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Abstract

Adrenocorticotropic hormone (ACTH) diurnal patterns contain both smooth circadian rhythms 

and pulsatile activities. How to evaluate and compare them between different groups is a 

challenging statistical task. In particular, we are interested in testing 1) whether the smooth ACTH 

circadian rhythms in chronic fatigue syndrome and fibromyalgia patients differ from those in 

healthy controls, and 2) whether the patterns of pulsatile activities are different. In this paper, a 

hierarchical state space model is proposed to extract these signals from noisy observations. The 

smooth circadian rhythms shared by a group of subjects are modeled by periodic smoothing 

splines. The subject level pulsatile activities are modeled by autoregressive processes. A 

functional random effect is adopted at the pair level to account for the matched pair design. 

Parameters are estimated by maximizing the marginal likelihood. Signals are extracted as posterior 

means. Computationally efficient Kalman filter algorithms are adopted for implementation. 

Application of the proposed model reveals that the smooth circadian rhythms are similar in the 

two groups but the pulsatile activities in patients are weaker than those in the healthy controls.
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1. Introduction

Chronic fatigue syndrome (CFS) is a complicated disorder characterized by persistent and 

unexplained fatigue with a prevalence around 0.5% to 2.5% [1]. Fibromyalgia (FM) is a 

disorder characterized by chronic pains with a prevalence of 2% [2]. CFS and FM share 

many demographic and clinical characteristics. Thus, a similar neuroendocrine dysfunction 

is generally hypothesized as the common etiological pathway. Among various hypotheses, 

the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis is the most popular one [3, 

4]. The HPA axis is the major endocrine system in managing stress through its end product 
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cortisol. Cortisol is secreted from the adrenal glands and is regulated by the 

adrenocorticotropic hormone (ACTH). ACTH is produced by the pituitary gland under the 

control of the hypothalamus. ACTH exhibits a diurnal pattern which has both a smooth 

circadian rhythm and short term variations. The smooth circadian rhythm is synchronized to 

the light-dark cycle and varies smoothly over a 24-hour period. The short term variations 

around the smooth circadian rhythm are caused by pulsatile activities as responses to 

external and internal stimuli. Both the smooth circadian rhythms and the pulsatile activities 

are important components in studying the HPA axis and have been a great interest to many 

researchers. Parker et al [5] and Papadopoulos and Cleare [6] reviewed studies on the HPA 

axis in CFS and FM. Among the more than 150 studies published during years 1966–2010, a 

few reported lowered ACTH morning peak in CFS. However, no significant changes have 

been generally confirmed. Potential reasons for the negative findings are twofold. First, 

existing statistical methods cannot adequately model both smooth circadian rhythms and 

pulsatile activities simultaneously for multiple subjects. Second, most studies only had 

cross-sectional ACTH measurements, which do not have enough information for evaluating 

two components.

In the statistical literature, many methods have been developed for the smooth circadian 

rhythms and the pulsatile activities. Smooth hormone circadian rhythms have been modeled 

by cosine functions [7], periodic smoothing splines [8], shape-invariant mixed effects 

models [9], and periodic functional mixed effects models [10]. In these approaches, the 

pulsatile activities are treated as random noises and the biological information contained in 

the pulsatile activities is not of interest. For pulse identification and estimation, methods 

originated from compartment models outperform criterion based methods [11]. 

Compartment models have long been used in studying ACTH [12, 13, 14]. The one-

compartment model is generally adopted, which reduces to an autoregressive process of 

order 1 (AR(1)) for equally spaced samples. These pulse identification methods require a 

constant basal hormone level and thus are inapplicable to ACTH because of its smooth 

circadian rhythm. Modeling the pulses but ignoring the smooth circadian rhythms will lead 

to unreasonable estimates [15]. Several methods for simultaneous modeling of the smooth 

circadian rhythms and the pulsatile activities have been developed for a single subject [16, 

17, 18]. Inference on multiple subjects can be performed in a second stage analysis, whose 

validness depends on correctly incorporating the first stage variations. Liu et al [19] 

modeled ACTH and cortisol jointly for multiple subjects and included both smooth 

circadian rhythms and pulsatile activities. Their method focused rather on the cross-

relationships between ACTH and cortisol but not on the univariate behaviors of ACTH. 

