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Joint models are statistical tools for estimating the association between time-to-event and longitudinal
outcomes. One challenge to the application of joint models is its computational complexity. Common
estimation methods for joint models include a two-stage method, Bayesian and maximum-likelihood
methods. In this work, we consider joint models of a time-to-event outcome and multiple longitudinal
processes and develop a maximum-likelihood estimation method using the expectation-maximization
(EM) algorithm. We assess the performance of the proposed method via simulations and apply the
methodology to a data set to determine the association between longitudinal systolic and diastolic
blood pressure (BP) measures and time to coronary artery disease (CAD).

Keywords: joint models, EM algorithm, simulation, multiple longitudinal outcomes, time-to-event
outcome

1. Introduction

Prospective cohort studies or clinical trials with time-to-event as the primary outcome
usually collect many longitudinal variables. Longitudinal studies of Alzheimer’s disease,
for example collect repeated measures of height, weight, blood pressure (BP) measures
and many other variables in order to determine disease etiology [1]. Clinical trials on
cardiovascular diseases routinely monitor BPs at regular intervals to ensure patient safety
[2]. In addition, the increasing use of electronic medical records (EMR) in many health
care systems makes the collection of many longitudinal laboratory measures and time
to medical events automatic and straightforward. Separate modeling of the longitudinal
processes and the survival outcome may not fully discover potential disease mechanisms.
Appropriate statistical methods are needed to utilize the richness of these data in order
to identify potential relationships between the longitudinal measures and disease risk.

Many epidemiologic studies have mostly adopted the Cox model [3] using baseline expo-
sure measures. Such an approach implicitly assumes that the exposure variables stay con-
stant over the length of the study, which is unlikely to be true in studies over an extensive
period of time. Cox model with observed longitudinal measures as time-dependent covari-
ates [4–6] incorporates changes in exposure levels over the follow-up period. However, this
model assumes that the longitudinal outcomes are continuously measured without errors.
This assumption may not be realistic when the longitudinal measures are intermittently
collected. Furthermore, measurement errors in the longitudinal measurements were not
considered in this modeling framework. Lastly, the time-dependent Cox model lacks the
flexibility to use various functional forms of the underlying longitudinal processes.

To overcome these difficulties, joint models of longitudinal and survival outcomes were
proposed by Faucett and Thomas [7] and Wulfsohn and Tsiatis [8]. They used a linear
growth curve model for the longitudinal process and a Cox model with the current value
of the longitudinal process as time-dependent covariate. Many extensions to these earlier
joint models have been proposed. Henderson et al. modeled the hazard as a function of the
history and rate of change of a biomarker [9]. Brown and Ibrahim extended the linear
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growth curve model to flexible non-parametric subject-specific random-effects models
[10, 11]. Yu et al. considered a survival-cure model for the time-to-event outcome [12].
Huang et al. and Elashoff et al. extended the Cox model to competing risks models
[13, 14]. Chi and Ibrahim extended the joint models from a single survival outcome
to multiple survival outcomes [15]. Njeru Njagi et al. considered combining conjugate
and normal random effects of longitudinal and time-to-event outcomes in joint models
to improve model fit [16]. Qiu et al. considered a generalized linear mixed model for
the longitudinal outcome and a discrete survival model with frailty to predict event
probabilities [17]. Comprehensive reviews of joint models have been published [12, 18–
20].

When multiple longitudinal measures are available, extension to the joint model frame-
work needs to appropriately account for potential correlations among the longitudinal
measures. Simultaneous modeling of multiple longitudinal outcomes in joint models offers
a number of advantages over separate modeling of each longitudinal outcome [11, 15, 21–
23]. First, for correlated longitudinal outcomes it is more relevant to estimate the adjusted
association of each longitudinal outcome with the event risk [21]. Second, Fieuws et al.
showed that accounting for the correlation between longitudinal measures may substan-
tially enhance the predictive ability of joint models [24]. In addition, two studies found
that joint models of multiple longitudinal outcomes are more efficient compared with
separate modeling of each outcome in some settings [25, 26].

There are three general types of estimation methods in joint models of longitudinal and
survival outcomes: a two-stage approach, Bayesian Markov Chain Monte Carlo (MCMC)
method, and maximum-likelihood approach. In the two-stage approach, parameter es-
timation is conducted separately for the longitudinal model and the survival model.
Specifically, at the first stage, parameter estimates and predictions are obtained from
the longitudinal models without consideration of the survival outcomes. At the second
stage, predicted longitudinal values are used as true exposure levels in a time-dependent
Cox model. Although the two-stage approach is computationally simple, it can incur
bias and loss of efficiency by ignoring the time-to-event information when modeling the
longitudinal process [7, 27, 28], as the survival process in this setting essentially produces
non-ignorable missing data for the longitudinal outcomes. The two-stage approach has
been discussed by many authors [27–32]. Alternatively, both the Bayesian MCMC ap-
proach and the maximum-likelihood approach incorporate both types of outcomes into
a joint likelihood function and simultaneously estimate model parameters. The Bayesian
MCMC approach has been used for joint models of multiple longitudinal and time-to-
event outcomes [10, 11, 15, 21, 33]. Bayesian MCMC approach can be relatively easier
to implement. On the other hand, maximum likelihood based approach enables rigorous
study of asymptotic properties. When sample size is small, the large sample approxi-
mation of maximum-likelihood approach may not be accurate. But Bayesian approach
may not provide valid quantitation either because the results may reply too much on
correct or tight prior specification. In the situation of many parameters in complex mod-
els, autocorrelation and convergence can be a challenge with the MCMC approach. To
the best of our knowledge, the maximum-likelihood method has only been applied to
the joint models with a single longitudinal outcome [8, 13, 18, 34, 35]. In particular,
Rizopoulos developed an R package (JM) using the EM algorithm [36] for joint models
of a time-to-event outcome and a single longitudinal outcome [37, 38].

