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Abstract

A spherical quadrilateral is a bordered surface homeomorphic to
a closed disk, with four distinguished boundary points called corners,
equipped with a Riemannian metric of constant curvature 1, except
at the corners, and such that the boundary arcs between the corners
are geodesic. We discuss the problem of classification of these quadri-
laterals and perform the classification up to isometry in the case that
one corner of a quadrilateral is integer (i.e., its angle is a multiple of
π) while the angles at its other three corners are not multiples of π.
The problem is equivalent to classification of Heun’s equations with
real parameters and unitary monodromy, with the trivial monodromy
at one of its four singular point.

MSC 2010: 30C20,34M03.
Keywords: surfaces of positive curvature, conic singularities, Heun

equation, Schwarz equation, accessory parameter, conformal mapping,
circular polygon.

1 Introduction

A circular polygon is a simply connected surface whose boundary consists of
arcs of circles.
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More precisely, let S be the Riemann sphere. A circle C is the set of
fixed points of an anti-conformal involution of S. This definition does not
depend on the metric but only on the conformal structure of S. Let D

be the closed unit disk, and A = (a0, a1 . . . , an−1) a sequence of boundary
points enumerated according to the positive orientation of ∂D. Let f :
D → S be a continuous function analytic in the open disk U , which is a
local homeomorphism on D \ A, and such that each side (aj, aj+1) ⊂ ∂D is
mapped by f into some circle Cj; the circles are not necessarily distinct. The
triple (D, A, f) is called a circular polygon, f is called the developing map,
and the points of A are called corners.

Two polygons (D, A, f) and (D, A′, g) are equivalent if there exist confor-
mal maps φ : S → S and ψ : D → D, ψ(aj) = a′j , 0 ≤ j ≤ n− 1, such that
φ ◦ f = g ◦ψ. Note that equivalence preserves the linear order of the corners,
not only their cyclic order.

At each corner aj the (interior) angle αj ≥ 0 is defined. We measure
angles in multiples of π, so angle αj contains παj radians.

If S is equipped with the standard spherical metric, and the circles Cj

are geodesic (great circles), the polygon is called a spherical polygon.
Two spherical polygons are considered equal (isometric) if they are equiv-

alent, and in addition, φ is an isometry of the sphere. Notice that isometry
of polygons with vertices (a0, . . . , an−1) and (a′0, . . . , a

′
n−1), according to our

definition must send aj to a
′
j .

One can give an alternative definition of a spherical polygon: it is a surface
homeomorphic to the closed disk, equipped with a Riemannian metric of
constant curvature +1 except at the corners a0, a1, . . . , an−1 on the boundary,
and such that the sides (aj, aj+1) are geodesic, and the metric has conical
singularities at the corners. Two spherical polygons in the sense of this
definition are considered equal if there is an orientation-preserving isometry
respecting the labels of the corners.

The equivalence of the two definitions follows from the consideration of
the developing map: if z0 is an interior point of the spherical polygon in the
sense of the second definition, there is a neighborhood of this point and an
isometry f from this neighborhood to the sphere with the standard spherical
metric. Analytic continuation of f gives the developing map.

Notice that great circles Cj corresponding to a spherical polygon satisfy
the following

Condition C. Every two circles either coincide or intersect at two points
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transversally.

This paper is a part of the series whose goal is classification of spherical
quadrilaterals up to isometry. A complete classification of spherical 2-gons
is contained in [11], and of spherical triangles in [2, 5], see also [8]. Polygons
with two non-integer angles were studied in [3, 4]. In this paper we study
spherical polygons, especially quadrilaterals, with three non-integer angles.
The general context and history of the question are described in [4]. We also
mention Schilling’s thesis [10] where circular quadrilaterals with one angle
2π were studied in great detail.

It will be convenient to use the upper half-plane H instead of the unit
disk D for the parametrization of a polygon. In that case, developing map
f of a circular n-gon satisfies a Schwarz differential equation

f ′′′

f ′
−

3

2

(

f ′′

f ′

)

= R, (1.1)

where

R(z) =
n−1
∑

j=0

1− α2
j

2(z − aj)2
+

cj
z − aj

, (1.2)

aj and cj are real, αj ≥ 0, and cj satisfy three linear relations

n−1
∑

j=0

cj = 0,

n−1
∑

j=0

ajcj = −

n−1
∑

j=0

1− α2
j

2
,

n−1
∑

j=0

a2jcj = −

n−1
∑

j=0

aj(1− α2

j ).

These three conditions ensure that the point at ∞ is not singular. Equations
(1.1) and (1.2) give a parametrization of all circular polygons with corners
aj and angles αj. When aj and αj are fixed, this set depends on n − 3 real
parameters, which are called accessory parameters. The condition that the
polygon is equivalent to a spherical polygon translates into the condition that
the monodromy of the equation (1.1) is conjugate to a subgroup of the pro-
jective unitary group PSU(2) (we say that the monodromy is unitarizable);
this condition imposes n− 3 equations on the accessory parameters.

Thus our problem of classifying spherical polygons is equivalent to the
study of real solutions of these n− 3 equations. We mainly restrict ourselves
to the case n = 4 and three non-integer angles, but in the next section we
prove a statement which holds for every n.
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The position of four corners of a quadrilateral up to a conformal auto-
morphism of the disk depends on one parameter which is called the modu-
lus. One accessory parameter must be determined from the condition that
the monodromy is unitarizable. So in general we can expect finitely many
quadrilaterals with prescribed angles and prescribed modulus. Our two main
problems are, first, to describe the necessary conditions on the angles for a
quadrilateral with the given angles to exist, for some value of the modu-
lus; and second, when those conditions are satisfied, to find upper and lower
bounds for the number of quadrilaterals with the fixed angles and modulus.

The plan of the paper is the following.
In section 2 we discuss conditions that the angles of a spherical quadrilat-

eral with three non-integer angles must satisfy. We also write explicitly the
equation on the accessory parameter for this case. This equation is algebraic
and we determine its degree. This degree gives an upper estimate for the
number of quadrilaterals with prescribed modulus and angles.

In the following sections we classify these spherical quadrilaterals up to
isometry, and obtain a lower estimate for the number of quadrilaterals with
prescribed modulus and angles.

2 Conditions on the angles and equation for

the accessory parameter

1. Consider a finite collection of circles on the sphere S satisfying Condition
C, such that their union is connected and there are no triple intersections.

These circles define a cell decomposition of the sphere whose 0-, 1- and
2-cells are called vertices, edges and faces.

To each pair (F, v) where F is a face and v ∈ ∂F is a vertex on the
boundary of F an angle α ∈ (0, 1) is assigned. It is the interior angle of the
circular polygon F at v, measured in multiples of π.

Let us assign an arbitrary orientation to each circle. Then to each pair
(F, v) we assign a sign + or − by the following rule: if the orientations of the
two boundary edges of F adjacent at v are consistent we assign +, otherwise
we assign −.

Let f : D → S be the developing map of a circular polygon with corners
aj whose sides are mapped to the circles of our collection.

The f -preimage of the cell decomposition of the sphere is called a net; it
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is a cell decomposition of the closed disk. The net is a combinatorial object:
two nets are equivalent if there is a homeomorphism of D which sends one
to another and respects the labels of the corners.

At every corner v of the polygon we have an angle, which is the sum of
the angles assigned to (f(F ), f(v)) over all faces F adjacent to v. This angle
is an integer when the two sides of the polygon adjacent to v are mapped to
the same circle, and non-integer otherwise.

The signs assigned to faces f(F ) for F adjacent to v make an alternating
sequence. For a corner with non-integer angle the length of this sequence is
odd, and we assign to v the sign s(v) = + if the sequence begins and ends
with +, otherwise s(v) = −.

With this setting we have

Proposition 2.1 The number N of signs s(v) = − assigned to non-integer
corners is congruent modulo 2 to

σ0 :=
∑

j:αj 6∈Z

[αj] +
∑

j:αj∈Z

(αj − 1). (2.1)

Proof. Consider a corner v with integer angle α. Orientation of the
sides changes at v if and only if α − 1 is odd. So the number of changes of
orientation at the corners with integer angles is congruent modulo 2 to

∑

j:αj∈Z

(αj − 1).

Now consider a corner v with non-integer angle α. It is easy to see that the
sides of the polygon change orientation at v if [α] is even and s(v) = −, or if
[α] is odd and s(v) = +. In the other two cases the orientation of the sides
does not change at v.

We conclude that the number

∑

j:αj∈Z

(αj − 1) +
∑

j:αj 6∈Z

[αj ] +N

is congruent modulo 2 to the number of changes of orientation as we trace
the boundary of the net, but this last number is evidently even. Thus the
number of signs s(v) = − assigned to the corners is congruent to σ0.
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Figure 1: a) Generic unitarizable case, b) and d) Non-unitarizable cases,
c) Exceptional case.