Additionally, they did not considered how to handle matched-pairs design.

Our specific motivation comes from a study reported by Crofford et al [20]. Figure 1 

displays the 24-hour ACTH profiles of 36 patients and 36 healthy controls obtained from the 

study. The study was conducted at the University of Michigan Medical Center. Among the 

patients, 14 were diagnosed with CFS only, another 10 with FM only, and the remaining 12 

with both CFS and FM. Patients were recruited from outpatient clinics. They were 18–65 

years old, mostly female (32 of 36 subjects), non-smoking, and non-obese. Healthy controls 

from local communities were one-to-one matched on age, gender, and menstrual cycle, if 
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applicable. All subjects were admitted on the evening before the blood sample collection, 

were provided standard meals at regular times, and were at rest. Blood samples were 

collected at 10-minute intervals over a 24-hour period beginning at 9am, which generated 

145 equally spaced data points for each subject. Crofford et al used two-stage approaches in 

analysing ACTH dynamics [20]. Smooth circadian rhythms and pulsatile activities were first 

extracted from each subjects and then compared in second-stage analyses. They did not find 

any difference in ACTH pulsatile activities nor mean levels between patients and controls. 

This motivates us to develop a method that can model both components and multiple 

subjects in a unified framework. In particular, we are interested in decomposing ACTH 

profiles into smooth circadian rhythms and short term variations caused by pulsatile 

activities, where the latter will be referred to as pulsatile activities hereafter for the 

simplicity of presentations. This decomposition is biologically meaningful. For example, the 

short term effect of ACTH on the adrenal glands is in minutes and depends on rapid ACTH 

concentration changes, while the long term effect is in hours and depends on the average 

ACTH levels [21, 22].

In this paper, we propose a hierarchical state space approach with three hierarchical levels. 

For the smooth circadian rhythms, we aim to evaluate and compare the group level mean 

processes. The rationale for the common trends is that all subjects were synchronized to a 

similar environment because of the study design. We adopt a state space representation of 

cubic smoothing splines at the group level. Consequently, the smooth circadian rhythm 

estimate is a cubic smoothing spline. It is extracted as the posterior mean conditional on all 

the subjects from the same group. Numeric constraints are used to enforce periodicity [23]. 

For the pulsatile activities, different subjects’ short term variations do not align to the same 

time frame; therefore, the mean processes are not meaningful. Instead, the parameters 

characterizing the pulses are biologically important [24]. We adopt a state space 

representation of AR(1) process at the subject level. The extracted pulsatile activities as the 

posterior means are subject specific and are mainly determined by that subject. The AR(1) 

parameters are used to compare the pulsatile activities between the two groups. The third 

hierarchical level comes from the matched design, which makes the two groups balanced 

with respect to the matching covariates. To account for the matching effect, we adopt a 

random smoothing spline as the functional random effect at the pair level [25]. This 

approach allows the matching effect to vary over time. Overall, two types of signals at three 

hierarchical levels are unified into a single state space model. Consequently, standard 

estimation and inference methods for state space models can be adopted. Parameters are 

estimated by maximizing the marginal likelihood. Kalman filter is adopted for efficient 

computations.

The model for ACTH is defined in Section 2. Estimation and inference are presented in 

Section 3. Analysis results and interpretations are presented in Section 4. Potential 

extensions are in Section 5. Concluding remarks and discussions are in Section 6.

