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Abstract

The transcription factor nuclear factor kappa B (NF-κB) and the long non-coding RNA (lncRNA) 

HOTAIR (HOX transcript antisense RNA) play diverse functional roles in cancer. In this study, we 

show that upregulation of HOTAIR induced platinum resistance in ovarian cancer, and increased 

HOTAIR levels were observed in recurrent platinum-resistant ovarian tumors vs. primary ovarian 

tumors. To investigate the role of HOTAIR during DNA damage induced by platinum, we 

monitored double-strand breaks and show that HOTAIR expression results in sustained activation 

of DNA damage response after platinum treatment. We demonstrate that ectopic expression of 

HOTAIR induces NF-κB activation during DNA damage response and MMP-9 and IL-6 

expression, both key NF-κB target genes. We show that HOTAIR regulates activation of NF-κB by 
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decreasing Iκ-Bα (NF-κB inhibitor) and establish that by inducing prolonged NF-κB activation 

and expression of NF-κB target genes during DNA damage, HOTAIR plays a critical role in 

cellular senescence and platinum sensitivity. Our findings suggest that a NF-κB-HOTAIR axis 

drives a positive-feedback loop cascade during DNA damage response and contributes to cellular 

senescence and chemotherapy resistance in ovarian and other cancers.

Introduction

The mammalian DNA damage response (DDR) to genotoxic stress is critically important for 

maintaining genome stability, cell survival and preventing cellular transformation. DDR 

networks include the classic tumor suppressor gene p53 and its downstream target p21 [1]. 

More recently, a DDR mechanism has been reported involving nuclear factor kappa B (NF-

κB), a master regulator of over 400 genes involved in inflammation, apoptosis, cell cycle 

control and cell senescence [2, 3]. NF-κB signaling-mediated activation of DDR has been 

shown to restore genomic integrity, augment cancer cell survival, and play a role in 

development of resistance to platinum-based cancer therapies [4, 5]. However, distinct DNA 

damage-induced NF-κB signaling pathways contributing to chemoresistance in cancer have 

not been well studied.

Platinum, the first line of therapy for ovarian and other cancers, induces inter-and-intra 

strand crosslinks, generates single stranded breaks and activates nucleotide excision repair 

[6]. Cellular responses to DNA damage, including response to platinum, can be regulated at 

the post-transcriptional level by long noncoding RNAs (lncRNAs) [7] . The JADE1 adjacent 

regulatory RNA (lncRNA-JADE) was reported to play a crucial role in DNA damage-

induced, histone H4 acetylation associated with transcriptional activation [8], and lncRNA-

p21 was shown to physically interact with hnRNPK (heterogenous nuclear ribonuclear 

proteins) during DDR and mediate p53-dependent transcriptional repression [9]. Platinum-

induced DNA damage resulted in lncRNA PANDA (p21-associated ncRNA DNA damage 

activated) activation, interaction with transcription factor NF-YA, and PANDA-NF-YA 

modulation of p53-dependent apoptosis [10].

HOX antisense intergenic RNA (HOTAIR), a lncRNA frequently overexpressed in human 

cancers [11], was originally identified in 2007 by Rinn et al as a lncRNA located in the 

HOXC cluster on chromosome 12 that regulates the HOXD gene cluster on chromosome 2 

[12]. HOTAIR transcriptionally silences genes located on a distant chromosome region 

through an epigenetic mechanism involving interaction with polycomb repressive complex 2 

(PRC2) [7] . This interaction appears to be required for PRC2 occupancy of specific loci, 

such as the HOXD locus, trimethylation of histone H3 lysine K27 (H3K27me3) by enhancer 

of zeste 2 (EZH2) and subsequent gene repression [12, 13]. Additional inter-chromosomal 

targets of HOTAIR include- cancer-associated genes such as protocadherin (PCDH), ephrin 

receptor (EPHA1) and the NF-κB inhibitory protein Iκ-Bα [12, 14]. Although epigenetic 

processes have been reported to play critical roles in DDR [15], including aberrant histone 

methylation by EZH2 [16, 17], a direct role for HOTAIR in DDR has not been investigated. 

However, functional overlap between PRC2 and NF-κB activation by genotoxic agents, 

inflammation, and cancer has been reported [18], suggesting a potential interaction between 
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NF-κB activation and HOTAIR in response to DNA damage. Furthermore, in solid tumors, 

including ovarian cancer (OC), enhanced NF-κB activation has been observed in aggressive 

chemoresistant cell lines [19].

The objective of this study was to investigate the functional role for HOTAIR in DDR and 

chemotherapy resistance. We demonstrate a strong correlation of HOTAIR overexpression 

with platinum resistance in OC cell lines and patient tumors. In response to DNA damage, 

we found that NF-κB directly upregulates HOTAIR expression in OC cell lines. 

Downregulation of Iκ-Bα during DDR induced a NF-κB-HOTAIR signaling positive-

feedback loop cascade, and we demonstrate that DDR further induces HOTAIR-mediated 

expression of p65-NF-κB and NF-κB target genes MMP9 and IL-6 to promote OC cellular 

senescence and resistance to DNA-damaging agents. Collectively, these results are the first 

to demonstrate a role for HOTAIR in DNA damage-induced NF-κB signaling pathway, 

identifying HOTAIR as a new therapeutic target in drug resistant OC and likely other 

cancers.

Results

HOTAIR is overexpressed in drug-resistant ovarian cancer

We examined expression of HOTAIR in a panel of OC cell lines (Fig. 1A) representing a 

spectrum of platinum (CDDP) sensitivity (Resistant; Sensitive). Increased (P<0.05) 

HOTAIR expression was observed in CDDP- resistant (IC50 levels >10µM) compared to -

sensitive cell lines (Fig. 1A, Supplementary Table S1) and in OC tumors obtained from 

unpaired patients with CDDP-resistant vs. -sensitive high-grade serous disease (2.1 log2 fold 

change; Fig. 1B). We then examined patient data obtained from The Cancer Genome Atlas 

(TCGA; publically available expression and clinical annotation data) [20]. HOTAIR 

expression was increased (>0.5 log10 fold-change) in OC patients with recurrent compared 

to primary high-grade serous disease (Fig. 1C).

