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ABSTRACT 

Rybarczyk, Ryan Thomas. Ph.D., Purdue University, December 2016. Managing Trust 
and Reliability for Indoor Tracking Systems. Major Professor: Rajeev R Raje. 
 
 

Indoor tracking is a challenging problem. The level of accepted error is on a much 

smaller scale than that of its outdoor counterpart. While the global positioning system has 

become omnipresent, and a widely accepted outdoor tracking system it has limitations in 

indoor environments due to loss or degradation of signal. Many attempts have been made 

to address this challenge, but currently none have proven to be the de-facto standard. In 

this thesis, we introduce the concept of opportunistic tracking in which tracking takes 

place with whatever sensing infrastructure is present – static or mobile, within a given 

indoor environment. In this approach many of the challenges (e.g., high cost, infeasible 

infrastructure deployment, etc.) that prohibit usage of existing systems in typical 

application domains (e.g., asset tracking, emergency rescue) are eliminated. Challenges 

do still exist when it comes to provide an accurate positional estimate of an entities 

location in an indoor environment, namely: sensor classification, sensor selection, and 

multi-sensor data fusion. We propose an enhanced tracking framework that through the 

infusion of QoS-based selection criteria of trust and reliability we can improve the overall 

accuracy of the tracking estimate. This improvement is predicated on the introduction of 

learning techniques to classify sensors that are dynamically discovered as part of this 
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opportunistic tracking approach. This classification allows for sensors to be properly 

identified and evaluated based upon their specific behavioral characteristics through 

performance evaluation. This in-depth evaluation of sensors provides the basis for 

improving the sensor selection process. A side effect of obtaining this improved accuracy 

is the cost, found in the form of system runtime. This thesis provides a solution for this 

tradeoff between accuracy and cost through an optimization function that analyzes this 

tradeoff in an effort to find the optimal subset of sensors to fulfil the goal of tracking an 

object as it moves indoors. We demonstrate that through this improved sensor 

classification, selection, data fusion, and tradeoff optimization we can provide an 

improvement, in terms of accuracy, over other existing indoor tracking systems. 
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CHAPTER 1. INTRODUCTION 

Tracking is a fundamental behavior that we, as humans, possess with respect to 

our environment and given locations. We have an innate desire to track objects as they 

move, or are moved, around within an environment. This movement takes place over a 

diverse scale of distances, durations, and settings. This idea of tracking serves many 

practical purposes that are often essential to our daily lives. Knowing where specific 

objects (e.g., people, places, and things) are located and how to find/discover these 

objects are often of great importance to us. Location awareness and tracking of objects 

can also yield additional, and often interesting, context regarding the current situation and 

the environment. For instance, one common form of tracking that has found itself as a 

mainstream necessity is for individuals to use the global positioning system (GPS) to 

track the movement of their vehicle as they drive in order to provide directions on how to 

reach a certain destination. This system has the ability to locate and then track a GPS 

sensor as it moves and because of this tracking ability the system can provide the shortest 

path and can help us to avoid potential “roadblocks” that would often hinder our ability to 

reach our goal.  

The above example demonstrates not only the usefulness of tracking but also the 

need and reliance on such a system. One of the key points to note in the above provided
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and belief that the system will behave in expected manner. This trust has been built-out of 

positive evidences, or its reputation, that have been demonstrated over time and validated 

through extensive studies and use. At the same time, the individual also has a belief that 

the system will behave in a reliable fashion – meaning that the system will consistently 

provide the necessary information when requested and will not fail. In the example case 

provided, a failure of the system may not prove to be catastrophic but it could result in 

significant damage (both physical and reputation) if complete belief is placed with the 

system and its performance. This demonstration of the importance of trust and reliability 

with respect to the evaluation and use of a tracking system are vital for its wide spread 

use. 

1.1 Motivation 

Indoor tracking often comes with a significant cost attached to it. This cost is 

twofold: one aspect of cost is the financial cost associated with the purchase and then 

deployment of a physical sensing infrastructure to provide such tracking; secondly, the 

cost associated, with time and energy consumption. The second component of cost, in 

terms of energy consumption, is especially important since many sensors that are now 

being used for indoor tracking are mobile and/or running on battery power and thus have 

strict energy constraints. This problem is further compounded by the fact that the devices 

(containing the tracking sensors) are typically not dedicated solely for the use as tracking 

sensor, but instead are designed and used as personal mobile devices by the individual 

carrying them. As a result, careful attention must be paid to the cost associated with 

obtaining a positional estimate.  
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A secondary challenge associated with indoor tracking at the general level is that 

the tracking system itself may have little control over the behavior or movement of the 

sensors. Devices, and their associated sensors, may enter or leave the tracking 

environment, and thus the tracking sensor network, often may change without proper 

notice. This behavior may be planned (e.g., leaving a room) or unplanned (e.g., the 

battery of the mobile device has failed and thus has to shutdown). This unpredictability 

and dynamic mobility of the tracking infrastructure makes it challenging to identify 

which devices/sensors to make use.  

Finally, as part of this tracking process there is the tradeoff between cost and gain 

that must be examined. The goal of a tracking system is to provide a maximal gain while 

minimizing the cost associated with obtaining this result. This process is not trivial and 

due to the dynamic nature of both the tracking environment and the sensors themselves it 

can be quite challenging. Optimizing this tradeoff is there a difficult problem and one that 

must be addressed in order to maximize the overall performance of an indoor tracking 

system. 

1.2 Problem Statement 

Existing indoor tracking approaches [1] are typically focused on single modal 

systems that do not consider the dynamic nature of the tracking environment. Hence, 

there are extreme limitations with what and where indoor tracking in these systems can 

take place. With the omnipresence of mobile and smart devices, a static single modal 

sensing infrastructure is not always required, nor necessary, in order to provide adequate 

indoor location tracking. Instead, an approach of opportunistic tracking, in whatever 

sensor infrastructure is available is used, is now possible in which indoor tracking 
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systems may dynamically and opportunistically discover and take advantage of any 

sensor devices present in a given environment.  

This thesis proposes the infusion of both trust and reliability as separate, and 

distinct, selection criterion for the purpose of improving the sensor selection and 

ultimately the accuracy of the tracking estimate. This improved selection will directly 

impact the data fusion process and ultimately the overall tracking estimate provided. As 

part of this work it is also necessary to explore, evaluate, and propose a solution to the 

tradeoff between the cost and the gain of such selection. This thesis will propose an 

optimization of this tradeoff with the intent of improving the overall performance of a 

prototypical indoor tracking system. 

1.3 Hypothesis 

The goal of this thesis is to demonstrate that indoor tracking performance, in 

terms of tracking accuracy, can in fact be improved through the infusion of new selection 

criteria (trust and reliability as separate criterion) and that this selection process can then 

lead to an improved performance while providing a tradeoff between the cost and the 

gains. 

1.4 Indoor Tracking 

Indoor tracking is a fascinating area of research due to its many significant 

challenges. Indoor tracking differs greatly from its outdoor counterpart due in part to the 

fact that the typical spaces, or areas, in which the tracking is taking place are much more 

confined and often times need a greater accuracy and responsiveness due to the close 

proximity of objects. An additional challenge that is magnified by indoor tracking is that 

of the presence and scale of obstacles that can obstruct or greatly negate the effectiveness 
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and the use of certain popular sensing technologies (e.g., wireless signal propagation and 

thick concrete walls). Because of this, often a single sensor modality (e.g., satellite time 

distance arrival – GPS) will not suffice in providing the necessary coverage and 

associated accuracy needed to track in such indoor environments. Instead, a combination 

of different techniques and sensors are often needed to provide the desired or complete 

coverage with appropriate accuracy and end-to-end tracking time. 

Existing static infrastructure [2] and single modal systems [3] are popular 

approaches to provide indoor tracking. These approaches are similar to that found in the 

outdoor tracking environment and attempt to leverage many of the same techniques while 

providing the tracking coverage. Such tracking infrastructure is often integrated into 

indoor environments to provide tracking through specialized installation and the use of 

tracking-specific sensing devices. One popular indoor tracking technology that is 

currently in use is that of radio frequency identification (RFID). RFID technology makes 

the use of specialized attached identifiers to help pinpoint an object’s given location by 

exchanging of radio signals with a base station, otherwise known as a reader. This 

technology has proven to be extremely popular with respect to asset tracking. Another 

related technology is that of wireless frequency (Wi-Fi) fingerprinting and subsequent 

trilateration to determine an object’s position. Each of these technologies allows for the 

tracking of objects in indoor spaces, however, both are tied to a specific modality and a 

specialized infrastructure.    

With the current omnipresence of smart, often mobile, devices it is now possible 

to create ad-hoc networks of sensors within the indoor boundaries for tracking. These 

smart devices often carry many onboard sensors and can assist in tracking in areas where 
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static infrastructure may not always be feasible. These mobile sensors can also help to 

enhance existing tracking infrastructure by providing additional sensing technologies that 

can be harnessed to better pinpoint an objects given location. The mobility of these 

devices also provides a distinct advantage in tracking as tracking itself is the task of 

“following” an object’s movement. With the freedom of movement, the tracking system 

can evolve with the current needs of the application domain and provide a much wider 

area of coverage. 

1.5 Sensor Classification 

For indoor tracking, one of the key challenges is the processing of “discovering” 

the sensors in the environment. In a single modal system this is a trivial task as there is 

only one type of sensor to account for. However, in a multi-modal system this task can be 

quite a challenge and can require a substantial amount of time to complete. This is due to 

the inherent complexity of dealing with a wide range of sensors and their varying 

characteristics. The sensor classification problem is, therefore, represented as the attempt 

to label the modality of an identified sensor. This overall process can be broken down 

into two distinct phases: identification and classification.  

In the first phase, the sensor must be properly identified as a consumable sensor. 

Here the term consumable is used to represent the ability of a software component to 

access the physical sensor itself. The tracking system must first recognize that a given 

sensor is present and establish communication with the device. This identification process 

is the initial step in making a connection with the device that contains the physical sensor 

itself. Once a connection and communication has been made with the sensor and that it is 
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deemed that the sensor is indeed a consumable sensor, it is then possible to move on to 

the second phase of the process.  

The second phase consists of the actual classification of the sensor modality. This 

is an important step as it separates the trackers, or those sensors that can provide data 

with respect to an object’s location, from non-trackers. This phase of the classification 

activity can be defined as the attempt to match a sensors characteristics with known 

information, if/when this information is available. There are three unique cases in which 

this matching can be performed by the tracking system. Any one of these three cases can 

provide the necessary means classify a sensor. These three different cases are now 

described below in more detail.  

The first case of sensor matching is built upon the idea that information regarding 

the identified sensor is publically available, either via an existing knowledge base or 

through manufacturers publications, and therefore the sensor can be matched based upon 

this previously acquired information. The second case of sensor matching is that some of 

the information may have been previously acquired,  by a priori interaction with the 

tracking system, that can then serve as a base for matching the identified sensor with a 

given sensor template. This knowledge base can be constructed over time and be 

maintained by the system administrator. Finally, the third case of sensor matching is the 

instance where there is no information known about a given sensor. In this case, the 

tracking system will attempt to match with a generic template until such information can 

be collected and a new sensor identification created as part of the known world of 

tracking sensors. 
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This process of sensor classification relies heavily on the tracking system and its 

ability to learn about the presence of new sensors, be able to build/update sensor 

knowledge base, and to match the sensor with a given template. Once a sensor has been 

properly identified and classified it is now ready for use by the tracking system. 

1.6 Sensor Selection 

The problem of sensor selection can be defined as the process of selecting a 

sensor, Si, from a given set of sensors S, so as to yield the highest benefit in indoor 

tracking. This process could be repeated until some criteria are met, ultimately resulting 

in an optimal subset of sensors. 

In order to achieve this decision making process of the optimal subset selection, a 

set of selection criteria is often implemented to aid in this process. These selection 

criteria, discussed in the following subsection, allow for the selection process to evaluate 

and make a judgment based upon the comparison between the criterion and the sensor’s 

performance. Other approaches that do not make an explicit use of specialized selection 

criteria can instead make use of counting or random selection techniques. In a counting 

technique the first/last N-number of sensors can be selected to serve as the subset. In a 

random-based approach, the system itself randomly selects a given subset of sensors.  

Sensor selection serves many roles in the overall indoor tracking process. The first role is 

that it provides the system with a set of sensors with which to work with in order to 

estimate a given position of an object at a moment in time. In the case of a multi-modal 

tracking system, sensor selection process must lean heavily on the sensor classification to 

know the behavior and expected performance of each sensor. This is important as a 

sensor may be very well suited for a specific environment or specific conditions but may 
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provide unsatisfactory in terms of its performance in others. This decision making 

process has a ripple effect throughout the entire tracking system as the selection of one 

improper sensor can negatively impact the overall accuracy of the tracking system. 

1.7 Sensor Criterion 

A proper subset of sensors is often needed in order maximize the end goal of the 

tracking system. As previously mentioned, during the sensor selection process, a filter 

may be applied in order to select those sensors that meet a specified criterion and thus 

provide accurate tracking. This evaluation of selection criteria must be dynamic and 

evolve as both the system and the tracking requirements evolve.  

As highlighted in the introduction, trust and reliability are often two important 

selection criteria during the process of selection. In an indoor tracking environment, there 

may be different sensors (either of the same modality or different) that the tracking 

system may need to interact with during the course of tracking an object. These sensors 

may be known a priori, however, this cannot be assumed to always be the case. Even in 

the case where the sensors are all known a priori, their specific behavior and subsequent 

performance and characteristics (e.g., communication rate, sensor life, etc.) may change, 

or be altered/manipulated, over time. We will now provide a brief introduction to the 

concepts of trust and reliability. 

1.7.1 Trust 

Trust can be defined [4] as the belief that an entity will behave in a certain 

specified fashion over a given period of time, t. This concept of belief is an important 

aspect of the trustworthiness of a specific entity. This definition can be applied to the 

domain of indoor tracking as a selection criterion for use in the sensor selection process. 
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Belief, and hence trust, in a sensor can be established through its reputation (e.g., other 

sensors opinions about the trustworthiness of a given sensor Si) or through interactions 

with the sensor, by software trust agents, in which direct evidences of this behavior can 

be collected. In addition, while computing trust about a sensor, the reputation (i.e., the 

general held consensus as to the belief of an entity by a collective group) of the providers 

of the opinions must also be considered. Operators, such as consensus, to quantify trust 

associated with a sensor can be used to evaluate these collected opinions and evidences 

over a given time period. This trustworthiness can then in turn be used as a part of the 

evaluation of the selection criteria during the sensor selection process. 

1.7.2 Reliability 

Reliability can be defined [5] as the probability of failure-free operation for a 

specified period of time, t, for a given entity. In this definition, the key term of 

examination is failure-free. This term is the basis for distinguishing trust and reliability 

from one another. A failure-free operation does not ensure that the data provided by the 

sensor can be deemed as trustworthy; all that it ensures is that the sensor behaves without 

failing during the course of the tracking exercise. With respect to indoor tracking sensors 

failure can either be a hard or soft failure. In a hard failure, the actual physical device 

itself (i.e., the sensor) could mechanically malfunction and thus prevent the device from 

providing the necessary response. In a software failure, the software component of a 

sensor may fail either unintentionally or through malicious intent. This failure is not 

limited to just the sensor itself but can also include the communication network that is 

being utilized between the tracking system and the sensor. 
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1.8 Multi-Sensor Data Fusion 

Data fusion can be defined [6] as the process of combining data from different 

sources into a single point of reference. In a multi-sensor tracking environment this can 

be further defined as the act of combining, or fusing, results from different sensor sources 

with the intent of tracking an object as it moves through an environment. The act of 

fusion is a multi-step process that includes: examination of the data and data sources, 

determining a singular point of reference, selecting a fusion technique, and presenting the 

final fused result.  

In the first step, the tracking system must examine the data obtained from various 

data sources and decide how to use the data. This process is aided by sensor selection 

activity. Once the data has been selected, then these data items need to be combined. 

There is a degree of heterogeneity associated with various data items, for example, data 

results that provide two-dimensions of reference are not equivalent to results that provide 

three-dimensions of reference. Hence, such items need to be unified using a single point 

of reference. After a single point of reference is established the next step is to select a 

fusion technique to be applied. Techniques for data fusion range from an averaging 

technique to Kalman filtering. Simple techniques are efficient in terms of cost, both 

computational and time, but are often not sufficient as noisy sensor data can greatly skew 

the resulting estimate. Complex approaches such as Kalman-based Filtering are more 

costly; however, they can achieve much more precise and accurate results. 

1.9 Tradeoff Optimization 

Tradeoff optimization can be defined as the ability to measure and then optimize 

the tradeoff between gain and cost. In the case of indoor tracking the gain is typically 
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measured by the accuracy obtained by the tracking system. For indoor tracking the cost 

can be measured via two parameters: the time and computational overhead associated 

with obtaining the positional estimate, as well as the cost associated with deploying 

sensors into a given indoor environment. As cost and gain are opposites of one another 

there is a need for optimizing this tradeoff with the intent of maximizing the gain while 

minimizing the cost.  

Specifically for indoor tracking, the need to optimize this tradeoff serves two 

purposes. Firstly, we strive to provide the highest degree of accuracy with our positional 

estimate. This accuracy is a direct result of the sensors selected and the data fusion 

applied to the raw sensor data; second, we strive to minimize the cost, specifically time 

and network communication or bandwidth, to help minimize the impact when it comes to 

the sensors themselves. As previously mentioned, tracking is not a static process and as 

such the optimization must be dynamic. Learning techniques can be applied in order to 

adjust the optimization, as needed, during the course of tracking. This learning – and then 

application of the learned behavior – is essential as the dynamic nature of both the virtual 

and physical environments change over the duration of the tracking process. 

1.10 Contributions 

The formal contributions of this thesis are as follows: 

1. We introduce and formalize the concept of opportunistic tracking. This 

proposed approach makes use of any available sensing device present in a 

given indoor environment. This proposed approach includes the discovery, 

identification, and communication with such devices and the formation of a 

network of tracking sensors. 
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2. We propose a classification algorithm and preliminary online repository for 

a knowledge base containing information regarding various sensor 

characteristics and performance ratings. This knowledge base will be 

constructed over time and referenced when needed in order to appropriately 

classify a sensor. 

