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Abstract

Simple efforts are needed to enhance cord blood (CB) transplantation. We hypothesized that short-

term exposure of CD34+ CB cells to 39.5°C would enhance their response to SDF-1, by increasing 

lipid raft aggregation and CXCR4 expression, thus leading to enhanced engraftment. Mild 

hyperthermia (39.5°C) significantly increased the percent of CD34+ CB that migrated towards 

SDF-1. This was associated with increased expression of CXCR4 on the cells. Mechanistically, 

mild heating increased the percent of CD34+ cells with aggregated lipid rafts and enhanced co-

localization of CXCR4 within lipid raft domains. By using methyl-β-cyclodextrin (MβCD), an 

agent that blocks lipid raft aggregation, it was determined that this enhancement in chemotaxis 

was dependent upon lipid raft aggregation. Co-localization of Rac1, a GTPase crucial for cell 

migration and adhesion, with CXCR4 to the lipid raft was essential for the effects of heat on 

chemotaxis, as determined with an inhibitor of Rac1 activation, NSC23766. Application-wise, 

mild heat treatment significantly increased the percent chimerism as well as homing and 

engraftment of CD34+ CB cells in sublethally irradiated NSG mice. Mild heating may be a simple 

and inexpensive means to enhance engraftment following CB transplantation in patients.
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Introduction

Cord blood (CB) is a valuable source of hematopoietic stem (HSC) and progenitor cells 

(HPC) for transplantation to treat patients with malignant and non-malignant disease1. One 

disadvantage of CB is that it contains fewer HSC/HPC than bone marrow (BM) and 

mobilized peripheral blood. CB transplantation (T) has been improved by use of double CB 

units, but this has not resulted in shortened time to engraftment2. Efforts to enhance 

engraftment with limited numbers of HSC/HPC in CB could improve efficacy of single unit 

CBT. One way to accomplish this is to enhance homing of HSC/HPC to the BM 

microenvironment. The BM stroma secretes the α-chemokine stromal-derived factor-13 

(SDF-1/CXCL12) which chemoattracts HSC/HPC to the BM4–6. HSC/HPC express cell 

surface CXCR4, a receptor for SDF-1, and SDF-1-CXCR4 signaling may be essential for 

homing of HSC/HPC to the BM microenvironment7–9. This signaling increases adhesion of 

HSC/HPC to endothelium via activation of the MAPK p42/44 and PI-3K-AKT axis. This 

increases integrin adhesion to fibronectin and expression of matrix metalloproteinases 

(MMPs) resulting in increased homing and engraftment10,11.

Several agents enhance homing of HSC/HPC towards an SDF-1 gradient, including 

dipeptidylpeptidase 4 (DPP4) inhibitors, prostaglandin-E2 (PGE2), hyaluronic acid, 

sphingosine-1-phosphate receptor agonist FTY20, UTP, and the complement cascade 

cleavage fragments anaphylatoxin C3a and C5a amongst other factors12–20. These agents 

allow cells to migrate to lower SDF-1 concentrations. For example, C3a and C5a enhance 

incorporation of CXCR4 into lipid raft microdomains19,21. These are cholesterol- and 

glycosphingolipid-enriched portions of the plasma membrane that house several proteins 

required for cytokine signaling, membrane trafficking, and cytoskeleton organization. 

Normally, CXCR4 is retained within the non-lipid raft portion of the plasma membrane and 

must be incorporated into lipid rafts for optimal signaling potential19. In addition, 

aggregation of lipid raft microdomains results in concentration or spatial reorganization of 

several signaling components. This optimizes conditions for activation of signaling 

pathways, thus modulating signaling intensity22. Aggregation of lipid rafts is an important 

component of SDF-1-CXCR4 signaling, as lipid raft clustering allows for interactions of 

small GTPases Rac and Rho with their downstream effectors. This ultimately controls 

membrane ruffling and microtubule stabilization which is essential for cell migration19,23.

Temperature also influences plasma membrane lipid bilayer and lipid raft organization24–26. 

