
Drought effects on root and tuber production: A meta-analysis 1 

 2 

Stefani Daryanto, Lixin Wang*, Pierre-Andre Jacinthe 3 

 4 

Department of Earth Sciences, Indiana University Purdue University Indianapolis 5 

Indianapolis 46202, USA 6 

 7 

*Corresponding author 8 

Email: lxwang@iupui.edu 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

_________________________________________________________________________________
 
This is the author's manuscript of the article published in final edited form as:
Daryanto, S., Wang, L., & Jacinthe, P. A. (2016). Drought effects on root and tuber production: A meta-analysis. 
Agricultural Water Management, 176, 122-131.  http://dx.doi.org/10.1016/j.agwat.2016.05.019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IUPUIScholarWorks

https://core.ac.uk/display/81633947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.agwat.2016.05.019


2 
 

Abstract 24 

Roots and tubers such as potatoes and cassava rank within the top six among the world’s most 25 

important food crops, yet the extent to which their global production has been adversely affected 26 

by drought remains unclear. Greater uncertainties exist on how drought effects co-vary with: 1) 27 

root and tuber species, 2) soil texture, 3) agro-ecological region, and 4) drought timing. It is often 28 

assumed that potato is drought-sensitive whereas cassava and sweet potato are resistant to 29 

drought. To address these uncertainties, we collected literature data between 1980 and 2015 that 30 

reported monoculture root and tuber yield responses to drought under field conditions, and 31 

analyzed this large data set using meta-analysis techniques. Our results showed that the amount 32 

of water reduction was positively related with yield reduction, but the extent of the impact varied 33 

with root or tuber species and the phenological phase during which drought occurred. In contrast 34 

to common assumptions regarding drought resistance of certain root and tuber crops, we found 35 

that yield reduction was similar between potato and species thought to be drought-resistant such 36 

as cassava and sweet potato. Here we suggest that drought-resistance in cassava and sweet potato 37 

could be more related to survival rather than yield. All roots or tubers crops, however, 38 

experienced greater yield reduction when drought struck during the tuberization period compared 39 

to during their vegetative phase. The effect of soil texture on yield reduction was less obvious, 40 

and similarly we did not find any significant effects of region (and related climatic factors) on 41 

neither yield reduction nor drought sensitivity. Our study provides useful information that could 42 

inform agricultural planning, and influence the direction of research for improving the 43 

productivity and the resilience of these under-utilized crops in the drought-prone regions of the 44 

world. 45 

 46 
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 48 

1. Introduction 49 

According to the FAO definition (FAO, 1994), roots and tubers are plants that produce starchy 50 

roots, tubers, rhizomes, corms and stems commonly consumed as human food, animal feed, and 51 

as manufactured food products. There are six major root and/or tuber (i.e., root/tuber) crops: 52 

potato, cassava, sweet potato, yam, taro, and yautia (Table 1), some of them  are important cash 53 

and food crops particularly for resource-limited farmers in Asia, Africa, Latin America, and the 54 

Caribbean (Okogbenin et al., 2013). Yam and cassava, for example account for a sizable portion 55 

of the daily calorie intake for people in West Africa (Asiedu and Sartie, 2010).  56 

 57 

Root/tuber crops have much potential in terms of water use efficiency (WUE) and nutrient 58 

content compared to other food crops. Potatoes, for example, produce more dry matter and 59 

protein per hectare than major cereal crops (Birch et al., 2012). They also have higher water 60 

productivity than cereals, and are considered among the most energy productive crops, producing 61 

5,600 kcal per cubic meter of water, compared to 3860 in maize, 2300 in wheat, and 2000 in rice 62 

(Birch et al., 2012; Monneveux et al., 2013). Similarly, sweet potatoes figure among the major 63 

crops that  produce the most human-edible energy, as much as 194 MJ ha-1 day-1 (Mukhopadhyay 64 

et al., 2011). Other root/tuber crops such as taro (seven known species  mostly originated from 65 

Asia), yautia (40 species  mostly from the American continent), and yam (600 species  of 66 

different origins) (Asiedu and Sartie, 2010; Degras, 1993) also have significant energy values 67 

and variable nutritional properties, including dietary fiber, vitamin C, and carotenoids (Asiedu 68 

and Sartie, 2010; Degras, 1993). 69 
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 70 

While drought has been considered a major constraint to root/tuber crop production, research on 71 

drought tolerance in potato only started between 1960 and 1980, compared to cereal crops which 72 

have been extensively studied in that regard since the early 1900’s (Monneveux et al., 2013). 73 