3. We propose a modified sensor selection technique in which trust and 

reliability are used as separate and distinct selection criterion. Trust and 

reliability are measured through the collection of evidences and are 

calculated using the concept of subjective logic to model the belief, 

disbelief, and uncertainty in the resulting value. 

4. This thesis proposes an optimization tradeoff function in which we analyze 

the impacts on both cost and gain with respect to sensor selection and the 

ultimate performance of the tracking system. This tradeoff evaluation is 

then enhanced through the application of learning techniques that when 

applied can dynamically adjust the necessary function over the duration of 

tracking.  

5. We apply each of these proposed enhancements and techniques to a 

prototype indoor tracking system for empirical validation and analysis. This 

is done with the aim of demonstrating that through the inclusion of the 

additional selection criterion of trust and reliability and the use of dynamic 

optimization of such selection that it is possible to improve the overall 

performance of a typical indoor tracking system and thus validate our 

hypothesis.  
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1.11 Organization 

This thesis is organized into five chapters. The first of these chapters includes the 

introduction, an overview of the different aspects of indoor tracking, a discussion of the 

motivating factors behind this work, a problem statement outlining what problem this 

thesis document sets out to solve, and a hypothesis for the expected outcome of this work. 

The second chapter includes a comprehensive review of related works. The third chapter 

presents an outline of the proposed modifications to the sensor classification process, 

sensor selection process, infusion of trust and reliability, analysis of the data fusion 

process, and outlines the optimization function that will be used to evaluate the tradeoff 

between the cost and the gain in the tracking system. This chapter includes a discussion 

of the design of the indoor tracking system that will be used for experimentation. The 

fourth chapter describes the results from experimentation and an in-depth discussion of 

these results and how they relate to the problems and goals discussed in chapter one. The 

fifth and final chapter states conclusions of the work as well as some suggested areas of 

future work.
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CHAPTER 2.  RELATED WORK 

There are many application domains [7-10] in which tracking of an object as it 

moves through an indoor environment is a requirement. In many cases, this tracking must 

take place with a high degree of accuracy and either at, or near real-time. There are many 

fundamental challenges that have been identified [11] with respect to the ability to track 

an object in an indoor environment. These challenges include: sensor classification, 

sensor selection, data fusion, accuracy, and cost (in terms of time, energy, and financial 

undertaking). Many solutions have been proposed that attempt to address these 

challenges; however, these challenges still exist and serve as the basis of this work. 

We will now explore the specific areas of related work that this thesis focuses on 

addressing. We will examine work done in the following areas: sensor classification, 

sensor selection, trust, reliability, data fusion, and tradeoff optimization. We will begin 

with a general overview of indoor tracking systems and the techniques and technologies 

that they utilize for providing indoor tracking, thus setting the stage for the 

aforementioned discussions. 

2.1 Related Work in Indoor Tracking 

Many commercial indoor tracking systems [1] have been developed. Despite of 

many such efforts no single system, technique, or technology has gained widespread 

acceptance in the same fashion that the GPS has done for outdoor environments. Instead, 
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a wide array of different technologies and techniques have been proposed [1] with the 

hope of improving the overall tracking accuracy for indoor environments. 

Wireless technologies have been the popular focus of many of the existing 

proposed indoor tracking systems. This popularity stems from the omnipresence of such 

signals in our daily lives. Such signals are not subject to many of the problems or 

challenges that other tracking sensors face (e.g. line of sight) and thus are able to provide 

tracking where others sensors cannot. One such wireless technology that has been used 

for tracking is that of radio frequency used by RFID. RFID is a popular technology that is 

often found in asset tracking [12]. In this approach, “tags” are attached to an object and 

then are tracked based upon identification of these “tags” through a wireless radio signal. 

These “tags” can be either active or passive. Active tags require an on-board power 

source in order to transmit their signal to a corresponding base station. Passive tags do 

not require this on-board power source; instead they are able to transmit their signal only 

through close contact with a “reader” device. This close contact is necessary in order to 

retrieve the data from the sensor itself. Many popular systems [1] have been created that 

make use of both active and passive RFID tracking approaches. A few prominent ones 

are described below.  

In [13], the authors have proposed an indoor tracking system that makes use of 

passive RFID tags in order to track an object as it moves through an indoor environment. 

They achieve this tracking through the deployment of passive tags throughout the 

environment and then affixing a RFID reader to the object that is being tracked. While 

this approach provides high accuracy, the overhead associated with obtaining and 

deploying the tags within the environment can be quite costly as active RFID tags can be 
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$15 USD or more depending on the quality of the tag. It may also not be feasible to 

deploy such tags throughout an environment. In order to complete this task, the tracking 

environment must be known a priori and the physical locations of each passive tag must 

be known for referencing a location. In [14], the authors propose a system in which active 

tags are used to estimate the positon of an object. This approach provides the ability to 

disperse objects, with active tags attached, into an environment and then use the feedback 

from the active tags to calculate the position of an object. The authors do however make 

note that the accuracy of this approach may not be suitable for all application domains 

(up to 45 meters of error).  Also, due to the cost of active RFID tags, this approach may 

not always be feasible to deploy – in an indoor environment. In [15], the authors propose 

a system that uses a combination of both active and passive tags in order to enhance the 

overall tracking coverage possible. While this approach can provide improved coverage 

and accuracy over a standard active approach, noted in [14] – through the inclusion of 

passive tags, it presents the same challenges that both systems encounter independently 

(i.e., a priori knowledge and high cost of sensors).   

The use of Wi-Fi technology has also proven to be a very popular technique for 

indoor tracking. A possible reason for its popularity and wide-spread usage is the 

pervasiveness of publically available wireless access points (AP) and devices that contain 

a wireless network cards. The use of Wi-Fi for indoor tracking has been widely 

commercialized over the years. The most prevalent of these developments has been the 

work conducted by Google, Inc. in their indoor mapping application, Google Indoor 

Maps [3]. Google Indoor Maps makes use of existing wireless infrastructure in order to 

map and then subsequently track wireless devices as they move about indoor 
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environments. The process of tracking is through identification of known locations of 

stationary AP’s. This information regarding “discovered” AP’s is stored in an online 

database that can then be referenced by the application for the purpose of estimating the 

position of the wireless device.    

When it comes to wireless-based indoor tracking, there are two prominent 

approaches that are used to determine an objects’ position: trilateration and fingerprinting. 

Distance-based trilateration, as described in [16], is the technique of obtaining a position 

of an object based upon the calculated distance the object is from at least three AP’s. 

Using these known locations of the AP, an estimate can then be made about the position 

of the object within the indoor environment by finding the area of overlap between the 

wireless signals.  

This is positional estimate is achieved through the use of the following equations: 

𝑑𝑑𝑖𝑖 =  �(𝑥𝑥𝑖𝑖 − 𝑋𝑋1)2 + (𝑦𝑦𝑖𝑖 − 𝑌𝑌1)2 +  (𝑧𝑧𝑖𝑖 − 𝑍𝑍1)2 

𝐴𝐴�⃗�𝑥 =  𝑏𝑏�⃗  

𝐴𝐴 = 2 �
(𝑋𝑋2 −  𝑋𝑋1) (𝑌𝑌2 −  𝑌𝑌1) (𝑍𝑍2 −  𝑍𝑍1)
(𝑋𝑋3 −  𝑋𝑋1) (𝑌𝑌3 −  𝑌𝑌1) (𝑍𝑍3 −  𝑍𝑍1)
(𝑋𝑋4 −  𝑋𝑋1) (𝑌𝑌4 −  𝑋𝑋1) (𝑍𝑍4 −  𝑋𝑋1)
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Where 𝑑𝑑1, 𝑑𝑑2, 𝑑𝑑3, and 𝑑𝑑4are the distances between the known AP and the wireless device 

and (𝑋𝑋1,𝑌𝑌1,𝑍𝑍1), (𝑋𝑋2,𝑌𝑌2,𝑍𝑍2), (𝑋𝑋3,𝑌𝑌3,𝑍𝑍3), and (𝑋𝑋4,𝑌𝑌4,𝑍𝑍4) are the known coordinates of 

the AP. 
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�⃗�𝑥 =  [𝑥𝑥 𝑦𝑦 𝑧𝑧]𝑇𝑇 

�⃗�𝑥 =  (𝐴𝐴𝑇𝑇 𝐴𝐴)−1 𝐴𝐴𝑇𝑇𝑏𝑏�⃗  

The above equations indicate the estimated position of wireless device with respect to the 

analysis between the signal strength and the wireless AP.  

The second popular wireless-based tracking technique is that of fingerprinting 

[17]. The goal of this process is to create a radio mapping of the environment based upon 

the received signal strength (RSS) values of known AP and the locations at which these 

values are collected in terms of an (x,y) pair. This coordinate point is derived from a 

predefined origin that is established during this calibration process of the AP. During the 

tracking process, the received RSS values from the device are then compared with the 

values collected during calibration and a probability value is used to select the estimated 

position which best matches the current state. This two phase approach, consisting of the 

offline training and calibration and the online matching, is an expensive task in terms of 

time. This technique also requires substantial a priori mapping, or a known environment 

and infrastructure, and calibration in order to achieve accurate tracking and therefore is 

not always feasible.  

In [18], the authors conduct an empirical study comparing the techniques of  

fingerprinting and trilateration. It is noted, by the authors, that the expensive cost of the 

offline phase of fingerprinting often makes it unfeasible for most indoor environments 

and as a result an impractical technique for most application domains. Trilateration, while 

still requiring the additional domain knowledge of known AP, allows for higher degrees 

of accuracy and confidence while reducing the overhead needed for calibration with the 
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existing wireless infrastructure. The authors also note that in the average case, an 

accuracy of between three and five meters can be achieved through the use of wireless 

signals for location accuracy.   

Bluetooth-based indoor tracking is an extension of the wireless-based tracking 

techniques. It makes use of a similar approach to that found when using Wi-Fi for 

calculating the estimated position of an object within an indoor environment. In [19], the 

authors provide a comparison, in terms of accuracy, with a Wi-Fi-based approach and a 

Bluetooth Low Energy (BLE) fingerprinting. The author’s note that improvements can be 

made in terms of applying the BLE technique, however this approach is reliant upon 

additional computation (e.g., smoothing) as well as additional beacons, which are often 

necessary to obtain this increase in accuracy over Wi-Fi. In [20], the author found that the 

cost associated with obtaining the necessary accuracy, in terms of time overhead – due to 

the sampling rate of many Bluetooth enabled devices, was insufficient for many 

application domains. This work demonstrated the limitations of this as a viable tracking 

technique.   

Vision-based tracking is another popular approach for indoor tracking. In this 

approach, cameras (with video processing capabilities) are utilized as tracking sensors in 

which the tracking object must be identified, visually, in order to estimate the objects 

location. This method of tracking can be broken down into two separate approaches: 

inside-out and outside-in. Inside-out tracking is a technique in which the location of the 

vision-based tracking sensor is stationary, and its position with respect to the 

environment is known, while the object being tracked and its position are unknown and 

therefore must be estimated. Outside-in tracking is a technique in which the location of 
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the vision-based tracking sensor is unknown and must be estimated by using the known 

position of an object or landmark within the indoor environment. Traditionally, the 

inside-out tracking technique was the more popular of the two; however, with the 

emergence of mobile devices, containing cameras, it is now possible to build networks of 

vision-based trackers using the outside-in technique.  

In [21], the authors propose a tracking system for use in the field of health 

informatics. The Information Technology for Assisted Living at Home (ITALH) project 

is a camera-based tracking system that has been designed to monitor the elderly who live 

without the need for a nurse. In this tracking system, occlusion, or the obstruction of the 

cameras view, is one of the primary problems outlined during the tracking process. The 

primary focus of this work is to resolve the issue of occlusion and to devise algorithms to 

handle such an occurrence while still providing the necessary tracking of an object. 

In [22], the authors attempt to look at tracking various marker objects within a  

Vision-based distributed tracking system. The authors propose the use of a Kalman-based 

technique, a Kalman Consensus filter, which utilizes neighboring cameras in order to 

form a consensus as to the actual physical state of the marker object. It is suggested that 

through the use of this technique, the cameras within the system are able to be self-aware 

and self-organizing. This allows the cameras the ability to learn the network topology 

over the course of the tracking process. This, as a result, allows for improved tracking 

accuracy and the ability to handle dynamic changes within the environment. 

The final set of sensor modalities that we will discuss are inertial sensors. Inertial sensors 

are sensors that continuously monitor the movement from a set location. These sensors 

are commonly represented on smartphones as accelerometers, gyro, etc. In [23], the 
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authors propose an inertial-based tracking system which does not require any 

environmental infrastructure. The authors demonstrate, through a dead-reckoning 

technique in which check points allow for the recalibration and correct of the location 

estimate, that high accuracy can be obtained through the use of such sensors. This work 

demonstrates the feasibility of such a system and concludes by showing an average 

accuracy of between 1.5 and 2 meters. In [24], the authors use a similar approach by 

making use of a variety of sensors on board a typical smartphone in order to provide 

highly accurate tracking estimates.     

In this thesis, we are not restricting our work to a single sensor modality or a 

single technique. Instead, we provide a framework that uses any available tracking 

infrastructure. We define this approach to be the concept of opportunistic tracking [25]; 

in which the tracking system opportunistically discovers available sensors and uses them 

to provide an estimate of an object’s location in an indoor environment. This highly 

flexible and dynamic approach to tracking can help to reduce many of the previously 

mentioned challenges (e.g., cost of deployment, feasibility of sensor deployment, etc.) 

when it comes to a specific sensor modality or tracking technique. 

2.2 Related Work in Sensor Classification 

Classification is the task of attempting to properly identify an entity based upon a 

set of acquired knowledge. This task plays key roles within the scope of indoor tracking; 

from classifying the sensors that will perform the tracking, to the classification of the 

objects being tracked. Hence, achieving such classification in both an accurate and timely 

fashion is of the utmost importance. We will begin this discussion with an overview of 
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classification techniques and then discuss how these techniques can be made applicable 

to the sensor classification problem for indoor tracking. 

In [26], the authors define classification to be: “the problem of identifying to 

which of a set of categories (subpopulations) a new observation belongs, on the basis of a 

training set of data containing observations (or instances) whose category membership is 

known.” Using this definition, as a guide, it is then possible to produce two distinct steps 

in the process of classification: training and predicting. The authors discuss how, during 

the training phase, a mapping function can be applied to match features with defined 

labels. Once this training process is completed, the process of predicting can then begin. 

The role of predicting is then defined by the attempt to find a trained feature set that 

matches the actual entity.  

There exist many classification methods that are described in relevant literature. 

We will focus on the classification methods that can be broadly categorized as 

Supervised Learning. These methods of classification include the following different 

described techniques: decision trees, linear classifiers such as Naïve Bayes and support 

vector machines (SVM), and neural networks. We will now briefly summarize these 

techniques and discuss how they can be directly related to sensor classification problem 

for indoor tracking.  

A decision tree is a graph in which decisions and their associated consequences 

are modeled as nodes within the graph [27]. Based upon the choices made when 

traversing the graph, a conclusion will be made based upon a matching probability 

between the information found during the traversal. The strength of this process is the 

recurring nature of the choice selections. In [28], the authors propose a technique in 
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which they apply decision tree classifiers to help in identifying RFID sensors. The 

purpose of this classification is to provide the set of RFID sensors that can provide the 

highest degree of accuracy when tracking for the purpose of providing indoor localization 

in typically “unfriendly” environments. The authors note that through the use of this 

technique, they are able to obtain an improvement of up to 98% of accuracy in terms of 

room location. 

Closely related to decision trees are rule-based classifiers. Rule-based classifiers 

are algorithms that are closely related to decision trees. Instead of being represented as a 

tree they have been translate to a set of rules that can be then evaluated on [29]. An 

important feature of these algorithms is that while they are derived from the decision tree 

structure, they are capable of incorporating additional rules. This annotated approach can 

provide improved decision making on the application of the rules during the traversal 

process. The goal of this approach is to find the “best” rule that satisfies the given 

specification and then to classify the entity based upon the matching rule. If no rule can 

be found, that can satisfy this request, then a new identifier is added, through annotation, 

to the rule set for future reference. 

In [30], the authors have proposed a fuzzy rule-based multi-classification system 

for topology-based Wi-Fi Indoor localization. This use of a fuzzy rule-based approach 

allows for the ability to model the uncertainty, and more specifically the unpredictable 

characteristics, of Wi-Fi signals in typical indoor environments. The authors note, that 

through this use of this rule-based approach the classification outperformed a comparable 

nearest neighbor algorithm with a lower execution time. In [31], the authors also make 

use of a fuzzy rule-based approach to classify the location that a specific device is 
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currently located in. They have found that through the use of such techniques, it is 

possible to provide an accuracy of up to 90% as to the correct location of a device. This 

accuracy however does not reflect the actual physical location of the device but rather 

provides a general idea of the indoor space, or environment, in which the device is 

currently located (e.g. the mobile phone is in room SL 116).  

A linear classifier makes a decision based upon the combination of different 

characteristics [29]. Characteristics are made up of the attributes of a given entity. Further 

features can be derived from this attribute set and matched through the combination of 

the various characteristics presently available. Two common methods are used for 

determining the parameters of the linear classifier: generative and discriminative. In the 

generative approach, the algorithm models the conditional probability distribution. A 

Naïve Bayes classifier is an algorithm that falls under the umbrella of generative. In the 

discriminative approach, the algorithm attempts to maximize the output of the 

classification process based upon the training set. A support vector machine (SVM) is an 

algorithm that falls under the umbrella of discriminative. 

In [32], the author provides an empirical study of the Naïve Bayes classifier. The 

author demonstrates the effectiveness of the approach by highlighting the accuracy 

obtained in the classification process. In [33], the authors propose the use of a Naïve 

Bayes approach for classifying Wi-Fi fingerprints for indoor tracking. The purpose 

behind this approach is to correctly identify the proper set of wireless AP’s for us in 

identifying the room in which the object is currently in.    

A SVM is a supervised technique in which a model is constructed that assigns 

new examples into one category or the other. In [34], the authors propose a system in 
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which they use SVM to classify the wireless devices in specific rooms within a typical 

home. They make note that the changing environment, in terms of wireless devices and 

possible interference make a supervised learning technique a good candidate for building 

a classifier for location awareness. In [35], the authors propose a new technique, built 

upon the paradigm of SVM, for determining the location of a wireless device. This 

approach attempts to address the many challenges that were outlined previously with the 

fingerprinting method of indoor wireless tracking. They demonstrate the ability to 

improve upon the existing state of the art and provide an improved selection of wireless 

points within the indoor environment. 