2. Consider three circles on the sphere such that every two of them intersect,
and no two are tangent to each other. There are four possible topologically
distinct configurations shown in Fig. 1.

Indeed, if there is a triple intersection, we can send this point to ∞ and
obtain a configuration of three lines. There are two possible configurations
of three lines, shown in Fig. 1c and Fig. 1d.

If there is no triple intersection, one of the circles Cj either separates the
two intersection points of the other two circles or does not separate them.
If it does separate, then every circle separates the intersection points of the
other two circles. So we have two possibilities shown in Fig. 1a and Fig. 1b.

It is easy to see that the triple of circles is equivalent to a geodesic triple
exactly in the cases a) and c). The case c) will be called exceptional.

For a circular polygon whose sides are mapped by the developing map into
a generic configuration of three circles (that is the circles satisfy Condition
C and are not exceptional) we give a criterion in terms of the angles for the
case a).

Proposition 2.2 Let Q be a circular polygon with non-integer angles θ, θ′,
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θ′′ and the rest of the angles integers. Suppose that the images of its sides
under the developing map satisfy Condition C. Then Q is equivalent to a
spherical polygon if and only if it is either exceptional, or

Σ := cos2 πθ + cos2 πθ′ + cos2 πθ′′ + 2(−1)σ cosπθ cosπθ′ cos πθ′′ < 1, (2.2)

where
σ =

∑

j:αj∈Z

(αj − 1).

Proof. Suppose that there are no triple intersections. Then Proposition
2.1 is applicable. Let us choose the orientation of the circles as shown in
Fig. 1. This means that we choose a triangular face in the cell decomposition,
orient its boundary counterclockwise, and this gives the orientation of all
three circles. Then we put signs according to the rule described above. The
original triangle gets signs +,+,+ on its corners. Notice that each pair of
circles intersects twice, and at each intersection we have four angles, two of
them with + and two with −. All angles formed by two circles which are
marked + are equal, and all angles which are marked with − are equal. The
sum of an angle marked with + and an angle marked − in the configuration
of two circles equals 1.

Consider the functions

φ±(β, β ′, β ′′) = cos2 πβ + cos2 πβ ′ + cos2 πβ ′′ ± 2 cosπβ cosπβ ′ cosπβ ′′.

Notice that for any integers m,n, k we have

φ±(β, β ′, β ′) = φ±(β +m, β ′ + n, β ′′ + k) if m+ n+ k is even,

and

φ±(β, β ′, β ′′) = φ∓(β +m, β ′ + n, β ′′ + k) if m+ n+ k is odd.

Moreover,
φ±(β, β ′, β ′′) = φ∓([β] + 1− {β}, β ′, β ′′),

and similarly for β ′, β ′′.
For the angles β, β ′, β ′′ of a triangular face in a) we have φ+(β, β ′, β ′′) < 1,

and for a triangular face in b) we have φ+(β, β ′, β ′′) > 1. The angles of these
triangles are in (0, 1). Each angle θ, θ′, θ′′ corresponds to a vertex of the
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cell decomposition of the sphere where a pair of circles intersect. These
three pairs are all different. So, to obtain θ, θ′, θ′′ from β, β ′, β ′′, we have to
add the integer parts [θ], [θ′], [θ′′] to β, β ′, β ′′, and replace some angles by
complementary angles. Notice that for corners marked with − the fractional
part equals to an angle marked − on the cell decomposition of the sphere.

Thus passing from β, β ′, β ′′ to θ, θ′, θ′′ will require

[θ] + [θ′] + [θ′′] +N

sign changes in φ±, where N is the number of corners marked with −. By
Proposition 2.1, N has the same parity as σ0. This proves Proposition 2.2.

3. The Schwarz equation (1.1), (1.2) can be reduced to a linear differential
equation with regular singularities. In the case of quadrilaterals to which we
restrict from now on, this linear differential equation is the Heun equation
(2.3) below. Assuming that the quadrilateral is parametrized by the upper
half-plane, we can choose the corners at the points 0, 1, a and ∞. (The
cyclic order of the corners depends on the position of a on the real line, so
the notation α0, α1 differs in this section from the rest of the paper.) Then
f = y1/y0, the ratio of two linearly independent solutions of the equation

z(z−1)(z−a)

{

y′′ +

(

1− α0

z
+

1− α1

z − 1
+

1− αa

z − a

)

y′
}

+α′α′′zy = λy, (2.3)

where λ is the accessory parameter,

α′ − α′′ = α∞, (2.4)

and
α0 + α1 + αa + α′ + α′′ = 2. (2.5)

We assume that α0 is an integer, while α1, αa, α∞ are not integers.
The exponents at 0 are 0 and α0 > 0. There is always one holomorphic

solution at 0 which can be normalized by y1(z) = zα0 + . . .. The second
linearly independent solution may in general contain logarithms. Condition C
in the introduction is equivalent to the absence of logarithms, and it must be
satisfied if the monodromy is unitarizable. To write this condition explicitly,
we substitute a power series y0(z) = 1 + c1z + c2z

2 + . . . to (2.3) and try to
determine the coefficients. We obtain the recurrence relation

a(1− α0)c1 − λ = 0,
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rncn+1 − (qn + λ)cn + pncn−1 = 0, n ≥ 1, (2.6)

where
rn = (n+ 1)(n+ 1− α0)a

qn = n ((n− α0)(1 + a) + a(1− α1) + 1− αa) ,

pn = (n− 1 + α′)(n− 1 + α′′).

As α0 is an integer, we have rα0−1 = 0, so cα0
can be only determined when

Gα0
(λ) := −(qα0−1 + λ)cα0−1 + pα0−1cα0−2 = 0.

It is easy to see that Gα0
is a polynomial of degree α0. Thus the equation

Gα0
(λ) = 0 (2.7)

gives a necessary and sufficient condition for the absence of logarithms in the
solutions of the Heun equation (2.3). Now we have

Theorem 2.3 Suppose that α0 ≥ 2 is a positive integer while the other three
angles are not integers, and a ∈ R.

Then for the projective monodromy of (2.3) to be unitarizable, it is nec-
essary and sufficient that (2.7) holds and either we have (2.2), or Σ = 1
in (2.2) and we have the exceptional case (as in Fig. 1c). For every given
angles, there are only finitely many values of parameter a corresponding to
the exceptional case.

Proof. Suppose that the polygon defined by (2.3) is not exceptional.
Necessity of conditions (2.7) and (2.2) has already been established. For
sufficiency, notice that all parameters in (2.3) are real, so solutions with
real initial conditions at some non-singular point of the real line will map a
real neighborhood of this point into the real line. Thus any solution of the
Schwarz equation will map this neighborhood into a circle. Condition (2.7)
implies that two adjacent sides cannot be tangent unless they coincide. As
we assume that the configuration is not exceptional, Proposition 2.2 implies
that the configuration of the circles to which the sides belong is equivalent
to a configuration of great circles. Therefore the monodromy group, which
is generated by products of even numbers of reflections in these circles, is
conjugate to a subgroup of PSU(2).
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Let us prove now that the number of equivalence classes of exceptional
quadrilaterals with prescribed angles is finite. Partitions of the sphere corre-
sponding to such quadrilaterals consist of 3 intersecting lines and, possibly,
one vertex on one of these lines. These configurations with prescribed angles
between the lines are conformally equivalent. Let us show that there are
finitely many possible nets. The area of a spherical polygon is a function of
its interior angles, so when the angles are fixed, the area is fixed as well. This
gives an upper bound for the number of faces of the net, so we have finitely
many nets. This completes the proof.

Spherical polygons correspond to real solutions of equation (2.7). Thus for
given angles and fixed modulus a, there exist at most α0 spherical quadrilat-
erals with these angles and modulus. In the rest of the paper we will prove a
lower estimate. This will be done by obtaining a combinatorial classification
of all possible quadrilaterals with given angles.

We also mention here an algebraic argument which gives a lower estimate.
Three-term recurrence (2.6) shows that (2.7) is the characteristic equation
of a finite Jacobi matrix

J =

















0 r0
p1 −q1 r1

p2 −q2 r2
. . .

pn−1 −qn−1 rn−1

pn −qn

















. (2.8)

For the theory of such matrices we refer to [6].
If rjpj+1 > 0, 0 ≤ j ≤ n− 1, then all eigenvalues are real and simple. If

pj 6= 0 for 1 ≤ j ≤ n, then we have

JTR = RJ, (2.9)

where R = diag (s0, . . . , sn), s0 = 1 and

sj = sj−1

rj−1

pj
, 1 ≤ j ≤ n.