In this work, we develop a maximum-likelihood approach using the EM algorithm for
parameter estimation in joint models of multiple longitudinal processes and a time-to-
event outcome. Commonly used for maximum-likelihood estimation, the EM algorithm
offers computational advantages over direct likelihood maximization especially in com-
plex likelihood functions involving random effects [39]. Direct likelihood maximization
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method can be useful for joint model estimations with few random effects, simple corre-
lation structure of random effects, or small number of unknown parameters. However, in
many joint models including ours, often times, the model structure may be too complex
to use direct likelihood maximization. We chose the EM approach over direct likelihood
maximization based on the following reasons. For complex joint models, the EM approach
can break down the optimization of the whole likelihood function into several M-steps,
which makes the optimization more feasible and stable. The EM algorithm increases the
likelihood function as iteration continues, ensuring numerical stability. Additional effi-
ciency can be gained when some parameters have closed-form solutions in the M-step.
Finally, predicted values are calculated as part of the E-step reducing the need for further
computation.

The remainder of this article is organized as follows: in Section 2 we describe data from
a primary care patient cohort with extensive EMR data as a motivating example. In
Section 3 we describe the joint model framework as well as the joint likelihood function.
Estimation method using the EM algorithm and asymptotic inferences of parameter
estimates are described in Section 4. In Section 5 we report results from simulation
studies. In Section 6 we illustrate the proposed method using data from the primary care
patient cohort. Conclusions and discussions are presented in Section 7.

2. A Primary Care Patient Cohort

A primary care patient cohort was assembled in 1991 as part of a depression screening
study in primary care clinics in Wishard Health Service. From 1991 to 1993, patients age
60 years or older in the Wishard Health Service were consented for depression screening
during their regular clinical visits to their primary care physicians. A total of 4,413
primary care patients were initially contacted, of whom 115 refused; 57 were not eligible
due to severe cognitive impairment; 284 were not eligible because they were non-English
speaking, in prison, in a nursing home, or had a hearing impairment; 3,957 patients were
enrolled in the study. Details about the study have been published [40, 41].

EMR data are available for all enrolled patients and the information includes diagnosis
of medical conditions, BP measures, laboratory test measures and medication order and
dispensing. One of the research interests using data from this cohort is to examine new
risk factors for coronary artery disease (CAD) in elderly population. It is well known from
the results of prospective cohort studies that high baseline BP is a risk factor for CAD
in middle-aged populations [42–44], but few studies have determined the relationship
between longitudinal BP measures and the risk of CAD. Even fewer focused on the
elderly population who have declining BP with increasing age. Therefore, it is necessary
to apply joint models to determine the association between the longitudinal BP measures
and risk of CAD in this elderly cohort.

Among the 3,957 patients enrolled, 2,654 (797 males and 1857 females) were free of
CAD at enrollment. For patients with incident CAD events, the date of diagnosis was
used as the event time; for patients without CAD, the last outpatient clinic visit before
December 31, 2010 was used as the censoring time. Systolic and diastolic BP measured in
sitting position from outpatient clinic visits were also collected during follow-up for up to
20 years. Since it has been shown that males have significantly increased CAD risk than
females [45, 46], we focus our analysis on the 797 male patients in the cohort where 28%
had incident CAD during the follow-up period from enrollment to December 31, 2010.
Mean age of patients included in the analysis sample at baseline was 68 (SD=7.4) years,
519 (65.1%) were black, 254 (31.9%) were smokers, and 268 (33.6%) had history of dia-
betes at baseline. The frequency of BP measurements varied from patient to patient with
a mean frequency of 20.5 (SD=20). For computational convenience annualized systolic
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Figure 1. Observed annualized longitudinal systolic and diastolic BP measures over time and fitted population

mean curves for the CAD and non-CAD group.

and diastolic BP measures during the study period were derived for each participant.
First, we aligned the first BP measures for each patient and set the time point as t=0
(year). Then we continued to create yearly time points for each subject with the event or
censoring time as the last time point and calculated the mean BP measures within each
yearly interval for each subject. On average, there were about 5.3 (SD=4.4) annualized
BP measures per subject. Figure 1 plots the annualized longitudinal systolic and dias-
tolic BP measures over time by CAD status. The blue and green curves represent fitted
population mean BP profiles for CAD and non-CAD groups respectively, using linear
mixed-effects models with fixed quadratic time effect. It can be seen that the population
mean systolic and diastolic BPs were higher over time for the CAD group than that for
the non-CAD group, indicating a potential association between the risk of CAD and lon-
gitudinal systolic and diastolic BP measures. The figure also shows that the differences
in BP measures at baseline between the CAD and non-CAD groups were negligible. Thus
analyses relying on baseline BP may not be able to detect any relationship between BP
measures and risk of CAD.