Consequently, our knowledge regarding: (i) drought tolerance of roots and tubers, and 74 

underlying physiological mechanisms, as well as (ii) agronomic practices and water-saving 75 

techniques (e.g., mulching, no-till) (Monneveux et al., 2013), is still limited compared to other 76 

staples such as cereals and legumes despite the earlier cultivation of roots and tubers (i.e., 77 

>10,000 years for taro) (Lebot, 2009). Compared to roots and tubers, there has been two and four 78 

times more studies examining the effects of drought on legumes and cereal production, 79 

respectively. Yet several climate models have predicted a much stronger impact of climate 80 

change on potato production than on cereal production (Monneveux et al., 2013; Tubiello et al., 81 

2002). Potato production in various low latitude regions, for example, is expected to decrease 82 

between 18-32% without shift in planting date and varieties as opposed to 9-18% if such 83 

mitigation strategies are adopted (Monneveux et al., 2013). Given the significance of root/tuber 84 

crops to food security in various regions of the world and the uncertainties regarding the global 85 

climate, there is a need for greater understanding of the resilience of root/tuber species to water 86 

stress and how different root/tuber species respond to drought (e.g., changes in timing and 87 

intensity of water stress).  88 

 89 

Meta-analysis is a powerful statistical tool that can be used to summarize results from numerous 90 

independent experiments on drought while accounting for variability across experiments (Hedges 91 

et al., 1999). By synthesizing the results of field experiments investigating drought effects on 92 
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root/tuber production in different regions, this study aims to provide a quantitative summary of 93 

the factors that either amplify or minimize production loss associated with droughts. We aim to 94 

answer the following questions: 1) to what extent factors such as root/tuber species, soil texture, 95 

and climatic region contribute to variations in drought-induced yield reduction, and 2) how can 96 

the information gained from the analysis of these factors be used to minimize the impact of 97 

drought on root/tuber production? Specifically, we are interested in quantitatively assess the 98 

yield reduction of generally assumed drought-resistant root crops (i.e., cassava and sweet potato) 99 

(Onwoume and Charles, 1994) and comparing their response to that of the more drought-100 

sensitive species (i.e., potato) (Monneveux et al., 2013). While anecdotal evidence suggest that 101 

cassava and sweet potato are widely grown and continue to expand in drought-affected regions, 102 

and can remain profitable in areas with annual rainfall as low as 500 mm (Hahn, 1977; 103 

Onwoume and Charles, 1994), the data that support the extent of yield reduction due to drought 104 

for both of these crops are still lacking. The results of this study could thus lead to the 105 

formulation of better agricultural practices by considering the aforementioned factors to increase 106 

the resilience of roots/tuber production systems in the drought-prone regions of the world.  107 

 108 

2. Materials and methods 109 

The database for this study was collected from peer-reviewed journal articles published in 110 

English from 1980 to 2015 based on Google Scholar search using the following two sets of 111 

keywords: (i) root or tuber species common name, water, stress, yield, and field, or (ii) root or 112 

tuber species common name, irrigation, deficit, yield, and field. The list of articles and 113 

geographical distribution of the study locations are provided in the Supplementary Material S1 114 

and Supplementary Fig. S1. Only articles that meet the following criteria were included in the 115 
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database: (i) plants that experienced drought under field conditions (excluding pot studies), (ii) 116 

the effect of water deficit was considered in comparison with well-watered condition and not in 117 

combination with other treatments (e.g., addition of fertilizers or growth hormones, modification 118 

of temperature or CO2), (iii) the reported plants were monoculture roots or tubers of potato 119 

(Solanum tuberosum), cassava (Manihot spp.), sweet potato (Ipomoea batatas), taro (Colocasia 120 

esculenta), yautia (Xanthosoma spp.), and yam (Dioscorea spp.), (iv) the articles reported crop 121 

response as yield per unit area. To minimize the impact of other agronomic factors (e.g., pests, 122 

nutrients, diseases) that might affect yield, we only included studies that examined the single 123 

effect of water reduction as these other factors were controlled during the water treatment 124 

experiments (Daryanto et al., 2015, in review). 125 

 126 

The magnitude of yield responses was examined based on the following categorical variables: (i) 127 

root/tuber species, (ii) agro-ecosystem types (dryland and non-dryland), (iii) soil texture (fine, 128 

medium, or coarse), and (iv) drought timing (i.e., early season, mid-season, late season, mid- and 129 

late-season, and throughout season). For the purposes of meta-analysis, we established discrete 130 

levels for each variable and coded each observation accordingly. Unlike grain crops in which 131 

drought timing can be categorized based on distinct vegetative and reproductive phases 132 