Suppose that the sequence sj , 0 ≤ j ≤ n has P positive and N negative
terms. Then J has at most min{P,N} pairs of complex conjugate non-real
eigenvalues. The reason is that equation (2.9) says that J is Hermitian with
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respect to the quadratic form R of signature (P,N), and the estimate of the
number of non-real eigenvalues follows from Pontrjagin’s theorem [9].

This gives an algorithm, which for any given angles and given a provides
a lower estimate of the number of spherical quadrilaterals with these parame-
ters. This lower estimate is not always exact. Another lower estimate which
will be proved in Section 7 is conjectured to be exact. For example, the
choice α0 = 4, α1 = α∞ = 1/2, αa = 3/2 and a < 0 gives by this algorithm
that equation (2.7) has at most two non-real solutions, while the result we
obtain in Section 7 implies that all solutions are real in this case.

We will need the following observation. If one sets a = 0 in the recurrence
relations (2.6), we obtain rj = 0, 0 ≤ j ≤ n − 1, so the Jacobi matric J is
lower triangular. The eigenvalues in this case are −qj = j(α0 + αa)− j − 1),
0 ≤ j ≤ n = α0−1. They are all real and distinct, because αa is not integer.
It follows that for a sufficiently small, all solutions of (2.7) are real. We state
this as

Proposition 2.4 When the modulus of a quadrilateral is sufficiently large
or small, that is a in (2.3) is sufficiently close to 0 or 1, all solutions of (2.7)
are real, and there exist exactly α0 quadrilaterals with given angles and given
modulus.

3 Introduction to nets

A spherical n-gon Q (or a spherical polygon when n is not specified) has its
corners labeled a0, . . . , an−1 in the counterclockwise order on the boundary
of Q. This defines linear order on the corners of Q. When n = 2, 3 and 4, we
call Q a spherical digon, triangle and quadrilateral, respectively. The angles
at the corners of Q are measured in multiples of π. A corner is integer if it
has an integer, i.e., multiple of π, angle. For n = 1, there is a unique 1-gon
with the angle α0 = 1 at its single corner. For convenience, we often drop
“spherical” and refer simply to n-gons, polygons, etc.

Let Q be a spherical polygon and f : Q → S its developing map. The
images of the sides (aj , aj+1) of Q are contained in geodesics (great circles) on
S. These circles define a partition P of S into vertices (intersection points of
the circles) edges (arcs of the circles between the vertices) and faces (compo-
nents of the complement to the circles). Two sides of Q meeting at its corner
are mapped by f into the same circle if and only if the corner is integer.

11



The order of a corner is the integer part of its angle. A removable corner
is an integer corner of order 1. A polygon Q with a removable corner is
isometric to a polygon with a smaller number of corners.

A polygon with all integer corners is called rational. (The developing map
extends to a rational function in this case, which explains the name). All
sides of a rational polygon map to the same circle.

Definition 3.1 Preimage of P defines a cell decomposition Q of Q, called
the net of Q. The corners of Q are vertices of Q. In addition, Q may have
side vertices and interior vertices. If the circles of P are in general position,
interior vertices have degree 4, and side vertices have degree 3. Each face F
of Q maps one-to-one onto a face of P. An edge e of Q maps either onto an
edge of P or onto a part of an edge of P. The latter possibility may happen
when e has an end at an integer corner of Q. The adjacency relations of the
cells of Q are compatible with the adjacency relations of their images in S.
The net Q is completely defined by its 1-skeleton, a connected planar graph.
When it does not lead to confusion, we use the same notation Q for that
graph.

If C is a circle of P, then the intersection QC of Q with the preimage
of C is called the C-net of Q. Note that the intersection points of QC with
preimages of other circles of P are vertices of QC . A C-arc of Q (or simply
an arc when C is not specified) is a non-trivial path γ in the 1-skeleton of
QC that may have a corner of Q only as its endpoint. If γ is a subset of a
side of Q then it is a boundary arc. Otherwise, it is an interior arc. The
order of an arc is the number of edges of Q in it. An arc is maximal if it is
not contained in a larger arc. Each side L of Q is a maximal boundary arc.
The order of L is, accordingly, the number of edges of Q in L.

Definition 3.2 We say thatQ is reducible if it contains a proper sub-polygon
Q′ such that the corners of Q′ are some (possibly, all) of the corners of Q.
Otherwise, Q is irreducible. The net of a reducible polygon Q contains an
interior arc with the ends at two distinct corners of Q. We say that Q is
primitive if it is irreducible and its net does not contain an interior arc that
is a loop.

Definition 3.3 Two irreducible polygonsQ andQ′ are combinatorially equiv-
alent if there is a homeomorphism Q → Q′ preserving the labels of their
corners and mapping the corners of Q to the corners of Q′, and the net Q of
Q to the net Q′ of Q′.

12



Two rational polygons Q and Q′ with all sides mapped to the same circle
C of P are combinatorially equivalent if there is a homeomorphism Q→ Q′

preserving the labels of their corners and mapping the net QC of Q to the
net Q′

C of Q′.
If Q and Q′ are reducible and represented as the union of two polygons

Q0 and Q1 (resp., Q′
0 and Q′

1) glued together along their common side, then
Q and Q′ are combinatorially equivalent when there is a homeomorphism
Q→ Q′ inducing combinatorial equivalence between Q0 and Q

′
0, and between

Q1 and Q′
1.

Thus an equivalence class of nets is a combinatorial object. It is com-
pletely determined by the labeling of the corners and the adjacency relations.
We’ll call such an equivalence class “a net” when this would not lead to con-
fusion.

Conversely, given labeling of the corners and a partition Q of a disk
with the adjacency relations compatible with the adjacency relations of P, a
spherical polygon with the net Q can be constructed by gluing together the
cells of P according to the adjacency relations of Q.

In what follows we classify all equivalence classes of nets in the case
when n = 4 (that is, when Q is a quadrilateral) and P is defined by three
transversal great circles (that is, Q has one integer corner and three non-
integer corners). In this case, the boundary of each 2-cell of the net Q of
Q consists of three segments mapped to the arcs of distinct circles, with the
vertices at the common endpoints of each two segments and, possibly, at the
integer corner of Q.

By the Uniformization Theorem, each spherical quadrilateral is confor-
mally equivalent to a closed disk with four marked points on the boundary.
Thus conformal class of a quadrilateral Q depends on one parameter, the
modulus of Q. In section 7 below we will study whether for given permitted
angles of a quadrilateral an arbitrary modulus can be achieved. This will be
done by the method of continuity, and for this we’ll need some facts about
deformation of spherical quadrilaterals.

4 Classification of primitive quadrilaterals

Let us consider a partition P of the Riemann sphere S by three transversal
great circles defined by the images of the sides of a quadrilateral Q with one

13



Figure 2: Partition P of the Riemann sphere by three circles.

integer corner (see Fig. 2).
We assume that with the corner a0 of Q selected so that the integer corner

of Q is labeled a3. Then the sides L3 and L4 of Q are mapped to the same
circle C of P (solid line in Fig. 2). Let C ′ and C ′′ be the circles of P to which
the sides L1 and L2 of Q are mapped (dotted and dashed lines in Fig. 2).

Lemma 4.1 The integer corner a3 of an irreducible quadrilateral Q does not
map to a vertex of P.

Proof. Suppose that a3 maps to the intersection of C and C ′ (the case of
the intersection of C and C ′′ follows by symmetry). Consider the union G
of all faces of Q adjacent to a3. Each of these faces is a triangle with two
sides adjacent to a3 mapped to C and C ′, and a side opposite a3 mapped to
C ′′. Thus G is a triangle with an integer corner at a3. Its base γ is an arc
of Q mapped to C ′′. Note that, since Q is irreducible, all vertices of Q on
γ are interior vertices of Q, except the two endpoints of γ which are on the
boundary of Q. It follows that, for each edge e of γ, there is a face Fe of Q
adjacent to e and not adjacent to a3. The union of all faces Fe is a triangle G

′

with the base γ and a vertex p common for all Fe. Since p is connected to a3
by an interior arc, it cannot be a corner of Q. This implies that the angle α3

of Q at a3 cannot be greater than 1, since p cannot have degree greater than
4. If α3 = 1 then p cannot be a boundary vertex of Q, since then the whole
boundary of Q would map to C which would contradict the assumption that
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Q has three non-integer corners. Also, p cannot be an interior vertex of Q,
since then both ends of γ would have degree at least 4, thus they should be
both corners of Q, contradicting the assumption that Q is irreducible.

Lemma 4.2 The net Q of a primitive quadrilateral Q does not have interior
vertices mapped to C ′ ∩ C ′′.

