months after transplantation, we used antibodies against H-2Kk and examined the blood by 

flow cytometry. We detected no difference in the short-term engraftment capabilities of 

Ames dwarf versus littermate control bone marrow (Figure 4). However, since NOD/SCID 

mice have normal pituitaries, hormone levels in these mice might negate any phenotype we 

may have seen in the GH, PRL, and TSH-deficient Ames dwarf mice.

Discusion

Despite considerable knowledge gleamed on the role of hypopituitarism (where there are 

multiple neuroendocrine abnormalities) on the peripheral immune system, little is known 

about how hypopituitarism affects hematopoietic stem and progenitor cells. In this paper we 

utilized the Ames dwarf mice to examine the role of hypopituitarism on the hematopoietic 

stem and progenitor cell composition in the bone marrow and spleen. In mice, the spleen, as 

well as bone marrow, is an active hematopoietic organ. In these animals that lack GH, PRL, 

and TSH, we observed a drop in extramedullary hematopoiesis in the spleen as seen by a 

significant decrease in HPC numbers (CFU-GM, BFU-E and CFU-GEMM) as assessed by 

functional colony forming assays (Figure 3C). This correlated with a significant drop in cell 

count in the spleen even when taking into account the difference in body weight between the 

Ames dwarf mice and their littermate controls (Figure 1). In contrast, we saw an increase in 

phenotyped CMP and GMP numbers and CFU-GM, as determined by colony-formation 

assays, in the bone marrow (Figure 2 and Figure 3A). Thus, there is an apparant imbalance 

in myelopoiesis between the bone marrow and the spleen in the Ames dwarf mice.

Extramedullary hematopoiesis, the formation and development of hematopoietic cells 

outside the bone marrow, occurs in the spleen of mice throughout adulthood.[25–27] Many 

have studied mechanisms by which this process is induced or upregulated (e.g. following 

bone marrow failure, myelostimulation, tissue inflammation, injury, and repair, or due to 
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abnormal systemic or local chemokine production).[25,26] Very little is known as to why 

there would be an imbalance in overall hematopoiesis with a decrease in extramedullary 

hematopoiesis in the spleen and an increase hematopoiesis in the bone marrow. It is possible 

that the abnormal systemic immune environment of the hypopituitary dwarf mice does not 

favor extramedullary hematopoiesis. GH regulates the levels of adiponectin (an adipocyte-

derived hormone) which is needed to regulate several important metabolic processes such as 

blood glucose and fatty acid levels.[18–21] In the absence of GH, adipose tissue increases its 

secretion of adiponectin thus modulating NF-κB-mediated signals in endothelial cells 

resulting in the inability of monocytes to properly home into tissue[28,29] and by decreasing 

the production of pro-inflammatory cytokines (e.g. TNFα and IL-6) by adipose tissue.[20] 

Perhaps this systemic anti-inflammatory environment is unfavorable for extramedullary 

hematopoiesis. In addition to its anti-inflammatory effects, adiponectin also can affect 

myelopoiesis. Yokota and colleagues[30] demonstrated that myeloid progenitors can be 

directly influenced by adiponectin when added in a colony-forming assay resulting in 

inhibition of colony formation. However, when adiponectin and bone marrow stromal cells 

are added to the colony-forming assay there is an increase in myeloid progenitor cells. Thus, 

it is possible that differences in the microenvironment between the spleen and bone marrow 

may result in opposite effects of adiponectin (i.e. adiponectin stimulates stroma from the 

bone marrow to produce factors that stimulate myelopoiesis but not the stroma in the 

spleen). These hypotheses require further testing in order to determine what, if any, role 

adiponectin or other factors may or may not be playing in regulating hematopoiesis in the 

bone marrow or spleen of Ames dwarf mice.

The absence of GH, PRL, and TSH can all contribute to the phenomenon we see in the 

spleen and bone marrow of Ames dwarf mice as well. For example, the depletion of PRL 

using an anti-PRL antibody resulted in a decrease in BFU-E colonies in a colony-formation 

assay in the presence of GM-CSF, IL-3 and erythropoietin but did not change CFU-GM and 

CFU-GEMM numbers.[31,32] Perhaps loss of PRL is why we see the trend towards a 

decrease in the bone marrow and the significant decrease we see in BFU-E in the spleen. 