(Daryanto et al., 2015, in review), for some root crops, photo-assimilates are partitioned 133 

continuously between different organs (Lebot, 2009). We therefore used the following 134 

development phases of the storage root organ to differentiate drought timing: before tuber 135 

initiation as early-season, during tuber initiation as mid-season, during tuber bulking as late-136 

season, during the whole tuberization period as mid- and late-season, and during the entire 137 

growing period as throughout-season drought. Since we focused our analysis on the amount of 138 
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water available and yield, we differentiated agro-ecosystem types based on aridity indices, which 139 

showed significant correlation with yield (Bannayan et al., 2010). We considered other 140 

environmental factors (e.g., temperature, light intensity) as the same between control and 141 

droughted condition since we only used paired study sites. Similarly, we divided soil texture into 142 

three categories (i.e., fine, medium and coarse) as each category had different water-related 143 

properties (i.e., field capacity, wilting point and water holding capacity) (Keulen and Stol, 1995). 144 

We considered clay, sandy-clay and silty-clay soils as fine texture, silt, silt-loam, silty-clay-loam, 145 

loam, sandy clay-loam and clay-loam soils as medium texture, and sand, loamy-sand, and sandy-146 

loam soils as coarse texture (Keulen and Stol, 1995). .  147 

 148 

The total data points before averaging were 981 from 85 studies. We averaged responses across 149 

cultivars under the same drought treatment since we were only interested in evaluating the effect 150 

of drought on crop performance at the species level (for potato, sweet potato, and taro). For 151 

cassava, yam, and yautia, we did not differentiate among species, but grouped them  152 

based on their genus name due to limited number of data. Edible yam, for example, consisted of 153 

at least nine species of Dioscorea sp, which were native to different regions. D. rotundata and D. 154 

cayanensis were indigenous to West Africa, while D. alata and D. trifida were Asian and 155 

American origin, respectively (Asiedu and Sartie, 2010). If the same treatment was repeated over 156 

several years or locations, the data were only averaged across the years or places if there was no 157 

significant year or location effect. After averaging, the total data points used in the meta-analysis 158 

were 352, except for soil texture which was not always mentioned in all studies. We did not 159 

differentiate among irrigation types and only recorded the amount of water applied since there 160 

have been many studies showing that the type of irrigation was not significant in comparison to 161 

https://www.researchgate.net/publication/248423422_Association_between_climate_indices_aridity_index_and_rainfed_crop_yield_in_northeast_of_Iran?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==
https://www.researchgate.net/publication/40149129_Agro-ecological_zonation_for_potato_production?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==
https://www.researchgate.net/publication/40149129_Agro-ecological_zonation_for_potato_production?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==
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the amount of water in determining yield, even in semi-arid (dryland) regions (Erdem et al., 162 

2006; Onder et al., 2005; Sammis, 1980; Shalhevet et al., 1983; Ünlü et al., 2006). If a study 163 

reported more than one timing of drought or levels of water reduction, all observations were 164 

considered independent and included in the database. Since limited data were available for taro 165 

and yautia production, we used either single amount of water reduction or other quantitative 166 

indicators of water availability (e.g., soil moisture) reported in the corresponding article as proxy 167 

for observed water reduction (Supplementary Fig. S2).   168 

 169 

We calculated the observed water availability ratio (i.e., the ratio between water during drought 170 

and during well-watered condition) for each categorical variable as a proxy to describe drought 171 

intensity. Water availability ratio might or might not include rainfall (i.e., depending on the 172 

study), but the inclusion or exclusion was consistent for each ratio. We did not use the widely-173 

accepted drought intensity indices (e.g., Palmer index which is more effective in determining 174 

long-term naturally occurring drought) since most of the studies were controlled experiments 175 

(i.e., comparing certain amount of irrigated conditions and irrigation reduction instead of 176 

observing natural rainfall deficiency). While we used the highest water level as control (i.e., 177 

well-watered condition), some exceptions applied where we did not incorporate water levels 178 

higher than the maximum evapotranspiration (ET) demand (if this information is provided in the 179 

paper). We took this precaution to minimize the effects of overestimating the water requirement 180 

since yield might saturate at water supply lower than the observed maximum supply (Grassini et 181 

al., 2009). This observed water reduction was then compared among categorical variable using 182 

one-way ANOVA and used to calculate drought sensitivity. We defined drought sensitivity as 183 

the relationship between observed yield reduction (i.e., the ratio between yield during drought 184 