3. Joint Models

In this section, we introduce joint models for multiple longitudinal processes and a time-
to-event outcome by defining the notations and formulation of the longitudinal and sur-
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vival models. Specifically, we consider multivariate mixed-effects models for the multiple
longitudinal outcomes and a Cox model for the time-to-event outcome with true underly-
ing functions of the longitudinal measures as time-dependent covariates. We then derive
the likelihood function of the joint models.

3.1 Longitudinal Models

Let yl(tij) denote the observed measurement of the l-th longitudinal outcome for subject
i at time points tij , where i = 1, ..., n, j = 1, ..., ni, l = 1, ..., L. n denotes the number
of subjects; ni is the number of longitudinal repeat measures for each subject; L is the
number of longitudinal outcomes in the model. The corresponding longitudinal trajectory
is modeled using the following model

yl(ti) = y∗
l (ti) + εil,

= XT
l (ti)βl + ZTl (ti)bil + εil (1)

where y∗
l (ti) = (yl(ti1), yl(ti2), ..., yl(tini

))T is the corresponding true underlying longitu-
dinal measures of the l-th biomarker for the i-th subject; XT

l (ti) is the design matrix of
fixed effects, including time effects and baseline covariates; βl is the corresponding vector
of the fixed effects; ZTl (ti) is the design matrix for the random effects, bil, distributed
as bi = (bi1,bi2, ...,biL)T ∼ N(0,D); εil is the corresponding measurement error term
such that εil ∼iid N(0, σ2

l Ini
). It is worth noting that the correlations among the multiple

longitudinal processes and the within-subject correlation for each longitudinal biomarker
are represented in the variance-covariance matrix of random effects D. We assume that
the measurement errors of different longitudinal outcomes are independent of each other,
and they are also independent of the random effects bi.

3.2 The Survival Model

Let T ∗
i and Ci be the true event time and censoring time respectively for subject i. We

define the observed event time Ti = min(T ∗
i , Ci) and the event indicator δi = I(T ∗

i ≤ Ci).
Assuming that the hazard function depends on some functions of the true longitudinal
measures F(y∗

il(t)) and baseline covariates wi, the hazard function can be written as

h(ti) = h0(t) exp

{
γTwi +

L∑
l=1

αlF(y∗
l (ti))

}
, (2)

where h0(t) denotes the baseline hazard function, and αl and γ are coefficients for the
function of lth biomarker and baseline risk factors. The baseline hazard function can
be a parametric function or a flexible piecewise constant function. In this work, αl,
l = 1, 2, ..., L, are of primary interest. The correlation between the multiple longitudi-
nal biomarkers and the time-to-event outcome is induced by the shared random effects
through y∗l (ti) or bil in the longitudinal and survival models.

The function F(·) can be chosen as different functional forms depending on the interest
of the study. For example, if the focus is the association between longitudinal values and
event risk, F(·) can be an identity function; if the change in the longitudinal measures is
of interest, F(·) can be chosen as derivative function with respect to time t; for studies
interested in the cumulative history of the longitudinal measures over time and event
risk, F(·) can be an integration function of y∗

l (ti) over time t. Depending on the choices,
random effects bi may affect the hazard function in a non-linear fashion. This is in
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contrast with the frailty type of joint models where the random effects are linear in the
exponential term of the hazard.

3.3 Joint Likelihood Function

Under the conditional independence assumption between the random effects bi and mea-
surement errors εi = (εi1, εi2, ..., εil)

T of the longitudinal outcomes, the kernel of the joint
likelihood function is

L(θ) =
n∏
i=1

p(Ti, δi,yi1, ...,yiL|θ)

=
n∏
i=1

∫
p(Ti, δi|θ,bi)p(yi1|θ,bi) · · · p(yiL|θ,bi)p(bi|θ)dbi,

where θ = (γ,α,θh0
,β,σ,D)T is the vector containing all parameters in the models

with α = (α1, α2, ..., αl)
T , β = (β1, β2, ..., βl)

T . Under the assumed models (1) and (2)
for the longitudinal and survival outcomes, there are three components:

p(Ti, δi|θ, bi) =

{
h0(Ti) exp

(
wT
i γ +

L∑
l=1

αlF
(
XT
l (Ti)βl + ZTl (Ti)bil

))}δi

exp

{
−
∫ Ti

0
h0(u) exp

(
wT
i γ +

L∑
l=1

αlF
(
XT
l (u)βl + ZTl (u)bil

))
du

}
,

p(yi1|θ,bi) · · · p(yiL|θ,bi)

=

L∏
l=1

 1√
2πσ2

l

ni

exp

− 1

2σ2
l

ni∑
j=1

(
yl(tij)−

(
XT
l (tij)βl + ZTl (tij)bil

))2
 ,

and

p(bi|θ) =

(
1√
2π

)k/2
|D|−1/2 exp

(
−1

2
bTi D

−1bi

)
,

where k is the dimension of the D matrix.

4. Estimation Method

In this section, we present the maximum-likelihood method based on the EM algorithm
for parameter estimation and inference.
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4.1 Implementing the EM Algorithm

The complete log likelihood function, given the random effects bi is:

logLC =

n∑
i=1

{
log p(Ti, δi|bi;θ) + log p(yi1|bi;θ) + ...+ log p(yiL|bi;θ)

+ log p(bi;θ)

}
,

where LC denotes the complete joint likelihood function.
In the E-step the expected complete log-likelihood function given the conditional dis-

tribution of random effects is

Q(θ|θm) =
n∑
i=1

∫ {
log p(Ti, δi|bi;θ) + log p(yi1|bi;θ) + ...+ log p(yiL|bi;θ)

+ log p(bi;θ)

}
p(bi|Ti, δi,yi1, ...,yiL;θm)dbi.

where

p(bi|Ti, δi,yi1, ...,yiL;θm) =
p(bi, Ti, δi,yi1, ...,yiL;θm)

p(Ti, δi,yi1, ...,yiL;θm)
.