The role of GH is less clear. Multiple reports differ on whether or not GH or IGF-1 has any 

effect on hematopoiesis. In vitro and in vivo studies that utilized recombinant GH or IGF-1 

treatment suggested that these factors can regulate the survival and expansion of 

hematopoietic stem and progenitor cells, even reversing the age- and irradiation-induced 

losses of these populations.[12,13,33–41] However, mice lacking GH (and thus having a 

decreased circulating level IGF-1) demonstrate normal hematopoiesis in the bone marrow 

and the spleen.[42,43] Thus, the effects of GH and IGF-1 alone are not sufficient to cause the 

phenotype that we see in the Ames dwarf mice. Mice deficient in TSH demonstrate normal 

myelopoiesis.[44] Therefore, the unique phenotype of an increase in myelopoiesis in the 

bone marrow but a decrease in the spleen of Ames dwarf mice, which is the opposite of 

what one would expect in an inflammatory situation, may be due to a combination of 

neuroendocrine abnormalities.

Conclusions

Hypopituitary Ames dwarf mice, which lack GH, PRL, and TSH, demonstrate decreased 

myelopoiesis in the spleen but enhanced myelopoiesis in the bone marrow. This suggests an 
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imbalance in myelopoiesis between the spleen and bone marrow that may be due to 

neuroendocrine abnormalities. More work is necessary to elucidate a role for the 

neuroendocrine system in shifts in the balance of myelopoiesis between the bone marrow 

and spleen of mice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

GH growth hormone

PRL prolactin

TSH thyroid-stimulating hormone

IGF-1 insulin-like growth factor-1

TNFα tumor necrosis factor alpha

IL interleukin

HSC hematopoietic stem cell

HPC hematopoietic progenitor cell

NOD non-obese diabetic

SCID severe combined immunodeficiency

LT-HSC long term-hematopoietic stem cell

ST-HSC short term-hematopoietic stem cell

MPP multipotent progenitors

CMP common myeloid progenitors

GMP granulocyte-macrophage progenitors

MEP megakaryocyte-erythrocyte progenitors

CLP common lymphoid progenitors

rmGM-CSF recombinant mouse granulocyte macrophage colony-stimulating factor

rmM-CSF recombinant mouse macrophage colony-stimulating factor

rmIL-3 recombinant mouse interleukin-3

rmSCF recombinant mouse stem cell factor

rhuEPO recombinant human erythropoietin
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CFU-GM granulocyte-macrophage colony-forming units

BFU-E erythrocyte burst-forming unit

CFU-GEMM granulocyte, erythrocyte, monocyte, megakaryocyte CFU
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Figure 1. 
Ames dwarf mice are smaller in weight with fewer nucleated cells in their femurs and 

spleens than littermate controls. (A) Ames dwarf (df/df) and littermate control (+/df) mice 

(4–5 months old) were weighed immediately prior to euthanasia. The femurs (B) and 

spleens (C) were collected from the animals, processed, and the number of nucleated cells 

counted. (D) The fold change of body weight and the number of cells in the bone marrow 

and spleen when comparing dwarf mice to their littermate controls are shown. Results (mean 

± SEM) are based on 9 individually assessed mice per group from 3 separate experiments.
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Figure 2. 
The numbers of immunophenotyped LT-HSC, CMP, and GMP in the bone marrow are 

significantly higher in Ames dwarf (df/df) mice when compared to their littermate controls 

(+/df). The percent of each population examined (A) was used to calculate the absolute 

numbe of each phenotype of stem and progenitor cells (B). Results (mean ± SEM) are based 

on 9 individually assessed mice per group from 3 separate experiments.
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Figure 3. 
The number of granulocyte-macrophage progenitor cells in the bone marrow of Ames dwarf 

mice is increased; however, an overall decrease in HPCs in the spleen is observed when 

compared to littermate controls. (A) Adjusted numbers of bone marrow CFU-GM from the 

femurs of Ames dwarf (df/df) and littermate control (+/df) mice. (B) Adjusted numbers of 

bone marrow BFU-E and CFU-GEMM from the femur of Ames dwarf (df/df) and littermate 

control (+/df) mice. (C) Adjusted numbers of hematopoietic progenitors in the spleen of 

Ames dwarf (df/df) and littermate control (+/df) mice. For all experiments results (mean ± 

SEM) are based on 9 individually assessed mice per group from 3 separate experiments.
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Figure 4. 
No significant difference in the short-term engraftment capability of bone marrow cells from 

Ames dwarf or littermate control mice. NOD/SCID mice received 3.5Gy total body 

irradiation followed one day later with 1x105 Ames dwarf (df/df) or littermate control (+/df) 

bone marrow cells. H-2Kk was used as a marker to determine whether cells originated from 

Ames (H-2Kk+) or NOD/SCID (H-2Kk−) mice. Percent H-2Kk+ cells in the blood was 

determined by flow cytometry at 1 and 2 months following transplantation. Results (mean ± 

SEM) are based on 15 NOD/SCID mice per group.
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