Proof. Let q be an interior vertex of Q mapped to C ′ ∩ C ′′. Then there are
four faces of Q adjacent to q. The boundary Γ of the union of those faces is
a circle mapped to C. Since Q cannot be bounded by Γ, there is an interior
edge of Q in Γ. Let γ be a maximal interior arc in Γ. Since Q is primitive,
γ has two distinct ends, which must be corners of Q (the corner a1 maps to
C ′ ∩ C ′′, and the corner a3 cannot map to the intersection of two circles of
P by Lemma 4.1). This contradicts the assumption that Q is primitive.

Lemma 4.3 The net Q of a primitive quadrilateral Q does not have interior
arcs of order greater than 2. Any maximal interior arc of Q of order 2 which
is mapped to C has one of its ends at the corner a3 of Q. Any maximal
interior arc of Q of order 1 which is mapped to C has one of its ends at a
corner of Q.

Proof. We show first that a maximal interior arc γ ⊂ QC containing an
interior vertex q of Q which is mapped to C ′ has one end at the corner a3 of
Q. If both edges of γ adjacent to q would have other ends not at a3 then,
using the same argument as in the proof of Lemma 4.2, one can show that
the boundary Γ of the union of the four faces of Q adjacent to q either would
be a loop or would contain an interior arc connecting two corners of Q, in
contradiction with the assumption that Q is primitive. Thus q is connected
to a3 by an edge of γ. This implies that γ has order 2, otherwise it would
contain more than one interior vertex of Q, and only one such vertex can be
connected to a3.

Now we consider a maximal interior arc γ of order 1 (i.e., a single edge
of Q) mapped to C. If none of its ends would be at a corner of Q then each
face F of Q adjacent to γ would have its sides other than γ on the sides L1

and L2 of Q. Thus F must have the corner a1 as its vertex, but only one of
the two faces of Q adjacent to γ may be also adjacent to a1.
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Lemma 4.4 At least two non-integer corners of a primitive quadrilateral Q
have order zero.

Proof. It is enough to show that if the corner a0 of Q has positive order then
its corners a1 and a2 have order zero. If a0 has positive order then there is a
maximal interior arc γ of QC and a maximal interior arc γ′ of QC′ , each of
them having one end at a0, such that Q has a face F adjacent to L1 and γ,
and a face F ′ adjacent to γ and γ′. Due to Lemma 4.2, γ′ has order 1, and
the other end q′ of γ′ is on L2. Thus γ also have order 1, and its other end
q is on L2. This implies that a1 has order zero, as it is a vertex of F . This
also implies that a2 has order zero. Otherwise, the same arguments will show
that a maximal interior arc with one end at a2 must have the other end on
L1, which is impossible.

Theorem 4.5 Any primitive quadrilateral with one integer corner is equiv-
alent to one of the following:
Xµν with µ ≥ 0, ν ≥ 0, the angles [α0] = [α1] = [α2] = 0, α3 = µ+ ν + 1, µ
(resp., ν) interior arcs of the net having one end at a3 and another end on
L1 (resp., L2) (Fig. 3a and Fig. 3b);
X̄µν with µ+ ν ≥ 2 even, the angles [α0] = [α2] = [α3] = 0, [α1] = (µ+ ν)/2,
µ (resp., ν) interior arcs of the net having one end at a1 and another end on
L4 (resp., L3) (Fig. 3c);
Rµν with µ > 0, ν ≥ 0, the angles [α0] = µ, α3 = ν + 1, [α1] = [α2] = 0,
2µ (resp., ν) interior arcs of the net having one end at a0 (resp., a3) and
another end on L2 (Fig. 4a and Fig. 4b);
R̄µν with µ ≥ 0, ν > 0, the angles α3 = µ + 1, [α2] = ν, [α0] = [α1] = 0,
µ (resp., 2ν) interior arcs of the net having one end at a3 (resp., a2) and
another end on L1 (Fig. 4c and Fig. 4d);
Uµν with µ > 0, ν > 0, the angles α3 = µ + 1, [α1] = ν, [α0] = [α2] = 0,
µ (resp., 2ν) interior arcs of the net having one end at a3 (resp., a1) and
another end on L1 (resp., L3) (Fig. 5a and Fig. 5b);
Ūµν with µ > 0, ν > 0, the angles [α1] = µ, α3 = ν + 1, [α0] = [α2] = 0,
2µ (resp., ν) interior arcs of the net having one end at a3 (resp., a1) and
another end on L4 (resp., L2) (Fig. 5c and Fig.5d);
Vµν with µ > 0, ν > 0, the angles α3 = µ + 1, [α1] = ν, [α0] = [α2] = 0, µ
(resp., 2ν − 1) interior arcs of the net having one end at a3 (resp., a1) and
another end on L1 (resp., L3), and one interior arc having one end at a1 and
another end on L1 (Fig. 6a);
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Figure 3: Primitive quadrilaterals of types X and X̄ .

V̄µν with µ > 0, ν > 0, the angles [α1] = µ, α3 = ν + 1, [α0] = [α2] = 0, ν
(resp., 2µ − 1) interior arcs of the net having one end at a3 (resp., a1) and
another end on L2 (resp., L4), and one interior arc having one end at a1 and
another end on L2 (Fig. 6b);
Z̄µν with µ > 0, ν > 0, the angles α3 = µ+ ν + 1, [α0] = [α2] = 0. [α1] = 1,
µ (resp., ν) interior arcs of the net having one end at a3 and another end on
L1 (resp., L2), one interior arc having one end at a1 and another end on L1,
and one interior arc having one end at a1 and another end on L2 (Fig. 6c).

Remark 4.6 The nets of primitive quadrilaterals in Theorem 4.5 may con-
tain interior arcs with both ends on the sides of the quadrilateral (see Figs. 3-
6). Location of these arcs is uniquely determined by the arcs of the net having
one end at a corner of the quadrilateral.

Proof. If all non-integer corners have order 0 then any maximal interior arc
of Q mapped to C has one end at a3. Let µ (resp., ν) be the number of such
arcs having the other end on L1 (resp, L2). Then Q is equivalent to Xµν .

If the corners a1 and a2 of Q have order 0 but the order of a0 is greater
than 0, then any maximal interior arc of Q mapped to C has one end either
at a0 or at a3. Any such arc having one end at a0 must have order 1, and
its other end must be on L2. Also, any interior arc of Q mapped to C ′ with
one end at a0 must have order 1 and its other end on L2, since it is the side
of a face of Q adjacent to an interior arc mapped to C with one end at a0.
Since the order of a0 is greater than 0, any maximal interior arc of Q mapped
to C with one end at a3 must have its other end on L2. The interior arcs
of Q (if any) having both ends on the sides of Q but not at its corners are
completely determined by the arcs having one end at a corner of Q. If ν is
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Figure 4: Primitive quadrilaterals of types R and R̄.
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Figure 5: Primitive quadrilaterals of types U and Ū .
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Figure 6: Primitive quadrilaterals of types V , V̄ and Z.

the number of maximal interior arcs of Q with one end at a3, and µ > 0 is
the number of interior arcs mapped to C having one end at a0 (which is equal
to the number of interior arcs mapped to C ′ having one end at a0) then Q is
equivalent to Rµν . Similarly, if a0 and a1 have order 0 but the order of a2 is
greater than 0 then Q is equivalent to R̄µν for some µ ≥ 0 and ν > 0.

If the corners a0 and a2 and a3 of Q have order 0 but the order of a1 is
greater than 0, then any maximal interior arc of Q having one end at a1 has
order 1 and its other end is either on L3 or L4. The number of such arcs is
even. There are no other arcs in Q. If µ (resp., ν) is the number of interior
arcs of Q having one end at a1 and another end on L4 (resp., L3) then Q is
equivalent to X̄µν .

Consider now the case when a0 and a2 have order 0 but the orders of
both a1 and a3 are greater than 0. Suppose first that all maximal interior
arcs of Q mapped to C have one end at a3 and the other end on L1. Let
µ > 0 be the number of these arcs. Let ν > 0 be the number of maximal
interior arcs of Q having one end at a1 mapped to C ′. Then there are exactly
ν maximal interior arcs with one end at a1 mapped to C ′′. There are two
possibilities. If all these arcs have the other end on L3 then Q is equivalent
to Uµν . Alternatively, one of these arcs mapped to C ′′ may have the other
end either on L1 or (when µ = 1) on L4. Then Q is equivalent to Vµν . The
interior arcs of Q (if any) having both ends on the sides of Q but not at its
corners are completely determined by the arcs having one end at a corner of
Q. Similarly, if all maximal interior arcs of Q mapped to C have one end at
a3 and another end on L2 then Q is equivalent to either Ūµν or V̄µν for some
µ > 0 and ν > 0.