For the M-step, closed-form expressions are available for the variance of residuals of each
longitudinal model and variance-covariance matrix of the random effects, whereas the
fixed effects for each longitudinal model and parameters in the survival model have to
be estimated numerically. The key steps are:

(1) Estimation of the variance of residuals of each longitudinal model by

σ̂l
2 =

1∑n
i=1 ni

n∑
i=1

(
yil −XT

ilβ
m
l

)T(
yil −XT

ilβ
m
l − 2ZTilE(bi|Ti, δi,yi1, ...,yiL;θm)

)
+Tr

(
ZTilZilVar(bi|Ti, δi,yi1, ...,yiL;θm)

)
+E(bi|Ti, δi,yi1, ...,yiL;θm)TZTilZilE(bi|Ti, δi,yi1, ...,yiL;θm)

where l = 1, ..., L, Tr represents the trace function of a matrix, and E denotes the
expectation function.

(2) Estimation of variance-covariance matrix of random effects by

D̂ =
1

n

n∑
i=1

Var(bi|Ti, δi,yi1, ...,yiL;θm)

+E(bi|Ti, δi,yi1, ...,yiL;θm)E(bi|Ti, δi,yi1, ...,yiL;θm)T

(3) Since the fixed effect coefficients of each longitudinal model, βl, are involved in both
the longitudinal and survival models, there is no closed form solution. The one-step
Newton-Raphson algorithm can be implemented to update βl:

β̂m+1
l = β̂ml −

(
∂S(β̂ml )/∂βl

)−1
S(β̂ml ), l = 1, ..., L,
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where the score functions are

S(βl) =

n∑
i=1

1

σ2
l

XT
il

(
yil −XT

ilβl − ZTilE(bi|Ti, δi,yi1, ...,yiL;θm)
)

+δiαl
∂F
(
XT
l (Ti)βl + ZTl (Ti)bil

)
∂βl

− exp(γTwi)

∫ ∫ Ti

0
h0(u)

∂ exp
(∑L

l=1 αlF
(
XT
il(u)βl + ZTil(u)bi

))
∂βl

p(bi|Ti, δi,yi1, ...,yiL;θm)dudbi,

for l = 1, ..., L. The derivatives ∂S(β̂ml )/∂βl can be calculated by numerical approx-
imations.

(4) Parameters in the survival model can be similarly updated using the Newton-
Raphson algorithm. The baseline hazard function is estimated using piecewise con-
stant function. Score equations used in the Newton-Raphson algorithm are:

S(γ) =
n∑
i=1

wi

{
δi − exp(γTwi)

∫ ∫ Ti

0
h0(u) exp

(
L∑
l=1

αlF
(
XT
il(u)βl + ZTil(u)bi

))

p(bi|Ti, δi,yi1, ...,yiL;θm)dudbi

}
.

S(αl) =
n∑
i=1

δi

∫
F
(
XT
l (Ti)βl + ZTl (Ti)bil

)
dbi

− exp(γTwi)

∫ ∫ Ti

0
h0(u)F

(
XT
il(u)βl + ZTil(u)bi

)
exp

(
L∑
l=1

αlF
(
XT
il(u)βl + ZTil(u)bi

))
p(bi|Ti, δi,yi1, ...,yiL;θm)dudbi,

where l = 1, ..., L, and

S(θh0
) =

n∑
i=1

δi
1

h0(Ti;θh0
)

∂h0(Ti;θh0
)

∂θTh0

− exp(γTwi)

∫ ∫ Ti

0

∂h0(Ti;θh0
)

∂θTh0

exp

(
L∑
l=1

αlF
(
XT
il(u)βl + ZTil(u)bi

))
p(bi|Ti, δi,yi1, ...,yiL;θm)dudbi.

For computation of the expected likelihood function, a pseudo-adaptive Gaussian-
Hermit quadrature rule [35] can be used to approximate the integrals. The E-step and
M-step iterate until a pre-specified convergence criterion is met.
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4.2 Inferences and Goodness-of-fit

After convergence of the EM algorithm, standard errors of estimated parameters can
be calculated from the observed inverse Hessian matrix, which can be derived from the
score functions using numeric approximations [47]. Using the properties of consistency
and asymptotic normality of maximum-likelihood estimates, a 95% confidence interval
(CI) of a parameter θ can be derived as:

θ̂ ± 1.96× s.e.(θ̂).

For hypothesis tests involving multiple parameters, the Wald test or Score test can be
used. The Likelihood Ratio Test is a commonly used statistic to compare nested models.
For non-nested models, the Akaike’s Information Criterion (AIC) [48] is often used for
model selection:

AIC = −2l(θ̂) + 2k.

where k denotes the number of parameters in the model. Alternatively, one can adopt
Bayesian Information Criterion (BIC) [49].