Physiological temperatures ranging from 33°C (average peripheral body temperature) to 

37°C (average core body temperature) alter membrane fluidity which increases as 

temperature rises, especially within the fever or exercise-induced range of ~38–40°C. At the 

lower end of the physiologically-relevant temperature spectrum, lipid rafts, which exist as 

small islands within the membrane, have a height mismatch with non-raft portions of the 

membrane. This creates line tension and prevents fusion of smaller lipid rafts 

together24,26–28. As temperature increases, membrane fluidity increases, overpowering line 

tensions, allowing for fusion of lipid rafts24–26. This thermal-mediated reorganization of the 

plasma membrane alters the function of macrophages, natural killer cells, T cells and B 

cells25,26,29–32. Effects of heat on the membrane are short lived, lasting approximately 2 

hours26. Heat also induces changes in migration patterns of neutrophils, T cells, dendritic 
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cells, natural killer (NK) cells and macrophages31–37. Herein, we examined whether heating 

CD34+ CB cells to 39.5°C would prime them for optimal migration in vitro and homing and 

engraftment following transplantation in NSG mice. We also evaluated mechanism 

associated with these effects.

Methods

Mice, cell Line and isolation of CD34+ CB cells

NSG mice (8–10 week old females) were obtained from an on-site breeding core facility at 

Indiana University School of Medicine. The cytokine-dependent Mo7e cell line38 was 

cultured in IMDM with hepes and L-Glutamine (Lonza; Walkersville, MD, USA), 10% FBS 

(Fisher Scientific; Waltham, MA, USA) and 10ng/mL recombinant human (rh) GM-CSF 

(R&D Systems; Minneapolis, MN, USA). Mo7e cells express CXCR4 and migrate towards 

SDF-13. Human CB was obtained from Cord:Use Cord Blood Bank (Orlando, FL, USA). 

Cells were washed in PBS (Lonza) prior to Ficoll-Paque™ PLUS (GE Healthcare Bio-

Sciences AB; Pittsburgh, PA, USA) separation of mononuclear cells. The CD34+ CB cells 

were then isolated using immunoaffinity selection with MiniMACS paramagnetic beads 

(Miltenyi Biotec; Auburn, CA, USA) using two sequential columns. The purity of CD34+ 

CB cells was always above 95%. CB CD34+ cells were acclimated to 37°C overnight in 

IMDM with 10% FBS and 100ng/mL each of rh-stem cell factor (SCF; R&D Systems), rh-

thrombopoietin (TPO; R&D Systems), and rh-fms-related tyrosine kinase 3 (FLT3; Amgen; 

Thousand Oaks, CA, USA) as the separation process (exposure to cold temperatures and 

Ficoll separation) alters the surface expression of CXCR4 (as indicated by BD Biosciences). 

The Indiana University Committee on Use and Care of Animals and the Indiana University 

Institutional Review Board approved mouse and CB studies.

Antibodies and reagents

PE-conjugated rat anti-human CD184/CXCR4 (clone 1D9, isotype control rat IgG2a,κ), 

FITC-conjugated mouse anti-Rac1 (clone 102/Rac1, isotype control mouse IgG2,b), APC-

conjugated mouse anti-human CD34 (clone 581, isotype mouse IgG1,κ), PE-conjugated 

mouse anti-human CD38 (clone HIT2, isotype control mouse IgG1,κ) and APC-conjugated 

mouse anti-human CD45 (clone Hl30, isotype mouse IgG1,κ) were purchased from BD 

Biosciences (San Diego, CA, USA). Blocking reagents human gamma globulin and mouse 

gamma globulin were purchased from Jackson ImmunoResearch Laboratories Incorporated 

(West Grove, PA, USA). BD Cytofix™ fixation buffer was purchased from BD Biosciences. 

Recombinant human SDF-1α was purchased from R&D Systems. FITC-conjugated Cholera 

toxin B subunit (CTxB) and methyl-β-cyclodextrin (MβCD) were purchased from Sigma-

Aldrich (St. Louis, MO, USA). Rac1 inhibitor NSC23766 was purchased from BioVision 

(Milpitas, CA, USA).

Chemotaxis assay

Cells acclimated to 37°C were suspended in pre-warmed IMDM (37°C) with 0.5% bovine 

serum albumin (BSA; Sigma-Aldrich) and either left at 37°C or placed in a water bath at 

39.5°C ± 0.2°C for up to 4 hours. Costar® 24-well Transwell® plates with 6.5mm diameter 

inserts with 5.0µm pores (Corning Incorporated; Corning, NY, USA) were prepared by 

Capitano et al. Page 3

Stem Cells. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



placing 650µL of pre-warmed serum-free media (37°C) that contained 0, 12.5, 25, 50, 100 or 