2. The model

Let yki(tj) denote the observed ACTH value, where k = p stands for the patient group, k = c 

for the control group, and i = 1, ⋯, 36 for the 36 matched pairs. Jointly, k and i denote a 
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particular subject. Time tj = (0, ⋯, 144)/144 is scaled to [0, 1] for the computation of 

smoothing splines. The model is

(1)

This model decomposes yki(tj) into a measurement error and a signal. The signal is the 

summation of a group level smooth circadian rhythm βk(tj), a pair level functional random 

effect ai(tj), and a subject level pulsatile component bki(tj). Errors are identically and 

independently distributed as .

The smooth circadian rhythm βk(t) captures the smooth trend shared by a group of subjects, 

where t is the collection of all tj’s. Consequently, βp(t) is a common component among all 

the patients and will be estimated using all ypi(t)’s for i = 1, ⋯, 36. Similarly, βc(t) is for the 

controls. We model βk(t) by the state space representation of periodic cubic smoothing 

splines. For a cubic smoothing spline [26], the state vector is ϕk(tj) = {βk(tj) β̇
k(tj)}⊤, where 

β̇
k(tj) is the first derivative with respect to time. The state transition equation is

where H is the state transition matrix and  is the stochastic innovation 

with

and  is the smoothing parameter. Unequally spaced data can be handled by replacing Δt 

with Δtj = tj − tj−1. Diffuse initialization is adopted as ϕk(0) ~ N(0, κI2) with κ → ∞ and I2 

is the 2 × 2 identity matrix. Numerical tricks are used to enforce βk(1) = βk(0) and β̇
k(1) = 

β̇k(0) [23]. The basic idea is to augment the state vector with {βk(0) β̇
k(0)}⊤ and enforce 

βk(1) = βk(0) and β̇
k(1) = β̇

k(0).

The pair level functional random effect ai(tj) captures the matching effect. This effect is 

specific to the ith pair and thus will mainly be determined by ypi(t) and yci(t). By modeling it 

as a function, the similarity between a pair of matched subjects is allowed to change over 

time. This component is to account for the correct amount of variations and thus is a 

nuisance component. We model it by the state space representation of cubic smoothing 

splines similar to βk(tj).

The state vector is defined as ψi(tj) = {ai(tj) ȧi(tj)}⊤. The state transition equation is ψi(tj) = 

Hψi(tj−1) + ηi(tj). The stochastic innovation is , where  is the 

smoothing parameter. The initialization is proper as ψi(0) ~ N(0, block diagonal ).
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The pulsatile activities bki(tj) are specific to the kith subject. They represent the short term 

reactions to challenges. Their actual values will be mainly determined by the kith subject. 

On the other hand, their parameters characterize the strength of the pulsatile activities and 

can be used for comparisons between the two groups. We model bki(tj) by an AR(1) process 

with the following state transition equation

The AR(1) coefficient ρk indicates how fast the pulsatile activities return to the smooth 

circadian rhythms. The strength of the pulsatile activities is indicated by the innovation 

variance . A bigger innovation variance suggests potentially larger pulses. The 

initialization is  under the stationary assumption. Overall, the 

model has ten parameters .

3. Estimation and inference

The proposed model can be formulated into a single multivariate series with a large state 

vector. Consequently, existing techniques for state space models can be adopted. From the 

signal extraction point of view, these state space models are the prior distributions. 

Parameters are estimated by maximizing the marginal likelihood. Because of the diffuse 

component ϕk(0), maximizing the marginal likelihood is equivalent to the restricted 

maximum likelihood (REML) [27]. This approach can also be viewed as empirical Bayesian 

because the parameters are estimated from the data. The three signal components and the 

overall fittings are estimated by their posterior means. These posterior means are equivalent 

to the best linear unbiased predictions (BLUPs) [28, 29]. From the posterior means and their 

variances, confidence intervals can be constructed. These confidence intervals can be used 

to compare the group level smooth circadian rhythms. A formal test can be performed using 

bootstrap as described in the appendix. Comparisons of the pulsatile activities between the 

patient group and the control group are performed by testing whether ρp = ρc and . 