5. Simulation Study

We performed Monte Carlo (MC) simulations to assess the performance of the proposed
method and compare with the two-stage method. We simulated data from joint mod-
els with two correlated normally distributed longitudinal variables and a time-to-event
variable. For each MC data set, longitudinal data were simulated for 500 subjects each
with 10 equally spaced bivariate longitudinal measures over a 5-year period. We con-
sidered similar fixed and random model structures for the two longitudinal outcomes,
where the fixed effects included time effect, and one binary baseline covariate, and the
random effects included random intercept and random slope. The correlation between
the two longitudinal outcomes is represented by the correlation between the two random
intercepts. We assumed it is an unstructured variance-covariance matrix when fitting the
model. The longitudinal models are:

y1(tij) = y∗1(tij) + ε1(tij) = β01 + β11tij + β21wi + b01i + b11iti + ε1(tij),

y2(tij) = y∗2(tij) + ε2(tij) = β02 + β12tij + β22wi + b02i + b12iti + ε2(tij),

where ε1(tij) ∼ N(0, σ2
1), ε2(tij) ∼ N(0, σ2

2) and

(b01i, b11i, b02i, b12i)
T ∼ N




0
0
0
0

 ,


σ2

01 0 ρσ01σ02 0
0 σ2

11 0 0
ρσ01σ02 0 σ2

02 0
0 0 0 σ2

12


 .

The time-to-event endpoint was simulated from a Cox model with a Weibull baseline
hazard function, h0(t) = abtb−1, where a and b are the rate and shape parameters respec-
tively. The Cox model is assumed to depend on the current values of the two longitudinal
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outcomes and can be expressed as

h(t) = abtb−1 exp(α1y
∗
1(t) + α2y

∗
2(t)).

To simulate the event times, we first simulated a survival probability, si, from Uni-
form(0,1) for each subject and then solved for T ∗

i using two R functions [50], integrate()
and uniroot(), from the following equation:

si − exp

{
−
∫ T ∗i

0
abub−1 exp(α1y

∗
1(u) + α2y

∗
2(u))du

}
= 0.

Censoring times were independently simulated from another uniform distribution. Over-
all, the censoring percentage is about 30%. Because of censoring, there were about 6 re-
peated bivariate measurements per subject. In the actual model fitting, we used a more
flexible piecewise constant baseline hazard function instead of the parametric Weibull
baseline risk function.

We considered two simulation scenarios (large variances of residual errors and random
effects, and small variances of residual errors and random effects) with parameter values
specified as below:

• Small variance scenario : σ1 = σ2 = 0.1, σ01 = σ02 = 0.1, σ11 = σ12 = 0.04;
• Large variance scenario : σ1 = σ2 = 0.5, σ01 = σ02 = 0.5, σ11 = σ12 = 0.2.

Other parameters were set as follows: β01 = 0.2, β11 = 0.5, β21 = 0.2, β02 = 1, β12 = 0.2,
β22 = 0.5, ρ = 0.5, a = 0.005, b = 1.1, α1 = 1, and α2 = 1.5.

The parameter estimation using the two-stage method was achieved from the follow-
ing two steps. First, a model for bivariate longitudinal outcomes was fitted to obtain the
parameter estimates in the longitudinal models. The parameter estimation was imple-
mented using the ’lme’ function in the ’nlme’ R package. In addition to the parameter
estimation, we also obtained predicted values for the longitudinal measures at each time
point up to the event or censoring time. Second, a time-dependent Cox model using
the predicted longitudinal data as time-dependent variables and other baseline variables
as independent variables was fitted to obtain the parameter estimation in the survival
model. The ’coxph’ function in the ’survival’ R package was used for this model.

Parameter estimates from the two-stage method were used as the initial parameter
values in the EM approach.

Among the 500 replicates of each scenario, the convergence of EM algorithm in this
joint model simulation looks good. On average, under the small variance scenario, it takes
about 3 minutes to complete the model fit for each MC data set; the EM algorithm always
converged given that we allows a large the number of iterations; the average number of
iterations required for convergence is 68 (SD=50).

Simulation results are presented in Tables 1 and 2. We reported relative biases,
empirical standard errors, model-based standard errors, and coverage probabilities of
the 95% CIs based on 500 MC data sets. For the variance-covariance matrix of the
random effects, D, we reported the results of its cholesky decomposition, where

chol(D) =


D11 0 D13 0

0 D22 0 0
0 0 D33 0
0 0 0 D44

 .

In the small variance scenario, both the two-stage approach and the EM algorithm
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generally performed well: estimated parameters had small relative bias (defined as

(θtrue − θ̂)/θtrue), and coverage of the 95% CIs were close to nominal levels. However,
in the large variance scenario, the two-stage approach performed poorly whereas the
EM algorithm maintained good performance with small relative bias and good coverage
probabilities of the 95% CIs. In particular, on the two parameters representing the asso-
ciation between the longitudinal measures and the event risk, α1 and α2, the two-stage
approach generally underestimated the strength of the associations.

6. Data Application

We applied joint models to the aforementioned primary care patient cohort data using 797
male patients. Our focus was to determine whether and how longitudinal BP measures
were associated with the time to CAD. For convenience we centered patients’ baseline
age at 60 years. We fitted four different sets of joint models using the proposed EM
algorithm. The best set of models were determined using the AIC. The 4 sets of joint
models are as follows.