Neural networks are a popular approach to machine-learned classification that 

attempt to model the behavior of the human brain [26]. The key component of this 

classification approach is an iterative process in which feedback from past classifications 

are used in order to provide a better “fit” at classification in the future. This makes the 

neural networks self-adaptive and data-driven, thus they avoid the often necessary 

manual intervention that other methods for classification require. The tradeoff with this 

approach is that often the accuracy of approximation for classification is low until 

sufficient data is collected to better predict and identify the proper classification. 

In [36], the authors propose an approach of using particle swam optimization in 

conjunction with artificial neural networks (ANN) to improve the overall accuracy in 

highly dynamic indoor environments. This approach makes use of the fingerprinting 

technique for location tracking and highlights the inherent online and offline phases as 

primary candidates for the implementation of their proposed inclusion of ANN. In [37], 

the authors propose an approach that makes use of ANN to solve the problem of multi-
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sensor tracking in an indoor environment. This work focuses on identifying the sensors 

within the environment for use in tracking on a multi-floor exercise in a building. The 

authors demonstrate that through the use of such an approach that even in the presence of 

a small set of tracking sensors they are able to correctly identify the relative location, or 

region, that an object resides within the indoor space. 

2.3 Related Work in Sensor Selection 

One of the key challenges, specifically when focused on opportunistically 

discovering sensors, is that of sensor selection (i.e., how to determine whether or not the 

“best” set of sensors has been selected). “Best” can have many different means depending 

on the specific context in which the tracking is taking place. This process is of selecting a 

set of sensors is bounded by time and can be further constrained due to energy and 

communication limitations of a sensor device. This problem has been formally defined in 

literature as the subset selection problem. Much literature has been devoted to the subset 

selection problem and its specific impact on sensor networks.  

Prior to proceeding on an overview of related work in the area of subset selection 

we must first define sensor selection, with respect to tracking – as the area and breadth of 

research is large, we instead only focus on the related subset of this work. This sensor 

subset selection is defined as the process of selecting the sensor(s) that will provide the 

tracking system with the ability to maximize the accuracy of the location estimate. The 

first step in this process is that of sensor classification, related work in this area can be 

referenced in the previous section.  

In [38], the authors describe various methods for the sensor selection process with 

respect to wireless sensor networks. They highlight the significant challenges of 
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attempting to maximize the gain, in terms of accuracy, for the system. They discuss the 

role that sensor selection plays in this overall tracking process and its identification of 

“desirable” trackers. The primary focus of the methods described in this work is that of 

sensor coverage rather than strictly of accuracy. In [39], authors describe a technique in 

which a Kalman-based filter is applied in order to reduce the impact of noise in the sensor 

selection process. This approach is non-deterministic, and does not make the assumption 

that the sensor set is known a priori. This is a key difference from many existing sensor 

selection techniques in which the sensing infrastructure must be known. This dynamic 

approach therefore differs from many of the related works in that the set of sensors can 

change over time and thus the problem of determining the “best” set increases in 

complexity. This uncertainty is an important attribute that must be identified as part of 

this process and taken into account when selecting a subset of sensors. 

This thesis is proposing the infusion of two QoS-based selection criteria as part of 

an enhanced sensor selection process. These criteria provide additional information 

regarding the expected versus actual performance of a sensor that can be quantified and 

empirically validated. This infusion can be used in an attempt to find the optimal subset 

of tracking sensors. 

2.4 Related Work in Trust 

A key focus of this thesis is on the examination and impact that trust has on the 

selection of sensors for indoor tracking. Trust has been widely explored in literature; in 

the field of Computer Science it plays a prominent role in nearly all aspects of 

technological life. In this thesis, we have focused on the trust of both physical tracking 

sensors as well as the trust in the software services that are associated with these sensors. 
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In this section, we discuss related works that focus on the role of trust when it comes to 

sensors and tracking systems.  

In Computer Science the concept of trust has often been associated with the 

notion of secure computing [40-42]. The notion of trust, by its inherent nature, is 

subjective and thus is heavily influenced, both positively and negatively, by formed 

opinions. These opinions serve as the basis for evidences, regarding an entity, which can 

be collected in order to evaluate the trustworthiness of such an entity. These evidences 

can be operated on, using various operators and operations, in order to ultimately 

determine the trustworthiness of an entity.  

In [43], author introduces the concept of Theory of Evidence, commonly referred 

to as Dempster-Shafer (DS) Theory. This theory is built upon the idea that it is possible 

to combine evidences, collected from different sources, in order to arrive at a level of 

belief with respect to the trust associated with an entity. In [44], authors propose a trust 

model that implements the DS Theory for a wireless sensor network (WSN). They 

demonstrate the efficiency of calculating the trustworthiness of a sensor node within the 

WSN when compared to other existing trust-based techniques. In [45], the authors make 

use of the DS Theory in order to classify wireless access points based upon their 

trustworthiness with the goal of obtaining improved tracking accuracy. In this work, the 

authors demonstrate the effectiveness of the application of DS Theory by producing a 

location estimate of up to one meter of accuracy. In [46], the authors propose the use of 

the DS Theory in order to provide a belief probability as to the relative location in an 

indoor environment based upon proximity to wireless AP. They demonstrate the 

effectiveness of such inclusion of the DS Theory over other existing techniques for the 
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classification of location based upon a specified wireless zone in an indoor environment. 

In [47], the authors examine the role that trust plays when composing systems. 

Specifically, they focus on the impact that trust plays when composing systems of 

families of related services. This work conducts a case study involving an indoor tracking 

system in which they evaluate the various software service components and apply a trust 

model to them. 

Two of the unique features involved in the classification of trust are the temporal 

and subjective natures of this determination. Below we briefly cover related works in 

these specific areas as they are the primary focus of the work in this thesis.  

In [48], the authors propose a method of evaluating the temporal nature of trust 

and how such evaluation is an alternative to the traditional evaluation of reputation and 

direct experiences. The authors identify that through this traditional use, there are both 

direct and indirect interactions that play a role in the determination of the trustworthiness 

of an entity. They are able to identify the impact that time plays when classifying the trust 

of a sensor. In [49], the author describes the impact that trust and its temporal nature 

plays on the role of selecting devices from the Internet of Things. This selection process 

is guided by the trust the selector has in the various different devices that are available. 

Related to the subjective nature, the author notes the importance that time plays in the 

evaluation of the trustworthiness of a device. 

The notion of subjective logic, as first proposed in [4], introduces uncertainty in 

the evaluation of belief and disbelief about an entity. Applying this concept to the trust 

domain we can identify the nature that the uncertainty plays on the underlying calculation 

of trust of an entity. In [4], the tuple of Belief, Disbelief, and Uncertainty {B, D, U} is 



31 

 

 

proposed to measure the trust in a specific entity. In [50], the authors apply this notion of 

subjective logic to a trust model. The proposed trust model determines the trust of an 

entity through the collection and evaluation of evidences that can then provide the 

corresponding values of the {B, D, U} tuple. This associated values then forms the basis 

for the trust decision. 

These related works highlight the importance that trust plays in the selection 

process. This thesis is proposing to build upon this notion of trust through the 

construction of a trust model for indoor tracking systems. This thesis provides algorithms 

to categorize the trustworthiness of a sensor’s data. In addition, this thesis provides the 

details for how this trust can be used in the sensor selection process. Through this 

infusion of trust as a selection criterion, we demonstrate an improvement in the overall 

accuracy of the system through enhanced sensor selection. 

2.5 Related Work in Reliability 

The notion of reliability has often been a closely related subcomponent of trust. 

Often, if an entity is determined to be reliable, it is in turn determined to be trustworthy 

and vice versa. The focus of reliability has largely been on the performance of 

mechanical features of devices and their ability to accomplish a given task. Reliability in 

the WSN domain has been widely studied in literature [5, 51-53]. Many definitions of 

reliability have been proposed across these various works, with the primary focus being 

on the ability for a sensor to provide fault-free behavior for a specified time frame.  

In [51], the authors focus on the coverage and connection between sensor nodes in 

a WSN and the role reliability plays in both the selection and routing of messages 

throughout the network. They propose a hierarchical clustered WSN to handle the 
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problem of coverage reliability. They specifically analyze the impact that common cause 

failures have on the perceived reliability of a sensor. In [52], the authors examine the 

event detection and its application within WSN and the role that reliability of sensor data 

plays in determining the likelihood of an event trigger. The definition of reliability 

provided by the authors is very similar to that found in the discussion of trust. The 

authors provide techniques for calculating the data generation rate and the failure 

probability of a sensor node.  

In [53], the authors discuss the challenge of routing problems and how reliability 

of the various nodes involved in the routing can impact the overall performance of the 

WSN. This work is more focused on the network reliability rather than the actual 

performance of the sensors themselves. In [5], the authors discuss the tradeoff between 

power consumption and reliability in WSN. This work focuses on not only the behavior 

of the sensors themselves but also on the routing of their data and the subsequent 

performance impact that they receive in terms of this tradeoff. They propose a method for 

evaluating the reliability of a sensor while infusing power consumption as a factor in this 

determination. They then monitor the impact that providing reliability has on the power 

consumption, and subsequent the life of the sensor node. 

In [54], the authors provide a survey on the notion of reliability within the realm 

of WSN. Their study focuses on the mechanisms necessary to handle faults or failures 

within a system. They outline various techniques and methods that have been applied in 

literature for the identification of both faults and failures in components. As previously 

mentioned, trust and reliability are often considered one in the same when it comes to 

evaluating the overall trustworthiness of an entity. In [55], the authors consider trust and 
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reliability for constructing a trustworthy architecture for sensor selection in a WSN. Their 

motivation behind such a combination is that they define trust to be the essential reliable 

communication between the various sensor nodes in a WSN. Their proposed architecture 

focuses on the impact that trust has on sensor nodes and then how the reliability between 

the nodes plays a factor in their ultimate selection for a given task.  

In [56], the authors propose a weighted averaging method for calculating the 

reliability of a sensor. The reason for the use of this approach as opposed to the popular 

DS Theory is that when evidences are highly contradictory the result may be inaccurate. 

Instead, they claim that through the use of their method they are better able to represent 

such contentious evidences when analyzing a sensor based upon its reliability. They 

empirically demonstrate that their proposed approach outperforms existing models, in 

terms of accurate fault diagnoses, by up to 90%.  

This thesis proposes to leverage the work discussed in this section but adapt these 

concepts to fit the specific needs of indoor tracking. One of the key highlights of this 

thesis is the separation of trust and reliability and their consideration as separate attributes 

for indoor tracking. This separation is unconventional in the traditional sense of the 

evaluation of trust and reliability in related domains. We believe that this separation is 

necessary as a sensor may provide trustworthy data but unreliable service and vice versa. 

This infusion of trust and reliability as separate QoS-based selection criteria also makes 

use of the notion of subjective logic, as proposed in [25], in order to empirically evaluate 

the performance of the sensors for use in the sensor selection process. 
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2.6 Related Work in Data Fusion 

Data fusion is the process of combining data from multiple sources into a single 

unified view. This process is necessary when multiple data sources are providing data 

during sampling. The concept of data fusion has been widely studied in literature [6, 57-

59]. While this thesis does not directly address data fusion, it is a key component of the 

overall tracking process as it provides the key evaluation point for the success/failure of 

sensor selection, its impact on the overall end-to-end runtime of the system, and through 

its use it produces the location estimate which subsequently leads to the determination of 

accuracy. Below we focus on related work in the area of multi-sensor data fusion and 

their application for both WSN and tracking applications. 

 In [57], the authors describe various techniques and approaches specifically 

focused on target tracking applications and the fusion of sensor data for the purpose of 

state estimation. They provide a comprehensive background on the aspect and role that 

multi-sensor data fusion plays within the scope of tracking. The techniques proposed in 

this work, while having been improved by newer work in the years since, provided a 

foundation for identifying the key challenges that are encountered when attempting to 

fuse two different data sources to provide a unified estimate. In [6], the authors provide 

an overview on the various process models for multi-sensor data fusion. This survey is 

focused on the applications, specifically target identification, and how various models 

can be applied to each specific domain. This work highlights the importance of the 

identification and classification process. 

The author, in [60], provides an overview of multi-sensor data fusion techniques 

from the domain of computer vision. We highlight this work due to the inclusion of 
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vision-based sensors into the tracking environment as part of indoor tracking. The author 

describes the challenges associated with noise and identification as part of this process. 

The author then describes various methods and techniques that have been proposed to 

address the challenges and provides an unified estimate of an object being viewed. In 

computer vision, there has been significant literature devoted to the ability to provide data 

fusion to the many sensors located onboard a robot. An example of this work can be 

found in [61], in which the authors propose a technique for providing localization and the 

construction of maps for indoor environments based upon the exploration by a mobile 

robot. In [62], the authors discuss the improvements made through calibration when 

applied to existing techniques can yield benefits when attempt to fuse, or smooth the 

vision-based data. 

In [63], the authors propose an approach that attempts to combine data estimates 

for providing localization in an indoor environment between different sensor modalities. 

These modalities include Wi-Fi, Inertial sensors, and the use of landmarks to determine 

the position of the device as it moves about an indoor environment. This work is similar 

to the approach described in [64] as it uses a Kalman-filter in order to combine the 

various data sources and their corresponding readings in order to estimate the position 

within the indoor environment. In [65], the authors describe a technique for combining 

data from Inertial, Magnetic, Pressure, and Wi-Fi signals. Their ad-hoc approach 

attempts to improve the overall accuracy in such tracking through minimizing the noise 

and drift of the sensors available. In [66], the authors discuss a multi-sensor collaboration 

technique between RFID tags and WSN for the purpose of providing real-time sensor 

notifications for fire detection. This approach discusses how the deployment of the 
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sensors can impact the overall data fusion process due to the complexity of the 

communication network. They demonstrate a data fusion approach to handle this data, 

coming from these various sensors, based upon the characteristics of heterogeneity of the 

sensors. 

As indicated above, one of the prevalent approaches found in multi-sensor data 

fusion is the use of Kalman-filters. A Kalman-filter uses recursion as a means to estimate 

the state of a process [67]. The goal of this process is to predict and then correct based 

upon the current estimates and the given state. This filter is designed to handle a linear 

process, in the case of a non-linear process the Extended Kalman Filter (EKF) has been 

proposed [67]. The authors in [68] make use of an EKF for the purpose of indoor 

localization using Wi-Fi. They cite improvement over existing fingerprinting techniques 

through the inclusion of the EKF by reducing the costly overhead of offline training 

phase. The EKF is able to predict and correct in an online fashion and thus improve the 

overall accuracy provided by the system. In [69], the authors propose an extension of the 

EKF in order to provide improved accuracy based upon time difference of arrival and 

RSS values from wireless points in an indoor environment. Their approach cites the low 

accuracy of RSS values for the use in tracking exercises. A similar finding was shown in 

[70], in which the unpredictability of RSS signals due to noise plays a significant factor 

on the overall accuracy that can be provided by the system. In order to alleviate this 

challenge, the authors, in [69], have proposed using the prediction/update process in 

order to smooth this data to be used in the localization estimate. The authors note a minor 

improvement over existing approaches and note that additional sensor modalities may be 

necessary in order to provide more accurate positional estimates. 
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In this thesis, we build upon the existing work that we have already done with 

respect to multi-sensor data fusion [64, 70, 71] and augment this work with the inclusion 

and comparison of other state-of-the-art techniques that have been proposed to meet this 

need. Specifically, we focus on the EKF and the ability to provide a unified data set to the 

fusion component of the tracking system. By capitalizing on the distributed nature of the 

tracking system these fusion components can be decentralized, thus reducing the 

workload on the system. 

2.7 Related Work in Optimization 

Optimization can be described as the process of attempting to find the “best” 

solution from the set of all possible solutions. In this section, we focus on optimization 

that attempts to measure the various tradeoffs involved in the sensor subset selection 

problem. Below we highlight related work in this area, and discuss related learning 

techniques that are necessary as part of the optimization process. 

In [72], the authors propose the use of the Gaussian process global optimization 

for determining the “best” subset of sensors to be used in a monitoring process. This 

work applies various techniques related to this Gaussian process in order to determine the 

proper placement and location of sensors within an environment. Using historic 

temperature data they were able to demonstrate the effectiveness of this technique with 

respect to selecting the sensors that yielded the highest accuracy within the scope of the 

selection problem. The authors in [73], propose a technique in which they try to find the 

optimal placement of sensors within a condominium. In this work, they generate a model 

that highlights the indoor mobility patterns of humans living within this Smart-Condo and 

then attempt to predict where the optimal placement of sensors to track the individuals’ 
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movement should be placed within the home. Their technique outperforms other 

comparable techniques, as well as simply random deployment, in terms of accuracy 

obtained as a result of the sensor placement. 

2.7.1 Related Work in Reinforcement Learning Algorithms 

In this sub-section, we focus on reinforcement learning and techniques available 

for optimizing sensor subset selection. The reason for this optimization is due to the 

complexity of determining the optimal set of sensors during the sensor selection process. 

In [74], the authors propose the use of a reinforcement learning based mechanism 

to perform filtering and load-balancing routing. The motivation behind this work is the 

high energy consumption and resource waste of sensors in WSN. This learning technique 

attempts to minimize this waste of both energy and resources by distributing the 

communication and resource allocation evenly across the various nodes in the network. 

The authors demonstrate the effectiveness of their approach through improved throughput 

of the system and prolonged longevity of the sensor nodes themselves.  

In [75], the authors use a technique to minimize the energy consumption  of 

sensor nodes in a WSN. Specifically, they examine the routing protocols used between 

various nodes and a sink. This work differs from the previously described work in [74] by 

proposing, through reinforcement learning techniques, an improved routing hierarchy. 

This improvement allows the sensor nodes to better utilize their resources and decides 

how nodes should conserve their energy during routing. This process is handled through 

feedback from the network and the sensor nodes themselves. The authors are able to 

demonstrate the effectiveness of their shortest path Q-routing algorithm to increase 
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network lifetime over other approaches. This work proves significant benefits when 

dealing with variable sized networks and varying topologies. 