https://www.researchgate.net/publication/223531248_Trickle_and_sprinkler_irrigation_of_potato_Solanum_tuberosum_L_in_the_Middle_Anatolian_Region_in_Turkey?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==
https://www.researchgate.net/publication/4875556_Different_irrigation_methods_and_water_stress_effects_on_potato_yield_and_yield_components?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==
https://www.researchgate.net/publication/250101310_Comparison_of_Sprinkler_Trickle_Subsurface_and_Furrow_Irrigation_Methods_for_Row_Crops1?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==
https://www.researchgate.net/publication/250101809_Potato_Irrigation_Requirements_in_a_Hot_Climate_Using_Sprinkler_and_Drip_Methods1?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==
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and during well-watered condition) and observed water reduction. Since not all studies recorded 185 

the amount of water reduction, we used the subset of data that recorded both yield reduction and 186 

water reduction to construct the relationship. The exact numbers of data points (n) were shown in 187 

the corresponding figures. Ratio was used rather than the actual yield or amount of water to 188 

make a more robust comparison among categorical variables since some species might have 189 

lower or higher yield potential or water demand than others. Confidence interval and prediction 190 

band for each drought sensitivity relationship was calculated at the 95% confidence level using 191 

Sigmaplot 12.0 (Systat Software) when more than 20 observational data points were available 192 

and the R2 value was greater than 0.1.  193 

 194 

To compare the differences in observed yield reduction between each categorical variable, meta-195 

analysis was used to construct the confidence intervals. In order to include those studies that did 196 

not adequately report sample size or standard deviation, we performed an unweighted analysis 197 

using the log response ratio (lnR) to calculate bootstrapped confidence limits using the statistical 198 

software MetaWin 2.0 (Rosenberg et al., 2000). The response ratio is the ratio between the 199 

outcome of experimental group (i.e., drought) to that of the control group (i.e., well-watered 200 

condition). To improve the reliability of lnR in estimating the effect size, a simple diagnostic test 201 

using the following formula was performed: 202 

�̅�𝑥/SD (4N3/2/(1+4N)) ≥ 3 203 

where �̅�𝑥 is the mean, SD is the standard deviation and N is the sample size (Lajeunesse, 2015). 204 

Bootstrapping was then iterated 9999 times to improve the probability that confidence interval 205 

was calculated around the cumulative mean effect size for each categorical variable. The sample 206 

size (n) of each bootstrapping which reported the amount of water reduction was shown in its 207 
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corresponding figure. The difference is considered significant if the bootstrap confidence interval 208 

did not overlap with each other. A statistical significance level of P < 0.05 was used.  209 

 210 

3. Results and Discussion 211 

3.1 Species effects 212 

Our results showed no difference in yield reduction among the three major root/tuber crops - 213 

potato, cassava, and sweet potato - in response to drought (Fig. 1). These results were surprising 214 

given the considerable differences in agronomic characteristics that exist between these species 215 

(Table 2), including drought resistance and water requirements (Adeleye et al., 2010; Horton, 216 

1988; Lebot, 2009; Talwana et al., 2009). The lack of yield difference also ran contrary to the 217 

traditional belief that potato is drought-sensitive but that cassava is drought-resistant, capable  of 218 

producing under drought conditions (Onwoume and Charles, 1994). The global average yield of 219 

cassava represents only 12.5% of the crop’s yield potential (Okogbenin et al., 2013) in 220 

comparison to rice yield which is almost 80% of its potential (Cassman, 1999). These facts 221 

suggest that the high production potential of cassava has not been achieved, most likely due to 222 

the sub-optimum agro-climatic conditions in which cassava is typically grown. Since cassava’s 223 

root and shoot grew simultaneously (i.e., competing to each other) throughout the growing 224 

season, lower carbon (C) partitioning to the storage organ could occur as an indirect response of 225 

reduced radiation energy interception resulting from lower leaf area index (LAI) of droughted 226 

plants depending on when drought happened (El-Sharkawy, 2003; Haimeirong and Kubota, 227 

2003). Similarly, the timing and duration of drought could change the morphology of the young 228 

root system (Pardales Jr and Esquisel, 1996), for example by developing thinner roots (i.e., 229 

increasing the ratio between root length and root weight), presumably to improve water uptake. 230 

https://www.researchgate.net/publication/259999743_Effect_of_poultry_manure_on_soil_physico-chemical_properties_leaf_nutrient_contents_and_yield_of_yam_Dioscorea_rotundata_on_Alfisol_in_Southwestern_Nigeria?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==
https://www.researchgate.net/publication/287246472_Tropical_root_and_tuber_crops_Cassava_sweet_potato_yams_aroids?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==
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The number of adventitious roots also decreased during early season drought, and if such 231 

condition prolonged, it would reduce the number of adventitious roots that would differentiate 232 

into storage roots (Pardales Jr and Esquisel, 1996).  It can therefore be suggested that cassava 233 

might be resistant to drought in terms of its survival, rather than in terms of its capacity to 234 

maintain high yield. 235 

 236 

Among the anatomical characteristics that allow survival during drought is the ability of cassava 237 

plants to develop deep roots (>2 m), enabling them to extract subsoil water despite their sparse 238 

fine root system (Okogbenin et al., 2013). The stomata of cassava are particularly sensitive to 239 

vapor pressure difference; they close even before signs of water stress  develop within the plant 240 