Overexpression of HOTAIR increases colony formation and CDDP resistance

To further examine the association between HOTAIR expression and chemoresistance, we 

either overexpressed (80-fold increase vs. control; Supplementary Fig. S1A) HOTAIR in 

CDDP-sensitive A2780p or HEYC2 (moderate HOTAIR levels) or knocked-down (70% 

reduction compared to dsiGFP control, Supplementary Fig. S1B) HOTAIR in CDDP-

resistant A2780_CR5 and examined functional changes using clonogenic and proliferation 

assays in vitro and a mouse xenograft model in vivo. HOTAIR overexpression increased 

(P<0.05) whereas HOTAIR knockdown decreased (P<0.05) OC clonogenic survival (Fig. 1D 

and Supplementary Fig. S1C). However, overexpression or knockdown of HOTAIR had no 

effect on cell doubling time (Supplementary Fig. S1D, E), indicating that cell proliferation 

rate was not altered. To test whether HOTAIR overexpression contributed to CDDP 

resistance in vivo, A2780p were transfected with either HOTAIR or vector control, treated 

with CDDP or vehicle to induce DNA damage, and then injected subcutaneously in nude 

mice (see Methods). Tumor size was measured biweekly. Tumor growth, measured by 

assessing area under the curve (AUC) of the xenograft tumor, was greater (P<0.05) for 

HOTAIR overexpressing OC tumors compared to control (Fig. 1E; Supplementary Fig. 
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S1F), indicating a role for HOTAIR overexpression in response to DNA damaging agents 

and CDDP resistance.

HOTAIR mediates DNA damage response (DDR) in ovarian cancer cells

We observed that CDDP treatment of A2780p cells increased (P<0.05) HOTAIR expression 

starting at 16 hr post treatment (Supplementary Fig. S2A) and that HOTAIR expression was 

also increased by other DNA damage agents mitomycin C and hydrogen peroxide (MMC 

and H2O2; Supplementary Fig. S2B, C). To further examine a role for HOTAIR as a 

potential mediator of DDR, we examined known cellular responses to genotoxic stress and 

apoptosis [21] after platinum treatment, including phosphorylation of Chk1 (pChk1), 

formation of γ-H2AX foci, and caspase cleavage. A2780p cells overexpressing HOTAIR or 

A2780_CR5 cells transfected with dsiRNA HOTAIR were treated with CDDP. HOTAIR 

overexpression increased s317 phosphorylation of Chk1, a marker for Chk1 activation, in 

A2780p (Fig. 2A and Supplementary Fig. S2D), whereas HOTAIR knockdown decreased 

Chk1 s317 phosphorylation in A2780_CR5 (Fig. 2B and Supplementary Fig. S2E). 

Interestingly, in the Kuramochi OC cell line harboring p53D281Y mutant (DNA binding 

mutant), phosphorylation of both p53 and Chk1 was induced by HOTAIR overexpression 

(Supplementary Fig. S2F). No expression of p21 was observed (data not shown), confirming 

inactive p53 (Supplementary Table S1). pChk1 levels correlated with γ-H2AX 

phosphorylation, and the percentage of cells containing >5 γ-H2AX foci increased (1.5 and 

4 fold) by 1 and 24 hr of CDDP exposure in HOTAIR overexpressing A2780p cells (Fig. 

2C) and decreased in A2780_CR5 cells (2.3 and 1.5 fold) by 1 and 24 hr (Fig. 2D). The 

number of γ-H2AX foci was unchanged in untreated cells (Supplementary Fig. S2G). 

Furthermore, enforced overexpression of HOTAIR in A2780p decreased caspase 3/7 

cleavage (Fig. 2E; left) and increased caspase 3/7 cleavage in A2780_CR5 cells transfected 

with dsiRNA HOTAIR (Fig. 2E; right), an established characteristic of cells undergoing 

apoptosis, indicating that HOTAIR overexpression inhibited platinum-induced apoptosis.

Overexpression of HOTAIR leads to specific changes in gene expression

To investigate the association between HOTAIR, DDR and chemoresistance and identify 

genes and pathways affected by HOTAIR overexpression, we performed whole 

transcriptome RNA-sequencing of A2780p (CDDP-sensitive) and A2780_CR5 (CDDP-

resistant and endogenous HOTAIR overexpression) OC cell lines. Marked differences in 

overall gene expression profiles were observed between the paired lines (Supplementary Fig. 

S3A, B), and expression of DDR-associated genes (e.g., MLH1 and XRCC3), NF-κB 

pathway (e.g., IL6R, IL4R, NCAM, BCL2L211) and epigenetic regulators (i.e., PRC-

associated genes) were prominently altered in A2780_CR5 compared to A2780p 

(Supplementary Fig. S3C). As expected, differential expression of cancer relevant cellular 

processes and pathways associated with chemoresistance (anti-apoptotic, cell adhesion, 

inflammation) in these cell lines was also observed, including the NF-κB pathway 

(Supplementary Fig. S3B). Further examination of the highly enriched NF-κB pathway by 

western blot analysis confirmed that total p65 nuclear levels were increased (3.2-fold vs. 

A2780p) in A2780_CR5 (Fig. 3A).
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To validate NF-κB activation by HOTAIR, we measured Iκ-Bα levels in A2780p cells 

overexpressing HOTAIR treated with CDDP (Fig. 3B). We observed Iκ-Bα protein levels 

decreased indicating that by repressing the inhibitory Iκ-Bα unit, HOTAIR can activate NF-

κB during DDR. Next we measured nuclear p65-NF-κB expression in A2780p HOTAIR 

overexpressing and A2780_CR5 dsiHOTAIR knockdown cells using immunofluorescence 

(IF) and western blotting. We observed a 2-fold increase in NF-κB translocation 1 and 24 hr 

post-CDDP treatment in A2780 cells (Fig. 3C), and an increase in nuclear p65 and decrease 

in both nuclear and cytoplasmic Iκ-Bα in the western blot (Fig. 3D). Additionally, we 

observed a 3 and 5 fold decrease in NF-κB translocation 1 and 24 hr post-CDDP treatment 

in A2780_CR5 cells (Fig. 3E) and a decrease in nuclear p65 and increase in cytoplasmic Iκ-

Bα levels with western blotting (Fig. 3F), indicating that HOTAIR expression promotes 

sustained NF-κB activation during DDR.