200ng/mL rhSDF-1α in the bottom well and allowing plates to acclimate at 37°C for half an 

hour prior to chemotaxis assay. Cells were suspended at 1×105 cells/100µL pre-warmed 

serum-free media and loaded to the top chamber of the transwell assay. Transwell plates 

were placed in a 37°C incubator (95% humidity, 5% CO2) for 4 hours. Percent migration 

was determined using flow cytometry with background migration (cells that migrated 

towards media alone; always <4%) subtracted from total migrated cells. To examine the role 

of lipid rafts, cells maintained at 37 or 39.5°C for 4 hours were incubated for 30 minutes at 

37°C in media containing 0, 0.5, 0.75, 1.00, 1.25, 1.50 or 1.75mM MβCD immediately prior 

to washing and placement in the chemotaxis assay. To examine the role of Rac1, cells 

maintained at 37 or 39.5°C for 4 hours were incubated for 30 minutes at 37°C in media 

containing 0, 50, 100, 150, 200, 250 or 300µM NSC23766 prior to washing and placement 

in the chemotaxis assay.

Flow cytometry and ImageStream analysis

Cells were collected, heated at 39.5°C for up to 6 hours or left at 37°C, washed in PBS, 

stained with CTxB, anti-human CXCR4 or anti-Rac1, fixed and analyzed on an LSRII flow 

cytometer (BD Biosciences) using BD CellQuest™ Pro software (version 6.0; BD 

Biosciences). For quantitative image analysis of GM1, CXCR4, and Rac1 aggregation, 

fluorescent cell images (40X) were acquired using an ImageStream flow cytometry system 

(Amnis; Seattle, WA, USA)26. Eight thousand images were analyzed using IDEAS software 

(Amnis). In focus cells were evaluated after gating on live, single, CD34+ cells based on an 

aspect ratio near one and a low area of the bright field. Bright detail intensity of FITC-

CTxB, FITC-Rac1, and APC-CXCR4 staining was used to quantify percent cells with 

aggregated lipid rafts, Rac1 and/or CXCR4 by calculating the sum of intensity values from 

the brightest areas within a cell that are morphologically defined as peak fluorescence 

distributions of three pixel radius or less. A similarity feature determined the amount of 

overlay between CTxB/CXCR4 and CXCR4/Rac1 staining.

CD34+ CB engrafting studies

Briefly, recipient NSG mice received a single dose of 3.5Gy of total body irradiation 

(TBI, 137Cs source) followed 24 hours later with an i.v. injection of 80,000 purified CB 

CD34+ cells39,40 that had been heated to 39.5°C for 4 hours or left at 37°C. Peripheral blood 

was collected via tail vein into heparinized microcapillary tubes (Fisher Scientific; Pittsburg, 

PA, USA) 1, 2, 4, and 6 months post transplantation. Following lysis of red blood cells using 

lysis buffer (0.155M NH4Cl, 0.01M KHCO3, 0.1mM EDTA in H2O; Sigma-Aldrich), cells 

were washed, blocked with both human and mouse gamma globulin, stained with APC-

conjugated anti-human CD45, and fixed prior to flow analysis on a FACSCalibur utilizing 

BD CellQuest™ Pro software to determine percent human CD45+ cells.

CD34+ CB cell homing assay

Recipient NSG mice received a single dose of 3.5Gy of TBI (137Cs source) followed 24 

hours later with an i.v. injection of 500,000 CB CD34+ cells heated to 39.5°C for 4 hours or 

left at 37°C. BM mononuclear cells from a femur of each recipient mouse was collected 24 
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hours later, stained with anti-human CD45, and fixed prior to flow analysis on a 

FACSCalibur to determine percent human CD45+ cells.

Statistical analysis

For chemotaxis assays, data are the mean percent migration +/− SEM of 3–5 wells. For 

experiments utilizing ImageStream technology or flow cytometry, data for the Mo7e cell 

line is the mean +/− SEM of 3 tubes. Average CB data is the mean of 3–4 individual CBs +/

− SEM. For CD34+ CB homing and engraftment, the average percent human CD45+ cells of 

5 individual mice per group was calculated +/− SEM. Student’s two-tailed t test was used to 

compare cells kept at 37°C versus 39.5°C, P <0.05 was considered significant.