(Onwoume and Charles, 1994). At the same time, water-stressed cassava plants minimize carbon 241 

cost through cessation of osmolytes production during drought (Alves and Setter, 2004), a 242 

strategy that enables faster recovery once water becomes available. Cassava plants also form 243 

symbiotic associations with mycorrhiza, which may contribute to their ability to survive a 244 

prolonged period of drought (i.e., up to five months) (Horton, 1988). Cassava plants can also 245 

synthesize and accumulate abscisic acid during the early phase of water deficit, and this in turn 246 

results in: (i) low leaf area through limited formation of new leaves, (ii) the formation of small 247 

leaves, and (iii) leaves shedding (Alves and Setter, 2000). It has been shown that abscisic acid 248 

levels in water-stressed cassava can quickly return to normal within as little as one day after 249 

watering, resuming normal growth (Lebot, 2009). When drought lasts over an extended period, 250 

however, low leaf area will eventually lead to yield reduction (Okogbenin et al., 2013).  251 

 252 
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Our results also showed that sweet potato was more sensitive to drought compared to potato (Fig. 253 

2), contradicting  the common assumption that sweet potato is drought-resistant (Onwoume and 254 

Charles, 1994; Woolfe, 1992). We suggest that higher level of genetic development in potato 255 

compared to sweet potato could be responsible for the decrease in drought sensitivity of the 256 

former. In addition, better agricultural practices are generally adopted where potato is grown 257 

compared to sweet potato. The number of studies dedicated to a crop species can be taken as a 258 

proxy of such practices. For example Web of Science search of articles in English published 259 

between 1985 and 2015 using keywords “drip irrigation and “sweet potato” only resulted in 10 260 

articles, but it resulted in 196 articles when replacing “sweet potato” to “potato”.  The results 261 

were similar for sprinkler irrigation with one versus 96 articles found for “sweet potato” and 262 

“potato”, respectively. These factors may have contributed to the superior performance of this 263 

species (i.e., potato) that has previously been considered drought-sensitive. We acknowledge, 264 

however, that there could be some uncertainties in our determination of drought sensitivity since 265 

the amount of water required by each species cannot be confidently defined. While sweet potato 266 

might be resistant to drought in terms of its survival, it might be sensitive in terms of yield. 267 

Similar to cassava, sweet potatoes have a relative deep rooting system (0.75-0.9 m; compared to 268 

only 0.3 m for potato), which enable them to survive during drought through uptake of 269 

subsurface water pools not available to most vegetables (Mukhopadhyay et al., 2011). 270 

Supplementary irrigation for sweet potatoes, however, is highly recommended if available soil 271 

moisture is below 20% (Ravi and Indira, 1999). Irrigation at 60% moisture depletion level, for 272 

example, could increase root yield by 24% over non-irrigated sweet potatoes (Mukhopadhyay et 273 

al., 2011). The tradeoff between yield and survival is also related to the physiological and 274 

biochemical changes in the leaves. Under water deficit, stomatal resistance tends to increase to 275 

https://www.researchgate.net/publication/284680341_Sweet_Potato_an_Untapped_Food_Resource?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==
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preserve leaf water content and prevent leaf senescence. Increasing stomatal resistance, however, 276 

also decrease CO2 exchange, net photosynthetic rate and eventually yield. If droughts occur 277 

during tuber initiation and tuber bulking, these physiological processes could considerably 278 

reduce yield  (Mukhopadhyay et al., 2011), explaining the yield sensitivity of sweet potato to 279 

drought. It has been further demonstrated that some drought-sensitive sweet potato cultivars did 280 

not produce yield, but were capable of surviving prolonged drought periods (Ravi and Indira, 281 

1999).  282 

 283 

The yield response of the other minor root/tuber species (i.e., taro, yam, and yautia) to drought is 284 

less well characterized as very few studies have examined the effects of drought on these crops. 285 

While our results showed that taro yield reduction did not differ from the major root/tuber crops, 286 

yautia showed a significantly higher yield reduction compared to potato in response to drought. 287 