To further investigate the role of NF-κB transcriptional activity in stress (genotoxic)-induced 

HOTAIR expression (Supplementary Fig. 2A, B and C) A2780p cells were treated with 

CDDP. As shown in Fig. 4A, an increase in HOTAIR expression was observed (9-fold) at 24 

hr post-CDDP treatment and co-treatment with an NF-κB inhibitor (Bay-11) inhibited 

(P<0.001) CDDP-induced HOTAIR expression. TNF-α treatment increased (P<0.05) 

expression of HOTAIR (16-fold by 2 hr; Supplementary Fig. 4A) and ectopic overexpression 

of two known inducers of NF-κB, IKK-α and IKK-β [22], increased (p<0.05) HOTAIR 

expression (3-fold; Fig. 4B). Furthermore, in A2780p ectopically overexpressing HOTAIR, 

NF-κB targets IL-6, and MMP9 were upregulated (P<0.05) while expression of these genes 

was reduced (P<0.05) in HOTAIR knockdown-A2780_CR5 (Fig. 4C). Moreover, in 

xenograft OC tumors overexpressing HOTAIR, CDDP treatment increased overall 

expression of HOTAIR and NF-κB target genes, with IL-6 and MMP9 upregulation 

(P<0.05) relative to tumors derived from untreated OC cells (Fig. 4D), confirming 

functionality of the pathway in vivo and stable gene expression changes‥

Our findings that HOTAIR expression was increased hours post-DNA damage and this 

induced expression was blocked by inhibition of NF-κB activation (Supplementary Fig. 2A) 

indicated transcriptional regulation of the lncRNA in a NF-κB/DNA damage-dependent 

manner. To begin to determine the underlying mechanism, we used promoter-binding assays 

to examine the HOTAIR promoter region (1 kb upstream of transcription start site (TSS)). 

We identified a putative p65-NF-κB binding site (906-GGGACACCCC-915) (Fig. 5A) and 

investigated NF-κB-p65 binding to the HOTAIR promoter region in A2780_CR5 cells using 

chromatin immunoprecipitation (ChIP) with five different primer sets (1, 10kb; 2, 8kb, 3, 

4kb; 4: 900 bp; 5, 200 bp from the TSS) spanning 10kb upstream of the TSS (Fig. 5B). 

Enrichment (4-fold) of p65 in the canonical binding site (primers 4 & 5) was observed 

compared to control primer 1 (Fig. 5B), further supporting a regulatory role for NF-κB 

pathway in HOTAIR expression. Next, we measured p65-NF-κB binding to the HOTAIR 

promoter in A2780p cells treated with CDDP in the presence and absence of Bay-11. 

Enrichment (5.2 fold) of p65 in the canonical binding site 4 was observed compared to 

control primer (Fig. 5C) and abolished in the presence of Bay-11.

To further examine the transcriptional activation of HOTAIR by p65-NF-κB, transient 

transfection assays were performed in 293 cells using wild-type or mutant (906-
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CTCATTCTCA-915) sequences of HOTAIR promoter along with renilla vector. As shown 

in Supplementary Fig. S4B, treatment with TNF-α increased (p<0.05) luciferase activity 

(1.6-fold) by the p65-NF-κB wild-type vector, no change in activity of the mutant promoter 

was observed, and TNF-α-induced luciferase activity was blocked (P<0.05) by NF-κB 

inhibitor Bay-11.

Regulation of HOTAIR expression by NF-κB during DDR

To examine the effect of additional DNA damaging agents on NF-κB activation, we used a 

previously reported luciferase reporter construct containing 861 base pairs of the E-selectin 

promoter containing 3 canonical NF-κB-p65-binding sites as a positive control [23]. TNF-α 
treatment increased luciferase activity compared to empty vector (Supplementary Fig. S4C), 

confirming luciferase activation by known NF-κB inducers. In cells treated with MMC, 

H2O2 or CDDP, we observed increased luciferase activity, suggesting that various types of 

DNA damage can activate NF-κB (Supplementary Fig. S4D). To determine NF-kB specific 

transcription luciferase activity was determined in p65-wt or -mutant vector transfected 

A2780p cells (described in Supplementary Fig. S4D) treated with MMC, H2O2 or CDDP. As 

shown in Fig. 5D, p65-wt HOTAIR promoter activity was increased by these genotoxic 

agents (6.9-, 8.2- and 5.0-fold by MMC, CDDP, or H2O2 relative to empty vector 

respectively) and was inhibited (P<0.05) by pretreatment with Bay-11 (Fig. 5E). No change 

in luciferase activity was observed with the p65-mutant construct relative to wild-type vector 

(Fig. 5D, E). In all, our results suggest that HOTAIR is transcriptionally regulated by NF-κB 

as a response to DNA damage.

Overexpression of HOTAIR induces IL-6 secretion, DDR activation and cellular senescence

Cytokines in the microenvironment contribute to DNA damage resistance [24] and secretion 

of cytokines during persistent DNA damage has been reported [25]. IL-6 secretion in 

particular was shown to contribute to a “chemoresistant niche” [26]. Having observed 

significant expression of interleukin receptors in A2780_CR5 (Fig. 3B), indicative of 

pathway activation, we performed an NF-κB target cytokine screen. HOTAIR 

overexpression was associated with increased (>2-fold) secretion of CCL5, IL-5, IL-6, 

CXCL-11 and IL-23 compared to vector control (Supplementary Fig. S5A). Moreover, 

treatment of A2780p cells with “HOTAIR-conditioned” media increased (P<0.05) CDDP 

IC50 by >2-fold, which was reversed using an IL-6 neutralizing antibody (Fig. 6A). The 

addition of recombinant IL-6 to unconditioned media resulted in an approximate 2-fold 

increase (P<0.05) in the IC50 for CDDP (Fig. 6B), and dsiRNA knockdown of HOTAIR in 

A2780_CR5 cells reduced (P<0.05) IL-6 secretion (Fig. 6C) and IC50 for CDDP (Fig. 6D). 

Recombinant IL-5 had no effect on CDDP IC50 (Supplementary Fig. S5B), further 

indicating a role for HOTAIR-mediated IL-6 induction in platinum-DNA damage response.

Based on a recent report that unresolved DNA strand breaks (DSBs) caused by DNA 

damage followed by NF-κB activation and IL-6 secretion can induce cellular senescence 

[25], we examined whether treatment with low (1µM CDDP or 1/10th of IC50) or high 

(20µM CDDP or 2X the IC50) doses of CDDP induce senescence in A2780p cells 

overexpressing HOTAIR or not. Activation of p53 and p21 by HOTAIR was observed only 

during high CDDP treatment, indicated by p53 phosphorylation and p21 expression (Fig. 
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6E). In addition, IL-6 secretion, an established marker for cell senescence [25, 27], was 

increased (P<0.05) by CDDP in A2780p overexpressing HOTAIR compared to vector 

transfected cells (Supplementary Fig. S5C). Based on the observation that addition of 

recombinant IL-6 increased (P<0.05) proliferation (Supplementary Fig. S5D), we reasoned 

that IL-6 secretion by senescent cells induced proliferation of neighboring cells.