Finally, suppose that µ > 0 (resp., ν > 0) of maximal interior arcs
mapped to C have one end at a3 and the other end on L1 (resp., L2). Then
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there are exactly two interior arcs having one end at a1, one of them, mapped
to C ′, has the other end either on L2 or (if ν = 1) on L3, and the other arc,
mapped to C ′′, has the other end either on L1 or (if µ = 1) on L4. In that
case Q is equivalent to Zµν .

Remark 4.7 Sometimes it will be convenient to use notation X̄0,0, R0,0,
R̄0,0, U0,0, Ū0,0 for the quadrilaterals equivalent to X0,0. We may also use
notation Uµν and Ūµν with either µ = 0 or ν = 0. Then Uµ,0 is equivalent to
Xµ,0, and U0,ν is equivalent to X̄0,2ν for ν > 0. Similarly, Ū0,ν is equivalent
to X0,ν, and Ūµ,0 is equivalent to X̄2µ,0 for µ > 0. Also, V0,ν is equivalent to
X̄1,2ν−1, V̄µ,0 is equivalent to X̄2µ−1,1.

5 Classification of irreducible quadrilaterals

Lemma 5.1 Let γ be a loop of the net Q of an irreducible quadrilateral Q
with three non-integer corners. Then γ contains either the integer corner a3
or the non-integer corner a1 of Q.

Proof. A loop γ bounds a disk D ⊂ Q (shaded area of Fig. 7) consisting
of 4 faces of Q with a common vertex p. If γ would not contain any corner
then the 4 faces of Q adjacent to γ outside D would also have a common
vertex, thus Q would be a sphere, a contradiction. Thus γ contains a corner
of Q. If γ contains a0 then it maps either to C or to C ′. We assume that
γ maps to C, the other case being treated similarly. Then D contains part
of a maximal arc γ′ of Q with one end at a1 that maps to C ′, and part of a
maximal arc γ′′ that maps to C ′′ (see Fig. 7).

We want to show that γ′ is a loop. Since γ′ contains a0, and Q is ir-
reducible, γ′ cannot contain any other corner of Q. Let q 6= a0 be the
intersection point of γ′ and γ (see Fig. 7). Then the union of faces F and
F ′ of Q adjacent to the segment [a0, q] of γ outside D have a segment of γ′

outside D connecting q with a1 as part of its boundary.
Next, we want to show that γ′′ is a loop. Let p′ be the intersection point

of γ′′ with γ inside the disk bounded by γ′, and let q′ 6= p′ and q′′ 6= p be
the intersection points of γ′′ with γ and γ′, respectively (see Fig. 7). Then
the face F ′′ of Q adjacent to the segments [q, q′] of γ and [q, q′′] of γ′ has a
segment [q′, q′′] of γ′′ in its boundary. As [q′, q′′] is a segment of the boundary
of a single face F ′′ mapped to C ′′, it cannot contain a corner of Q. Thus it is
a single edge of Q. The boundary of F ′′ cannot contain a corner of Q, since
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Figure 7: Illustration of the proof of Lemma 5.1.

a3 a1

Figure 8: Pseudo-diagonal connecting corners a1 and a3 of Q.

all vertices of Q on this boundary belong either to γ or to γ′, and those two
loops already contain the corner a0. Thus the loop γ

′′ contains no corners, a
contradiction.

It follows that γ cannot contain a0. A similar argument shows that γ
cannot contain a2. Thus γ contains either a1 or a3.

Proposition 5.2 Every loop of the net Q of an irreducible quadrilateral Q
with three non-integer corners is part of a pseudo-diagonal (Fig. 8) connecting
its integer corner a3 with its non-integer corner a1.

Proof. The same arguments as in the proof of Lemma 5.1 show that a loop
containing a1 should be part of a pair (γ′, γ′′) where γ′ is a loop mapping to
C ′ and γ′′ is a loop mapping to C ′′, both loops containing a1. In addition,
there should be a loop γ mapped to C intersecting both loops γ′ and γ′′.
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The loop γ must contain a corner of Q, and the integer corner a3 is the only
possibility (any other corner is rejected by the same argument as in the proof
of Lemma 5.1).

Conversely, if γ is a loop of Q mapped to C and containing a3 then it
bounds a disk D ⊂ Q so that the arcs intersecting inside D are parts of two
loops, γ′ mapped to C ′ and γ′′ mapped to C ′′, both containing a1. This can
be shown by the arguments similar to those in the proof of Lemma 5.1.

Corollary 5.3 Each irreducible spherical quadrilateral Q with three non-
integer corners is either primitive or can be obtained from a primitive polygon
Q̃ of any type except Rµν and R̄µν with a face F of its net containing the
corners a1 and a3 of Q̃ are on its boundary, by adding any number of pseudo-
diagonals connecting a1 with a3 inside F .

We use notation Uκ
µν , Ū

κ
µν , X

κ
µν , X̄

κ
µν , V

κ
µν , V̄

κ
µν , Z

κ
µν for an irreducible

quadrilateral obtained from one of the primitive quadrilaterals in Theorem
4.5 by adding κ pseudo-diagonals.

6 Classification of reducible quadrilaterals

To classify reducible quadrilaterals, we need digons Dn, and primitive trian-
gles Tn, En, Mn and M̄n (see Fig. 9). We also need a triangle ∇ with all its
angles equal 1 and all its sides mapped to the circle C corresponding to the
sides L3 and L4 of Q. Geometrically, ∇ is just a disk bounded by C with
three distinct points on C marked as its corners.

A digon Dn is a union of n disks, each bounded by the same circle of P,
glued together over the segments of their boundaries, each of them having its
ends at the same two points of the circle, so that their union is homeomorphic
to a disk. The angles at the two corners ofDn are equal n. The two boundary
arcs ofDn are called its sides. We use the same notationDn for a digon having
its sides on any of the three circles of P, and for any possible sizes of its two
sides. We use notation D0 for an empty digon.

A primitive triangle Tn (see Fig. 9a) has an integer corner with the angle
n ≥ 1 mapped to an intersection point of the two circles C ′ and C ′′ of P
corresponding to the sides L1 and L2 of Q. The side of Tn opposite its integer
corner maps to the circle C of P corresponding to the sides L3 and L4 of Q.
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Figure 9: Primitive triangles that appear in reducible quadrilaterals.

We use the same notation Tn for a triangle with two sides mapped either to
C ′ or to C ′′.

A primitive triangle En (see Fig. 9b) has a non-integer corner with the
integer part of the angle equal n mapped to an intersection point of the two
circles C ′ and C ′′ of P corresponding to the sides L1 and L2 of Q. The side
of En opposite its integer corner maps to the circle C of P corresponding to
the sides L3 and L4 of Q. The cyclic order of the sides of En is consistent
with the cyclic order of the sides of Q.

A primitive triangle Mn (resp., M̄n, see Fig. 9c and Fig. 9d) has a non-
integer corner with the integer part of the angle equal n ≥ 1 mapped to an
intersection point of the circle C ′ of P corresponding to the side L1 of Q
(resp., the circle C ′′ corresponding to the side L2) with the circle C corre-
sponding to the sides L3 and L4. The cyclic order of the sides ofMn and M̄n

is consistent with the cyclic order of the sides of Q.
If there is no arc of the net Q of a reducible quadrilateral Q connecting its

opposite corners then Q contains an irreducible quadrilateral Q̃, with digons
Di, Dk, Dl, Dm attached to its four sides (see Fig. 10). A non-empty disk
may be attached only to a “short” side of Q̃ (that is, to a side shorter than
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Figure 10: Reducible quadrilaterals with a generic integer corner.
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Figure 11: Reducible quadrilaterals with a generic integer corner (cont).
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Figure 12: Reducible quadrilaterals with a non-generic integer corner.
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Figure 13: An ab-chain of quadrilaterals of length 2.
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Figure 14: Examples of reducible quadrilaterals.

the full circle):
If Q̃ = Xκ

µν then i > 0 only if µ ≤ 1 and k > 0 only if ν ≤ 1.

If Q̃ = X̄κ
µν then m > 0 only if µ ≤ 3 and l > 0 only if ν ≤ 3.

If Q̃ = Rµν then k > 0 only if µ = 1 and ν = 0.
If Q̃ = R̄µν then i > 0 only if µ = 0 and ν = 1.
If Q̃ = Uκ

µν then i > 0 only if µ = 1 and l > 0 only if ν = 1.

If Q̃ = Ūκ
µν then m > 0 only if µ = 1 and k > 0 only if ν = 1.

If Q̃ = V κ
µν then i > 0 only if µ = 1 and l > 0 only if ν ≤ 2.

If Q̃ = V̄ κ
µν then m > 0 only if µ ≤ 2 and k > 0 only if ν = 1.