Results

Heating CD34+ CB cells to 39.5°C enhances chemotaxis towards an SDF-1 gradient

To test the hypothesis that chemotaxis of CD34+ CB cells towards SDF-1 is enhanced by 

heating the cells to 39.5°C, we performed a transwell assay where CD34+ CB cells were 

heated for either 1, 2, 3, or 4 hours prior to the assay and then allowed to migrate towards 

50ng/mL of rhSDF-1α for 4 hours at 37°C. CD34+ cells that were heated at 39.5°C for 4 

hours migrated significantly better towards SDF-1 than cells left at 37°C or heated to 39.5°C 

for 3 hours or less (Figure 1A). Heated (39.5°C for 4 hours) CD34+ CB cells from 4 

different donors migrated better towards SDF-1 than non-heated cells (Figure 1B). This 

enhancement in migration was also seen for the human factor-dependent Mo7e cell line after 

cells were heated to 39.5°C for 4 hours (Figure 1B). To determine if this thermal-mediated 

increase in migration was due to enhanced sensitivity to SDF-1, transwell assays were 

performed in which CD34+ cells cultured at 37 or 39.5°C for 4 hours prior to the assay were 

allowed to migrate towards various concentrations of SDF-1 (0–200ng/mL). The maximum 

percent migration for cells incubated at 37°C (25.2%) required 50ng/mL SDF-1 whereas 

cells incubated at 39.5°C only required 25ng/mL of SDF-1 to achieve the same percent 

migration even though the maximum migration when cells were incubated at 39.5°C was 

still 50ng/mL SDF-1 (38.8%; Figure 1C). Percent migration of CD34+ CB cells towards 

control media (0ng/mL SDF-1) was comparable between cells incubated at 39.5°C and those 

kept at 37°C suggesting that heating the cells most likely did not affect the size or other 

mechanical properties allowing for increased migration due to gravity. Heat-mediated 

increases in migration of CD34+CD38− and CD34+CD38+ were similar (Figure 1D). These 

findings demonstrate that heating CD34+ CB cells to 39.5°C primes them to more efficiently 

migrate towards an SDF-1 gradient.

Heating CD34+ CB cells is associated with increased aggregation and incorporation of 
CXCR4 Into the lipid raft

Incubating cells at higher temperatures (38–40°C) alters membrane fluidity in several 

hematopoietic cell lineages (i.e. T and B cells) and increases lipid raft aggregation, thus 

enhancing the signaling potential of several different signaling pathways24–26. However, 

whether lipid raft reorganization occurs within the CD34+ CB cell population following 

incubation at a physiologically relevant increase in temperature has not been examined. 

CD34+ cells from 4 different CB samples were incubated at 37 or 39.5°C for 4 hours, fixed 
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immediately, stained with Cholera toxin B subunit (CTxB; which binds to the ganglioside 

GM1 found within lipid rafts) and analyzed by imaging flow cytometry. A diffuse or 

aggregated lipid raft staining pattern (examples in Figure 2A are from CB#1) was 

determined on over 8,000 CD34+ CB or Mo7e cells using bright detail intensity feature of 

IDEAS software. This feature designates which cells have diffuse GM1 staining due to a 

brighter detail intensity within the membrane region (as determined by a set mask) than 

those cells with clustered GM1 staining, and calculates percent cells with diffuse versus 

aggregated lipid raft staining. Heating CD34+ CB or Mo7e cells to 39.5°C for 4 hours 

increased the percentage of cells with aggregated lipid rafts in each sample tested (~3.3 fold 

increase, Figure 2B). The heat-mediated increase in lipid raft aggregation was seen 

following 4 hours of heating and did not increase with longer heat treatment (Supplementary 

Figure 1A). Upon examining the duration of heats effect it was discovered that the heat-

mediated lipid raft aggregation only lasted for 2–3 hours following heat treatment 

(Supplementary Figure 1B). This increase in lipid raft aggregation at 39.5°C was not due to 

changes in mean fluorescence intensity (MFI) of GM1 staining as determined by flow 

cytometry (Supplementary Figure 2) suggesting that the differences seen in GM1 

positioning was not due to changes in GM1 expression.

It has been shown that for optimal signaling, CXCR4 must be incorporated into the lipid 

raft41–44. To determine whether thermally-mediated enhancement in lipid raft aggregation 

was associated with increased clustering of CXCR4 and/or increased co-localization of 

CXCR4 with GM1, CD34+ cells from 4 different CB samples and Mo7e cells were 

incubated at 37 or 39.5°C for 4 hours. Both bright detail intensity (to examine clustering of 

CXCR4) and bright detail similarity (to examine the co-localization of GM1 and CXCR4) 

features of IDEAS software were utilized on over 8,000 CD34+ CB and Mo7e cells per 

group. In every sample examined, cells incubated at 39.5°C demonstrated an increased 

percentage of aggregated CXCR4 than cells incubated at 37°C (~2.7 fold increase, Figure 