We then investigated whether increase in p-Chk1 and p-p53 was dependent on ATR 

signaling (ataxia telangiectasia mutated (ATM) and Rad3-related (ATR) signaling pathway) 

[28]. In HOTAIR overexpressing vs. vector control cells, decreased p-p53 levels (Fig. 7A, 

left) was observed and the level of p-Chk1 was essentially unchanged (Fig. 7A, right), 

suggesting ATR-dependent activation of p53 by HOTAIR (further supported by no change in 

proliferation in the presence of ATRi; Supplementary Fig. S5E). Next, we measured p-Chk1 

and p-p53 levels in A2780_CR5 cells upon dsiRNA knockdown HOTAIR and observed 

decreased p-Chk1 and p-p53 levels overall, and this effect was abolished in the presence of 

ATR inhibitor (Supplementary Fig. S5F). To examine lack of p65-NF-kB on cell 

proliferation and CDDP-resistance, we stably knocked down p65-NF-kB and validated 

reduced luciferase activity after stimulation with TNF-α (Supplementary Fig. S6A, B). 

Interestingly, ectopic expression of HOTAIR in NF-κB knockdown cells rescued (P<0.05) 

proliferation and increased (P<0.05) clonogenic survival (Supplementary Fig. S6C, D), 

which may be attributed to the previously described role of HOTAIR in inhibiting p21 as a 

potential mechanism of chemotherapy resistance and evasion of apoptosis [29, 30].

To examine cellular senescence, we measured β-galactosidase activity (SA-β-Gal) [31]. In 

HOTAIR overexpressing A2780p cells, SA-β-Gal positive cell numbers were increased 

(P<0.05) by high vs. low levels of CDDP (Supplementary Fig. S7A), and NF-κB inhibitor 

Bay-11 reduced (P<0.05) the number of senescent cells (Fig. 7B), which is likely a 

cytostatic effect of the drug (and not cytotoxicity), based on the observation that ectopic 

expression of HOTAIR increased cell proliferation in cells treated with the NF-κB inhibitor 

(Supplementary Fig. S5C). DsiRNA knockdown of HOTAIR in A2780_CR5 cells reduced 

the number of senescent cells (Fig. 7C). Next, we performed flow cytometry in both 

HOTAIR expressing A2780p and dsiHOTAIR knockdown A2780_CR5 cells 24 and 48 hr 

post CDDP treatment. We observe a decrease in S1 and an increase in G2 phase 48 hr post 

CDDP treatment in HOTAIR expressing cells (Fig. 7D) and a reversal of this effect in 

A2780_CR5 cells (Fig. 7E) suggesting that a subpopulation of cells undergo HOTAIR-

dependent cell senescence. Collectively, these results indicate that HOTAIR-induced NF-κB 

activation and IL-6 secretion contributes to a senescent phenotype, and IL-6 secretion 

influences the surrounding cell population in a paracrine manner, contributing to 

chemoresistance (Supplementary Fig. S7C).

Discussion

HOTAIR is a lncRNA frequently overexpressed in solid tumors [32] and associated with 

cancer cell growth and migration. Although HOTAIR overexpression in OC correlates with 

disease metastasis and poor patient prognosis [12, 33, 34], the underlying mechanism of 

HOTAIR upregulation and the role of this important lncRNA in drug resistance in OC and 

other cancers is not fully understood. In this study, we demonstrate a key role for HOTAIR 
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in DNA damage: HOTAIR modulates expression of genes activated during DDR, including 

Chk1 and the levels of γ-H2AX, to inhibit cell cycle progression. Our findings include that 

HOTAIR activation of the NF-κB pathway following CDDP-induced DNA damage 

contributes to cellular senescence. Furthermore, we demonstrate that DDR activation of NF-

κB induces HOTAIR and a positive feedback loop, resulting in sustained NF-κB activation 

and persistent DNA damage signaling. As platinum-based regimens continue to be the 

mainstay of treatment for many solid cancers including OC [35], HOTAIR may represent a 

target for therapeutic intervention of drug resistance.

Previous mapping studies revealed HOTAIR binding to chromosomal regions near the Iκ-

Bα gene, supporting the potential regulation of NF-κB activity by HOTAIR. NF-κB is a 

master regulator of several cellular responses, including DDR, stress, senescence and 

inflammation, although its role in cancer is paradoxical, including both oncogenic and tumor 

suppressive activities [36]. In ovarian and other cancers, NF-κB activation is associated with 

chemoresistance [37, 38] and activation during DNA damage induced by genotoxic agents 

has been demonstrated but not well defined [4, 5]. We show that HOTAIR expression 

modulated NF-κB activation as well as multiple NF-κB target genes including IL-6 and 

MMP-9 in vitro as well as in vivo. Consistent with these results, overexpression of HOTAIR 

increased nuclear translocation of NF-κB, which correlated with reduced total Iκ-Bα levels 

after CDDP treatment, and HOTAIR overexpression resulted in sustained DDR and NF-κB 

activation.

Our results also link HOTAIR-mediated IL-6 secretion with platinum resistance (Fig. 6A). 

The IL-6 cytokine induces apoptosis inhibitors BCL-2, BCL-XL and XIAP and contributes 

to CDDP-resistance [39]. Importantly, IL-6 secretion has also been linked with exposure to 

genotoxic stress caused by cisplatin and carboplatin [40]. IL-6 is generally considered a pro-

survival cytokine, but sustained IL-6 secretion after DNA damage is linked with cellular 

senescence [36]. The notion of cell senescence (a tumor suppressor mechanism) contributing 

to chemotherapy resistance (involves cell proliferation) is an emerging concept. Recent 

reports suggest that a senescent cell can become a “pro-inflammatory cell” and promote 

tumor progression by acquiring a senescence associated secretory phenotype (SASP) offer 

support for this concept [41, 42]. Our findings that HOTAIR can activate NF-kB and its 

target genes is supported by a recent report implicating HOTAIR in driving the expression of 

genes directly involved in SASP in urothelial carcinoma, further potentiating an important 

role for HOTAIR during senescence [43]. Furthermore, it is now strongly believed that the 

secretion of IL-6 by senescent cells can alter the tumor microenvironment in a paracrine 

fashion, activating multiple pathways, including the epithelial to mesenchymal transition 

(EMT) [44], and transforming surrounding stromal cells to a more chemoresistant phenotype 

[25, 26] (Supplementary Fig. S7B). Our findings on HOTAIR, IL-6, and DNA damage-

induced cell senescence are consistent with previous reports associating HOTAIR expression 

with EMT [33, 34], suggesting promotion of EMT by HOTAIR during chemotherapy-

induced DNA damage may contribute to chemoresistance. The slow tumor growth we 

observed in CDDP-treated HOTAIR expressing cells (Supplementary Fig. S1F) could be 

attributed to senescent cells altering the microenvironment to a tumor promoting 

environment, although further studies are needed.