If Q̃ = Zκ
µν then i > 0 only if µ = 1 and k > 0 only if ν = 1.

If the corners a0 and a2 of Q are connected by an arc of Q then Q is a
union of a triangle ∇ and one of the triangles En (for 0 ≤ 1 ≤ 1), Mn (for
n ≥ 1), or M̄n (for n ≥ 1) with a digon Dj inserted between them and digons
Di, Dk, Dl, Dm attached to their other sides (see Fig. 11). Examples of such
quadrilaterals are given in Fig. 14a,d,e.

Note that the union of ∇ and E1 (see Fig. 14a) contains also arcs of Q
connecting a1 with a0 and with a2, and is equivalent to one of the quadrilat-
erals either in Fig. 10c,d or in Fig. 11b,c.
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The integer corner a3 of Q is “generic” – it may map to a point on C that
either belongs or does not belong to another circle of P. A non-empty disk
may be attached only to a “short” side of a triangle Mn or M̄n:
If n > 1 then k = 0 in Fig. 11b.
If n > 1 then i = 0 in Fig. 11c.

If the corners a1 and a3 of Q are connected by an arc of Q then Q is
a union of two primitive triangles (see Fig. 12) with a digon D2κ inserted
between them and and digons Di, Dk, Dl, Dm attached to their other sides.

We assume n ≥ 1 in Fig. 12b, and j ≥ 1 in Fig. 12d. The integer corner
a3 of such a quadrilateral Q is “non-generic” – it must map to an intersection
of C with another circle of P. A non-empty disk may be attached only to a
“short” side of any triangle:
In Fig. 12a, m = 0 if j > 1, and l = 0 if n > 1.
In Fig. 12b, m = 0 if j > 1, and k = 0 if n > 1.
In Fig. 12c, m = 0 if j > 1, and l = 0 if n > 1.
In Fig. 12d, i = 0 if j > 1, and l = 0 if n > 1.

Note that a digon with the odd angle cannot be inserted between the two
triangles in Fig. 12 since both sides of the digon should be arcs of Q of length
1. One could consider also the union of triangles M1 and Tn, (or Tj and M̄1)
with a digon D2κ+1 inserted between them (see Fig. 14b and Fig. 14c), but
the resulting quadrilateral would be equivalent to one of the quadrilaterals
in Fig. 12 with a digon D2κ inserted between two triangles.

Theorem 6.1 For any non-negative integers A0, A1, A2 and a positive in-
teger A3 there exists a spherical quadrilateral with [a0] = A0, [a1] = A1,
[a2] = A2, and a3 = A3.

Proof. Consider first the case A3 = 1. If A1 ≥ A0 + A2 then a quadrilateral
X̄0

µν with µ+ν = 2(A1−A0−A2) and digonsDi andDk attached to its sides L1

and L2 (see Fig. 10b) where i = A0 and k = A2 has the required integer parts
of its angles. If A0+A1+A2 is even and (A0−1, A1, A2−1) satisfy the triangle
inequality then the union of∇ and E0 with a digonDj inserted between them
and digons Di and Dk attached to its sides L1 and L2 (see Fig. 12a) where
j = (A0 + A2 − A1)/2 − 1, i = (A0 + A1 − A2)/2, k = (A1 + A2 − A0)/2
has the required integer parts of its angles. If A0 + A1 + A2 is odd and
(A0 − 1, A1 − 1, A2 − 1) satisfy the triangle inequality then the union of
∇ and E1 with a digon Dj inserted between them and digons Di and Dk

attached to its sides L1 and L2 (see Fig. 12a) where j = (A0+A2−A1−1)/2,
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i = (A0 +A1 −A2 − 1)/2, k = (A1 +A2 −A0 − 1)/2 has the required integer
parts of its angles. If either A0 ≥ A1 + A2 + 1 or A2 ≥ A0 + A1 + 1 then
the union of ∇ and either Mn or M̄n with Dj inserted between them and
either Di attached to L1 or Dk attached L2 (see Fig. 12a and Fig. 12b) has
the required integer parts of its angles.

Let now A3 ≥ 2. If A1 + A3 ≤ A0 + A2 then, attaching digons Dl and
Dm to the sides L3 and L4 of the union of ∇ and either En or Mn or M̄n, for
some l and m such that l +m = A3 − 1, we can reduce the problem to the
case when A3 = 1 and A1 < A0 + A2.

Suppose now that A1+A3 = A0+A2+1. Attaching digonsDi, Dk, Dl, Dm

to the sides of the quadrilateral X0,0 (see Fig. 10a) we can get a quadrilateral
with the required integer parts of the angles. Moreover, reducing (resp.,
increasing) by 1 the indices i and l, and increasing (resp., reducing) by 1
the indices k and m, we obtain a quadrilateral with the same angles. Thus
we may always assume that either min(i, l) = 0 or min(k,m) = 0. If, for
example, i = 0 or k = 0, we may replace X0,0 by either Xµ,0 or X0,ν and
increase A3. Similarly, if m = 0 or l = 0, we may replace X0,0 by either X̄µ,0

or X̄0,ν and increase A1. It is easy to check that this way we can obtain all
remaining values of the integer parts of the angles.

Remark 6.2 The primitive quadrilateral Q̃ contained in a reducible quadri-
lateral Q is not unique. The quadrilateral Q shown in Fig. 13c can be repre-
sented as one of the following:
X0

11 with i = k = 1 and l = m = 0 (see Fig. 10a);
X̄0

22 with i = k = 0 and l = m = 1 (see Fig. 10b);
U0
11 with i = l = 1 and k = m = 0 (see Fig. 10e);

Ū0
11 with i = k = 0 and l = m = 1 (see Fig. 10f).

The quadrilateral Q in Fig. 14a is the union of a triangle ∇ and a trian-
gle E1. The same quadrilateral can be represented as a quadrilateral R10

with i = l = m = 0 and k = 1, or as a quadrilateral R̄01 with i = 1 and
k = l = m = 0 (see Fig. 10c,d).

Lemma 6.3 The following reducible quadrilaterals are equivalent:
1) Xκ

µ,1 with digons Di, Dk, Dl, Dm attached as in Fig. 10a, k > 0, and Uκ
µ,1

with digons Di, Dk−1, Dl+1, Dm attached as in Fig. 10e.
2) Xκ

1,ν with digons Di, Dk, Dl, Dm attached as in Fig. 10a, i > 0, and Ūκ
1,ν

with digons Di−1, Dk, Dl, Dm+1 attached as in Fig. 10f.
3) X̄κ

2µ,2 with digons Di, Dk, Dl, Dm attached as in Fig. 10b, l > 0, and Ūκ
µ,1
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with digons Di, Dk+1, Dl−1, Dm attached as in Fig. 10f.
4) X̄κ

2,2ν with digons Di, Dk, Dl, Dm attached as in Fig. 10b, m > 0, and
Uκ
1,ν with digons Di+1, Dk, Dl, Dm−1 attached as in Fig. 10e.

5) X̄κ
2µ−1,3 with digons Di, Dk, Dl, Dm attached as in Fig. 10b, l > 0, and

V̄ κ
µ,1 with digons Di, Dk+1, Dl−1, Dm attached as in Fig. 10h.

6) X̄κ
3,2ν−1 with digons Di, Dk, Dl, Dm attached as in Fig. 10b, m > 0, and

V κ
1,ν with digons Di+1, Dk, Dl, Dm−1 attached as in Fig. 10g.

7) Zκ
µ,1 with digons Di, Dk, Dl, Dm attached as in Fig. 10i, k > 0, and V κ

µ,1

with digons Di, Dk+1, Dl−1, Dm attached as in Fig. 10g.
8) Zκ

1,ν with digons Di, Dk, Dl, Dm attached as in Fig. 10i, i > 0, and V̄ κ
1,ν

with digons Di−1, Dk, Dl, Dm+1 attached as in Fig. 10h.
9) The union of ∇ and E1 with a digon Dj, j > 0, inserted between them
and digons Di, Dk, Dl, Dm attached as in Fig. 11a, and either the union of
∇ and M1 with a digon Dj−1 inserted between them and digons Di, Dk+1,
Dl, Dm attached as in Fig. 11b, or the union of ∇ and M̄1 with a digon Dj−1

inserted between them and digons Di+1, Dk, Dl, Dm attached as in Fig. 11c.
10) The union of ∇ and E1 digons Di, Dk, Dl, Dm attached as in Fig. 11a,
j = 0, and either R1,0 with digons Di, Dk+1, Dl, Dm attached as in Fig. 10c,
or R̄0,1 with digons Di+1, Dk, Dl, Dm attached as in Fig. 10d.