In [76], the authors propose a novel reinforcement learning framework for the 

sensor subset selection problem. Their unique approach decentralizes the problem and 

makes it scalable with respect to large scale sensor networks – whether that WSN or for 

indoor tracking. By introducing the concepts of a game algorithm into their work they 

can provide a penalty or a reward for the process of learning and then provide an 

optimization function to model the tradeoff between energy consumption and accuracy. 

Their work demonstrates improvement in both the reduction of energy consumption as 

well the ability to maximize the accuracy provided. Their improved efficiency, in terms 

of their algorithmic performance, out performs other existing techniques.  

In this thesis, we build upon these techniques (e.g., novel reinforcement learning 

algorithm, decentralized approach, etc.) through the creation of an optimization function 

in order to maximize the accuracy while minimizing the cost associated with acquiring a 

positional estimate for an indoor tracking system. Specifically, we borrow concepts from 

[76], to construct a framework to handle this optimized sensor subset selection. 

This thesis provides the following new features that attempt to address the shortcomings 

of the related work mentioned in this chapter. Specific contributes include: a new 

framework that includes improved sensor discovery and classification as a result of the 

implementation of the opportunistic tracking approach in which the learning techniques 

and approaches described in this chapter are adapted and used; the introduction and 

quantification of trust and reliability as separate QoS-based selection criteria for use in 

the sensor subset selection problem; improved multi-sensor data fusion through the use of 
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a decentralized EKF and pruning techniques as a result of the trust and reliability infusion; 

and a tradeoff optimization using a reinforcement learning technique, between cost and 

gain with respect to the selection of sensors, in an effort to find the optimal set of sensors 

for indoor tracking. 
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CHAPTER 3. DESIGN AND IMPLEMENTATION 

In this chapter we will describe the design and implementation of our proposed 

enhanced framework for indoor tracking. We begin this chapter with an overview of the 

prototype ITS that we will be using as an experimental platform. Following this 

introduction, we will break the rest of the chapter into the following four subsections: 

Discovery and Classification, Sensor Subset Selection, Multi-Sensor Data Fusion, and 

Tradeoff Optimization. 

In this chapter, we aim to propose solutions to the following challenges for ITS: 

(1) how to opportunistically discover and classify sensors in a previously unknown 

sensing environment, (2) how to quantify the QoS-based attributes of trust and reliability, 

(3) how to infuse these criteria as separate selection parameters within a sensor subset 

selection algorithm, and (4) how to find an optimal tradeoff between accuracy and 

runtime with respect to the data fusion process of the ITS. 

3.1 Indoor Tracking System Overview 

As noted in Chapter 2, there has been a significant amount of literature devoted to 

the topic of indoor tracking and the development of ITS to meet this need. In this thesis 

we focus on a prototype ITS, the enhanced Distributed Object Tracking System (eDOTS). 

The creation of this system was manifested out of a need to provide inexpensive tracking 

for indoor environments across a wide platform of application domains. In order to 
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describe the techniques and approaches we are proposing to enhance indoor tracking; an 

introductory treatment on the structure of the eDOTS is necessary. Additional 

information can be found regarding this system can be found in [64, 70, 71].  

The eDOTS is a prototype ITS that encapsulates physical sensors as virtual 

software services. These software services can then be queried in order to collect 

positional estimates, from each sensor, for an objects location in an indoor environment. 

The eDOTS is composed of four distinct layers as shown in Fig. 3.1. The first of these 

layers, the Sensor layer, consists of the physical sensors that exist within the indoor 

environment. Any and all sensors that can serve the purpose of tracking are included in 

 

Figure 3.1 eDOTS Overview 
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this set of sensors. These sensors are discovered in an opportunistic fashion, more on this 

discovery process is discussed later in this section. The second layer is that of the Sensor 

Service layer. In this layer, a virtual software service is created by the tracking system for 

each corresponding physical sensor discovered in the first layer. This software service, 

once created, is then registered with a software service repository where it is made ready 

for consumption. The third layer is that of the Tracking Middleware. This layer is the 

gateway between the physical sensors, their respective software services, and the user. 

This layer consists of the functionality, through the composition of various services, 

which is necessary to calculate an estimated position of an object. This is the core layer 

within the overall tracking system architecture and contains various services (e.g., 

discovery, sensor selection, data fusion) as part of this component. The final layer is that 

of the User Interface. This layer is responsible for visually displaying the results of the 

positional estimate provided by the Tracking Middleware layer to the user. The goal of 

this construction was to minimize the needed coupling between the various components, 

while maximizing the cohesion found in each respective layer.  

We will now describe the role of each of these layers in more detail, discuss how 

each layer and component is related in the system architecture, and provide an overview 

of the various areas within the eDOTS in which extensions can be added to implement 

our proposed enhancements to improve the systems indoor tracking ability. 

One of the key features of the eDOTS is its novel introduction and use of the 

concept of opportunistic tracking. This approach, as first defined in [77], revolves around 

the idea that a tracking system should not rely on a singular technique or sensor modality, 

but rather should make use of any and all sensors presently available in a given 
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environment. The benefit of this approach is that it eliminates the need for a static sensing 

infrastructure. Instead, it provides an ad-hoc approach to indoor tracking through the 

dynamic discovery of any sensors present within the indoor environment. Opportunistic 

tracking does create additional challenges (e.g., dynamic sensor discovery, sensor 

classification, sensor selection, multi-sensor data fusion) that must be addressed in order 

to realize its full potential.  

To opportunistically discover the sensing infrastructure, the eDOTS uses a 

multicast message to seek responses from available devices. Here, the assumption is 

made that there is a common communication channel present that allows for the 

exchange of messages between the tracking system and the sensor device. A secondary 

assumption is also made with respect to the ability to access the available devices. Under 

this assumption, we do not consider security policies placed on the individual devices and 

do not handle, as part of this work, any security mechanism to prevent malicious activity. 

We assume that only publically available, and accessible, devices are included in the 

tracking exercise.  

When a physical sensor is discovered by the tracking system, the Tracking 

Middleware is responsible for creating a software service to serve as a virtual 

representation of the physical sensor. This Sensor service is responsible for facilitating 

the interactions between the physical sensor hardware and its software representation in 

an effort to obtain the necessary information for estimating an objects position. Once 

created, the Sensor service is registered with the software service repository. During the 

registration process a software service contract is created. This service contract serves as 

an agreement between the service provider and the client, in this case the tracking system, 
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as to the expected performance, behavior, and characteristics of the service. An example 

of a sensor software service contract is shown in Fig. 3.2. 

<?xml version="1.0" encoding="UTF-8"?> 
<SENSOR> 
  <NAME>Camera03-1</NAME> 
  <TYPE>VISION</TYPE> 
  <MANUFACTOR>LOGITECH</MANUFACTOR> 
  <VERSION>QUICKCAM</VERSION> 
  <HARDWARE>USB\VID_046D^&PID_0992^&REV_0005</HARDWARE> 
  <SERVICEID>3d795390-3027-464d-8bf5-c2804ff30baf</SERVICEID> 
  <QOS> 
    <RESOLUTION>320x240</RESOLUTION> 
    <FRAMERATE>30</FRAMERATE> 
    <RESPONSETIME>8</RESPONSETIME> 
  </QOS> 
</SENSOR> 

Figure 3.2 Sensor Software Service Contract 

 

This software service repository is responsible for maintaining a directory of all of 

the tracking-related services that are currently available. The process of software service 

registration and discovery is achieved through the use of the JINI framework [78] . The 

service repository in this case is provided as a JINI Lookup Service. One of the reasons 

for use of the JINI framework is its ability to allow for the concept of leasing. A lease is 

created when a software service registers itself with the JINI Lookup Service. This lease 

is specified for a period of time, and as part of the JINI framework [79]; this lease is 

periodically examined and either renewed or terminated. This process of leasing prevents 

inactive software services from maintaining a presence in the service repository and 

ensures that “dead” services are properly removed to avoid cluttering the repository and 

adding unneeded overhead to the sensor selection process. 

When a tracking request has been issued from a user, the User Interface forwards 

this request to the Tracking Middleware. The Tracking Middleware must then query the 
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service repository to see if any current tracking sensors are available and are able to track 

the requested object. If at least one service is found the Tracking Middleware then issues 

a tracking request to each identified service, this begins the active tracking process. At 

the start of this process the Tracking Middleware is responsible for starting another 

service, the Filter service. The role of this service is to provide a proxy between the 

sensor software service and the Tracking Middleware components. If tracking is not 

possible, the user is notified that tracking is currently unavailable due to lack of tracking 

sensors. In this case, the Tracking Middleware will continue searching, as long as the 

tracking request is active, for tracking services capable of fulfilling the given request.  

 

Figure 3.3 Handoff & Transformation 
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When active tracking begins, the Filter service begins the process of polling each 

identified Sensor service for its data that provides to the estimated physical location of 

the requested object. The first step in this process is handling the sensor subset selection. 

In certain cases, it may not always be feasible or desirable to take data from every 

reporting sensor service, as the quantity or quality of data may exceed the limitations 

imposed by the user in terms of runtime. The second step in this process is to then pass 

along the collected data, if necessary, to the Data Fusion service; otherwise the positional 

estimate is simply passed to the User Interface for display. The Filter service is 

responsible for providing any necessary data adjustments, or data smoothing. Data 

adjustments, in this context, refer to the handoff and transformation between two 

coordinate systems. This handoff is necessary as there is often no notion of a global 

coordinate system for indoor environments.  

An example, as shown in Fig. 3.3, would be the case of two sensors in two 

distinct environments in which they both have their own respective point of origin local 

to their environment. The use of Spatial Relation Graphs (SRG) has been proposed [70] 

as a method for solving this problem of handoff and transformation between coordinate 

systems for indoor tracking. These graphs provide the means to allow for the handoff 

between coordinate systems by adjusting the local reference environment of a sensor. In 

order to achieve this transformation, the following approach, as shown in Fig. 3.4, is 

utilized. In this figure the problem is defined as follows: if we know the distance between 

node B from origin A, and we know the distance from node C to an origin D; through the 

common position that both nodes B and C are sharing we can then calculate the distance 



48 

 

 

between the two origin points A and D within the environment. The full details of this 

approach are described in [70].  

In order to initiate this handoff process, the Filter service is responsible for 

collecting the necessary coordinate information from the sensors that it has selected as 

part of sensor selection. It is unnecessary to collect such coordinate data from multiple 

sensors, all with the same point of origin – this is a time consuming process of querying 

the sensor services when many sensors reside in the same environment using the same 

coordinate system. Instead, a single representative sensor service is needed for each 

coordinate system identified by the Filter service. Here we assume the sensors are aware 

of the environment they are in; this can be achieved through a calibration process (in the 

case of a static sensor) or through proximity to other known sensors (in the case of a 

mobile sensor).  

The single representative sensor service is determined based upon a ranking 

hierarchy of the sensor services. This ranking is achieved by the evaluation of the sensor 

services’ Trust level (this notion of Trust is discussed later in this chapter) with the 

highest ranked sensor service serving as the representative for the given environment. 

 

Figure 3.4 Spatial Relation Graph 
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This “leader” is then used by the Filter service to establish the handoff and transformation 

between two coordinate systems. In the case that handoff is not possible (e.g., the object 

is not identified and tracked within two adjacent environments – then a transformation is 

not necessary, as the respective local coordinate system will suffice).  

The process of data fusion is necessary when two or more sensors are actively 

tracking the same entity at a given moment in time. When the Filter service identifies the 

presence of two or more sensors actively tracking the same entity, it is responsible for 

passing this data along to the Fusion service. The Fusion service is a component of the 

Tracking Middleware layer of the eDOTS. The goal of the Fusion service is to fuse the 

results from multiple sources into a single positional estimate. As noted in Chapter 2, 

there exist many different techniques and approaches to provide multi-sensor data fusion. 

By providing the data fusion mechanism as a software service-based component, it 

allows for the ability to have available a wide range of different techniques for inclusion 

in the ITS. In the existing prototype of the eDOTS, the Fusion service uses two different 

data fusion techniques: simple averaging and a Kalman-based technique. The choice of 

sensor selection can be specified by the Filter service (based upon the requirements of the 

user) and provides the flexibility in terms of weighing the cost versus gain tradeoff. More 

discussion regarding the data fusion for indoor tracking can be found in the Multi-Sensor 

Data Fusion subsection in this chapter.  

Once a positional estimate is received by the Filter service, either as a result of 

data fusion or the sensor service directly, this information is then passed along to the User 

Interface level for display purposes. In the current prototype of the eDOTS, this 

information is displayed in a graphical user interface that marks, via a colored point on 
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the screen, the estimated position of the tracked object on an overlay of a map of the 

indoor environment. These maps are stored in a repository and are accessible by the 

system for use in tracking. The maps used in this process are obtained via publically 

available building schematics or could be handcrafted offline by the application domain. 

This entire end-to-end tracking process, as described in this subsection, is shown in Fig. 

3.5. 

In the existing prototype, there are three significant challenges that must be 

addressed in order to provide such opportunistic tracking and ultimately improve the 

overall accuracy of indoor tracking. These challenges are: sensor discovery and 

classification, sensor selection, and sensor fusion. These challenges are not unique to the 

 

Figure 3.5 Tracking Overview 
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eDOTS, but instead are challenges that are applicable across all ITS. While we use the 

eDOTS in our case study, it should be made known that the description of the various 

techniques and approaches that we are proposing here as part of this thesis can easily be 

generalized such that they apply to any ITS. 

In the existing implementation of the eDOTS, sensor discovery is handled by the 

JINI Lookup Service. This discovery process uses a multicast protocol that allows for the 

discovery of registered services. These services must be handcrafted by the individual 

service providers and registered accordingly. This is a manual process that requires 

knowledge of the respective Tracking Middleware to craft the proper sensor specification. 

Due to the nature of this discovery the sensors are known a priori and thus no 

classification of the sensors is needed. In the opportunistic tracking approach this process 

should be dynamic to handle any and all sensors that are discovered. As the sensors may 

or may not be known a priori the tracking system must be able to properly classify the 

sensors in order to create their respective sensor service for use in tracking. 

  In the existing implementation of the eDOTS, sensor selection is handled via a 

simplistic ranking mechanism in which the selection criteria are handcrafted prior to 

tracking. This mechanism is not agile, in that it does not adapt to any new sensors or 

changing conditions of the sensors. This mechanism also does not consider the historical 

behavior of the sensors in its determination for selection. The simple pruning provides 

only a basic approach to sensor subset selection which is insufficient due to the dynamic 

nature of opportunistic tracking. 

The eDOTS, as previously stated, makes use of two techniques to accomplish data 

fusion: simple averaging and a Kalman-based technique. Each of these techniques has 
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merit for inclusion in an ITS as each provides a benefit over the other. In simple 

averaging the benefit is the cost (in terms of time) associated with obtaining the estimate 

– often at the expense of accuracy; while in the Kalman-based technique the benefit is 

accuracy – at the expense of time. Both of these techniques are directly impacted by the 

quality of the sensor selection process. In the existing eDOTS, these techniques are 

constrained by the quality of subset selection process and have been implemented in such 

a fashion as to maximize their output. In an opportunistic approach these 

implementations must be dynamic and be able to properly handle the agile behavior of 

the sensor selection process. Through improved classification and sensor selection the 

benefit of these two techniques can be fully realized. 

3.2 Sensor Classification 

One of the key challenges in an opportunistic tracking scenario is that of sensor 

discovery and classification. As described in the previous subsection, when a sensor is 

discovered by the Tracking Middleware a corresponding Sensor service is created as a 

virtual encapsulation of the physical sensor.  In most ITS, the modality of the tracking 

sensors is known a priori and therefore the system can be crafted to properly discover 

and classify the sensors appropriately with this respective knowledge. In an opportunistic 

approach this is not the case – and instead the discovery and classification must be 

dynamic to handle the unknown environment. In order to achieve this dynamic discovery 

and classification, a new approach is needed. This thesis is proposing the inclusion of a 

supervised learning technique for the classification of sensors based upon their specific 

modality during the discovery process. This in turn will allow a previously manual 
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process to be automated and the ability for the ITS to take full advantage of the 

opportunistic tracking approach.  

The first step in the process of classification is building an appropriate sensor 

knowledge base (sKB). To build this sKB, information regarding the characteristics of 

common sensors is collected, categorized, and inserted as records for each sensor. This 

process requires collecting information from publically available specifications along 

with benchmarks provided in other literature. This information can then serve as the 

ground truth regarding the expected performance and characteristics of the physical 

sensors. Using a domain expert, these sensors can then be categorized based upon their 

specific modality. As we are proposing this sKB to be an online artifact, the initial 

creation will only need to take place once. Over time the domain expert(s) can monitor 

the sKB to ensure that all of the information contained in it is indeed correct and up-to-

date. We expect this online sKB to evolve over time and essentially serve as a living 

knowledge base for sensor modality information.  

Once the sKB has been created, it can then be used during the sensor discovery 

process in order to properly classify a newly discovered sensor. Classification is a 

challenging step that often requires the presence of rules or manual intervention in order 

to properly arrive with the correct outcome. To address this challenge of sensor 

classification, we are proposing the inclusion of a supervised learning technique that can 

make use of the existing sKB to properly classify a sensor upon discovery. As part of this 

work, we examine three different supervised learning techniques: Naïve Bayes classifier, 

Rule-based classifier, and a Decision Trees classifier. The reason behind the selection and 

analysis of these three techniques is their prevalence in related work, as described in 
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Chapter 2, with respect to sensor classification and use in similar wireless sensor 

networks. We now describe how each technique can be integrated into the existing sensor 

discovery process in order to properly classify a given physical sensor. 

A Naïve Bayes classifier is a classification approach that is based on the Bayes’ 

Theorem and the maximum posteriori hypothesis [80]. The role of the classifier in this 

approach is to produce a probability that a given entity, e, belongs to a specific class, c. In 

order to accomplish this classification, we make use of the following Bayes Theorem 

formulas ultimately leading us to our Naïve Bayes classifier. 

𝑃𝑃(𝐻𝐻 | 𝑋𝑋) 

Here P is the probability that our maximum posteriori hypothesis (H ) holds for 

the given evidence defined by X. By using this approach, we are attempting to find a 

probability that, given our collected evidences regarding e, we can find the specific class, 

c , that it belongs to. For example, if we have the attributes frame_rate and resolution and 

we have an X such that X is a sensor with frame rate of 30 frames per second and a 

resolution of 320x240 pixels, our goal is to find which class of sensor X belongs to. In 

this case, we can make the hypothesis that this particular sensor, X, is a Vision-based 

sensor – and can take this hypothesis one step further in that not only is sensor, X, a 

Vision-based sensor but more specifically it is a Web Camera. In this example, our 

𝑃𝑃(𝐻𝐻 | 𝑋𝑋) is the posteriori probability that sensor X is a Web Camera based upon the 

sampled attributes of frame_rate and resolution.  