Özeş et al. Page 8

Oncogene. Author manuscript; available in PMC 2016 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Unresolved DSBs generated by prolonged CDDP-induced DNA damage can result in 

constitutive activation of DDR signaling and activation of stress response pathways, 

including senescence [45]. Senescence following irreparable DNA damage has been 

reported [25], and we investigated whether exposure to low or high dose CDDP would be 

analogous to early response (transient period) or development of resistance (prolonged 

period). We demonstrate that prolonged expression of HOTAIR results in γ-H2AX foci 

formation and subsequent activation of Chk1, which plays a pivotal role during DDR by 

inducing S15 phosphorylation of tumor suppressor p53 (trans activation domain). The 

finding that HOTAIR-induced p53 phosphorylation during high CDDP (prolonged exposure) 

is further supported by the observed induction of p21 (Fig. 6D), a p53 target gene and CDK 

inhibitor, a process that is ATR-dependent (Supplementary Fig.S7B). As induction of p21 

has been closely linked to senescence [46], our findings are the first to indicate a role for 

HOTAIR in both senescence and chemoresistance. In support of our data, HOTAIR has 

recently been shown to induce the senescence pathway by its induction of p21 and p15 as 

well as genes involved in the NF-kB pathway [43, 47]. We posit that HOTAIR can contribute 

to the activation of several pathways that ultimately lead to chemoresistance. In high DNA 

damaging conditions a subset of cells can undergo HOTAIR dependent senescence, and at 

lower or non-senescent conditions HOTAIR can cause resistance in a cell-autonomous 

manner.

In addition to demonstrating that the above scenario is a NF-κB pathway dependent process, 

our results indicate that sustained NF-κB activation in HOTAIR expressing cells is due to 

suppression of Iκ-Bα expression by HOTAIR, in agreement with a previous report linking 

NF-κB activation to cellular senescence [2]. Recent studies show prolonged NF-κB 

activation in mutant p53 cells increases inflammation and tumorigenesis, primarily by 

mutant p53 sequestering tumor suppressor DAB2IP in the cytoplasm [48, 49]. Our 

observation that HOTAIR induced phosphorylation of mutant p53 (Supplementary Fig. S2C) 

may provide a mechanistic link for this complex process and support a role for HOTAIR in 

tumorigenesis in p53 mutant OC, the most commonly mutated gene in the high-grade serous 

disease [20]. In addition, it is possible that DNA damage can induce a physical interaction 

between NF-κB and PRC2, which can alter regulation of genes involved during senescence, 

such as an EZH2-NF-κB interaction [18].

Collectively, our data suggest a model (Fig. S7B) of NF-κB-driven transcription of 

HOTAIR, which subsequently activates persistent NF-κB expression, IL-6 secretion, and 

activation of CHK1-p53-p21 pathway, and establishment of a senescence, chemoresistant 

cancer phenotype. Although the involvement of other NF-κB and HOTAIR target genes in 

development of chemoresistance cannot be overlooked, the components of this network, 

including HOTAIR, may represent targets for novel therapeutic strategies to overcome or 

prevent CDDP-resistance in ovarian and other cancers.

Material and Methods

Cell lines, patient samples, culture conditions and reagents

Epithelial OC cell lines (A2780, A2780_CR5, SKOV3, HEYC2, OV90, IOSE, IGROV, 

OVMUNA, OV90) were maintained in RPMI 1640 medium (Invitrogen, Carlsbad, CA) as 
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described previously [50]. Cisplatin-resistant A2780_CR5 was established by continuous 

exposure to increasing concentrations of cisplatin [50]. Cell lines were authenticated in 2012 

by ATCC and tested for mycoplasma contamination (Manassas, VA). High-grade serous 

ovarian tumors (unpaired samples; chemo-naïve, stage 3–4 or recurrent, platinum resistant), 

and ovarian surface epithelium (OSE) were surgically collected with informed consent from 

all subjects (IRB approved protocol IUCRO-0280), snap-frozen, and stored in liquid 

nitrogen [51]. Cisplatin (CDDP) was purchased from Calbiochem (Billerica, MA), 

mitomycin C (MMC) was purchased from Sigma Chemical Co. (St. Louis MO), and H2O2 

was purchased from EMD Millipore (Billerica, MA). NF-κB inhibitor Bay-11–7082 was 

purchased from Santa Cruz Biotech (Santa Cruz, CA). LZRS-HOTAIR was a gift from Dr. 

Howard Chang (Stanford University; Addgene plasmid # 26110). Full-length HOTAIR was 

cloned into pAV5S vector containing a 98-mer aptamer sequence and as a vector control, 

aptamer cloned into pAV5S was used to account for any possible RNA-dependent signaling 

effects [52].

Luciferase assays, DNA damage experiments

A2780p cells were seeded in 96-well plates (104 cells/well) and transfected with pGL3-

promHOTAIR or mutants (500 ng construct/transfection). To normalize transfection 

efficiency, cells were co-transfected with PGL4 Renilla plasmid (100 ng). Twenty-four hours 

after transfection, cells were treated with Bay-11–7082 (5ng/mL for 1h) and then TNF-α 
(10ng/mL), MMC (10µM), CDDP (10µM) or H2O2 (10µM) for indicated times and lysed. 

Luciferase activity was analyzed using the Dual Luciferase Reporter Assay System 

(Promega, Madison, WI) and a Thermo Scientific Multilabel Plate Reader. To induce DNA 

damage, cells were treated with CDDP, MMC, H2O2 at indicated concentrations and 

harvested for RNA and protein isolation at the stated time points. Caspase 3/7 cleavage 

assay was performed according to manufacturers protocol (Caspase 3/7 GloAssay, 

Promega).