Joint models 1 consider the following models

yl(tij) = y∗l (tij) + εijl

= β0l + β1ltij + β2lagei + β3lracei + b0li + b1litij + εijl, l = 1, 2 (3)

for the observed longitudinal systolic and diastolic BP measures respectively. The random
effect vector bi = (b01i, b11i, b02i, b12i)

T is normally distributed with mean zero and an
unstructured variance-covariance matrix of D; εij1 and εij2 are independently distributed
as N(0, σ2

1) and N(0, σ2
2) respectively. The normality assumption of longitudinal systolic

and diastolic BP measures was checked by Q-Q plot using the transformed residuals of
error based on the fitted joint model [51]. The hazard function satisfies

h(t) = h0(t) exp {γ1agei + γ2smokei + γ3racei + γ4diabetesi + α1y
∗
i1(t) + α2y

∗
i2(t)} ,(4)

where the piecewise constant function h0(t) consists of 7 equally spaced intervals with 6
interior knots based on percentiles of the observed event time points. The above hazard
function depends on the current values of systolic and diastolic BP measures and some
baseline risk factors.

Joint models 2 assume the same longitudinal models (3) as in the joint models 1, but
use the slopes of systolic and diastolic BP measures in the hazard function instead, that
is we assume that the risk for CAD at time t depends on the slope of the true trajectory
of systolic and diastolic BP at the same time point as previous research has demonstrated
that changes in BP are important predictors of health outcomes [52].

h(t) = h0(t) exp
{
γ1agei + γ2smokei + γ3racei + γ4diabetesi + α1y

∗′
i1(t) + α2y

∗′
i2(t)

}
.(5)

Joint models 3 assume the same hazard model (4) in the joint model 1, but include a
quadratic fixed time effect for both systolic and diastolic BP measures,

yl(tij) = y∗l (tij) + εijl

= β0l + β1ltij + β2lt
2
ij + β3lagei + β4lracei + b0li + b1litij + εijl, l = 1, 2. (6)

Joint models 4 assumes (5) and (6).
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The parameter estimation steps of the two-stage method described in the simulation
study section were applied for the parameter estimation using the two-stage method.

In the implementation of the EM algorithm, we used 3 pseudo-adaptive Gaussian-
Hermite quadrature points for numerical integration over the random effects and 7
Gaussian-Kronrod quadrature points for the integration in the survival function. Mod-
els were compared according to AIC: smaller AIC indicates better model fit. Among
the 4 joint models considered, Joint models 3 was the best fitting (AIC=65786) fol-
lowed by Joint models 4 (AIC=65798), Joint models 2 (AIC=65885) and Joint models
1 (AIC=65898). Here we present parameter estimates from joint models 3 in Tables 3.

It can be seen that systolic BP measures are significantly associated with the risk of
developing CAD. Each 10 unit increase of systolic BP is associated with 1.23-fold increase
(95% CI:[1.05, 1.5]) in patient’s risk of developing CAD. In addition we observe that
diastolic BP measures are not significantly associated with the risk of developing CAD
once systolic BPs were adjusted in the model. The fitted model also identified several
other risk factors for CAD, i.e. participants with older age, being Caucasian and smokers
have higher risk of CAD. The fitted longitudinal quadratic growth models suggested that
there is a quadratic increasing-then-decreasing trend for systolic BP measures, whereas a
decreasing-then-increasing quadratic trend for diastolic BP measures was seen. In Figure2
we plotted subject-specific fitted curves under fitted Joint model 3 for 4 CAD and 4 non-
CAD participants, randomly selected from the study population. It can be seen that the
quadratic longitudinal models fit the data relatively well.

In this joint model, we assume that the correlation between systolic and diastolic
BP is taken into consideration in the variance-covariance matrix of random effects. The
estimated correlation between the random intercepts of systolic and diastolic BP is 0.785
(95% CI [0.718, 0.851]), and the estimated correlation between the random slopes of
systolic and diastolic BP is not significant, indicating that the systolic and diastolic BP
is highly correlated through their random intercepts.

As a comparison, we also fitted two separate single longitudinal measure joint models,
one using systolic BP only and the other diastolic BP only, while adjusting for the same
covariates as in (6) above. The two separate joint models showed that both systolic and
diastolic BP were significantly associated with CAD risk. Our joint models 3 takes the
correlation between the two BP measures into consideration and our results indicate
that systolic BP had higher impact on the risk of CAD than diastolic BP in this elderly
population.

We also analyzed the data using alternative methods including the two-stage approach,
Cox model with baseline BP measures, and Cox model with time-dependent BP mea-
sures. In the two Cox models we adjusted for the same baseline risk factors as in hazard
model (4). Given our research focus was on whether and how longitudinal BP measures
were associated with the time to CAD, the Coxs model using baseline only does not
fully utilize the longitudinal BP data and is inadequate in addressing the research ques-
tion. The time-dependent Coxs model ignores measurement errors in the longitudinal
measures and is expected to underestimate the variance of the association parameter.
Figure 3 plots the estimated parameter, α̂1, for systolic BP and their corresponding 95%
CIs from 4 different methods: the EM algorithm (Joint models 3), the two-stage method
(Joint models 3), the Cox model with time-dependent covariates and the Cox model with
baseline BP measures. Without knowing the true underlying model, these comparisons
do not suggest the effectiveness of our proposed model. But they illustrate differences in
conclusions resulted from using different models and methods.
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Figure 2. Fitted subject-specific longitudinal BP curves for randomly selected 4 CAD and 4 non-CAD subjects

based on fitted Joint models 3. The black dots and black solid curves represent the observed systolic BP overtime
and fitted subject-specific curves respectively. The blue dots and blue solid curves represent the observed diastolic

BP overtime and fitted subject-specific curves respectively.