2C). To determine if this change in bright detail intensity was due to changes in expression 

levels of CXCR4, we assessed MFI of CXCR4 staining of CD34+ cells on 4 CB samples 

following incubation at either 37 or 39.5°C. Heating CD34+ cells resulted in a small, but 

reproducible, increase in surface expression of CXCR4 (average 1.4 ± 0.08 fold increase, 

Figure 2D). Changes in CXCR4 bright detail intensity was not likely due to changes in 

CXCR4 levels since there was a more aggregated pattern of CXCR4 staining at the 

membrane region of CD34+ cells when heated. To examine whether CXCR4 moves into or 

with lipid rafts, bright detail similarity scores of co-localization of CXCR4 with GM1 on the 

surface of CD34+ CB cells incubated at 37 or 39.5°C was measured. The bright detail 

similarity score of CD34+ cells incubated at 37°C was lower (1.8 ± 0.17) than cells 

incubated at 39.5°C (2.9 ± 0.21, Figure 2E) indicating that CXCR4 was more likely to 

aggregate with lipid rafts when cells were incubated at the higher temperature. This suggests 

that heat alone may facilitate CXCR4 incorporation into lipid rafts.

Cholesterol in the plasma membrane is required for the thermal-enhancement of CD34+ 

cell migration towards SDF-1

To determine if thermal-mediated enhancement in CD34+ CB cell migration towards SDF-1 

was due to increased aggregation of lipid rafts, we utilized methyl-beta-cyclodextrin 
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(MβCD) which depletes cholesterol from the plasma membrane disrupting lipid raft 

aggregation45,46. The dose of MβCD used was determined by transwell assays with a range 

of MβCD doses (0.5–1.75mM, 30 minutes), with 1.25mM concentration demonstrating 

minimum inhibition of normal chemotaxis towards SDF-1 (Figure 3A). This dose was 

chosen for all future experiments. In vehicle controls, heat significantly increased the 

percent of CD34+ cells with aggregated lipid rafts (Figure 3B) and enhanced migration 

towards 50ng/mL SDF-1 (Figure 3C). However, when CD34+ cells were treated with 

MβCD, heat had no effect on lipid raft clustering or cell migration (Figure 3B&C and 

Supplementary Figure 3) suggesting that lipid raft aggregation plays a role in enhanced 

migration of CD34+ CB cells towards SDF-1 following cell exposure to 39.5°C. To 

determine if the inhibition of heat’s effects was due to reduced aggregation of CXCR4 

within the plasma membrane of heated cells, we examined the location of CXCR4 on the 

surface of CD34+ CB cells incubated at 37 or 39.5°C for 4 hours that were treated with 

MβCD or vehicle for the last half an hour of treatment. As already seen in Figure 2C, heat 

increased the percentage of CD34+ cells with aggregated CXCR4 on the cell surface (Figure 

3D). When lipid raft aggregation was inhibited, thermally-enhanced CXCR4 clustering was 

lost. This suggests that increased CXCR4 aggregation was due to increased lipid raft 

aggregation, and this contributed to increased CD34+ CB cell migration following cell 

incubation at 39.5°C.

CXCR4 interacts with Rac1 in the plasma membrane following heat treatment

When Rac1 (a small GTPase crucial for cell migration and adhesion) co-localizes with 

CXCR4 within lipid rafts, this increases sensitivity of cells to low concentrations of SDF-1 

in chemotaxis assays since activated GTP-Rac1 binds more efficiently and preferentially to 

lipid rafts19,44,47–50. To examine whether heat enhances Rac1 and CXCR4 co-localization, 

CD34+ cells from 4 different CB samples and Mo7e cells were incubated at 37 or 39.5°C for 

4 hours, stained for CXCR4 and Rac1, and analyzed. Both bright detail intensity (to examine 

clustering of Rac1) and similarity (to examine the co-localization of Rac1 and CXCR4) 

features of IDEAS software were utilized on over 8,000 CD34+ CB and Mo7e cells per 

group. Cells incubated at 39.5°C demonstrated increased percentage of aggregated Rac1 

(~2.5 fold increase, Figure 4A&B). To examine whether reorganization of Rac1 to the 

plasma membrane was associated with increased co-localization with CXCR4, bright detail 

similarity score of Rac1/CXCR4 overlapping expression on the surface of CD34+ CB cells 

incubated at 37 or 39.5°C was measured. The bright similarity score of CD34+ cells 

incubated at 37°C was lower (1.5 ± 0.15) than cells incubated at 39.5°C (2.6 ± 0.4, Figure 

4C) indicating that Rac1 was more likely to co-localize with CXCR4 when cells were 

incubated at the higher temperature.