𝑃𝑃(𝐻𝐻) 

Here 𝑃𝑃(𝐻𝐻) is defined as the prior probability of our hypothesis H. Continuing 

with our example: given our previously proposed hypothesis, this would represent that 
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any sensor, regardless of the aforementioned attributes (frame_rate and resolution), 

would be classified as a Web Camera.  

𝑃𝑃(𝑋𝑋 | 𝐻𝐻) 

Here we define the posteriori probability of our sensor, X, with respect to our 

hypothesis, H. An example of this would be the probability of sensor X having a frame 

rate of 30 frames per second and a resolution of 320x240 pixels given that we know that 

sensor X is a Web Camera and that these are the known attributes of a Web Camera as 

obtained through collected evidences.  

𝑃𝑃(𝑋𝑋) 

This represents the prior probability of X. In our example, this would be 

represented by the probability that a sensor, X, from our given set of sensors, S, has a 

frame rate of 30 frames per second and a resolution of 320x240 pixels. As a result of 

these definitions we are left with the following formula for computing the probability of 

the classification of our sensor, X: 

𝑃𝑃(𝐻𝐻 |𝑋𝑋) =  
𝑃𝑃(𝑋𝑋 |𝐻𝐻) 𝑃𝑃(𝐻𝐻)

𝑃𝑃(𝑋𝑋)
 

Using these formulas we can formally define our Naïve Bayesian Classifier as follows: 

1. Given a training set, with class labels, in which there are k-classes and each 

respective evidence is represented by an n-dimensional vector that consists of n 

attributes, we can create the necessary hypothesis for classification. 

2. The classifier component will then attempt to predict, via the highest a 

posteriori probability, the class to which a given sample X belongs to. This 
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process can be shown through the following formula in which C is the class for 

which X belongs:   

𝑃𝑃(𝐶𝐶 |𝑋𝑋) =  
𝑃𝑃(𝑋𝑋 |𝐶𝐶) 𝑃𝑃(𝐶𝐶)

𝑃𝑃(𝑋𝑋)
 

3. As the denominator portion of this formula is the same for all classes we only 

need to concern ourselves with maximizing the part of the formula that 

concerns itself with the various classes within our training set: 𝑃𝑃(𝑋𝑋 |𝐶𝐶) 𝑃𝑃(𝐶𝐶). 

4. In the case of sensor classification, each class, C, consists of many attributes. 

The nature of this problem allows the naïve assumption to be made as part of 

this classification through the notion of class conditional independence. 

�𝑃𝑃(𝑥𝑥𝑘𝑘|𝐶𝐶)
𝑛𝑛

𝑘𝑘=1

 

Here 𝑥𝑥𝑘𝑘represents the value of a specific attribute for X. In the case of sensor 

classification, 𝑃𝑃(𝑥𝑥𝑘𝑘|𝐶𝐶) is the number of samples found in the training set that 

have the attribute 𝑥𝑥𝑘𝑘 divided by the number of samples of C found in the 

training set.  

5. Each class in C is evaluated, and a classification is made if and only if the 

given class maximizes the following: 𝑃𝑃(𝑋𝑋 |𝐶𝐶) 𝑃𝑃(𝐶𝐶).  
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In order to apply this to our given domain, ITS, the following algorithms have 

been implemented into our indoor tracking framework’s classification module: 

Training Algorithm: 

 

TRAIN(DATASET D, PRIORPROBABILITY P) 

1 CATEGORY C → D 

2 𝐟𝐟𝐟𝐟𝐟𝐟 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 c ∈ C  

3 𝐝𝐝𝐟𝐟 DOCUMENT D ← C  

4 F ← SELECTFEATURES(D) 

5 COUNT(F) 

6 𝐢𝐢𝐟𝐟 P 𝐢𝐢𝐢𝐢 EMPTY 

7   ESTIMATEPROB(F) 

8 else  

9   𝐟𝐟𝐟𝐟𝐟𝐟 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 TERM t ∈ D    

10   𝐝𝐝𝐟𝐟 LIKELIHOOD ←  𝑇𝑇𝑐𝑐𝑐𝑐+1
∑𝑇𝑇(𝑐𝑐𝑐𝑐+1)

 

11 𝐟𝐟𝐞𝐞𝐫𝐫𝐫𝐫𝐟𝐟𝐫𝐫 D, P, LIKELIHOOD 
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Classification Algorithm: 

 

CLASSIFY(DATASET S, LIKELIHOOD L, DOCUMENT D) 

1 CATEGORY C → S 

2 𝐟𝐟𝐟𝐟𝐟𝐟 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 c ∈ S  

3 𝐝𝐝𝐟𝐟 𝐢𝐢𝐟𝐟 CONTAINS(c, D)   

4   LOGPROB [c]+=  L ∗ SCORE[c]   

5   else continue 

6 𝐟𝐟𝐞𝐞𝐫𝐫𝐫𝐫𝐟𝐟𝐫𝐫 MAXSCORE[SCORE[c]] 

 

Update Classification Algorithm: 

UPDATE(DATASET S, LIKELIHOOD L, DOCUMENT D) 

1 CATEGORY C → S 

2 𝐟𝐟𝐟𝐟𝐟𝐟 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 c ∈ S  

3 𝐝𝐝𝐟𝐟 𝐢𝐢𝐟𝐟 CONTAINS(c, D)   

4   LOGPROB [c]+=  L ∗ SCORE[c]   

5   else return NULL 

6 𝐟𝐟𝐞𝐞𝐫𝐫𝐫𝐫𝐟𝐟𝐫𝐫 MAXSCORE[SCORE[c]] 

 

In this implementation, we have used sentiment analysis [81] in the form of a 

Boolean Multinomial Naïve Bayes model to evaluate the sKB. This model provides the 

ability to scan a document (a pre-constructed knowledge base or specific software service 

contract) to find the presence of specific attributes or a keyword that can then be used to 
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match with a training set based upon likelihood probability. The reason for the use of this 

particular approach is that a specific sensor may fit under multiple different sensor 

classifications and may only differ based upon runtime performance. Therefore, the 

probability that a given sensor is in that specific class may change over the course of the 

tracking exercise. Since a sensor may be unknown, we cannot assume that a sensor will 

always behave or act in the same manner that it is originally classified as. For instance, an 

optical sensor may transit from a passive video stream to one that just provides details 

regarding ambient light due to battery/power consumption. Here, the sensor would transit 

from one class of sensor (tracker) to a sensor that can no longer provide this information 

(non-tracker). This provided our motivation for the selection of a Bayesian-based model. 

We have implemented this approach and technique into the existing discovery component 

of the Tracking Middleware. 

A decision tree is a classification approach in which a tree-structure is constructed 

based upon a series of conditions [82]. This approach is simpler in nature than that of a 

Bayesian classifier. These conditions make up the nodes of the tree and the decisions 

decorate the branches, or links, between the nodes in the tree. The construction of the tree 

therefore dictates how the various decisions are made in order to reach the classification 

of a sensor. Based upon this series of decisions, the goal is to reach a leaf node in the tree 

that contains the proper classification of a given entity. During the traversal of the tree, a 

probability can be provided as to the belief that given the set of attributes for a given 

entity, e, the current path of nodes in the tree will lead to the proper classification. An 

example of a simple sensor-based decision tree is shown in Fig. 3.6. 



60 

 

 

In our classification framework, we begin the decision tree process by 

constructing such a tree making use of the sKB. Each node in the tree represents a sensor 

modality class in our sKB. Each condition, or branch decision, in the tree is based upon 

the different attributes of the existing classes in the training set. In order to build the 

decision tree, we utilize the ID3 algorithm as proposed in [82]. This algorithm makes use 

of a top-down approach in analysis and a greedy search technique through the space of 

possible branches. Each branch in the tree is traversed until a classification can either be 

met, by the satisfaction of all given conditions, or that no present solution meets the given 

set of attributes. One of the key features of this approach is the use of entropy and 

information gain to provide confidence in the classification process. Here entropy is 

defined as the measure of the homogeneity of a given sample. Information gain is defined 

as the result of a decrease in entropy of a dataset when it is split on a specific attribute.  

 

Figure 3.6 Sample Decision Tree 
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Here, we desire to find the maximum information gain possible (e.g., the most 

homogeneous branch in the decision tree).  

A rule-based classifier is an approach similar in nature to that of the decision tree 

classifier, but instead of the tree structure dictating the traversal that is necessary to reach 

a conclusion, a set of rules is applied with the goal of determining a proper classification 

based upon successfully meeting their criteria. This process of constructing rule-based 

classifiers can be reduced to the problem of converting a decision tree into a series of 

rules that are iteratively evaluated.  

Rules can be constructed in a binary fashion in which an entity either meets (1) or 

does not meet (0) the respective attribute value. Applying this to our classification 

framework, this leads to if-then statements within the decision making process. These 

statements are dynamically created, in an ad-hoc fashion, based upon the data and 

information contained in the sKB. These rules can then be stored by the Tracking 

Middleware for the duration of the tracking exercise. In the same fashion of the decision 

tree approach, the process of classification is met through a recursive process in which all 

of the rules are evaluated with the hopes of finding a matching rule and subsequent 

classification decision. If a series of rules can be found such that a classification can be 

made – then a successful classification can be achieved, otherwise, the sensor is given a 

default classification and the attributes that it contains are entered as new rules as part of 

the classification process. Once the sensor has been classified the process of analyzing its 

performance with respect to its expected behavior can begin in the form of trust and 

reliability analysis. 
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3.3 Trust 

For the purpose of indoor tracking we define trust to be the belief that a sensor 

will behave in a specified fashion, based upon known information. Here, the notion of 

trust does not only reflect on the behavior/performance of the physical sensor, but rather 

on all the factors associated with encapsulating the sensor as a software service and the 

ability to access it. In this work, we have chosen to focus on the performance of a sensor 

within a given indoor environment. Trust can therefore be classified as the data trust. We 

define the data trust to be the trust that the client has in the accuracy of the data provided 

by the sensor. In this thesis we do not attempt to tackle the issue of security in trust, and 

thus our notion of trust does not include any analysis of malicious intent nor do we 

provide any discussion on the aspect of trust and the communication layer.    

In this thesis, we use the concept of subjective logic, as proposed in [4], to 

quantify the trust associated with a particular sensor. This concept makes the use of the 

idea that an opinion about an entity is subjective and therefore the trust in the entity 

should be modeled with this subjective nature in mind. This application of subjective 

logic is modeled in the form of a tuple that contains the values of {B, D, U}: belief, 

disbelief, and uncertainty. This tuple, when summed, equals the value 1.0. Each of the 

values in the tuple is a measure, on a scale of 0 to 1.0, trust or lack thereof in a given 

entity. 

In order to calculate this tuple, for a sensor, we use the collection of available 

evidences. We consider a positive evidence for a sensor reading if it meets or exceeds the 

sensor’s given specification with regards to its performance. We consider a negative 

evidence if a reading does not meet sensor’s given specification with regards to its 
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performance. We consider the parameter of uncertainty to be the lack, or insufficient, 

number of evidences present at a given time t. Through these evidences we can then build 

the trust tuple for a given sensor. 

In order to collect these evidences, we have created the concept of a Trust Agent 

(TA). The role of the TA is to examine the performance of each sensor. When a sensor is 

discovered by the Tracking Middleware it is subsequently classified and a virtual 

software service is created and registered with the service repository. Once this has been 

done the Tracking Middleware will create a new TA for this sensor. This TA will then be 

responsible for monitoring the performance of the sensor throughout its lifetime. The TA 

will observe the data, as provided by the sensor service, and provide an analysis of the 

sensor’s performance. Each data reading provided by the sensor service will be treated as 

an evidence by the associated TA. Using the algorithm described above for determining 

the nature of the evidence (positive, negative, uncertain), the TA will then calculate the 

corresponding {B, D, U} for the respective sensor. This approach and placement of the 

TA eliminates the need to poll the sensor and instead simply examines the data provided 

to the Filter service. This prevents any unnecessary communication between the sensor 

service and another component. Thus the overall of the runtime is not negatively 

impacted by this analysis.  

The primary reason for the evaluation of the trust of a sensor is about the accuracy 

that it provides. This accuracy is subject to the characteristics of the physical sensor and 

how a positional estimate can be provided by the sensor software service. In order to 

determine this accuracy we use the following equation: 
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�((𝐿𝐿∗(𝑆𝑆𝑖𝑖) − 𝐿𝐿(𝑆𝑆𝑖𝑖))2
𝑁𝑁

𝑖𝑖=1

 

In this equation, the accuracy of the sensor (Si) is determined based upon the 

estimated positional estimate (𝐿𝐿∗) and the actual position (L). The process of determining 

the actual position is achieved by using a ground truth sensor for analysis purposes. This 

ground truth sensor is established by feedback from a sensor injected into the 

environment in which its position is known. If no sensor can be found that meets this 

criterion, then the sensor with the highest existing trust belief will be designated as the 

ground truth sensor.  

A secondary point of evaluation of the trust of a sensor is the associated response 

time. Response time is defined as the amount of time between when a request for tracking 

data is issued and the time that the response has been received from the sensor. Often this 

is specified as part of the sensor characteristics and is included as part of the sensor 

software service contract, as shown in Fig. 3.2, that is registered with the repository and 

included in the sKB. It is the role of the TA to evaluate the performance of the sensor as 

this information is logged through the inclusion of timestamps as part of every tracking 

data. The expected and actual response times are then analyzed by the TA, and a 

corresponding evidence is formed.   

In order to then calculate the trust of the sensor we apply the following equation: 

𝑆𝑆𝑖𝑖 ⊆  𝑆𝑆 and 𝑂𝑂𝑗𝑗 ⊆ 𝑂𝑂, 𝑡𝑡𝐷𝐷�𝑆𝑆𝑖𝑖 ,𝑂𝑂𝑗𝑗� >  𝛿𝛿𝐷𝐷 
 
→  𝛿𝛿𝐷𝐷 = 𝐴𝐴𝐴𝐴𝐴𝐴(�𝐿𝐿∗(𝑆𝑆𝑖𝑖))

𝑁𝑁

𝑖𝑖=1

 

In this equation, 𝑆𝑆𝑖𝑖 ⊆  𝑆𝑆 represents each sensor 𝑆𝑆𝑖𝑖 in the set of sensors 𝑆𝑆 involved in 

tracking. 𝑂𝑂𝑗𝑗 ⊆ 𝑂𝑂 represents each object that the tracking system is currently tracking. The 
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trust is then calculated, via collected evidences, and compared with the trust threshold 

value denoted by 𝛿𝛿𝐷𝐷 .       

Here we assume that there is a pairing between a sensor and a tracking object in 

which a positional estimate can be obtained. We define an evidence to be an individual 

data reading for a given sensor/object pairing when requested by the tracking system. 

During the tracking process (as indicated earlier) each TA is responsible for collecting 

these evidences and then evaluating the sensor’s performance based upon the data 

obtained as part of these evidences. In order to determine whether an evidence is 

trustworthy or not, the TA must analyze the expected versus the actual behavior. Once 

this has been done, an evidence is then created as to whether or not it is positive or 

negative. In order to provide a trustworthy assessment, there must be a sufficient amount 

of evidences available. We define the sufficient amount of evidences to be ten data 

samples from a given sensor. If sufficient evidences are not available then the uncertainty 

of the trust classification is present – as evident by the U in the {B, D, U} tuple.  

One of the key questions that must be addressed here is the quantity of evidences 

required in order to provide proper trust analysis. This quantity plays a role in terms of 

determining the uncertainty of the trust analysis tuple. There are two distinct options 

available to achieve this: static and dynamic. In the static approach an a priori value is 

assigned before the tracking exercise. This value then serves as the analysis for the 

uncertainty with a sensor in terms of respective trust. In the dynamic approach, an initial 

value is provided and then over a period of time the TA learns the proper value that 

should be associated with the sensor. In both approaches an initial value is provided as 
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the basis for comparison – in the static approach this value does not change over the 

course of tracking.      

A second key question to be addressed as part of the infusion of trust is that when 

using the notion of subjective logic each of the values in the respective trust tuple have 

the ability to be evaluated independently. This means that there is the ability for the 

tracking system to select only sensors that meet or exceed a pre-defined threshold value 

for each value in the tuple. This threshold then becomes the key point at which a 

trustworthy decision is made with respect to a sensors performance. In this work this 

threshold is determined by averaging the trust values of the available sensors. This 

average is then used to evaluate the trust tuple values of each sensor.  

Another aspect that we considered during this trust infusion was how to deal with 

fault tolerance and bias by the TA’s. To address these two concerns we let the Tracking 

Middleware create N number of TA to be associated with a given sensor. In this fashion, 

if a single TA fails then other TA can provide the necessary support to maintain the 

analysis of the sensor. As a side effect of this approach we address the concern of bias by 

the TA. We accomplish this through the fact that each TA is unaware of how many other 

TA are presently monitoring a given sensor, Si. We prevent TA from communicating with 

one another directly as part of the framework, thus no TA is aware of the behavior of the 

other TA associated with the sensor. To further prevent unwanted bias, a consensus can 

be formed, by the Tracking Middleware, such that a biased TA information could be 

discarded. This concern is not completely alleviated unless the TA have no knowledge of 

what technique is being used for the calculation of the trust value.  
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Once the TA has collected the necessary evidences, it can then provide the 

resulting trust tuple to the Filter service which will then use this information as part of the 

sensor selection process. The role of the TA extends past the monitoring and evaluating 

of the sensors performance based upon evidences. It is also responsible for updating these 

trust-related values in the sKB. This is an important step as the inherent temporal nature 

of trust plays a vital role in the determination of whether an entity is trustworthy or not. 

When an evidence is collected and the trust tuple calculated the TA is responsible for 

writing this trust tuple and its associated timestamp into the sKB.  