This can be shown by comparing the nets of the quadrilaterals in each of
the ten cases.

7 Chains of quadrilaterals

We use the results on deformation of quadrilaterals from [4].
Let Γ be a family of curves in some region D ⊂ C. Let λ ≥ 0 be a

measurable function in D. We define the λ-length of a curve γ by

ℓλ(γ) =

∫

γ

λ(z)|dz|,

if the integral exists, and ℓλ(γ) = +∞ otherwise. Then we set

Lλ(Γ) = inf
γ∈Γ

ℓλ(γ),

and

Aλ(D) =

∫

D

λ2(z)dm,
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where dm is the Euclidean area element. Then the extremal length of Γ is
defined as

L(Γ) = inf
λ

L2
λ(Γ)

Aλ(D)
.

The extremal length is a conformal invariant. Extremal distance between
two closed sets is defined as the extremal length of the family of all curves
in D that connect these two sets. For a flat rectangle with vertices a0, a1,
a2, a3 conformally equivalent to the quadrilateral Q, the extremal distance
between its sides [a1, a2] and [a3, a0] is equal to |[a0, a1]|/|[a1, a2]| [1].

In addition to the extremal distance, we consider the ordinary intrinsic
distances between the pairs of opposite sides. They are defined as the infima
of spherical lengths of curves contained in our quadrilateral and connecting
the two sides of a pair.

Lemma 7.1 ([4, Lemma 15.1] Consider a sequence of spherical quadrilat-
erals whose developing maps f are at most p-valent with a fixed integer p. If
the intrinsic distance between the sides [a1, a2] and [a3, a0] is bounded from
below, while the intrinsic distance between the sides [a0, a1] and [a2, a3] tends
to zero, then the extremal distance between the sides [a1, a2] and [a3, a0] tends
to +∞.

Let Q be a quadrilateral with non-integer corners a0, a1 and a2, and with
integer corner a3 which is mapped to a point X ∈ C that is not a vertex of
P. Let Q be the net of Q. When X approaches a vertex X0 of P, and the
combinatorial class of Q is fixed, we have the following possibilities.

(a) Q degenerates so that the intrinsic distance between its opposite sides
L1 and L3 tends to zero, while the intrinsic distance between its sides
L2 and L4 does not tend to zero. This happens when Q has an arc of
order 1 connecting a3 with a point on L1 mapped to X0, but does not
have an arc of order 1 connecting a3 to a point on L2 mapped to X0.

(b) Q degenerates so that the intrinsic distance between it opposite sides
L2 and L4 tends to zero, while the intrinsic distance between its sides
L1 and L3 does not tend to zero. This happens when Q has an arc of
order 1 connecting a3 with a point on L2 mapped to X0, but does not
have an arc of order 1 connecting a3 to a point on L1 mapped to X0.
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Figure 15: An aa-chain of quadrilaterals of length 1.

(c) Q does not degenerate, but converges to a quadrilateral Q′ with the
corner a3 mapped to the vertex X0 of P. This happens when Q does
not have an arc of order 1 connecting a3 with a point on one of the
sides L1 and L2 mapped to X0.

In the case (c), the quadrilateral Q′ must be one of the quadrilaterals
shown either in Fig. 11 or in Fig. 12, since a quadrilateral Q containing an
irreducible quadrilateral Q̃ cannot have its integer corner a3 mapped to a
vertex of P. If Q is one of the quadrilaterals in Fig. 11 then Q′ is equivalent
to Q. In this case, the combinatorial type of Q does not change when X
passes trough X0. If Q′ is one of the quadrilaterals in Fig. 12 then it is not
equivalent to Q, and we say that Q and Q′ are adjacent. In this case, Q′ has
two adjacent quadrilaterals with different combinatorial types.

Example 7.2 The quadrilateral Q in Fig. 15a is V 1
1,1. As X (the point on

C where a3 maps) approaches X0 ∈ C ∩ C ′′, the quadrilateral Q converges
to the quadrilateral Q′ in Fig. 15b which is the union of triangles M̄1 and T1
with a digon D2 inserted between them (see Fig. 12d). After X passes X0,
the quadrilateral becomes U1

1,1.

Lemma 7.3 The following quadrilaterals are adjacent to the quadrilaterals
in Fig. 12:
a) Let Q′ be the union of triangles Tj and En with a digon D2κ inserted
between them and digons Di, Dk, Dl, Dm attached as shown in Fig. 12a.
Then Q′ is adjacent to the quadrilaterals X̄κ

2j,2n and X̄κ
2j−1,2n+1 with digons

Di, Dk, Dl, Dm attached as shown in Fig. 10b.
b) Let Q′ be the union of triangles Tj and Mn with a digon D2κ inserted
between them and digons Di, Dk, Dl, Dm attached as shown in Fig. 12b.
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Then Q′ is adjacent to the quadrilaterals Ūκ
jn and V̄ κ

jn with digons Di, Dk,
Dl, Dm attached as shown in Fig. 10f,h.
c) Let Q′ be the union of triangles Ej and Tn with a digon D2κ inserted
between them and digons Di, Dk, Dl, Dm attached as shown in Fig. 12c.
Then Q′ is adjacent to the quadrilaterals X̄κ

2j+1,2n−1 and X̄κ
2j,2n with digons

Di, Dk, Dl, Dm attached as shown in Fig. 10b.
d) Let Q′ be the union of triangles M̄j and Tn with a digon D2κ inserted
between them and digons Di, Dk, Dl, Dm attached as shown in Fig. 12d.
Then Q′ is adjacent to the quadrilaterals Uκ

jn and V κ
jn with digons Di, Dk,

Dl, Dm attached as shown in Fig. 10e,g.

This can be shown by comparing the chains of the quadrilaterals in each
of the cases a-d.

Definition 7.4 For k > 0, a sequence Q0, Q
′
1, Q1, . . . , Q

′
k, Qk of quadrilater-

als with distinct combinatorial types, where any two consecutive quadrilater-
als are adjacent, and each of the terminal quadrilaterals Q0 and Qk has only
one adjacent quadrilateral, is called a chain of the length k. A quadrilateral
Q0 having no adjacent quadrilaterals is called a chain of the length 0.

If both cases (a) and (b) are possible for degeneration of Q0 and Qk then
the chain is called an ab-chain. If only the case (a) is possible, the chain is
an aa-chain. If only the case (b) is possible, the chain is a bb-chain.

Example 7.5 A chain of quadrilaterals of length 3 is shown in Fig. 16. The
quadrilateral Q0 in Fig. 16a can be represented either as V 1

11 with a digon
D1 attached to its side L1 or as X̄1

3,1 with a digon D1 attached to its side
L4. The quadrilateral Q1 in Fig. 16c can be represented either as U1

11 with a
digon D1 attached to its side L1 or as X̄1

2,2 with a digon D1 attached to its
side L4. The quadrilateral Q2 in Fig. 16e is X̄13 with a digon D1 attached to
its side L4. The quadrilateral Q3 in Fig. 16g is X̄04 with a digon D1 attached
to its side L4. The quadrilateral Q′

1 in Fig. 16b is a union of triangles M̄1

and T0 with a digon D2 inserted between them and a digon D1 attached to
its side L1. It can be also represented as a union of triangles E1 and T0 with
a digon D2 inserted between them and a digon D1 attached to its side L4.
The quadrilateral Q′

2 in Fig. 16d is a union of triangles T̄0 and E1 with a
digon D2 inserted between them and a digon D1 attached to its side L4. The
quadrilateral Q′

3 in Fig. 16f is a union of triangles E0 and T1 with a digon
D2 inserted between them and a digon D1 attached to its side L4.
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If the point X to which the corner a3 of Q0 maps approaches C ∩C ′, the
intrinsic distance between the sides L1 and L3 (but not of L2 and L4) tends
to zero (case a). If X approaches C ∩ C ′′, the quadrilateral Q0 converges to
Q′

1 (case c). If the point X to which the corner a3 of Q1 maps approaches
C ∩ C ′ (resp., C ∩ C ′′), the quadrilateral Q1 converges to Q′

2 (resp., Q′
1). If

the point X to which the corner a3 of Q3 maps approaches C ∩ C ′ (resp.,
C ∩ C ′′), the quadrilateral Q2 converges to Q′

2 (resp., Q′
3). If the point X

to which the corner a3 of Q3 maps approaches C ∩ C ′′, the quadrilateral Q3

converges to Q′
3. If X approaches C ∩C ′, the intrinsic distance between the

sides L1 and L3 (but not of L2 and L4) tends to zero (case a). Thus the chain
in Fig. 16 is an aa-chain.