Interaction of CXCR4 and Rac1 in the lipid raft promotes Rac activation and results in 

enhanced sensitivity and responsiveness of CD34+ cells towards a SDF-1 gradient19. To 

examine whether Rac1 activation is essential for thermal-mediated enhancement in CD34+ 

migration, we utilized an inhibitor (NSC23766) to block Rac1 activation. To determine the 

optimal dose of NSC23766 to use, transwell assays were performed on cells treated for 30 

minutes with various doses of inhibitor (50–300µM) at 37°C (Figure 4D). The NSC23766 

dose with minimum disruption of chemotaxis towards 50ng/mL of SDF-1, 200µM, was 
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assessed to be the optimum dose to determine whether enhanced migration seen at 39.5°C 

required further Rac1 activation. As already seen in Figure 1, heated CD34+ CB cells 

demonstrated enhanced migration towards SDF-1 compared to unheated cells (Figure 4E). 

When Rac1 activation was inhibited there was a significant reduction in effects of heat, 

suggesting that heat-induced Rac1 activation was required.

Pre-treating donor CD34+ CB cells at 39.5°C for 4 hours prior to transplantation enhances 
engraftment following transplantation into NSG mice

We wished to examine if heating CD34+ CB cells to 39.5°C would enhance the ability of 

these cells to engraft following transplantation. NSG mice received 3.5Gy total body 

irradiation followed one day later with transplantation of 80,000 CD34+ CB cells that had 

been incubated for 4 hours at 37 or 39.5°C immediately prior to injection. Pre-treating 

CD34+ cells at 39.5°C significantly enhanced human CD45+ cell recovery following 

transplantation (1.8, 1.3 and 1.7 fold increase respectively) when compared to recovery of 

human CD45+ cells in animals transplanted with cells incubated at 37°C (Figure 5A). This 

suggested that heat may allow CD34+ cells to home better towards the BM 

microenvironment, leading to better engraftment. To test this, NSG mice received 3.5Gy 

total body irradiation followed one day later with an i.v. injection of 500,000 CD34+ CB 

cells that had been incubated for 4 hours at 37 or 39.5°C immediately prior to injection. BM 

was collected 24 hours later. Heating CD34+ CB cells enhanced the percentage of human 

CD45+ cells in the BM of NSG mice by ~2.9 fold when compared to BM of mice who 

received CD34+ CB cells incubated at 37°C (Figure 5B).

Discussion

There are currently three main methods that are used to enhance efficacy of CBT: 1) 

increasing numbers of cells collected and infused, 2) enhancing homing of cells to the BM 

microenvironment, and/or 3) increasing numbers of HSC/HPC through ex vivo expansion. 

Here we demonstrate a new method to enhance engraftment of CD34+ CB cells via exposure 

of these cells to mild heat treatment of 39.5°C for 4 hours. Mildly heating CD34+ CB cells 

primes them to migrate more efficiently towards an SDF-1 gradient (Figure 1) ultimately 

engrafting in NSG mice with better efficacy, perhaps by better homing to the BM (Figure 5). 

By mildly heating cells, lipid raft aggregation increases. This correlates with increased 

CXCR4 aggregation and co-localization within the plasma membrane lipid rafts (Figure 2). 

This thermally-mediated increase in CXCR4 aggregation is associated with an increased 

Rac1 aggregation and co-localization with CXCR4 (Figure 4). Inhibition of either lipid raft 

aggregation or Rac1 activation blocks effects of heat treatment, indicating that heat-

mediated alterations to CD34+ cells migration is mitigated at the membrane level (Figure 3 

and 4).

Heat treatment alters fluidity of the plasma membrane24–26. Heat-mediated changes in 

membrane fluidics primes multiple immune cell populations for better antigen presentation 

(e.g. B cells and macrophages)25,51 and lowers the threshold of signal (whether it be antigen 

presentation, cytokine or ‘danger’ signal) required for activation (e.g. NK cells, dendritic 

cells, macrophages, and T cells)26,29,32,35 through enhancing lipid raft clustering allowing 
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for a more rapid, stronger response. These findings, along with those presented herein 

suggest a physiologically relevant importance of temperature in both mature and immature 

hematopoietic cells on reorganization/localization of lipids and signaling components within 

the plasma membrane. This is especially important in the SDF-1-CXCR4 axis as relocation 

or recruitment of CXCR4 into lipid rafts appears key for optimizing SDF-1 

signaling19,41–44. Co-localization of CXCR4 with the lipid raft allows the receptor to be in 

closer contact with signaling components such as Rac1 (enhanced in our model simply by 

heating the cells alone), which is required for key events to occur in order to get events such 

as cytoskeleton reorganization19,23. Mechanism of heat’s effect on priming CD34+ CB cells 

appears to be through reorganization of key SDF-1 signaling components into the lipid raft, 

since disrupting lipid raft clustering by extracting cholesterol from the membrane using 

MβCD blocked heat enhancement of CD34+ cell chemotaxis (Figure 3).