These tests can be carried out simultaneously or separately using either Wald tests or 

likelihood ratio tests.

Kalman filtering algorithms are adopted for efficient computations [30]. These algorithms 

have two steps: the forward filtering step and the backward smoothing step. In the forward 

filtering step, the means and the variances of the state vectors are updated sequentially by 

incorporating the observed data along the time points. At each time point, the updating is 

carried out one subject at a time. Consequently, the filtered means and variances are 

conditional on the information up to the current time point and the current subject. The 

marginal likelihood is also calculated in the filtering step. In the backward smoothing step, 

the information beyond the current time point and the current subject is combined with the 

filtered items to produce posterior means and variances that are conditional on all the data 

points. Under this framework, predictions into the future domain can also be 

straightforwardly implemented. Brief element-wise algorithms are given in the appendix.
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Existing software, such as Proc SSM in the SAS/ETS software (SAS Institute Inc., Cary, 

NC, USA), can be used for a general hierarchical state space model without shape 

constraints. To numerically enforce the periodicity of the group level smooth circadian 

rhythms, we chose to program our own code using Matlab (The Mathworks Inc., Natick, 

MA, USA). Function fminunc was adopted to maximize the marginal likelihood. Fminunc 

is an unconstrained multivariate optimization routine, which can approximate the Hessian 

matrix by finite difference without the need to provide derivative values. Fminunc searches 

the real line for optimal parameter values, therefore some parameters need to be transformed 

so that their ranges are (−∞, ∞). We adopt logarithmic transformation for smoothing 

parameters and variances and logit transformation for the AR(1) coefficients.

4. Results

4.1. AR(1) Parameter estimates

The REML estimate of the error variance with its asymptotic standard errors (ASE) was 

. ASEs were calculated using the Hessian matrix and delta method. The 

REML estimates of the AR(1) coefficients (ASEs) were 0.7968 (0.0393) for the patient 

group and 0.9264 (0.0601) for the control group. Wald test was adopted to test whether ρp = 

ρc and the p-value was < 0.0001. This suggests that ACTH in the patients was eliminated 

faster than in the healthy controls. The REML estimates of the innovation variances and 

their ASEs were 1.1825 (0.0309) for the patient group and 1.8069 (0.0429) for the control 

group. Wald p-value for whether  was also < 0.0001. This suggests that the pulsatile 

ACTH activities in the patients had smaller magnitudes compared to the healthy controls. In 

testing whether ρp = ρc and  simultaneously, both Wald test and likelihood ratio test 

led to p-value < 0.0001. Therefore, the pulsatile ACTH activities were significantly weaker 

in the patients than in the controls.

4.2. Posterior means

Figure 2 displays the extracted smooth circadian rhythms with 95% point-wise confidence 

intervals, which were calculated using the posterior means and variances and were Wahba’s 

Bayesian confidence intervals [31]. The effective degrees of freedom for the two curves in 

combination are 116.86 [32]. For both groups, the ACTH smooth circadian rhythms reached 

their peaks in the early morning (6am–9am). This corresponds to waking and getting ready 

for daily activities. Then, they decreased and reached their lowest levels around 9pm. This 

corresponds to finishing daily activities and getting ready for a night of rest. Although that 

the patient group appeared to have a lower early morning peak, majority parts of the 

confidence intervals overlapped with each other. The bootstrapped p-value based on the 

likelihood ratio statistic described in the appendix was 0.26, which was also nonsignificant. 

Therefore, we conclude that the two group level smooth circadian rhythms were not 

significantly different.

Figure 3 displays the observed data and the fitting results for one matched pair. The 95% 

confidence intervals were calculated using the posterior means and variances. Overall, the 

fittings were reasonably well. The group level trends were captured by the smooth circadian 

Liu and Guo Page 6

Stat Med. Author manuscript; available in PMC 2016 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



rhythms. The short term variations were captured by the AR(1) components. The pair level 

functional random effect had a slight deviation from a straight line. Fittings for other 

subjects are similar hence not displayed.