Lemma 7.6 A chain of quadrilaterals with one integer angle is an aa-chain
(resp., a bb-chain) if and only if it contains a quadrilateral Uκ

µν (resp., Ūκ
µν)

with digons Di, Dk, Dl, Dm attached as in Fig. 10e,f, with µ ≥ 1, ν ≥ 1,
and min(i, l) = 0 (resp., min(k,m) = 0). Each aa-chain (resp., bb-chain)
contains only one quadrilateral satisfying these conditions.

Proof. Due to reflection symmetry, it is enough to consider only aa-chains
containing a quadrilateral Q with the net Uκ

µν and digons Di, Dk, Dl, Dm

attached, as in Fig. 10e, satisfying conditions of Lemma 7.6.
If i = 0 then the net Q of Q = Q1 contains an arc of length 1 connecting

its corner a3 with a point on its side L1. On the other hand, Q is adjacent
to a quadrilateral Q′

1 which is the union of triangles M̄µ and Tν with a digon
D2κ inserted between them and digons Dk, Dl, Dm attached (since i = 0,
digon Di is empty) as shown in Fig. 12d (see Lemma 7.3). A quadrilateral Q0

with the net V κ
µν and digons Dk, Dl, Dm attached, as in Fig. 10g is adjacent

to Q′
1, and its net contains an arc of length 1 connecting its corner a3 with

a point on its side L1. Thus the chain of length 1 consisting of Q0, Q
′
1 and

Q1 = Q is an aa-chain. An example of such a chain is shown in Fig. 15.
Note that if l > 0 then ν = 1, and the quadrilateral Q is equivalent to a
quadrilateral with the net Xκ

µ,1 and digons Dk+1, Dl−1, Dm attached to its
sides L2, L3, L4.

Suppose now that i > 0 but l = 0. This is only possible if µ = 1. An
example of such a net is shown in Fig. 16c, and it is shown in Example 7.5
that it belongs to an aa-chain. The same arguments as in Example 7.5 show
that any quadrilateral with the net Uκ

1,ν and digons Di, Dk, Dm attached
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Figure 16: An aa-chain of quadrilaterals of length 3.
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to its sides L1, L2, L4, where i > 0, which is equivalent to a quadrilateral
with the net X̄κ

2,2ν and digons Di−1, Dk, Dm+1 attached to its sides L1, L2,
L4, belongs to an aa-chain of length 1, containing also a quadrilateral with
the net V κ

1,ν with the same digons as those attached to the sides of Uκ
1,ν , and

quadrilaterals X̄κ
1,2ν+1 X̄

κ
0,2ν+2 with the same digons as those attached to the

sides of X̄κ
2,2ν .

It remains to show that any chain that either does not contain a quadri-
lateral Uκ

µν with digons Di, Dk, Dl, Dm attached to its sides, or contains such
a quadrilateral with i > 0 and l > 0, is not an aa-chain. The corresponding
statement for Ūκ

µν would follow by reflection symmetry.
We start with the chains containing Uκ

µν . Conditions i > 0 and l > 0 are
satisfied only when µ = ν = 1. Such a quadrilateral (for κ = 0, i = l = 1
and k = m = 0) is shown in Fig. 13c. It is an easy exercise to show that it
belongs to an ab-chain of length 2 containing also V 0

1,1 with two digons D1

attached to L1 and L3 (equivalent to X̄0
3,1 with two digons D1 attached to

L3 and L4, see Fig. 13a) and V̄ 0
1,1 with two digons D1 attached to L2 and L4

(equivalent to X̄0
1,3 with two digons D1 attached to L3 and L4, see Fig. 13e).

The same arguments show that a quadrilateral Q = Q1 with the net Uκ
1,1

and digons Di, Dk, Dl, Dm attached to its sides (equivalent to a quadrilat-
eral Xκ

2,2 with digons Di, Dk+1, Dl−1, Dm attached, to a quadrilateral X̄κ
2,2

with digons Di−1, Dk, Dl, Dm+1 attached, and to a quadrilateral Ūκ
1,1 with

digons Di−1, Dk+1, Dl−1, Dm+1 attached) belongs to an ab-chain of length 2
containing also a quadrilateral Q0 with the net V κ

1,1 and the same digons as
those attached to the sides of Uκ

1,1 (equivalent to X̄κ
3,1 with the same digons

as those attached to the sides of X̄κ
2,2), and a quadrilateral Q2 with the net

V̄ κ
1,1 and the same digons as those attached to the sides of Ūκ

1,1 (equivalent to
X̄κ

1,3 with the same digons as those attached to the sides of X̄κ
2,2).

By reflection symmetry, all chains containing Ūκ
µν are either bb-chains or

ab-chains. One can easily check that any chain containing a net V κ
µν (resp.,

V̄ κ
µν) with digonsDi, Dk, Dl, Dm attached to its sides as in Fig. 10g,h contains

also a net Uκ
µν (resp., Ūκ

µν) with the same digons attached to its sides.
Now we are going to show that all chains that do not contain either Uκ

µν

or Ūκ
µν are ab-chains.
Any net Xκ

µν with digons Dl and Dm attached to its sides L3 and L4 has
arcs of length 1 connecting a3 with points on both L1 and L2, thus it is an
ab-chain of length 0. If, in addition, a non-empty digon Dk is attached to its
side L2 then ν ≤ 1. When µ > 0, this net is equivalent to Uκ

µ,1 with digons
Dk−1, Dl+1, Dm attached. When µ = 0, it is equivalent to X̄κ

0,2 with digons
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Dk−1, Dl+1, Dm attached, and belongs to an ab-chain of length 2 containing
also the nets X̄κ

1,1 and X̄κ
2,0 with the same digons as those attached to the

sides of X̄κ
0,2. Similarly, the net Xκ

0,1 with digons Di, Dk, Dl, Dm attached,
k > 0, is equivalent to X̄κ

0,2 with digons Di, Dk−1, Dl+1, Dm attached, and
belongs to an ab-chain of length 2 containing also the nets X̄κ

1,1 and X̄
κ
2,0 with

the same digons as those attached to the sides of X̄κ
0,2.

All nets X̄κ
µν with digons Di, Dk, Dl, Dm attached to their sides as in

Fig. 10b have been already considered, except those with l = m = 0. For
given κ, µ+ ν, i and k, such nets belong to a single ab-chain of length µ+ ν.

Each net Rµ,ν (resp., R̄µ,ν) with digons Di, Dk, Dl, Dm attached to its
sides as in Fig. 10c,d has arcs of length 1 connecting a3 with points on both
L1 and L2, thus it is an ab-chain of length 0. The same is true for each net
Zκ

µν with digons Di, Dk, Dl, Dm attached to its sides as in Fig. 10i.
Each net in Fig. 11 is an ab-chain of length 0. Although its net may

not have arcs of length 1 connecting a3 with points on both L1 and L2, the
net does not change combinatorial equivalence class when the image X of
its corner a3 passes through an intersection point of C with either C ′ or C ′′,
unless the arc of ∇ connecting a3 with either a0 or a1 contracts to a point.

This completes the proof of Lemma 7.6.

Lemma 7.7 For the given angles α0, . . . , α3 at the corners a0, . . . , a3 of a
quadrilateral Q with one integer corner a3, the number of nets Uκ

µν with digons
Di, Dk, Dl, Dm attached to its sides as in Fig. 10e, so that min(i, l) = 0,
equals

[

min

(

α3

2
,
1 + [α1]

2
,
δ

2

)]

(7.1)

where [α0] = i+m, [α1] = i+k+2κ+ν, [α2] = k+l, α3 = l+m+2κ+µ+1 are
integer parts of the angles of Q, and δ = max(0, 1+[α1]+α3− [α0]− [α2])/2.

Proof. One can establish one-to-one correspondence between the nets in
Lemma 7.7 and the corresponding nets in Theorem 17.2 of [4] for a quadri-
lateral with two opposite integer corners, except the angle at the corner a2
of the quadrilateral in Theorem 17.2 of [4] would be 1 + [α1].

Theorem 7.8 For given angles α0, . . . , α3, where α3 is integer and α0, . . . , α2

are not integer, and for a fixed modulus, there are at least

a3 − 2

[

min

(

α3

2
,
1 + [α1]

2
,
δ

2

)]

(7.2)
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quadrilaterals, where δ = max(0, 1 + [α1] + α3 − [α0]− [α2])/2.

Proof. It follows from Proposition 2.4 that the total number of chains of
quadrilaterals with the angles as in Theorem 7.8 is a3. It follows from Lemmas
7.6 and 7.7 that the number of aa-chains (and the number of bb-chains which
is equal to the number of aa-chains by reflection symmetry) is given by (7.1).
Thus the number of ab-chains is given by (7.2). For each ab-chain there is
a quadrilateral with such chain with any modulus, and these quadrilaterals
are distinct for distinct chains.
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