Integration of the TA approach into the existing eDOTS framework was simple 

due to the agile nature of the software infrastructure. Using the concepts found in good 

software design and software design patterns a new component in the form of an Agent 

factory was created. This concept of a factory allows for the creation of agents for both 

trust and reliability respectively. This new software component can directly interface with 

the existing Sensor Selection component as part of the system. By using this approach 

our implementation can easily be adapted to any tracking system by providing a hook 

into the respective sensor selection mechanism.  

To accurately assess each of these trust tuple readings a weight factor must be 

introduced to distinguish between those ratings that are less relevant to the current 

tracking exercise. In order to achieve this, we include a weighted trust approach in which 

both an exponentially weighted moving average algorithm [83] and a penalty/reward 

system [76] is used to properly assess the trust value. An exponentially weighted moving 

average is an algorithm that applies weight factors as means for evaluating a time series 

of data.  
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We use the following definitions to describe this algorithm: 

𝑆𝑆1 =  𝑌𝑌1 ;  𝑡𝑡 > 1 

Here, we initialize the initial state, S, to the first value in our time series of sensor 

data, represented by Y. We also make the assumption that that value of t will be greater 

than 1 in any subsequent evaluations.   

𝑆𝑆𝑡𝑡 =  𝜔𝜔𝑌𝑌𝑡𝑡 + (1 −  𝜔𝜔)𝑆𝑆𝑡𝑡−1  

In this equation, 𝜔𝜔 represents the weight associated the given data observation. This 

value is between 0 and 1. The higher the weighted value, the greater discounting of older 

data observations is achieved. This provides a weight associated with each trust value that 

is stored in the sKB. Over the course of interaction with the sensor, this value will be 

updated by TA and evaluated appropriately by the Tracking Middleware as part of the 

sensor subset selection process. 

3.4   Reliability 

A key aspect of our sensor selection framework is the separation of trust and 

reliability as separate selection criteria. We define reliability to be the belief that a sensor 

will behave, fault-free, over a given period of time. Here, the notion of reliability does 

not only reflect on the physical sensor, but rather on all the factors associated with 

encapsulating the sensor as a software service and the ability to access it. This definition 

allows for a sensor to provide trustworthy responses but be unreliable and vice versa. For 

the evaluation of reliability, as a QoS-based criterion, we create the concept of reliability 

agent (RA). This RA will behave in much the same manner that the TA does for trust 

analysis. Therefore, a majority of the discussion found in the Trust subsection of this 



69 

 

 

chapter applies here to the concept of an RA. We will highlight the differences between 

the two.  

As noted in Chapter 2, there have been many approaches proposed for quantifying 

the reliability of sensors. The common theme found across these various approaches in 

literature is that of fault-free operation. A fault can be defined as either a mechanical fault 

 

Figure 3.7 Reliability Hierarchy 
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of the sensor itself or in the software component associated with the sensor. These faults 

may be temporary or may cause an ultimate failure in the sensor rendering it useless for 

the tracking process. Identifications of these faults are key to the overall selection of a 

sensor.   

One of the features that we use as part of reliability determination is the notion of 

transitive reliability between abstract sensor class and concrete sensor. In Fig. 3.7 this is 

shown through the use of a reliability hierarchy. The concept of an abstract sensor we 

define as the high level of classification assigned to a sensor (e.g., Signal-based Sensor) 

as we traverse this hierarchy we next encounter child nodes of the parent that contain 

further sensor classifications (e.g., Wi-Fi, RFID, Bluetooth, etc.). Eventually, our 

traversal leads us to a leaf node in which a concrete sensor is contained (e.g., Samsung 

Galaxy S6 IMEI: 357754075488264). This hierarchy allows for the sensor to inherit the 

reliability from the parent class that it is a member of. One of the benefits of this 

approach is that when a new sensor is added it can inherit and start with a baseline 

reliability value associated with its expected behavior.   

Each value of the reliability tuple is determined based upon collected evidences, 

or interactions, with the sensor and its produced behavior. The primary goal of this 

approach is to model the uncertainty that comes with ascertaining the level of reliability 

of an entity. A lack of sufficient evidences makes it impossible to make a judgement as to 

the reliability of an entity. By modeling this uncertainty, it demonstrates the full spectrum 

of confidence one has with evaluation of a given entity.   

For implementing the RA into the existing eDOTS framework, we use the Factory 

pattern. This pattern allows for an Agent factory to create RA necessary to evaluate each 
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given sensor service. When a new sensor is identified and a respective sensor service is 

created the Tracking Middleware is responsible for creating a corresponding RA. The RA 

behaves in the same fashion as the TA does, as discussed in the Trust subsection. We will 

omit a discussion here as the general behavior is the same.  

In order to quantify the reliability of a sensor we use the following equation. 

𝑆𝑆𝑖𝑖 ⊆  𝑆𝑆, 𝑟𝑟(𝑆𝑆𝑖𝑖) >  𝛿𝛿𝑅𝑅 
 
→  𝛿𝛿𝑅𝑅 = 𝐴𝐴𝐴𝐴𝐴𝐴(�𝑟𝑟(𝑆𝑆𝑖𝑖))

𝑁𝑁

𝑖𝑖=1

 

Here, the reliability of a sensor, 𝑟𝑟(𝑆𝑆𝑖𝑖) , is determined based upon whether or not it meets 

or exceeds the reliability threshold, 𝛿𝛿𝑅𝑅 , as either specified by the client or calculated as a 

result of computing the averaging reliability values for all sensors involved in the 

tracking process. This calculation is then used to determine whether or not, based upon 

collected evidences, a sensor is determined to be reliable or not.  

3.5 Sensor Subset Selection 

As stated earlier, one of the key challenges with indoor tracking is that of sensor 

selection. With regards to the approach of opportunistic tracking this process becomes an 

even greater challenge as the sensors are not known a priori and therefore an offline 

approach cannot be used. The problem of sensor selection is the process of finding the 

“best” subset of sensors to be used in the tracking process. While it has been shown to be 

an NP-hard problem [84], we use, as heuristics, trust and reliability as separate quality-of-

service (QoS) criteria to aid in this process.  

As previously mentioned, in Chapter 2, there have been many algorithms and 

techniques proposed to address the challenge of sensor selection. We define a simple 

selection technique in this subsection and then discuss a more advanced technique in last 
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subsection, Tradeoff Optimization. This simple technique uses sensor pruning in order to 

accomplish the goal of finding a subset of sensors for the tracking purpose. This pruning 

is guided by the QoS-based selection criteria, as proposed, of trust and reliability.  

Sensor selection is an important step in the determination of a positional estimate 

in an ITS. For indoor tracking the key feature that is to be considered as part of this 

selection process is that of tracking accuracy. Here the overall tracking accuracy is a 

direct result of the quality of the sensor selection process. The sensor selection process 

 

Figure 3.8 Sensor Selection Algorithm 
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can be defined as given a set of sensors, S, the goal is to produce a subset of these sensors, 

Si, that will yield the most gain for the system. In order to provide an evaluation of this 

gain to the system it necessary to have a ground truth as to which to compare to. 

The first step in the Sensor Selection algorithm, shown in Fig. 3.8, is to identify 

the ground truth sensor in the given environment. Once this has been established, we 

begin the process of selection by pruning sensors based upon their QoS-based criterion of 

trust and reliability. The ground truth sensor serves as the basis for the trust and reliability 

analysis in that it provides the threshold value as to which both criteria are evaluated by. 

This threshold value serves as the filtering decision for the pruning of sensors.  

In order to filter the sensors, each criterion is evaluated independently. The first of 

 

Figure 3.9 Sensor Selection Overview 
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these criteria to be evaluated is trust. To evaluate and filter based upon the trust of a 

sensor each of the values of the {B, D, U} tuple is evaluated and compared with the 

defined threshold value. If the value of the sensor meets or exceeds the necessary 

threshold value for the belief portion of the tuple then we continue the evaluation based 

on the other two values. If the disbelief portion of the tuple is below or meets the given 

threshold value, then we continue on to the final value of uncertainty. If the value of the 

sensors uncertainty is below or meets the given threshold value as provided by the ground 

truth analysis, we mark the sensor as a candidate sensor for the purpose of sensor 

selection. 

In order to filter the sensors based upon the reliability criteria the same process is 

followed as used by the trust-based selection. The outcome of this process is a set of 

candidate sensors that have been identified to have met the requirements based upon the 

reliability threshold. At this point in the process we are left with two candidate sets (one 

for trust and one for reliability). In order to resolve this process, we apply the subjective 

logic operator of consensus. This operator attempts to resolve any conflicts by ensuring 

that a sensor in question appears in both lists. If a consensus is met then the sensor is 

added to the sensor set, Si. This process is repeated until all sensors in the sensor set, S, 

have been evaluated. The outcome of this process is a subset of sensors that is now ready 

for the data fusion process. An overview of this process is visually represented in Fig. 3.9.     

Our approach is different than those approaches listed in Chapter 2 in that infuse 

of the QoS-based attributes of trust and reliability as separate selection criterion. We 

hypothesize that this infusion will lead to improved sensor selection, specifically when it 
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comes to the accuracy of the ITS. This hypothesis is empirically validated as described in 

Chapter 4.  

3.6 Multi-sensor Data Fusion 

In this section we focus on the role that sensor selection and the infusion of trust 

and reliability have on the sensor data fusion process and how modifications to the 

existing approach yield potential benefits as a result of this improved sensor selection. 

The role of the extended Kalman-based filter is to provide a predict and correct 

mechanism that attempts to smooth potentially noisy data. Once a subset of sensors has 

been identified, it is now the responsibility of the Filter service to passed to the Data 

Fusion service component of the eDOTS. This process is only necessary if there are two 

or more sensors that have been identified during the sensor selection process. 

One of the key challenges associated with any multi-modal environment is 

determining the proper process to combine, or fuse, the data results. This process is 

typically computationally expensive and serves as a bottleneck for the system. 

Furthermore, this costly data fusion may not always be possible or feasible on mobile 

devices without further pruning or assistance. In order to address these challenges, we use 

a combination of techniques in order to provide accurate multi-sensor data fusion. The 

eDOTS currently provides the ability for averaging or an extended Kalman Filter 

technique (as discussed in subsection 1) as its primary methods of multi-sensor data 

fusion. Prior to the data fusion process, the data must be streamlined and prepared for the 

data fusion method. This pruning process currently relies heavily on the ranking system 

and other environmental collected heuristics. We first fuse data of similar classes of 

sensors based upon their ranks. However, if the ranks are cut across various sensor 
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modalities, these modalities and their associated data must be unified prior to being 

passed to the data fuser. 

In previous work [70] we have discussed, the typical data fusion process and have 

provided details and analysis regarding the techniques used. These techniques have been 

adapted to fully realize the distributed approach to the Kalman-based filter in order to 

meet the needs of mobile sensors and the incorporation of the ranking algorithm. In this 

adaptation we allow for the fuser, as part of the data fusion process, to be distributed 

locally or remotely as part of the Fusion service. In order to accomplish this and satisfy 

the strict requirements of multi-sensor data fusion, we include the sensor subset selection 

algorithm, described in the previous subsection. This process provides the necessary data, 

in the proper format, for the Fusion service to use.  

When incorporating mobile devices into the tracking infrastructure, careful 

attention is needed when performing data fusion, due to its computational complexity. 

Through prior analysis of the techniques and methods used for performing the data fusion 

it was demonstrated that it would not be feasible to perform this data fusion on mobile 

sensing devices [20] in the same fashion as that of the static system. This was due to the 

unpredictable nature of the mobile devices including their connectivity and availability 

on the local network. By using a distributed approach in the data fusion is spread across 

various software components is the basis of the distributed Kalman-based filter technique 

as described in [70]. 

We will now describe how we apply an extended Kalman filter to the problem of 

multi-sensor data fusion.  
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The model for the extended Kalman filter [85] is as follows: 

𝑥𝑥𝑘𝑘 = 𝐴𝐴𝑥𝑥𝑘𝑘−1 + 𝐵𝐵𝑢𝑢𝑘𝑘 

• Where 𝑥𝑥𝑘𝑘 is the current state of the system, 𝑥𝑥𝑘𝑘−1 is the previous state of the 

system, and 𝐴𝐴 and 𝐵𝐵 are scaling constants. 

𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑥𝑥𝑘𝑘 + 𝐴𝐴𝑘𝑘 

• Where 𝑧𝑧𝑘𝑘 is the current observation of the system, 𝐴𝐴𝑘𝑘is the current noise 

associated with the observation, and 𝐶𝐶 is a scaling constant. 

 

The predict portion of the extended Kalman filter using the following formulas: 

𝑥𝑥� = 𝐴𝐴𝑥𝑥�𝑘𝑘−1 + 𝐵𝐵𝑢𝑢𝑘𝑘 

• Where 𝑥𝑥� is the estimate of the predicted current state of the system and 𝑥𝑥�𝑘𝑘−1 is the 

estimate of the previous state. 

𝑃𝑃𝑘𝑘 = 𝐴𝐴𝑃𝑃𝑘𝑘−1𝐴𝐴𝑇𝑇 

• Where 𝑃𝑃𝑘𝑘 is the prediction error and 𝑃𝑃𝑘𝑘−1 is the predicted error of the previous 

calculation. 

 

The update portion of the extended Kalman filter is achieved through the use of the 

following formulas: 

𝐺𝐺𝑘𝑘 =  𝑃𝑃𝑘𝑘𝐶𝐶𝑇𝑇(𝐶𝐶𝑃𝑃𝑘𝑘𝐶𝐶𝑇𝑇 + 𝑅𝑅)−1 

• Where 𝐺𝐺𝑘𝑘 is the current gain and 𝑅𝑅 is the average noise of the measurement. 

𝑥𝑥� = 𝑥𝑥�𝑘𝑘 + 𝐺𝐺𝑘𝑘(𝑧𝑧𝑘𝑘 − 𝐶𝐶𝑥𝑥�𝑘𝑘) 

𝑃𝑃𝑘𝑘 = (1 −  𝐺𝐺𝑘𝑘𝐶𝐶)𝑃𝑃𝑘𝑘 
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If we apply this extended Kalman filter to our tracking exercise we find that the 

following: 

�
𝑋𝑋
𝑌𝑌
𝑍𝑍
� =  �

1 0 0
0 1 0
0 0 1

� 

• Here, the initial assumption is that each coordinate value is accurate and that there 

is no noise. This matrix indicates the impact that each of the coordinates has on 

the other – in this case, the measurement used to obtain the Y coordinate has no 

impact on the X or Z calculation.  

 

This approach can also be expanded to the fusion between the trust and reliability 

values with respective sensors and by the Tracking Middleware. Another possibility is 

the infusion of the existing X, Y, Z coordinate values with the trust and reliability values 

as produced by their respective analysis. 

3.7 Tradeoff Optimization 

In the discussion of the sensor selection process, we made references to the 

tradeoff between the gain and the cost of such selection. The gain, with regards to 

tracking, is the accuracy provided by the system. The cost, with respect to tracking, is the 

runtime overhead associated with obtaining such accuracy. As a result of this process, 

there exists a tradeoff in which the tracking system desires to maximize the accuracy 

obtained while minimizing the cost associated with obtaining this accuracy. Many 

attempts have been made at modeling such a tradeoff between gain and cost, as discussed 

in Chapter 2. Here we describe the use of an optimization function, one that models that 

tradeoff with associated weights that allow for the optimization to take place.  
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In order to quantify the accuracy of the positional estimate provided by the system 

we, again use a ground truth sensor that can be selected as part of this supervised process. 

In order to quantify the cost associated with the calculation of this tradeoff the end-to-end 

runtime of the system is collected. During an offline process of calibration, the end-to-

end runtime of the system can be calculated and then used for comparison. 

The proposed optimization function models the utility versus cost via a weighted 

sum approach: 

𝐹𝐹𝐴𝐴 =  𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝐹𝐹(𝐴𝐴𝐴𝐴𝐴𝐴𝑢𝑢𝑟𝑟𝐴𝐴𝐴𝐴𝑦𝑦) + 𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 ∗ 𝐹𝐹(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡) 

Subject To: 𝐹𝐹(𝐴𝐴𝐴𝐴𝐴𝐴𝑢𝑢𝑟𝑟𝐴𝐴𝐴𝐴𝑦𝑦) =  ∑ �(𝐿𝐿(𝑆𝑆𝑖𝑖) −  𝐿𝐿∗(𝑆𝑆𝑖𝑖))2 ∗ �𝑡𝑡𝐷𝐷𝑖𝑖�� 𝑁𝑁
𝑖𝑖=1  

𝐹𝐹(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡) =  �(1 − 𝐸𝐸(𝑆𝑆𝑖𝑖))2 
𝑁𝑁

𝑖𝑖=1

 

Where: 𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 1 

Here WAccuracy is defined as the weighted value associated with the accuracy of 

sensor Si position estimate at a given time T. WCost is defined as the weighted value 

associated with the cost, in terms of system runtime, in order to provide a tracking 

estimate from sensor Si. FA to be the objective function for the tradeoff between accuracy 

and cost when performing tracking action A. L to be the location of the object. L* to be 

the estimated location of the object. 𝑡𝑡𝐷𝐷𝑖𝑖 to be the trust related to the location estimate. 

If the weighted value associated with accuracy is greater than that of the weighted value 

associated with the cost – the accuracy generated as result of the sensor selection process 

will dominate. If the weighted value associated with cost is greater – the runtime of the 

system will dominate the tracking process. The goal of this function is to provide a way 
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to find the optimal set of sensors in order to optimize the function. In order to realize this 

goal we make use of reinforcement learning techniques in order to learn the optimal set 

of sensors to satisfy this function. 

In [76], the authors propose a novel reinforcement learning framework for the 

sensor subset selection problem. Here we adapt that approach to fit our optimization 

framework to model the tradeoff between accuracy and the runtime of the system. In the 

work described in [76], the authors focus on the tradeoff between accuracy and energy 

consumption. Their approach makes use of a decentralized pursuit learning game 

algorithm. In order to focus on the impact of time on the tradeoff optimization, we 

modify the existing proposed approach [76]. Our proposed objective function describes 

two conflicting goals: (1) to produce a highly accurate positional estimate and (2) to 

minimize the runtime cost in terms of time. We now focus on the differences between the 

existing approach described in [76] and our modified approach for the problem of sensor 

subset selection. 