4.3. Subgroup analysis

In general, hormone data from CFS and FM patients are analyzed together because of their 

similarities. Nonetheless, it would be interesting to examine the subgroup ACTH diurnal 

patterns. Since the AR(1) parameters were significantly different between patients and 

controls but the smooth circadian rhythms were not, we performed subgroup analysis on the 

AR(1) parameters. The three subgroups did have significantly different AR(1) parameters 

with a p-value < 0.0001. The REML estimates of the AR(1) coefficients (ASEs) were 

0.7781 (0.0549) for the CFS group, 0.7677 (0.0627) for the FM group and 0.8148 (0.0668) 

for the both group, which were all significantly smaller than the control with p-values < 

0.0001. The REML estimates of the innovation variances (ASEs) were 0.9721 (0.0332) for 

the CFS group and 1.0388 (0.0382) for the both group, which were significantly smaller 

than the control group with p-values < 0.0001. On the other hand, the REML estimate of the 

innovation variance (ASE) for the FM group was 1.9295 (0.0651), which was not 

significantly different from the control group with a p-value 0.6476. This suggests that for 

the FM patients the abnormality of the pulsatile activities might not be in the magnitudes but 

in the elimination. However, these results should not be over-interpreted because of the 

small sample sizes for the subgroups.

5. Potential extensions

The model defined in Equations (1) can be generalized as follows

(2)

In this general setting, the population average effect β(ti) is the characteristics shared by a 

group of subjects. It can have both deterministic and stochastic components. Besides 

smoothing splines and AR(1), many other models can be represented in state space forms 

and be utilized for either the population averages or the subject specific deviations. Some 

examples are: classical time-invariant fixed and random effects [28], autoregressive moving 

average models (ARMA) [33], structural time series models [34], multiple processes 

dynamic linear models [35], and differential equation based smoothing [23]. By restricting 

the state space forms to a particular class, this extension can include many popular models 

as special cases. For example, if time-invariant effects are solely used, then the model 

simplifies to linear mixed effects models. If smoothing splines are solely used, then the 

model simplifies to functional mixed effects models. If both smoothing splines and time-

invariant effects are used, then the model simplifies to semiparametric mixed effects models. 

A detailed description of the general model, its vector form, and filtering and smoothing 

algorithms are given in the appendix.

Complex designs can be incorporated. For example, multiple 24-hour hormone series nested 

within each subject can be handled by adding another layer of hierarchy. The resultant 
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model would have group averages, subject averages, and subject-day specific deviations. 

Crossed factor such as treatment can be incorporated and covariates can be included. They 

can take one of the above-mentioned state space forms. We have used time-invariant system 

matrices, which can be relaxed to incorporate model structure changes along time. For 

example, we can allow ACTH pulsatile activities to behave differently at day and at night. 

Estimation and inference would follow the same procedures.

6. Discussion

By applying the proposed method, we were able to show that ACTH pulsatile activities were 

significantly different between the patients and the controls. The weakened ACTH pulsatile 

activities in the patient group can be either the results of reduced primary central activities or 

the results of negative feedback from elevated cortisol activities. Thus, we applied the 

proposed model to cortisol profiles from the same subjects. The results show that the patient 

group had similar AR(1) coefficient (ρp̂ = 0.8215 versus ρ̂
c = 0.8380) but larger innovation 

variance  compared to the control group. This suggests that 

the patient group may have slightly stronger cortisol pulsatile activities, which in turn 

suppressed ACTH pulsatile activities a little more. Interestingly, cortisol deficiency has been 

the most common hypothesis for CFS and FM. A possible explanation for this seeming 

disagreement is glucocorticoid receptor resistance caused by chronic stress [36]. CFS and 

FM may have only relative cortisol deficiency. The central regulation system fails to adapt 

appropriately. ACTH pulsatile activities even decline further. The combination of cortisol 

resistance and the lack of corresponding adjustments from the central regulations may 

provide a new hypothesis for the HPA dysfunctions in CFS and FM.