Research has shown that potassium addition can improve taro and possibly yautia performance 288 

during drought by inducing better stomatal control and improving water use efficiency (Sivan et 289 

al., 1996) as both taro and yautia generally experience a decrease in stomatal conductance during 290 

drought (Mabhaudhi and Modi, 2015). While some wild relatives of taro exhibited drought 291 

tolerance characteristics, irrigation remains essential for these crops if they are grown during dry 292 

seasons or in areas with low annual rainfall (Bussell and Bonin, 1998). Irrigation water 293 

application rates higher (i.e., 150%) than the daily ET requirement is even recommended to 294 

maximize taro yield (Uyeda et al., 2011).  295 

 296 

We were also unable to analyze the difference in drought sensitivity of yam, taro, and yautia due 297 

to the limited data available in the literature. As noted before, studies examining the effects of 298 
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drought on root/tuber crops, already low in absolute number, have primarily focused on potato, 299 

sweet potato, and cassava with only scant information on other tubers such as yam and taro. 300 

Thus, as a group, root/tuber crops are insufficiently studied or under exploited despite their often 301 

so-called “potentials”. Some of these potentials include their ability to produce yield under 302 

suboptimal conditions (e.g., drought; Cock, 1982) or their nutritional values. Taro, for example, 303 

has comparable nutritional value to potato (Talwana et al., 2009). Similarly, sweet potato 304 

outranks most “energy food” in terms of the vitamins, minerals, dietary fiber, and protein that it 305 

also provides (Mukhopadhyay et al., 2011). Along the same line, one may also note the case of 306 

yam. Although the extent of drought sensitivity and yield reduction of yams is unknown due to a 307 

paucity of experimental data, yam mayt exhibit considerable drought tolerance given some of the 308 

xerophytic features observed in the young plants, traits that are rarely found in other crops. After 309 

surviving a dry period, the new yam plants emerge with considerable vine length expansion 310 

(sometimes exceeding two meters) without forming new leaves. These vines, which  initially 311 

obtain moisture and nutrients from the parent tuber, are also covered with a waxy bloom that 312 

reduces moisture loss as the plant continues to develop (Asiedu and Sartie, 2010).  313 

 314 

3.2 Phenological effects 315 

Similar to the findings reported in previous studies (Monneveux et al., 2013; Okogbenin et al., 316 

2013; Onwoume and Charles, 1994), our results indicated that root/tuber crops generally 317 

experienced greater yield loss when droughts occur during tuber initiation (mid-season drought) 318 

and during tuber enlargement or bulking (late-season drought) than during their vegetative 319 

growth (early-season drought) (Fig. 3). Water stress for up to two months during the vegetative 320 

growth only delays normal growth in cassava, and the plant can resume growth once water 321 
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becomes available (Lebot, 2009). Significant differences exist, however, between sweet potato 322 

and potato with regard to the leaf-level response of these crops to water stress. Sweet potato 323 

leaves wilt permanently at a much lower water potential (-1.3 MPa; Ravi and Indira, 1999) than 324 

potato leaves (-0.6 and -1.0 MPa in young and mature leaves, respectively; Levy et al., 2013) . 325 

Subsequent water stress during tuber bulking leads to malformation of  tubers in potatoes, as well 326 

as to reduction in the number and size of the tubers (Monneveux et al., 2013). Both cassava and 327 

sweet potato are particularly sensitive to drought during storage root initiation, a period that 328 

typically occurs after the first three months of growth for cassava (Okogbenin et al., 2013), and 329 

between 4-7 weeks after planting for sweet potato (Onwoume and Charles, 1994). Since very 330 

little initiation of storage roots occurs after seven weeks, the final  number of tubers is virtually 331 

determined by this critical period (Onwoume and Charles, 1994). With the remaining period 332 

after tuber initiation is devoted to tuber enlargement, it is unsurprising that we did not find any 333 

difference in sensitivity between mid- and late-season droughts (Fig. 4). Water stress during late-334 

season drought usually induces lignification of storage roots in sweet potato which later impede 335 

their growth (Ravi and Indira, 1999).  336 

 337 

Although potatoes, sweet potatoes, and taros are highly sensitive to water deficit after planting 338 