Mutagenesis and RNAi

Site directed mutagenesis was performed with the following forward and reverse primer sets 

using the QuickChange protocol by Agilent (Santa Clara, CA). Forward primer 5’-

GTGGTTTATCTTGCACCCCTCATTCTCAAGCCCCAGCCAGGGAA-3’, and reverse 

primer 5’-TTCCCTGGCTGGGGCTTGAGAATGAGGGGTGCAAGATAAACCAC-3’. The 

dsiRNA sequences used targeting human HOTAIR (Sense strand 5’-

UUCUAAAUCCGUUCCAUUCCACUGCGA-3’, and antisense strand 5’-/5Phos/

GCAGUGGAAUGGAACGGAUUUAGAA-3’) or negative control RNA targeting GFP 

(Sense strand 5’-CUACAACAGCCACAACGUC-3’, and antisense strand 5’-/5Phos/

GACGUUGUGGCUGUUGUAG-3’). DsiRNAs were transfected into cells using 

Lipofectamine 2000 (Invitrogen). shRNA for p65 and control were purchased from Santa 

Cruz (Sc-29410-SH, and sc-108060). 48 hr post transfection, A2780p cells were selected 

with 2.5ng/µL puromycin for 5 days and then maintained in 1ng/µL of the drug.

Immunoblot analysis

Cells were lysed in RIPA lysis buffer (50mM Tris-HCl, 150mM NaCl, 1mM EDTA, 1% 

NP-40, 0.5% sodium deoxycholate and 0.1% SDS) supplemented with protease inhibitors 
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(Sigma). Protein (approximately 5–10 µg) was loaded on precast 7.5% TGX gels (BioRad, 

Hercules, CA), blotting was performed as described previously [53] using polyvinylidene 

difluoride (PVDF) membrane (GE Healthcare, Pittsburg, PA). Membranes were blocked, 

incubated overnight at 4°C with primary antibody (EZH2, p21, p53, phospho-p53 (S15), β-

tubulin, Chk1, phospho-Chk1 (S317), Iκ-Bα, phospho-H2A.X, or Lamin-B (See 

Supplementary Table S2), washed, and then incubated with HRP-conjugated secondary 

antibody (Kirkegaard & Perry Laboratories, Gaithersburg, MD), and protein signals were 

observed using a chemiluminescence system (Thermo Scientific, Schaumberg, IL), 

according to instructions provided by the manufacturer.

MTT Assay

The quantity of viable cells was calculated by MTT assay as described previously [53]. 

Absorbance (570 nm; filter reference at 620 nm) was recorded using EnVision Multilabel 

Plate Reader (Perkin Elmer, Waltham, MA). Doubling time was measured with the equation: 

duration*log(2)/(log(final concentration)-log(initial concentration)).

RNA extraction and quantitative RT-PCR (qPCR)

RNA was extracted from cell lines and tumors and using RNeasy kit (Qiagen, Venlo, 

Limburg), cDNA was prepared using MMLV RT system (Promega), and qPCR) was 

performed with total cDNA and primers for indicated genes and GAPDH or EEF1A as the 

endogenous control (Supplementary Table S3), using Applied Biosystems 7500 Fast RT-

PCR system (Life Technologies, Grand Island, NY) and corresponding software, as we have 

described [54].

Cytoplasmic and nuclear extractions

Cells were grown to 80% confluence, trypsinized and centrifuged (1200 RPM, 5 min). Cell 

pellets were washed (1x PBS), re-pelleted (1200 RPM, 5 min), and then lysed in 

cytoplasmic lysis buffer supplemented with protease inhibitors (10mM Tris-HCl pH 7, 

150mM NaCl, 1.5mM MgCl2, 0.5% NP-40; 10 min, 4°C). The lysate was pelleted (1200 

RPM, 5 min), the supernatant was used for cytoplasmic buffer, and the remaining pellet was 

washed (3 times with cytoplasmic lysis buffer, 10 min). After the final wash, the cell pellet 

was lysed with nuclear lysis buffer (50mM Tris-HCl pH 7, 150mM NaCl, 1.5mM MgCl2, 

0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40), the lysate was pelleted (13,000 RPM, 

10 min) and the supernatant was used for the nuclear fraction.

Clonogenic survival assay

Cells were seeded (3–5 × 105 cells/well) and then transfected with expression vectors for 

HOTAIR or vector alone (10µg) 24 hrs after seeding using Turbofect (Thermo). At 24 hr 

post-transfection, cells were treated with CDDP for 3 hrs, washed, serially diluted, plated in 

triplicate into 6 well plates, allowed 6–8 days of cell growth for colony formation, stained 

with 5% crystal violet, and cell count was normalized to untreated control as described [54].
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Mouse xenograft experiments

All animal studies adhered to ethical regulations and protocols approved by the Institutional 

Animal Care and Use Committee of Indiana University. To assess tumorigenicity of cells 

overexpressing HOTAIR, A2780p cells were transfected with pAV5S–HOTAIR or pAV5S–

aptamer and 24 hr post-transfection cells were treated or not with CDDP for 3 hr, washed 

with PBS trypsinized and counted with trypan blue, re-suspended in 1:1 PBS/matrigel (BD 

Bioscience) and injected subcutaneously into the left flank of 3- to 4- week-old female nude 

athymic mice (BALB/ c-nu/nu; Harlan, Indianapolis, IN), as described [54, 55]. Engrafted 

mice (4 per group) were inspected three times per week for tumor appearance by visual 

observation and palpation. Tumor length (l) and width (w) were measured weekly using 

digital calipers and tumor volume (v) was calculated as v=½ × l × w2. No randomization 

was used and no animals were excluded from the final data. The investigator measuring 

tumor size was blinded to the treatment groups. Mice were sacrificed when tumor diameter 

reached 2 cm or at the end of study.

ELISA and cytokine release assays

Conditioned media were prepared by washing culture plates with PBS followed by 

incubation in serum-free RPMI medium with antibiotics for 48 hr and stored at −80°C. Total 

cell counts were determined and ELISA was performed using kits and procedures from 

R&D systems (Minneapolis, MN. Cytokine release assay, Cat #ARY005) and eBiosciences 

(San Diego, CA. IL-6 ELISA Cat # 88-7066-22). The data were normalized to the cell 

number and reported as fold change. IL-6 release assay was performed 3 times and the 

cytokine release assay was performed once.