Our proposed model is novel compared to the conventional utilizations of state space 

methods in multiple-subject situations. Duncan and Horn [37] formulated the subject 

specific effects in state space forms. Jones [38] used state space forms to handle serially 

correlated errors. Gamerman and Migon [39] and Bakker and Heskes [40] adopted state 

space forms for Bayesian hierarchical models. Same design matrices were used for all 

levels. Liu et al [41] extended state space methods by modeling the system matrices using 

linear mixed effects. Our proposed model is different in two aspects. We use state space 

models to specify the effects on all the hierarchy levels. Our proposed model also allows the 

design matrices, if needed, to be flexibly formulated based on experimental designs and 

covariates. The proposed model can also be viewed as an extension of varying coefficient 

models and functional mixed effects models [42, 25]. Varying coefficient models allow 

fixed effects to be smooth functions of other covariates, and functional mixed effects models 

allow both fixed and random effects to be smooth functions. The proposed model allows 

both fixed and random effects to be state space representations of many other forms in 

addition to smooth functions, such as ARMA models and structural time series models [33]. 

In spite of the complex model structure, the computation is manageable. For the ACTH data, 

it takes about 60 minutes to maximize the marginal likelihood on a personal computer with 

3.00 GHz Intel i7 central processing unit (CPU) and 8.00 GB random access memory 

(RAM).
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The proposed model was motivated by the ACTH diurnal patterns. However, it can be 

adopted to model various types of complex longitudinal profiles besides hormone profiles. 

We have focused on linear normal state space models. If the normal assumptions do not hold 

but the first two moments are correctly specified, then the extracted signals are still 

minimum mean square linear estimators [43]. On the other hand, the proposed models can 

be straightforwardly extended to nonlinear and non-normal situations by adopting 

simulation-based algorithms such as particle filter [44]. We have assumed the random errors 

as independent. How to incorporate correlated errors without introducing competition of 

signals between the correlated errors and the pulsatile activities remains unknown. We have 

decomposed ACTH profiles into smooth circadian rhythms and short term variations. If the 

overall ACTH levels are the main interest, wavelet-based functional mixed effects models 

can be adopted because of their abilities of handling spiky signals [45]. For numerical 

optimization, we rely on Matlab function fminunc to approximate the first and second 

derivatives by finite difference. Conceptually, this can be improved by providing the 

derivatives in state space form. Score vector and information matrix can be calculated for a 

single time series [46, 47]. How to extend them to the hierarchical modeling framework 

would be interesting research topics.

Appendix A

The general model

A general hierarchical state space model takes the following form

(3)

(4)

(5)

For the ith subject at jth time point, Equation (3) defines how the effects β(tij) and αi(tij) are 

observed with error eij. Design matrices Xi(tij) and Zi(tij) are formulated based on 

experimental designs and covariates. Complex designs can be incorporated, such as nested 

and crossed designs. Covariates can be included with their effects on different levels of 

hierarchy. Equation (4) is the state space observational equation. It transforms latent state 

vectors ϕ(tij) and ψi(tij) into effect β(tij) and αi(tij). Equation (5) is the state transition 

equations. It defines the system evolution by the transition matrices Tϕ(tij) and Tψ(tij), and 

the stochastic innovations Rϕ(tij)ηϕ(tij) and Rψ(tij)ηψi(tij). The stochastic innovations are 

serially independent Gaussian random vectors distributed as
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and ηψi(tij) are independent across subjects. The system is initialized as

The distribution of ψi(0) is proper, ψi(0) are independent across subjects, and ϕ(0) can have 

diffuse components.