Each tracking sensor is represented as a learning automaton. The set of active 

trackers that we have identified serve as the basis for the formation of a team of automata 

that attempt to converge towards the optimization of our tradeoff function as previously 

described. Here the action of the tracking sensor is directly related to its QoS-based 

performance. If the tracking sensor is evaluated by using these criteria, performs the 

selection analysis and sends its data on to the Tracking Middleware, at the cost of the 

runtime performance hit that is required for such analysis. If the tracking sensors action is 

to not perform this analysis, its data is not forwarded on to the Tracking Middleware at 
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the possible expense of the accuracy of the estimate, however, a performance hit is not 

taken as the added runtime with the evaluation process is not performed.    

As part of this process, there is the impact of the related weighted values 

associated with both accuracy and cost. Here the user of the system can specify which of 

these criteria are more important in their given application domain. For instance, in 

certain cases it may be more important to have a real-time response generated by the ITS 

at the expense of the accuracy provided; while in other cases it may be more important to 

have as highly accurate positional estimate at the expense of the time required to produce 

such an estimate. The cost is measured as the end-to-end runtime of the selection process. 

We can then formulate a penalty probability mechanism denoted by the specific action 

selected with respect to the cost. Thus, (1 −  𝐹𝐹(𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡)) gives us the reward associated 

with the specific action selected.     

We will now empirically evaluate these proposed enhancements through the 

eDOTS prototype.  
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CHAPTER 4. EXPERIMENTATION AND ANALYSIS 

In this chapter, we provide the details about how the various components, 

described in Chapter 3, have been implemented into the eDOTS and experimented on. 

This experimentation was carried out to empirically validate the proposed framework and 

to demonstrate its effect on our hypothesis. We begin with an overview of the tracking 

environment and our experimental setup before proceeding to discuss each area of 

enhancement, as described in Chapter 3, in more detail and provide the empirical results 

from the experimentation. 

To empirically validate our proposed enhancements to indoor tracking, we made 

use of the eDOTS described in Chapter 2. The experiments discussed in this chapter were 

conducted in a variety of indoor environments, with the primary environment being the 

research lab located in the Science building (SL) on the campus of Indiana University-

Purdue University Indianapolis (IUPUI). This laboratory consists of a wide range of 

equipment that has the potential to be tracked as it is moved about the indoor 

environment.
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This specific environment makes use of two primary classes of sensor: Wi-Fi-

based and Vision-based. These sensors provide a static tracking infrastructure that allows 

for precise measurements to be taken based on the accuracy of the system. We have made 

the decision to focus on the two primary classes of Wi-Fi and Vision due in part to the 

following three criteria: a) their popularity as indoor tracking approaches, b) their 

accuracy that they provide, and c) their ability to be greatly impacted by both sensor 

failure and other environment variables that could affect their tracking performance. 

Other sensor modalities were present within the environment such as: inertial sensors, 

Bluetooth sensors, and RFID (both active and passive). These sensors, along with mobile 

Wi-Fi-based and Vision-based sensors provide a dynamic flavor to the tracking exercise.  

The typical environment in which we conducted our experimentation in consisted 

of at least twenty unique sensors. In these experiments, we make use of the opportunistic 

tracking approach. With this approach, tracking sensors may enter or leave the 

 

Figure 4.1 Laboratory Setup 
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environment and therefore we do not rely on any static infrastructure but rather simply 

take advantage of whatever sensors are currently present. This use of opportunistic 

tracking introduced a unique challenge to our experimentation, in that each tracking 

exercise was unique and therefore made it impossible to reproduce organically. 

Validation could be achieved but in this case it was handcrafted in order to empirically 

validate our results.  

Our primary tracking environment consisted of twenty static web cameras, shown 

in Fig. 4.1, as part of the physical existing infrastructure, which could be used for Vision-

based tracking. Due to this existing infrastructure and its static nature we could always 

ensure that at all times there were always at least twenty sensors present, although in 

most experiments there were considerably more sensors present. Based upon a 

preliminary study of typical indoor environments, we determined that twenty sensors 

would provide an adequate representation. The primary room in which we tracked objects 

is 54.81 square meters in size. This room is on the first floor of a multi-story building, 

and thus it was often possible for sensors from the adjoining floors to be discovered as 

their signal, or sensing capabilities, propagated into our tracking environment. This 

potentially unknown sensing infrastructure added the necessary components to evaluate 

the performance of our proposed enhancements for indoor tracking.     

We divided the experiments up into each specific area that we have proposed 

enhancements to in this thesis: sensor classification, trust, reliability, sensor selection, 

and data fusion. The experiments in each area were conducted to test the effectiveness of 

our approach; we conclude this chapter with a description of an end-to-end test of the 

tracking system to demonstrate the overall effectiveness of our proposed approach and 
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the cost incurred through such inclusion through analysis of our tradeoff optimization 

function. 

4.1 Sensor Classification 

For the purpose of evaluating sensor classification, as indicated earlier, we 

examined three prevalent techniques: a Decision Tree Classifier, a Rule-Based Classifier, 

and a Naïve Bayes Classifier. The goal of this exercise was to evaluate the performance 

of these techniques with respect to the usage and the creation of the tracking sensor 

knowledge base (sKB) and the accuracy of such classification.  

The initial step in this exercise was the creation of the sKB. This involved an in-

depth search for sensor specifications published by manufactures that were publically 

available. Once a sensor specification was found, it was then translated into an XML 

format and stored as part of the sKB. An example of a sensor specification in XML 

format can be seen in Fig. 4.2. 

<?xml version="1.0" encoding="UTF-8"?> 
<SENSOR> 
  <NAME>Camera03</NAME> 
  <TYPE>VISION</TYPE> 
  <MANUFACTOR>LOGITECH</MANUFACTOR> 
  <VERSION>QUICKCAM</VERSION> 
  <HARDWARE>USB\VID_046D^&PID_0992^&REV_0005</HARDWARE> 
  <SERVICEID>48e2f0f1-2f0f-4ca1-9c20-9daed3e251ba</SERVICEID> 
  <QOS> 
    <RESOLUTION>320x235</RESOLUTION> 
    <FRAMERATE>30</FRAMERATE> 
    <RESPONSETIME>12</RESPONSETIME> 
  </QOS> 
</SENSOR> 

Figure 4.2 Sensor Specification 

The above specification provides the characteristics of how the given sensor 

modality should behave during its use. This serves the basis for sensor evaluation (both in 

terms of classification and in the case of its performance). These specifications serve as 
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living documents and are both modified and removed as necessary during the course of 

interaction with a sensor.  

To conduct the evaluation of the three classification techniques, we provided the 

system with a total of ten sensors – of which we knew the proper classification for each 

sensor. This will allow us to compare the actual versus the expected classification by the 

three different approaches in a typical indoor environment. Five of the sensors were 

selected to be provided with complete specification data, while five others contained 

limited specification data. This limited specification data was created manually for 

validation purposed by removing existing knowledge from the sKB. The motivation 

behind this decision was to empirically validate the accuracy that the classification 

technique could obtain in both the presence of a complete and incomplete training set. 

The results of this experiment are shown in Table 4.1. 

Table 4.1 Sensor Classification 

Classification Technique Accuracy 
(Known) 

Accuracy 
(Unknown) 

Decision Tree Classifier 100% 90% 
Rule-Based Classifier 100% 90% 
Naïve Bayes Classifier 90% 80% 

 

As can be seen in Table 4.1, we found that each method was able to provide a 

high accuracy (all sensors over 80%) with respect to the classification of the sensors – for 

many application domains (e.g., asset tracking) this accuracy may suffice. As shown, the 

accuracy with respect to the sensors in which information was not available was higher 

for both the Decision Tree and Rule-Based approaches, while the Naïve Bayes Classifier 

approach appeared to have a more difficult time properly identifying the sensor based 
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upon the lack of information. We believe this is the case due to the training data set 

available and the ability of the Rule-Based and Decision Tree approaches to simply add a 

new sensor modality based upon a sensor template. We had to conduct this experiment 

multiple times as we struggled initially with the problem of overfitting. The cost 

associated with the implementation of each of these techniques into the prototype system, 

in terms of time, was an added mean of 2.5 milliseconds. 

The second exercise we conducted, with respect to classification, was to validate 

that the sKB was updated appropriately based upon the information collected. In this 

experiment, we introduced a new sensor into the tracking system that had no a priori 

specification within the sKB. This sensor should, based upon the implementation, be 

given a generic classification. Over the course of interaction with the sensor, the 

classification should evolve based upon the evidences and additional information and 

thus allow a proper classification to take place.  

For this exercise, we began with the following sensor specification from the 

sensor service contract, as shown in Fig. 4.3. 

<?xml version="1.0" encoding="UTF-8"?> 
<SENSOR> 
  <NAME>Device001</NAME> 
  <SERVICEID>90bd3f05-f45e-4fe2-941b-eb343caf6e43</SERVICEID> 
</SENSOR> 

Figure 4.3 Sensor Specification (Unknown) 

Based upon this given information, a classification of the sensor, to a concrete modality 

or type, can be made. Instead a generic classification is given, of SENSOR. At this point 

the Tracking Middleware must begin to make queries of the service to determine the 

following: 1) is the sensor a tracking sensor, and 2) what is the expected behavior of the 

sensor with respect to its physical characteristics. Over the course of interaction with the 
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sensor, additional information in the form of FRAME_RATE and RESOLUTION were 

obtained. Based upon our sKB, we find that these attributes are common to Vision-based 

sensors. Furthermore, the classifier could attempt to match the provided FRAME_RATE 

and RESOLUTION with known examples of Vision-based sensors within the sKB. In 

our sKB, we have two different types of Vision-based sensors: one with a 

FRAME_RATE of 30 frames per second, and one with a FRAME_RATE of 15 frames 

per second. With this knowledge, the classifier can attempt to provide a match to the 

previously unknown sensor. The results of this predictive classification are highlighted in 

Table I and the subsequent updated sensor specification, as maintained in the sKB, is 

shown in Fig. 4.4. 

<?xml version="1.0" encoding="UTF-8"?> 
<SENSOR> 
  <NAME>Device001</NAME> 
  <TYPE>VISION</TYPE> 
  <MANUFACTOR>LOGITECH</MANUFACTOR> 
  <VERSION>QUICKCAM</VERSION> 
  <SERVICEID>90bd3f05-f45e-4fe2-941b-eb343caf6e43</SERVICEID> 
  <QOS> 
    <FRAMERATE>30</FRAMERATE> 
  </QOS> 
</SENSOR> 

Figure 4.4  Sensor Specification (Classification Approach) 

4.2 Trust Analysis 

For the purpose of evaluating the trust of a sensor, we conducted a series of 

experiments to evaluate the sampling of evidences. The goal of this exercise was to 

evaluate the performance of the TA and its role in determining the trustworthiness of a 

sensor. In this exercise, a random distribution of sensors was introduced into the 

environment. The purpose behind this distribution was to evaluate how the trust of the 
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sensor evolved over the course of the tracking exercise and the interaction between 

sensor and tracking system. 

  The initial set of experiments was conducted in order to focus on the integration 

of trust-based accuracy into the tracking system. Each sensor upon registration was 

assigned a corresponding trust agent (TA) that collected the specifications, per the service 

contract, and sampled the location data when available. This TA then reported the data 

back to the Tracking Middleware layer for analysis and ultimately form a trust-based 

decision to be used in the sensor selection process. These accuracy-related experiments 

were split into three categories based upon initial trust assignment: optimistic, pessimistic, 

neutral. In the optimistic approach, the tracking system made the assumption that all 

sensors, upon registration, were trustworthy – and thus, had a {B, D, U} tuple value of 

{1.0, 0, 0}. In the pessimistic approach, all of the sensors were assumed to be 

untrustworthy – and thus, had a tuple value of {0, 1.0, 0}. Finally, in the neutral approach, 

the tracking system assumed that insufficient data (less than 10 evidences for a given 

sensor) was available for the sensors and thus, a level of uncertainty persisted – and 

hence, a value of {0.33, 0.33, 0.33} was assigned for each sensor. 

Table 4.2 Sensor QoS-based Comparison 

Sensor ID Timestamp 
Actual 

Response 
Time (ms) 

Expected 
Response Time 

(ms) 
V001 2016-09-21 12:53:43 7 8 
V001 2016-09-21 12:53:43 7 8 
V001 2016-09-21 12:53:43 12 8 
V001 2016-09-21 12:53:44 7 8 
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Table 4.2 highlights a sampling of a collection of evidences for a sensor. In this 

example, the QoS-based evaluation is about the response time of the sensor. This 

performance serves as the basis for a trust decision as to the trustworthiness of the 

sensor’s data. As indicated in the previous chapter, if the sensor meets or exceeds the 

expected response time then the evidence is recorded as a positive evidence. If the sensor 

does not meet the expected response time then the evidence is recorded as a negative 

evidence.  

The first experiment, in this set of exercises to evaluate this trust-based accuracy, 

was to verify that the trust tuple associated with the accuracy was indeed being properly 

set and maintained for an individual sensor. To validate the existence of such tuples for 

each of the different categories, we identified a sensor that we knew to be trustworthy, in 

terms of its accuracy, and one that we knew to be untrustworthy, in terms of its accuracy, 

and ran our algorithm against these sensors. We achieved the identification of sensors 

through offline calibration of the sensor devices that allowed us to collect evidences and 

evaluate them manually. In this test, only stationary sensors were used to mitigate the 

opportunity for additional error in regards to the location estimate into the final result. 

For each category and each sensor, we ran 100 data points through the algorithm and then 

examined the resulting trust scores. Tables 4.3, 4.4, and 4.5 highlight our findings for 

both the sensors in their respective categories – sensor A being the predefined 

trustworthy sensor and sensor B being the predefined untrustworthy sensor. 
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Table 4.3 Empirical Accuracy Analysis (Optimistic) 

Sensor Name Belief Disbelief Uncertainty 
Sensor A 0.824 0.167 0.010 
Sensor B 0.175 0.815 0.010 

 

Table 4.4 Empirical Accuracy Analysis (Pessimistic) 

Sensor Name Belief Disbelief Uncertainty 
Sensor A 0.813 0.176 0.010 
Sensor B 0.098 0.892 0.010 

 

Table 4.5 Empirical Accuracy Analysis (Neutral) 

Sensor Name Belief Disbelief Uncertainty 
Sensor A 0.819 0.171 0.010 
Sensor B 0.152 0.838 0.010 

 

From Tables 4.3, 4.4, and 4.5, we can see that the algorithm appropriately 

determined the {B, D, U} tuples for the respective sensors. This initial analysis confirms 

the ground truth that we knew about each sensor going into the experiment regarding its 

trustworthiness, in terms of its accuracy. In each case, the algorithm provided a 

probability regarding the sensor’s performance at 0.810 or higher.  
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Fig. 4.5 shows the results of this exercise. The evolution of the trust tuple can be 

seen in this figure. As additional evidences are collected, as part of the tracking process, 

this sample sensors trust is modified accordingly due to the presence of the TA. Through 

these evidences it is shown how the uncertainty converges to 0, as data estimates are 

provided; while the disbelief decreases through the collection of positive evidences in 

favor of the sensor. 

  

 

Figure 4.5 Trust Analysis 
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Table 4.6 Historical Trust Values 

Timestamp Belief Tuple Weight 
2016-09-21 16:11:17 {0.819, 0.171, 0.010} 0.9 
2016-09-18 13:11:54 {0.813, 0.176, 0.010} 0.6 
2016-09-17 15:23:02 {0.780, 0.210, 0.010} 0.5 

 

Table 4.6 indicates the historical values associated with trust determination of a 

sensor. In this table, we demonstrate the importance of the exponentially weighted 

moving average into the determination of the trust of a sensor. In order to evaluate this 

concept, we conducted a series of experiments that collected 200 evidences from a sensor. 

 

Figure 4.6 Optimistic Initial Trust 
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The duration of these experiments was to highlight the effect that historical trust values 

have on the overall trust determination. Fig. 4.6 shows the effect that our trust calculation 

has on a sensor with an initial trust value that is optimistic. Here each evidence and each 

subsequent trust determination is evaluated and then compared with the existing 

historical trust values. Once this has been done the final updated trust value is provided. 

 

 

 

Figure 4.7 Trust Snapshot 
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Due to the nature of the data samples (e.g., 200 evidences collected for each sensor) it is 

impossible to show the actual fluctuation of the trust tuple values. In Fig. 4.7 we take a 

snapshot of an example trust calculation of a sensor. Here, we see that the sensor in 

question proves to be dominated by untrustworthy or negative evidences.  The next 

experiment, we wanted to evaluate, was that of trust decay over time. In this case, we 

evaluated a Vision-based sensor. The reason for this type of sensor is the original 

motivation behind the infusion of trust. One of the primary limitations of Vision-based 

 

Figure 4.8 Optimistic Trust Fluctuation 
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sensors is that of occlusion. Occlusion occurs when the view between the sensor and the 

object being tracked is obscured. A second, but equally common, limitation is that of 

incorrect identification of the object being tracked. In our experimental setup, we used a 

common augmented reality pattern for visual recognition. In certain scenarios, it was 

possible for the sensor to incorrectly identify the wrong object. In this case, the data trust 

should appropriately reflect this. In Fig. 4.8 this is shown at the tail end of the chart in 

which the belief decreases and the disbelief increases. During this experiment, we 

documented the actual location of the object being tracked and then determined that the 

vision sensor was incorrectly identifying a monitor in the background due to the contrast 

in the color (black and white). Due to this, the positional estimate provided was 

inaccurate because of the misidentification. This is correctly reflected in the decrease in 

the belief in the sensor’s data.  
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 Fig. 4.9 demonstrates the impact that the value of uncertainty plays on the 

trustworthiness of a sensor. In this figure, it is seen how due to the lack of evidences the 

uncertainty dominates, even in the case where an optimistic approach is taken, until 

sufficient evidences can be obtained from the sensor. In this case, the experiment was 

continued for the duration of tracking, but as is seen in the first 25 data samples the 

uncertainty dominates the overall perception of the sensor and based upon the trust 

 

Figure 4.9 Trust Uncertainty Impact (Optimistic) 
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threshold established the sensor would be excluded from selection due to its {B, D, U} 

score. 

 Fig. 4.10 demonstrates the pessimistic initial approach in which the sensor is 

deemed untrustworthy. In this figure, the trust of the sensor is initially pessimistic – this 

may be a user defined attribute or may be based upon past historical trust data associated 

with the given sensor modality. In this case, until sufficient positive evidences are 

acquired, the sensor maintains this high level of disbelief. During this period of time, the 

sensor is not a candidate for sensor selection.  