In addition, heat altered the expression of CXCR4 on the surface of CD34+ CB and Mo7e 

cells. Whether this change in CXCR4 expression was through production of new CXCR4, or 

incorporation of stored intracellular CXCR4 is not yet elucidated. We hypothesize that 

changes seen in surface expression of CXCR4 over the short time period examined are 

probably due to movement of CXCR4 between intracellular and membrane compartments. 

However, since changes in CXCR4 expression were small, we believe that the most 

significant mechanism by which heat is enhancing CD34+ cell migration is by altering 

localization of components within the membrane. This conclusion is supported by the data 

that there was no difference in chemotaxis between cells incubated at 37 or 39.5°C when 

treated with MβCD (Figure 3B), and there was no change in Rac1 or GM1 expression in 

CD34+CB or Mo7e cells by heat as determined by flow cytometry (Supplementary Figure 

2).

Conclusions

Previous methods to prime HSC for better engraftment relied on methods that required 

addition of small molecules (i.e. DPP4 inhibitors, PGE2 and complement fragments C3a and 

C5a)12–14,19–21. Here we propose a novel, inexpensive, and easily performed method to ex 

vivo prime cord blood HSC to home better to the BM simply by heating the cells to 39.5°C 

for 4 hours. Heat treatment may ultimately be used alone or as an adjuvant with other 

therapies to enhance efficacy of CBT in patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Heating CD34+ CB and Mo7e cells significantly enhances their migration towards an 
SDF-1 gradient
(A) CB CD34+ cells were incubated at 37°C or heated at 39.5°C for 1– 4 hours. After 

heating, cells were resuspended in media maintained at 37°C then allowed to migrate 

towards 50ng/mL of rhSDF-1α in the bottom well of a transwell plate for 4 hours at 37°C. 

Total cell migration was determined using flow cytometry. This was a representative of 2 

experiments. (B) Mo7e and CD34+ CB cells were either left at 37°C or heated at 39.5°C for 

4 hours. After heating, cells were used in a transwell assay as described above in (A). * 

represents p<0.01 when comparing the migration of cells maintained at 37°C versus 39.5°C. 

(C) CD34+ CB cells were either incubated at 37 or 39.5°C for 4 hours, resuspended in media 

maintained at 37°C and then allowed to migrate towards 0, 12.5, 25, 50, 100, or 200ng/mL 

of rhSDF-1α in the bottom well of a transwell plate for 4 hours at 37°C. This was 

representative of 2 experiments. * represents a p<0.01 when comparing the migration of 

cells maintained at 37°C versus 39.5°C. (D) CD34+ CB cells were incubated at either 37 or 

39.5°C for 4 hours. After heating, a transwell assay was performed as stated above in (A). 

This was a representative of 2 experiments. Data for transwell assays are the mean percent 

migration +/− the SEM of 3–5 wells each.
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Figure 2. Heat significantly increases the percent of CD34+ CB and Mo7e cells with aggregated 
lipid rafts and CXCR4 receptors on their cell surface
(A) Representative images of lipid raft (GM1) and CXCR4 staining on the surface of CD34+ 

CB cells determined by CXCR4 and CTxB staining of GM1 obtained using ImageStream 

flow cytometry with images taken at 40× and analyzed using IDEAS software. The top 

panel represents diffuse GM1 and CXCR4 staining and the bottom panel represents an 

aggregated staining panel as determined by IDEAS software. (B) Percent aggregated lipid 

rafts (GM1) of Mo7e and CD34+ CB cells incubated for 4 hours either at 37 or 39.5°C was 

determined by CTxB staining of GM1 within the plasma membrane region obtained by 

ImageStream flow cytometry and analyzed using IDEAS software. (C) Percent aggregated 

CXCR4 staining of Mo7e and CD34+ CB cells that incubated for 4 hours either at 37 or 

39.5°C was determined by CXCR4 staining obtained by ImageStream and analyzed using 