Immunofluorescence quantification

A2780p cells transfected with HOTAIR expression plasmid or vector control were plated on 

glass slides (50,000 cells/well), incubated overnight 4°C with anti-phospho-H2AX or anti-

p65 antibodies (See Supplementary Table S2), and the number of cells displaying nuclear 

p65 or γ-H2AX was determined in ten random images from 3 independent experiments 

using a light microscope (60X magnification). Fluorescence intensity was analyzed using 

image J software. To determine the difference in intensity, whole cell individual intensities 

and the nuclear intensity were measured, intensities were averaged and normalized to 

control to determine fold translocation

ChIP assays

Cells were cross-linked (1% formaldehyde) and dynabeads (Life Technologies) coupled to 

the appropriate secondary antibody were used to immunoprecipitate sheared chromatin 

extracts treated with anti-p65. After reversing the crosslinks, DNA was purified, and 

standard curve of ChIP input DNA was prepared. Enrichment was calculated by using qPCR 

to compare the level of the target region in each sample to the mean of negative control 

genomic regions. Primers designed for the specified genomic regions (Integrated DNA 

Technologies, Coralville, Iowa) amplified a single product from input DNA based on a 

single melting peak (Supplementary Table S4). Each ChIP DNA sample was assayed for the 

levels of negative control regions.
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Senescence-detection assays

Senescence-associated β-galactosidase was detected in A2780p cells fixed with 5% 

formaldehyde and incubated in staining solution (Sigma) and 1mg/ml 5-bromo-4-chloro-3-

indolyl β-d-galactosidase (X-Gal, Invitrogen), for 24 hr at 37 °C cells, following the protocol 

of Debacq-Chainiaux [31]. The number of distinct blue cells were counted (20X 

magnification) and normalized to the total number of cells.

RNA-sequencing analysis of A2780p and A2780_CR5 cells

Stranded whole transcriptome RNA-seq was performed essentially as we have described 

[56]. Briefly, biological duplicates of A2780p and A2780_CR5 cells (107 culture dish) were 

lysed and RNA was extracted according to manufacturers protocol (Qiagen RNeasy Mini 

kit). Total RNA was size fractionated by size using ethanol concentration manipulations. 

The large RNA fraction (>200 nt) was fragmented prior to library construction. Ribosomal 

RNA was reduced by duplex specific nuclease (DSN) following limited hybridizations of 

both fractions and then amplified to add barcodes for multiplexing on the Illumina 

HiSeq2000 platform. Demultiplexing was performed by CASAVA v1.8.2 and trimming was 

accomplished with Trimmomatic v0.22 with additional trimming by fastx_clipper v0.0.13.2. 

Read mapping was performed by tophat2 v2.0.6 to the human genome hg19 (UCSC) with 

Gencode annotation v13 allowing no more than two mismatches. RNA sequencing data can 

be accessed using SRA number SRP066008.

TCGA Analysis

The IlluminaHiSeq RNASeq data was provided by the Genome Sciences Centre, BCCA. 

The RPKM values were provided from TCGA database. The exon-exon junction sequences 

and their corresponding coordinates were defined based on annotations of any transcripts in 

UCSC known genes, Ensembl (v54) or the Refseq database (as downloaded from the UCSC 

genome browser on March 2009).

Statistical analysis

All data are presented as mean values ± SD of at least three biological experiments unless 

otherwise indicated. CDDP IC50 values were determined by Prism 6 (GraphPad Software, 

San Diego, CA), using logarithm normalized sigmoidal dose curve fitting. The estimate 

variation within each group were similar therefore student’s t-test was used to statistically 

analyze the significant difference among different groups by using Prism 4.0 (GraphPad 

Software). The genome-wide analysis experiments were conducted as described 

previously[56, 57] using the Partek Genomics Suite (version 6.5).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. HOTAIR expression and characterization in ovarian cancer (OC) cells
(A) HOTAIR expression in OC cell lines (IGROV, OVSAHO, OVMUNA, SKOV3, A2780, 

HEYC2, A2780-CR5, and OV90) was determined by qRT-PCR, (values normalized to 

GAPDH). Values represent the average of three biological replicates. (B) HOTAIR 

expression in primary high-grade serous ovarian tumors from unpaired patient samples at 

initial diagnosis and platinum sensitive (n=11) compared to patients with recurrent and 

platinum resistant disease (n=14) (C) TCGA data analysis for HOTAIR Read Per Kilobase 

Million (RPKM) values in OC patients with primary vs. recurrent disease. (D) Clonogenic 
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growth in A2780p overexpressing HOTAIR (left and middle graphs) and A2780_CR5 cells 

with dsiRNA-mediated depletion of HOTAIR. Graphs represent the fraction of surviving 

cells normalized to untreated population. Graphs represent triplicate experiments. (E) 
Xenograft tumor growth in athymic mice of A2780p expressing HOTAIR and treated with 

cisplatin (10µM CDDP) or vehicle control (2×106 cells per injection). Area under the curve 

(AUC) was calculated at 10 weeks (n=4 mice per group). Asterisks indicate P<0.05 (*) or 

P<0.01 (**).
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Figure 2. DNA damage induces HOTAIR expression
(A) A2780p cells transfected with HOTAIR or empty vector or (B) A2780_CR5 cells 

transfected with either dsiGFP or dsiHOT and were treated with CDDP (24 hr post-

transfection). Western blots show total Chk1 and pChk1 levels at the indicated times post-

CDDP treatment at the same exposure for both cell types. Western is representative of three 

biological replicates. (C) A2780p cells transfected with HOTAIR or vector control or (D) 
A2780_CR5 cells transfected with either dsiGFP or dsiHOT were untreated or treated with 

CDDP (10 µM). Cells were fixed and stained for γ-H2AX foci (red) at the indicated time 
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points. Cells were counted at 60x magnification (average of 100 cells counted) and the total 

number foci were determined. All experiments were repeated three times and error bars 

represent standard deviation (S.D.). (E) HOTAIR or vector expressing A2780p or 

A2780_CR5 cells transfected with either dsiGFP or dsiHOT were treated with indicated 

concentration of CDDP for 3 hrs and 24 hrs post-treatment caspase 3/7 cleavage assay was 

performed. Bar graph represents caspase 3/7 cleavage normalized to untreated control. 

Western blot is representative of two biological replicates. Asterisks indicate P<0.05 (*) or 

P<0.01 (**).
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Figure 3. HOTAIR overexpression induces DDR and NF-κB target gene expression
(A) Western blot showing total Iκ-Bα and p65 NF-κB levels in cytoplasmic and nuclear 

fractions in A2780 and A2780-CR5 cells. (B) Western blot showing total Iκ-Bα levels in 

cells expressing vector control or HOTAIR post CDDP-treatment (10µM) at indicated times. 