(Lebot, 2009; Monneveux et al., 2013), our analysis did not capture this response since, in most 339 

studies, good emergence and early growth are typically allowed in order to study the effect of 340 

drought treatments in subsequent physiological phases. Yam is probably the only species within 341 

the root/tuber group with reported high drought-tolerance shortly after planting. As the young 342 

plant is devoid of leaves (and therefore has very low transpiration), it can tap most of its early 343 

moisture needs from the ‘mother’ tuber (Lebot, 2009). If moisture stress continues, however, 344 
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https://www.researchgate.net/publication/228012148_Crop_Physiology_of_Sweetpotato?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==
https://www.researchgate.net/publication/228012148_Crop_Physiology_of_Sweetpotato?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==
https://www.researchgate.net/publication/287246472_Tropical_root_and_tuber_crops_Cassava_sweet_potato_yams_aroids?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==
https://www.researchgate.net/publication/287246472_Tropical_root_and_tuber_crops_Cassava_sweet_potato_yams_aroids?el=1_x_8&enrichId=rgreq-211b44524be9e82c948cbfa128200cd4-XXX&enrichSource=Y292ZXJQYWdlOzMwMzcxNTgwMDtBUzozNzg2NjU1NjIwNjY5NDdAMTQ2NzI5MjMxMzk1OA==


16 
 

tuberization can be delayed, negatively impacting yield (Lebot, 2009). While yams can survive 345 

in areas with low annual rainfall (i.e., between 500-700 mm), higher amount of water 346 

(approximately 1500 mm) during the total growth cycle is required to ensure high yield (Lebot, 347 

2009). 348 

 349 

3.3 Effects of agro-ecological region 350 

We found that yield responses and sensitivities to drought were similar across eco-regions (i.e., 351 

dryland vs non-dryland) (Figs. 5 & 6). The lack of significant differences between the yield of 352 

tubers in the dryland and the non-dryland region is intriguing given the low relative humidity and 353 

high temperature of dryland regions which increase the potential evapotranspiration demand. 354 

While the underlying mechanisms could be complex, a recent study by Vicente-Serrano et al. 355 

(2013) suggested that the sensitivity of land biomes to drought was likely to be determined by 356 

the persistence of the water deficit (i.e., the drought time-scale). Research at the global biome 357 

level indicated that plants of humid regions, while having low tolerance to drought, also had fast 358 

recovery to water stress (Vicente-Serrano et al., 2013). Since our study focused on examining 359 

short-term drought experiments, we suggested that plant recovery could contribute to root/tuber 360 

crop resilience to drought. The center of origin of potato, sweet potato, and cassava were thought 361 

to be around Central and South America (Bradshaw and Ramsay, 2009; Nassar et al., 2007; 362 

Srisuwan et al., 2006) and rapid plant recovery could contribute, to some extent, to the 363 

robustness of yield across contrasting agro-climatic regions. At cellular level, the ability of 364 

potatoes to increase their WUE with partial closure of stomata (Liu et al., 2005), for example, 365 

could be responsible for their relative production resilience. At mild water deficit, photosynthesis 366 

decreases less rapidly than stomatal conductance (Liu et al., 2005), enabling potato to maintain 367 
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the flow of assimilates to storage organs at lower evapotranspiration rate. Identifying the 368 

mechanisms of plant response to drought, including improving WUE in other root/tuber crops, 369 

opens the possibility of using water saving techniques to optimize the use of irrigation water. 370 

This opportunity is also available for other species (e.g., yam) in which cultivars with varying 371 

degree of drought tolerance have been identified in Asia and Africa (Lebot, 2009). In African 372 

drylands, yams are deliberately planted during the beginning of the dry season due to their 373 

resistance to drought (Lebot, 2009). Yams can survive in areas with annual rainfall as low as 500 374 

mm (e.g., in south Madagascar) although yield potentials are low in these regions (Lebot, 2009). 375 

 376 

3.4 Effects of soil texture  377 

Greater yield reduction has been observed for roots and tubers planted on coarse soils compared 378 

to those planted on medium-textured soils under similar levels of water reduction (Figs. 7 & 8). 379 

Differences in soil texture usually correspond to their potential production capacity, including 380 

soil water-holding capacity. Medium- and fine-textured soils usually have higher water holding 381 

capacity than coarse-textured soils and, when available water is sufficient to produce yield, 382 

plants tend to become less responsive to any reduction in irrigation. We suggest that the presence 383 

of soil water reserve might be responsible for the lack of yield difference between crops planted 384 

on fine- and medium-textured soils, but not on the coarse-textured soil. An earlier examination of 385 

the effects of soil texture on potato yield also indicated that residual soil water provided most of 386 

the required water, and that irrigation larger than 40% ET had no beneficial effect on yield on 387 

medium-textured soils, but resulted in a significant yield increase in coarse-textured soils (Martin 388 

and Miller, 1983). This trend, however, is different from legumes which generally experience 389 

greater drought-induced yield loss in medium-textured soils (Daryanto et al., 2015). While the 390 
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reason for this discrepancy is unknown, differences in root structure and density might account 391 

for these observations. When water is a limiting factor, most plants usually allocate more 392 

biomass to the roots. Interestingly, a negative correlation between root biomass and tuber yield 393 

was reported for potato (Tourneux et al., 2003). Additionally, continuous potato root growth 394 

which has been observed until early senescence (Gregory and Simmonds, 1992) might also 395 

contribute to the lack of drought sensitivity. As for other root crops (e.g., cassava and sweet 396 

potato), they are able to extract water from deeper soil layers and therefore less likely to be 397 

affected by soil texture. Indeed, extensive and deep rooting systems have been shown to increase 398 

the resilience of cereal yield to drought across a range of soil texture (Daryanto et al., in review). 399 