The vector form

By collecting the items across all m subjects at the same time points, the vector form is

(6)

(7)

where j = 1, ⋯, n for n distinct time points, and

ej and ηj are serially and mutually independently distributed as
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The initial state vector is distributed as

Let Yij = (y11, ⋯, ym1, y12, ⋯, yi−1, j, yij)⊤ and Y be the collection of all observations, γij be 

the state vector γj indexed by the ith subject, the univariate version state space model of (6) 

and (7) is

where Fj(i, :) denotes the ith row of Fj.

Forward filtering algorithm

Denote aij = E(γij|Yi−1, j) and Pi j = Var(γij|Yi−1, j), the forward filtering algorithm is

1. At time 0, let am+1,0 = µγ 0 and Pm+1,0 = P0.

2. Let l(θ|Y) = 0.

3. For j = 1, ⋯, n:

1. a1j = Hjam+1, j−1 + µηj

2.

3. For i = 1, ⋯, m:
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(i) εij = yij − Fj(i, :)aij

(ii)

(iii)

(iii)

(iv)

(v)

4. l(θ|Y) is the log-likelihood.

Backward algorithm

Denote γ̂
j = E(γj|Y) and Vj = Var(γj|Y), the backward recursion is

1. Let r0,n+1 = 0, N0,n+1 = 0, and Hn+1 = Hn.

2. For j = n, ⋯, 1:

1.

2.

3. For i = m, ⋯, 1:

i.

ii.

4. γ̂
j = a1j + P1jr0j

5. Vj = P1j − P1jN0jP1j

The exact diffuse algorithms are different for only the first several observations but the 

formula are too long to display here.

Appendix B

To compare the two group-level smooth circadian rhythms, we rewrite them as

where f1(t) and f2(t) are modeled as periodic cubic smoothing splines as well. Testing if βc(t) 

= βp(t) is equivalent to testing if f2(t) = 0. This formulation has the covariance structure of 

the reduced model being nested in that of the full model, which ensures a non-negative log-

likelihood ratio statistic. The null distribution of this statistic is difficult to derive. Instead, 

bootstrap is adopted to approximate the null distributions. Both the full model and the 

reduced model will be fitted. The difference of minus two maximized marginal log-
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likelihood (−2MML) will be recorded. The estimates from the reduced model will be used to 

generate random samples. For group k = p, c, subject i = 1, ⋯, 36, and tj = (0, ⋯, 144)/144, 

a random sample will be generated as follows.

1. Shared smooth circadian rhythm is generated from f1(t) ~ N(f̃1(t), cõv{f̃1(t)}), 

where cõv{f̃1(t)} is adopted to account for the uncertainty in f̃1(t).

2. Pair-specific random functions are generated from ai(t) ~ N(0, cõv{ãi(t)}).

3. Subject-specific pulsatile activities are generated from AR(1) processes with 

parameters .

4. Independent and identically distributed error terms are generated from 

5. The simulated data are a summation of the above components.

For each random sample, both the full model and the reduced model will be fitted. We 

repeat this for 1000 times and the 1000 differences of −2MML will be used as the null 

distribution.
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Figure 1. 
Raw ACTH data. Each cell displays a matched pair. For each pair, the solid gray line is for a 

patient and the dotted black line is for a control. For each subject, there are 145 equally 

spaced observations at 10-minute intervals.
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Figure 2. 
Estimated smooth circadian rhythms with 95% point-wise confidence intervals. Solid lines 

are for the patient group and dashed lines for the control group. To demonstrate the cyclic 

patterns, the same estimated values are repeated for another 24-hour.
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Figure 3. 
Fitting results for the 19th pair. The left panel is for the patient and the right for the control. 

From the top to the bottom, the four rows are for the raw data and the overall fittings, the 

estimated group level smooth circadian rhythms, the estimated subject level pulsatile 

activities, and the pair level random effect, respectively. The 95% confidence intervals are 

also displayed. The raw data are displayed as black circles.
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