7. Conclusion

We developed a maximum-likelihood method using the EM algorithm for parameter
estimation of joint models for multiple longitudinal processes and a time-to-event out-
come. Simulation studies indicated adequate performance of the EM based estimation
approach which performed better than the two-stage estimation approach. We also ap-
plied the proposed method to data from a primary care patient cohort using EMR data
for longitudinal systolic and diastolic BP and investigating their associations with the
risk of CAD.

Compared to joint models with univariate longitudinal data, joint models with multi-
variate longitudinal outcomes can account for correlations among the longitudinal mea-
sures such as systolic and diastolic BP. On the other hand, the including of multiple
longitudinal outcomes leads to a more complex model due to additional random effects.
A pseudo-adaptive Gaussian-Hermit quadrature rule [35] was used to improve the com-
puting performance of EM algorithm where multiple random effects exist in the model. In
addition, simultaneous modeling of multiple longitudinal outcomes in joint models offers
a number of advantages over separate modeling of each longitudinal outcome including
more robust parameter estimates and improved predictive accuracy [53].

Our current work focused on joint models with normally distributed longitudinal out-
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Figure 3. Comparison of estimated association (α̂1) between the longitudinal systolic BP and risk of CAD from
four methods. The blue solid dots are estimated α̂1 from the four methods. The upper and lower bars are 95% CI

of parameter estimates. The red dashed line denotes the estimate from the EM algorithm.

comes. It is worth noting that the proposed methodology can be extended to joint models
with other distributions for the longitudinal outcomes such as binary, Poisson and others.
The proposed EM algorithm can be used for estimation from joint models with mixed
types of longitudinal outcomes. Other potential extensions include compete-risk models
or semi-compete-risk models to take informative censoring into consideration. Another
area for further research is on predictive accuracy based on the proposed joint models.

The methodology for joint models of multiple longitudinal processes and time-to-event
outcome is applicable to many clinical and epidemiological studies where the association
between longitudinal measures and time-to-event outcome is often of interest. The joint
model framework provides a platform for exploring various features of the longitudinal
measures related to disease risk, extending the traditional approach that relies on baseline
measures only in cohort studies. With the increasing use of EMR in routine clinical
practices, joint models can become a powerful tool for identifying longitudinal risk factors
for disease risk and may offer insights for potential disease mechanisms that are otherwise
not available using traditional approaches.
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Appendix. The M-Step for the Joint Models

In the m-th iteration, the expected complete log-likelihood function given the conditional
distribution of random effects is

Q(θ|θm) =
n∑
i=1

∫ {
log p(Ti, δi|bi;θ) + log p(yi1|bi;θ) + ...+ log p(yiL|bi;θ)

+ log p(bi;θ)

}
p(bi|Ti, δi,yi1, ...,yiL;θm)dbi

=
n∑
i=1

∫ {
δi

(
log(h0(Ti)) + wT

i γ +
L∑
l=1

αlF(XT
l (Ti)βl + ZTl (Ti)bil)

)

−
∫ Ti

0
h0(u) exp

(
wT
i γ +

L∑
l=1

αlF
(
XT
l (u)βl + ZTl (u)bil

))
du

+

L∑
l=1

(
−1

2
ni log

(
2πσ2

l

)
− 1

2σ2
l

(
yil −XT

ilβl − ZTilbil
)T (

yil −XT
ilβl − ZTilbil

))

+
k

2
log

(
1√
2π

)
− 1

2
log |D| − 1

2
bTi D

−1bi

}
p(bi|Ti, δi,yi1, ...,yiL;θm)dbi

For the M-step, closed-form expressions are available for the variance of residuals of
each longitudinal model and variance-covariance matrix of the random effects, whereas
the fixed effects for each longitudinal model and parameters in the survival model have
to be estimated numerically.

(1) The variance of residuals of each longitudinal model
Taking derivatives with respect to σ2

l for the expected complete log-likelihood function

17



February 28, 2016 Journal of Statistical Computation and Simulation JM˙paraEst˙2015

and setting to zero we get

∂Q(θ|θm)

∂σ2
l

=
n∑
i=1

∫
∂

∂σ2
l

(
−1

2
ni log

(
2πσ2

l

)
− 1

2σ2
l

(
yil −XT

ilβl − ZTilbil
)T (

yil −XT
ilβl − ZTilbil

))
p(bi|Ti, δi,yi1, ...,yiL;θm)dbi

= −
∑n

i=1 ni
2σ2

l

+
1

2σ4
l

n∑
i=1

∫ (
yil −XT

ilβl − ZTilbil
)T (

yil −XT
ilβl − ZTilbil

)
p(bi|Ti, δi,yi1, ...,yiL;θm)dbi

= 0

Solving the above equation we get

σ̂l
2 =

1∑n
i=1 ni

n∑
i=1

∫ (
yil −XT

ilβl − ZTilbil
)T (

yil −XT
ilβl − ZTilbil

)
p(bi|Ti, δi,yi1, ...,yiL;θm)dbi

=
1∑n
i=1 ni

n∑
i=1
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yil −XT

ilβl
)T (

yil −XT
ilβl
)
− bTilZil
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ilβl
)

−
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)T

ZTilbil +
(
ZTilbil

)T
ZTilbil

)
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=
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ZTilZilVar(bi|Ti, δi,yi1, ...,yiL;θm)

)
+E(bi|Ti, δi,yi1, ...,yiL;θm)TZTilZilE(bi|Ti, δi,yi1, ...,yiL;θm)

where l = 1, ..., L, Tr represents the trace function of a matrix, and E denotes the
expectation function.