IDEAS software. (D) Fold change in CXCR4 mean fluorescent intensity (MFI) on the 

surface of Mo7e and CD34+ cells from 4 different CB samples following 1, 2, 3, or 4 hours 

of heating to 39.5°C when compared to cells incubated at 37°C as determined by flow 
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cytometry. (E) The similarity scores of CXCR4 and GM1 overlay within the plasma 

membrane region of Mo7e and CD34+ CB cells was determined from images taken 

following GM1 and CXCR4 staining and obtained by ImageStream flow cytometry then 

analyzed using IDEAs software.
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Figure 3. The enhancement in chemotaxis seen following heating of CD34+ CB cells is dependent 
upon lipid raft aggregation
(A) CD34+ CB cells were exposed to 0.50, 0.75, 1.00, 1.25, 1.50, or 1.75mM of MβCD for 

30 minutes prior to being placed in a transwell assay with 50ng/mL rhSDF-1α in the bottom 

chamber and allowed to incubate for 4 hours at 37°C. Data are the mean percent migration 

+/− the SEM of 3 wells each. This was a representative of 2 experiments. (B) CD34+ CB 

cells were incubated at 37 or 39.5°C for 4 hours. During the last 30 minutes, 1.25mM MβCD 

was added then cells were washed, stained with FITC CTxB, fixed, then ran on the 

ImageStream. Percent aggregated lipid rafts (GM1) was determined using IDEAS software. 

Data are the mean +/− the SEM of 3 CB samples. (C) CD34+ CB cells were either left at 

37°C or heated at 39.5°C for 4 hours. During the last 30 minutes 1.25mM MβCD was added 

then cells were washed and resuspended in media maintained at 37°C. Then transwell assays 

were performed as in (A). Data are the mean percent migration +/− the SEM for 3 wells 

each. This was a representative of 3 experiments. (D) Percent aggregated CXCR4 staining of 

CD34+ CB cells incubated for 4 hours either at 37 or 39.5°C with 1.25mM MβCD added for 

the final 30 minutes was determined by CXCR4 staining obtained by ImageStream. Data are 

the mean +/− the SEM of 4 CB samples.
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Figure 4. Activation of Rac1 is essential for the enhancement in migration seen following heat 
treatment of CD34+ CB cells
(A) Representative images of Rac1 and CXCR4 staining on the surface of CD34+ CB cells 

obtained using ImageStream with images taken at 40× and analyzed using IDEAS software. 

The top panel represents diffuse Rac1 and CXCR4 staining and the bottom panel represents 

an aggregated staining panel as determined by the software. (B) Percent aggregated Rac1 of 

Mo7e and CD34+ CB cells incubated for 4 hours either at 37 or 39.5°C obtained using 

ImageStream. (C) The similarity scores of CXCR4 and Rac1 overlay within the plasma 

membrane region of Mo7e and CD34+ CB cells was determined from images taken 

following GM1 and CXCR4 staining and obtained by ImageStream. (D) CD34+ CB cells 

were exposed to 50, 100, 150, 200, 250 and 300µM of NSC23766 for 30 minutes prior to 
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being placed in a transwell assay with 50ng/mL rhSDF-1α in the bottom chamber and 

allowed to incubate for 4 hours. This was a representative of 2 experiments. (E) CD34+ CB 

cells were either left at 37°C or heated at 39.5°C for 4 hours. During the last half an hour 

200µM NSC23766 was added then cells were washed and resuspended in media maintained 

at 37°C then transwell assays were performed as in (D). This was a representative of 3 

experiments. Data for transwell assays are the mean percent migration +/− the SEM percent 

migration for 3 wells each.
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Figure 5. Heat treatment of human CD34+ CB cells prior to transplantation into NSG 
significantly increases the percent human CD45+ cell engraftment
(A) NSG mice received 3.5Gy total body irradiation followed one day later with 80,000 cord 

blood CD34+ cells incubated for 4 hours at either 37 or 39.5°C immediately prior to i.v. 

injection. Percent human CD45+ cells in the blood was determined by flow cytometry at 1, 

2, and 6 months following primary transplantation. n= 5 NSG mice per group. This was a 

representative of 2 experiments. (B) NSG mice received 3.5Gy total body irradiation 

followed one day later with 500,000 cord blood CD34+ cells incubated for 4 hours at either 

37 (black points) or 39.5°C (white points) immediately prior to i.v. injection. Percent human 
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CD45+ cell in the bone marrow was determined by flow cytometry 24 hours following 

injection. Each point represents an individual mouse.
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