(C) A2780p cells transfected with HOTAIR or vector control were untreated or treated with 

CDDP (10 µM) for the indicated times. Cells were fixed and stained for NF-κB p65 (red). 

The total number of foci was determined based on the average of 100 cells counted at 60x 

magnification. Bar graph represents fold change of p65 translocation relative to untreated. 
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All experiments were repeated three times and error bars represent standard deviation (S.D.). 

(D) Western blot showing nuclear Iκ-Bα and NF-κB levels in A2780p cells expressing 

vector control or HOTAIR either post CDDP (10µM), Bay-11 (3 µM) or combination 

treatment. (E) A2780_CR5 cells transfected with either dsiGFP or dsiHOTAIR were 

untreated or treated with CDDP (10 µM) for the indicated times. Cells were fixed and 

stained for NF-κB p65 (red). The total number of foci was determined based on the average 

of 100 cells counted at 60x magnification. (F) Western blot showing nuclear Iκ-Bα and NF-

κB levels in A2780_CR5 transfected with either dsiGFP or dsiHOTAIR siRNA post CDDP 

(10µM), BAY11 (3 µM) or combination treatment.
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Figure 4. Transcriptional upregulation of HOTAIR by NF-κB during DNA damage
(A) HOTAIR expression in A2780p treated with CDDP alone or in combination with NF-κB 

inhibitor Bay-11 (HOTAIR levels measured by qRT-PCR 24hr post-treatment). (B) HOTAIR 

expression in A2780p cells transfected with IKK-α and IKK-β and western blot showing co-

expression of IKKα and IKKβ in A2780p cells 24 hr post-transfection. (C) Average 

expression (log10 fold change) of NF-κB target genes STAT1, IL6R, IL6, IL4R, IL8, IL1R1, 
BCL2L1, MMP9 in A2780p cells (red bars) HOTAIR expression (fold-change) was 

measured by normalizing to vector control. For A2780_CR5 cells transfected with 

dsiHOTAIR (yellow bars), fold change was measured by normalizing to dsiGFP transfected 

cells. (D) Average expression of NF-κB target genes measured in mouse xenografts 

overexpressing HOTAIR (treated with CDDP compared to untreated). Fold-change was 

measured by normalizing to xenografts with vector control. Bars represent average 

measurements +/−S.D. (n=4 per group). Asterisks indicate P<0.05 (*) or P<0.01 (**).
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Figure 5. Direct transcriptional regulation of HOTAIR by NF-κB
(A) Map of HOTAIR promoter region showing canonical p65 binding site (908 bases 

upstream of TSS) and the mutant generated in PGL3 vector. (B) Chromatin 

immunoprecipitation (ChIP) in A2780_CR5 cells of NF-κB p65 targeting 5 regions 

upstream of HOTAIR transcription start site (TSS). (1: 10kb, 2: 8kb, 3: 5kb, 4: 908bp 

(consensus p65 site) and 5: 203bp). Asterisks indicate P<0.05 (*) or P<0.01 (**) (C) 
Chromatin immunoprecipitation (ChIP) in A2780_CR5 cells of NF-κB p65 post CDDP 

(10uM) or in combination with BAY11 (3uM) targeting regions 1 and 4 upstream of 
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HOTAIR transcription start site (TSS). (1: 10kb, 4: 908bp (consensus p65 site) with primer 

corresponding to IL8 promoter as a (+) control. (D) Luciferase activity of HOTAIR promoter 

(Illustrated in Fig. 5A) in A2780p cells treated with mitomycin C (MMC, 10µM), cisplatin 

(CDDP, 10µM) or hydrogen peroxide (H2O2, 0.5mM). (E) Luciferase activity of NF-κB p65 

wild-type or mutant HOTAIR promoter (Fig. 4C) in A2780p cells pre-treated Bay-11 (5µM 

for 1 hr) then treated with MMC (10µM), CDDP (10µM) or H2O2 (0.5mM). Asterisks 

indicate P<0.05 (*) or P<0.01 (**).
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Figure 6. HOTAIR-induced IL-6 secretion
(A) HOTAIR- or control-conditioned media was added to A2780p cells and the IC50 for 

CDDP was determined by MTT assay. IL-6 neutralizing antibody was added to HOTAIR-

conditioned media and IC50 for CDDP was compared to HOTAIR-conditioned media plus 

IL-6 neutralizing antibody. (B) Recombinant IL-6 (10 ng/mL) was added to serum-free 

culture media and IC50 for CDDP determined by MTT assay (vs. negative control). (C) 
A2780_CR5 cells transfected with dsiRNAs targeting HOTAIR was measured for IL-6 

secretion 72 hr post transfection. (D) Conditioned media from A2780_CR5 cells transfected 

Özeş et al. Page 26

Oncogene. Author manuscript; available in PMC 2016 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with dsiRNAs targeting HOTAIR was added to cells and the IC50 for CDDP was determined 

by MTT assay. (E) A2780p cells transfected with HOTAIR or vector were treated with 

CDDP (1µM, “Low CDDP”; 20µM, “High CDDP”). Western blot analysis was performed 

using specific antibodies at the indicated time points. Asterisks indicate P<0.05 (*).
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Figure 7. HOTAIR-induced cellular senescence
(A) Western blot for total p-p53 and p53 (Left) and total pChk1 or Chk1 (Right) in cells 

overexpressing HOTAIR or vector control with or without ATR inhibitor (5µM) followed by 

CDDP treatment (10µM). (B) HOTAIR or vector transfected A2780p cells or (C) dsiGFP or 

dsiHOTAIR transfected A2780_CR5 cells were treated with CDDP (20µM) in the presence 

or absence of Bay-11 (5µM) and then assayed SA-β-Gal activity to asses senescent cells. 

Positive cells (blue coloration) were counted at the indicated times using a microscope (20X 

magnification). (D) HOTAIR or vector was transfected in A2780 cells and 24 hr post 
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transfection cells were treated with 20uM CDDP for 24 or 48 hr. DNA content was 

measured by PI staining and flow cytometry. (E) A2780_CR5 cells were transfected with 

either dsiHOTAIR or dsiGFPand 24 hr post transfection cells were treated with 20uM CDDP 

for 24 or 48 hr. DNA content was measured by PI staining and flow cytometry. Asterisks 

indicate P<0.05 (*).
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