(2) The variance-covariance matrix of random effects
Taking derivatives with respect to D−1 for the expected complete log-likelihood function
and setting to zero we get
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∂Q(θ|θm)
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Solving the above equation we get

D̂ =
1

n

n∑
i=1

Var(bi|Ti, δi,yi1, ...,yiL;θm)

+E(bi|Ti, δi,yi1, ...,yiL;θm)E(bi|Ti, δi,yi1, ...,yiL;θm)T

(3) The score functions for the fixed effect vector of each longitudinal model can be
derived by taking derivatives with respect to βl for the expected complete log-likelihood
function.
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for l = 1, ..., L.
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(4) The score functions of parameters in the survival model are derived as follows.
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)

−
∫ Ti

0
h0(u) exp

(
wT
i γ +

L∑
l=1

αlF
(
XT
l (u)βl + ZTl (u)bil

))
du

}
p(bi|Ti, δi,yi1, ...,yiL;θm)dbi

=

n∑
i=1

wi

{
δi − exp(γTwi)

∫ ∫ Ti

0
h0(u) exp

(
L∑
l=1

αlF
(
XT
il(u)βl + ZTil(u)bi

))

p(bi|Ti, δi,yi1, ...,yiL;θm)dudbi

}
.

S(αl) =
n∑
i=1

∫
∂

∂αl

{
δi

(
log(h0(Ti)) + wT

i γ +

L∑
l=1

αlF(XT
l (Ti)βl + ZTl (Ti)bil)

)

−
∫ Ti

0
h0(u) exp

(
wT
i γ +

L∑
l=1

αlF
(
XT
l (u)βl + ZTl (u)bil

))
du

}
p(bi|Ti, δi,yi1, ...,yiL;θm)dbi

=
n∑
i=1

δi

∫
F
(
XT
l (Ti)βl + ZTl (Ti)bil

)
p(bi|Ti, δi,yi1, ...,yiL;θm)dbi

− exp(γTwi)

∫ ∫ Ti

0
h0(u)F

(
XT
il(u)βl + ZTil(u)bi

)
exp

(
L∑
l=1

αlF
(
XT
il(u)βl + ZTil(u)bi

))
p(bi|Ti, δi,yi1, ...,yiL;θm)dudbi,

where l = 1, ..., L.

S(θh0
) =

n∑
i=1

∫
∂

∂θh0

{
δi

(
log(h0(Ti)) + wT

i γ +
L∑
l=1

αlF(XT
l (Ti)βl + ZTl (Ti)bil)

)

−
∫ Ti

0
h0(u) exp

(
wT
i γ +

L∑
l=1

αlF
(
XT
l (u)βl + ZTl (u)bil

))
du

}
p(bi|Ti, δi,yi1, ...,yiL;θm)dbi

=
n∑
i=1

δi
1

h0(Ti;θh0
)

∂h0(Ti;θh0
)

∂θTh0

− exp(γTwi)

∫ ∫ Ti

0

∂h0(Ti;θh0
)

∂θTh0

exp

(
L∑
l=1

αlF
(
XT
il(u)βl + ZTil(u)bi

))
p(bi|Ti, δi,yi1, ...,yiL;θm)dudbi.
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Table 3. Parameter estimates, standard errors and 95%CI for Joint Models 3. α1 and α2 are the association
estimates between the risk of CAD and current value of systolic and diastolic BP at event time point, respectively.

λi i = 1, ..., 7 denote the baseline hazards of the 7 piecewise constant intervals.

Parameter Estimate Std Err lower 95%CI upper 95%CI

Longitudinal systolic BP
Intercept 135.53 0.80 133.95 137.10
time 0.26 0.16 -0.06 0.57
time2 -0.03 0.01 -0.05 -0.01
Age 0.01 0.06 -0.10 0.11
Race 4.40 0.82 2.78 6.01
log(σ1) 2.47 0.01 2.45 2.50

Longitudinal diastolic BP
Intercept 79.42 0.34 78.75 80.09
time -1.64 0.09 -1.82 -1.46
time2 0.06 0.01 0.05 0.07
Age -0.13 0.02 -0.18 -0.09
Race 2.74 0.32 2.11 3.36
log(σ1) 1.94 0.01 1.92 1.97

Time-to-CAD
Age 0.06 0.01 0.04 0.08
Smoking History 0.35 0.15 0.06 0.65
Race -0.49 0.15 -0.78 -0.19
Diabetes -0.00 0.14 -0.28 0.28
α1 0.021 0.008 0.005 0.038
α2 0.011 0.014 -0.017 0.039
log(λ1) -7.73 0.80 -9.30 -6.17
log(λ2) -8.17 0.80 -9.74 -6.61
log(λ3) -7.85 0.79 -9.41 -6.29
log(λ4) -7.19 0.78 -8.72 -5.66
log(λ5) -6.49 0.77 -8.00 -4.98
log(λ6) -6.61 0.76 -8.10 -5.12
log(λ7) -6.03 0.75 -7.50 -4.55
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