 400 

4. Conclusions 401 

Contrasting with the common belief that cassava and sweet potato are resistant to drought, our 402 

results indicated that, under similar water shortage conditions, these crops experienced yield 403 

reduction comparable to drought-sensitive species. Sweet potato even showed higher sensitivity 404 

to drought compared to potato. All root/tuber species were particularly sensitive to drought 405 

during the tuberization period, and this drought sensitivity was observed across contrasting agro-406 

eco-regions and soil texture.  407 

 408 

Roots and tubers have so far been regarded  as inferior and neglected food crops even in areas 409 

where they are staples (Horton, 1988). For several decades, studies have examined the problems 410 

and potentials of root/tuber crops production, but limited progress has been made in improving 411 

the productivity of most of these crops under drought conditions. There are numerous challenges 412 

to the development of tuber and root crops, but an intensification of research (e.g., germplasm 413 
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conservation, improved cultivation methods) is a critical step toward that goal. Among the 414 

dominant root/tuber crops, yam has probably the greatest potential for development and genetic 415 

improvement in part due to its xerophytic characteristics, its ability to survive in areas with low 416 

annual rainfall, its long dormancy period, and its high nutritional content.  As reviewed 417 

elsewhere for cassava (Lebot, 2009; Okogbenin et al., 2013; Prochnik et al., 2012), sweet potato 418 

(Lebot, 2009; Mukhopadhyay et al., 2011), yam (Asiedu and Sartie, 2010; Lebot, 2009), taro and 419 

yautia (Lebot, 2009; Onwoume and Charles, 1994), available technologies (e.g.,. genetic 420 

modification, improvement of cultivation and irrigation methods) could help maintain the 421 

productivity of tuber crops in the face of a changing climate, and improve food security in the 422 

drought-prone regions of the world.   423 
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Figure Captions 550 

 551 

 Fig. 1. Observed confidence intervals of drought-induced yield reduction for different root/tuber 552 

crops as determined by meta-analysis (A) and the corresponding water reduction for each species 553 

(B). The yield reduction is the same if the species confidence intervals overlap with each other 554 

(A). Letters a and b indicate significant difference between observed water reduction level (B). 555 

Letter n indicates the number of samples for each categorical variable. 556 

 557 
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 558 

Fig. 2. Drought sensitivity (above) and confidence interval (below) of potato and sweet potato. 559 

Dotted lines indicate 95% confidence band. 560 

 561 

 562 

Fig. 3. Observed confidence intervals of drought-induced yield reduction of root/tuber crops as 563 

determined by meta-analysis (A) and their corresponding water reduction during different 564 
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phenological phases (B). The yield reduction is the same if the confidence intervals overlap with 565 

each other (A). Letter n indicates the number of samples for each category variable. 566 

 567 

 568 

Fig. 4. Drought sensitivity (above) and confidence interval (below) of root/tuber crops during 569 

different phenological phases. Dotted lines indicate 95% prediction band. 570 

 571 

 572 
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Fig. 5. Observed confidence interval of drought-induced yield reduction for root/tuber crops as 573 

determined by meta-analysis (A) and their corresponding water reduction in dryland and non-574 

dryland regions (B). The yield reduction is the same if the confidence intervals overlap with each 575 

other (A). Letter n indicates the number of samples for each categorical variable. 576 

 577 

 578 

Fig. 6. Drought sensitivity (above) and confidence interval (below) of root/tuber crops in dryland 579 

and non-dryland regions. Dotted lines indicate 95% prediction band. 580 

 581 
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 582 

Fig. 7. Observed confidence interval of drought-induced yield reduction for root/tuber crops 583 

grown on soils of different texture as determined by meta-analysis (A) and their corresponding 584 

water reduction (B). The yield reduction is the same if the confidence intervals overlap with each 585 

other (A). Letter n indicates the number of samples for each categorical variable. 586 

 587 

 588 
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Fig. 8. Drought sensitivity (above) and confidence interval (below) of root/tuber crops grown on 589 

soils of different texture. Dotted lines indicate 95% prediction band. 590 
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