 

Figure 4.10 Trust Uncertainty Impact (Pessimistic) 
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 In Fig. 4.11, we see a sensor that over the collection of evidences shows the 

evolution of the trust tuple over a period of time and its ability to dynamically adjust to 

changes in the sensor’s performance. A fluctuation in the belief is then seen due to the 

presence of misidentification – once the object is correctly identified the belief value 

grows. 

 In this set of experiments, we have empirically validated the infusion of trust in 

the eDOTS. We have shown the impact that the initial assignment of trust has on a 

sensor’s trustworthiness during its use. We have demonstrated that our trust algorithm 

 

Figure 4.11 Trust Adjustment 
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provides an agile approach to handling the evolution of trust over a period of time and the 

impacts that evidences have on the determination of the trust tuple. 

4.3 Reliability Analysis 

For the purpose of evaluating the reliability of a sensor, we conducted a set of 

experiments that would highlight the role of the RA within the eDOTS. The first of these 

experiments was to evaluate the overall performance of the RA in classifying a sensor to 

be reliable or not. For this exercise, we included sensors that had a previous history of 

being highly reliable. These sensors were identified as highly reliable due to their 

performance in past exercises. This historical data was obtained from the reliability 

hierarchy as described in Chapter 3, as part of the sKB. Here we focus on the 

classification of responsiveness of each sensor with regards to its specification.  

Similar in nature to the trust-based experiments, the reliability-based experiments 

were split into three categories based upon initial reliability assignment: optimistic, 

pessimistic, neutral. In the optimistic approach, the system made the assumption that all 

sensors, upon registration, were reliable – and thus had a tuple value of {1.0, 0, 0}. In the 

pessimistic approach, all of the sensors were assumed to be unreliable – and thus, had a 

tuple value of {0, 1.0, 0}. Finally, in the neutral approach, the system assumed that 

insufficient data was available for the sensors and thus, a level of uncertainty persisted – 

and hence, a tuple value of {0.33, 0.33, 0.33} was assigned as the initial reliability value 

to each sensor. Here we discarded the inherited reliability values from the base sensor 

modality; the reason for this omission was in order to strictly validate the application and 

assignment of the reliability tuple for each sensor based upon collected evidences.   
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To empirically validate the proper assignment of reliability, for each of the 

different categories, we again identified a sensor that we knew to be reliable in terms of 

its performance (lack of failures – e.g., responsiveness) to serve as our ground truth and 

one that we knew to be unreliable in terms of its unpredictable responsiveness and ran 

our algorithm against the sensor. For each category and each sensor, we ran a tracking 

exercise in which we sampled data points throughout, in order to demonstrate sufficient 

communication between the Sensor Service and the Tracking Middleware layer. Tables 

4.5, 4.6, and 4.7 highlight our findings, for both the sensors in their respective categories 

- sensor C being the predefined reliable sensor and sensor D being the predefined 

unreliable sensor. 

Table 4.7 Empirical Reliability Analysis (Optimistic) 

Sensor Name Belief Disbelief Uncertainty 
Sensor C 0.95 0.01 0.04 
Sensor D 0.48 0.48 0.04 

 

Table 4.8 Empirical Reliability Analysis (Pessimistic) 

Sensor Name Belief Disbelief Uncertainty 
Sensor C 0.86 0.10 0.04 
Sensor D 0.00 0.96 0.04 

 

Table 4.9 Empirical Reliability Analysis (Neutral) 

Sensor Name Belief Disbelief Uncertainty 
Sensor C 0.93 0.02 0.04 
Sensor D 0.28 0.68 0.04 

 

From Tables 4.5, 4.6, and 4.7, we see that the algorithm appropriately, per our 

prior knowledge of each sensor and a collection of 100 evidences, determined the {B, D, 
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U} tuple for the respective sensors. This confirms the expectations we had regarding the 

performance of each sensor with respect to its reliability.  

  Fig. 4.12 highlights the findings of the results when historical reliability data is 

inherited as part of the initialization process of a sensor during registration. In this figure, 

it can be seen how the reliability of the individual sensor changes over time due to the 

increased information, or evidences, collected regarding its performance. The sample 

sensor, in the graph, begins with a higher reliability probability score based upon the pre-

existing knowledge stored in the sKB regarding that specific class of sensor. This score is 

then factored into the collected evidences through sampling of the sensors performance 

during the tracking exercise. Here the sensor has been determined to be reliable based 

 

Figure 4.12 Reliability Analysis 
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upon its high belief level as the result of its performance. This indicates a lack of failures 

by the sensor during the tracking exercise. 

 Fig. 13 highlights the impact of an initial neutral reliability opinion on the 

determination of the reliability tuple. Here, it is shown how the belief of the sensor, and 

the corresponded plotted line tends to jump, indicating potential missed communication 

points. Another point of note in this figure is the high initial uncertainty due to lack of 

evidences and the initial assumption of the unknown behavior of the sensor.  

 

Figure 4.13 Neutral Reliability Opinion 
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 Fig. 4.14 highlights the reliability values for a sensor that proves to be unreliable 

due to collected evidences. In this example, the sensor in question responds to every other 

tracking inquiry and thus, provides a reliability of 50%. Upon examination of the data 

logs recording during tracking, this sensor would block any incoming requests while 

attempting to process the data. As a result of this action, the sensor would only respond to 

half of the inquiries that were requested of it for data. This sensor was actually a prime 

 

Figure 4.14 Unreliable Sensor 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

Re
lia

bi
lit

y 
Pr

ob
ab

ili
ty

 

Reliability Samples 

Belief

Disbelief

Uncertainty



105 

 

 

candidate for the separation of trust and reliability as it provided very trustworthy data 

responses.  

 Fig. 4.15 provides a snapshot view of the reliability of a sensor. In this view, the 

initial inherited reliability value is shown. Due to the lack of evidences and after the 

initial collection of evidences the reliability belief begins to normalize due to sufficient 

evidences. It is clear in this figure the impact that uncertainty has on the calculation of the 

 

Figure 4.15 Reliability Snapshot 
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reliability tuple until sufficient evidences are present. This snapshot also shows the role 

that each respective evidence has on each value of the reliability tuple. 

In this set of experiments, we have empirically validated the infusion of reliability 

in the eDOTS. We have shown the impact that the initial assignment of reliability values 

has on a sensor’s reliability during its use. We have demonstrated that our reliability 

algorithm provides an agile approach to handling the evolution of reliability over a period 

of time and the impacts that evidences have on the determination of the reliability tuple. 

Finally, we have shown the role that both inherited reliability values and uncertainty play 

in the overall determination of whether a sensor is deemed reliable or not.  

4.4 Sensor Selection 

For the evaluation of the enhanced sensor selection process, we wanted to 

evaluate not only the accuracy of the system, with this selection technique applied, but 

also to empirically validate the overall cost associated with the application of this new 

approach. The first experiment was designed to illustrate the improvement of accuracy 

obtained through this enhanced process. The accuracy was verified through physical 

measurements recorded as a sample object moved through the environment. These 

measurements were recorded by hand and given timestamps in order to provide an offline 

comparison of the systems performance. The results of this experiment are shown in 

Table 4.10.  

As part of this exercise, we considered the results from the previous evaluation of 

the Trust and Reliability. During the experimentation phase, of the previous discussion, 

we evaluated the sensor selection based upon these QoS-based criteria. Here we took 

actual physical measurements as we moved a tracking object around our indoor 
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environment. During this process, we manually recorded each measurement with a 

timestamp (computed digitally) and then compared these physical measurements with the 

estimated measurements. We also, examined the log files of each sensor to examine 

which sensors were used in the sensor selection process to match the further evaluate the 

reliability and trust. 

Table 4.10 Tracking Accuracy (Meters) 

 With QoS-aided Sensor 
Selection 

Without  QoS-aided 
Sensor Selection 

Accuracy (meters) 0.97 1.35 
 

As shown in Table 4.10, through the inclusion of QoS-based sensor selection 

process we have demonstrated, empirically, that improvement can indeed be made with 

respect to the overall accuracy provided by the tracking system. This accuracy 

improvement is a direct result of the pruning of either unreliable or untrustworthy data 

sources. We then compare this accuracy, as shown in Table 4.11, with three other related 

and prominent ITS approaches: Google Indoor Maps [3], UnLoc [24], and Ekahau [86]. 

Table 4.11 Tracking Accuracy Comparison (Meters) 

ITS Mean Accuracy 
eDOTS* 0.97 

Google Indoor Maps 1.22 
UnLoc 1.50 
Ekahau 0.91 

* Opportunistic eDOTS using QoS-aided Sensor Selection 

Here, we demonstrate that the accuracy obtained using the Opportunistic eDOTS 

with QoS-aided Sensor Selection outperforms two approaches (Google Indoor Maps and 

UnLoc) in its tracking accuracy. While the Ekahau system does slightly (0.06 meters) 

outperform our approach their system is built upon a static infrastructure and requires 
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proprietary equipment for the purpose of tracking. In the case of Google Indoor Maps and 

UnLoc no special tracking infrastructure is necessary for tracking. 

A sample of the effects of the pruning is shown in Fig. 4.16 and 4.17. Fig. 4.16 

indicates the use of the traditional sensor selection approach (of ranking and pruning) in 

the eDOTS. Using this approach, two sensors involved in the tracking process were 

providing untrustworthy data due to misidentification of a pattern. This skewed the data 

estimates as is shown in the figure. In Fig. 4.17, the use of the QoS-aided sensor selection 

eliminated these untrustworthy sensors and thus the accuracy was improved.  

The second experiment that we conducted in this set was to evaluate the overall 

cost, in terms of run time, associated with this enhanced sensor selection on the indoor 

 

Figure 4.16 Without QoS-aided Sensor Selection 
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tracking system. In order to evaluate the performance of the system, we empirically 

quantified the end-to-end run time of the system both with and without the QoS-aided 

sensor selection. We define the end-to-end run time to be the time from the request is 

issued to track an object to the point where the tracking system displays the location 

estimate to the user. The results of this test are shown in Table 4.12. 

Table 4.12 Mean End-to-End Runtime (Milliseconds) 

With QoS-aided Sensor Selection Without QoS-aided Sensor Selection 
53 49 

 

One of the obvious points to note with this experiment is the impact of the 

number of sensors and the perceived quality of the sensors involved. In order to mitigate 

 

Figure 4.17 With QoS-aided Sensor Selection 
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this impact, we used the same set of sensors for both tests. We restricted the environment 

to only the sensors currently present thus mitigating the negative impact that a dynamic 

environment could play on the overall outcome of this run time comparison. This design 

choice was necessary in order to compare the two side-by-side for performance analysis 

as previously noted as a challenge associated with the opportunistic tracking approach. 

Other external factors (e.g., data fusion technique, number of sensors, which sensors are 

currently tracking, etc.) have a significant impact on this end-to-end runtime evaluation.   

A tradeoff therefore exists between the cost incurred for the enhanced sensor selection 

and the gain obtained with a higher accuracy, in terms of location estimate. We discuss 

and empirically examine this tradeoff later in this chapter with the optimization function 

described in Chapter 3. 

4.5 Multi-Sensor Data Fusion 

 For multi-sensor data fusion, we wanted to evaluate the impact on the improved 

sensor selection as part of this process. Prior empirical evaluations, regarding the 

performance of both averaging and an Extended Kalman Filter approaches, can be found 

in [64]. We use these previous studies as a baseline for the purpose of comparing the 

existing approach with our proposed enhanced sensor selection process. In this exercise 

we just compared the runtime of the data fusion component – the full end-to-end runtime 

of the tracking system is shown in the previous subsection. 

Table 4.13 Mean Data Fusion Runtime (Milliseconds) 

Technique Runtime 
(Existing) Runtime (Enhanced) 

Averaging 12 milliseconds < 0 milliseconds 
EKF 52 milliseconds 11 milliseconds 

 



111 

 

 

As shown, in Table 4.13, the runtime of the existing data fusion approaches are 

reduced by around a factor of five with respect to their performance. The reason behind 

this improvement is due to the improved sensor selection process (as described in the 

previous subsection). This improved process allowed for better filtering of the sensor data 

prior to arrival at the Fusion service. This filtering, by the selection component, allowed 

less overhead, in terms of work, by the fuser and instead allowed the data to be processed 

in a more streamlined and efficient fashion. This table represents just the runtime 

required for the data fusion process to complete, the complete end-to-end runtime of the 

system is shown in Table 4.12.  

In the previous subsection, we covered the outcome of the improved sensor 

selection, with respect to the accuracy obtained by the system. While this process is 

greatly impacted by the selection of the “right” set of sensors, it is also greatly impacted 

by the data fusion process selected. In the case of the accuracy, described in Table VIII, 

the data fusion technique used was the Extended Kalman Filter approach. This approach 

has been shown, in [64], to provide a more accurate positional estimate when compared 

to simple averaging.  

4.6 Tradeoff Optimization 

 For this set of experiments, the goal was to evaluate the tradeoff function that we 

proposed in Chapter 3. Here, we made use of the decentralized pursuit learning game 

algorithm as described in [76]. This tradeoff between cost (time) and gain (accuracy) is 

evaluated and the optimal sensor selection is determined based upon the optimization 

function proposed in Chapter 3.  
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 For the purpose of analyzing the convergence of the decentralized pursuit learning 

game algorithm, we tested the performance on a set of five sensors. The reason for this 

controlled cutoff is due to the average number of sensors ever tracking one object at one 

given instance of time. This was found through extensive study over the course of the 

work of this thesis to be the mean number for a typical environment. Using this 

experimental setup, we then utilize the action set of either to send the data from the 

sensor or to not send the data from the sensor. As shown in previous work [64], the end-

to-end runtime of the tracking system is primarily dominated by two components: sensor 

selection and data fusion. Therefore, by reducing the number of sensors the goal is that 

the runtime of the system will be improved. 

 The goal of this exercise was to evaluate the performance of the algorithm as it 

converged to the value of 0.85. We ran this algorithm during the course of a regular 

tracking exercise involving the five sensors as specified. The results of this evaluation are 

shown in Fig. 4.18. 

  Here, we focus on the performance of the algorithm, in terms of runtime, as this is 

a primary factor in the use of an ITS for the role of tracking. This runtime is represented 

by the cost component of the optimization function.  The runtime here is the time 

required for the algorithm to converge to the optimal set of sensors for selection. The 

results of this experiment are show in Table 4.13. 

Table 4.14 Optimization Performance 

 Decentralized Pursuit Learning Game 
Algorithm 

Average 
Runtime (ms) 6.5 
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 Here, we see the mean runtime cost associated with the convergence of the 

algorithm. This cost when factored into the existing data fusion process using the 

Extended Kalman Filter, outperforms the existing approach while providing a higher 

degree of positional accuracy with the tracking estimate. This demonstrates that the use 

of this algorithm improves the overall tracking ability of the eDOTS. 

 In this chapter, we have discussed how we empirically validated the proposed 

implements as provided in Chapter 3. The findings in this chapter reinforce our 

hypothesis that the inclusion of Trust and Reliability as separate selection criteria can 

improve the overall accuracy of the system. We have shown that as a result of this 

 

Figure 4.18 Optimization Analysis 
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infusion of these two QoS-based selection criteria that we can also, through optimization 

and learning algorithms, find the optimal tradeoff between cost and gain when it comes to 

providing this improved accuracy. 
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CHAPTER 5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In conclusion, this thesis has shown that sensor classification is a vital first step in the 

discovery process of sensors for indoor tracking. This step is especially important in an 

opportunistic setup, as the tracking infrastructure is not known a priori and cannot be 

handcrafted. We have provided a comparison of various classification techniques (Rule-

based Classifiers, Decision Tree Classifiers, and Naïve Bayes Classifiers) and shown 

their respective accuracy (80% or higher), in terms of appropriate classification, when 

provided data that contains samples both complete and incomplete. This use of a 

classification process allows for improvement in the sensor selection process by 

providing additional information regarding a sensors’ performance.  

In this thesis, we have also demonstrated the ability to classify a sensor based 

upon its trust and reliability, through collected evidences for the use in the sensor subset 

selection process. We have proposed that these two QoS-based criteria should be 

evaluated and treated independently of one another. We have empirically demonstrated 

that through the infusion of trust and reliability, as separate QoS-based selection criteria, 

we are able to make improvements to the problem of subset selection. This improvement 

in selection aids in the improvement of overall accuracy, in terms of the positional 

estimate, that the tracking system can provide. 
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Through this work, we have explored the role that this QoS-infused sensor 

selection has on the data fusion component. Specifically, we have demonstrated how 

selecting the “right” set of sensors reduces the time required to complete the fusion 

process. This improved process also directly relates back to the accuracy obtained when 

integrated into an ITS. Through this improvement in efficiency, with respect to 

computational time, and accuracy we have demonstrated that the main benefactor from 

this improved sensor selection is the data fusion component of an ITS.  

Finally, we have provided a tradeoff optimization function that attempts to 

maximize the accuracy of the tracking system while minimizing the overhead, in terms of 

time, associated with obtaining such a measurement. This tradeoff provides a benchmark 

for customizing the ITS to the needs of a specific application domain. All of this was 

shown and empirically validated on a prototype ITS, the eDOTS. We believe that this 

work has provided an improvement to the overall challenge of sensor subset selection 

through the infusion of Trust and Reliability as separate selection criteria. This improved 

subset selection then can directly aid the data fusion component of a system which 

ultimately leads to improved results. In the case of an ITS, this improved process leads to 

improved tracking accuracy which address the problem, as identified in Chapter 1, of 

accurate indoor tracking. We believe that the methods and techniques proposed as part of 

our framework can help to advance the state of the art with respect to indoor tracking, 

through improved sensor selection, and further improve the overall accuracy that such 

systems can produce in practice.   
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5.2 Future Extensions 

Future extensions of this work could include but is not limited to: 

• A scalability study involving the sensor selection (including trust and 

reliability models) process. 

• The inclusion of malicious sensors into the existing framework to evaluate 

the security impact that such sensors would pose to the tracking accuracy and 

how the trust and reliability infusion would deal with such malicious sensors. 

• Integration and analysis of other sensor modalities include the impact of non-

tracking sensors and their ability to add contextual awareness to the tracking 

exercise. 

• Integration the proposed framework into other existing commercial tracking 

systems and adoption in mainstream use in a variety of application domains 

(e.g., asset tracking, medical tracking, emergency rescue, etc.). 
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