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Abstract 

The 15q13.3 microdeletion copy number variation is strongly associated with schizophrenia and 

epilepsy. The CHRNA7 gene, encoding nicotinic acetylcholine alpha 7 receptors (nAChA7Rs), is 

hypothesized to be one of the main genes in this deletion causing the neuropsychiatric 

phenotype. Here we used a recently developed 15q13.3 microdeletion mouse model to explore 

whether an established schizophrenia-associated connectivity phenotype is replicated in a 

murine model, and whether positive modulation of nAChA7 receptor might pharmacologically 

normalize the connectivity patterns. Resting-state fMRI data were acquired from male mice 

carrying a hemizygous 15q13.3 microdeletion (N=9) and from wild-type mice (N=9). To study 

the connectivity profile of 15q13.3 mice and test the effect of nAChA7 positive allosteric 

modulation, the 15q13.3 mice underwent two imaging sessions, one week apart, receiving a 

single intraperitoneal injection of either 15 mg/kg Lu AF58801 or saline. The control group 

comprised wild-type mice treated with saline. We performed seed-based functional connectivity 

analysis to delineate aberrant connectivity patterns associated with the deletion (15q13.3 mice 

(saline treatment) versus wild-type mice (saline treatment)) and their modulation by Lu 

AF58801 (15q13.3 mice (Lu AF58801 treatment) versus 15q13.3 mice (saline treatment)). 

Compared to wild-type mice, 15q13.3 mice evidenced a predominant hyperconnectivity pattern. 

The main effect of Lu AF58801 was a normalization of elevated functional connectivity between 

prefrontal and frontal, hippocampal, striatal, thalamic and auditory regions. The strongest 

effects were observed in brain regions expressing nAChA7Rs, namely hippocampus, cerebral 

cortex and thalamus. These effects may underlie the antiepileptic, pro-cognitive and auditory 

gating deficit-reversal effects of nAChA7R stimulation.  

 

Key words: 15q13.3 microdeletion; mouse model; schizophrenia; resting-state fMRI. 
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1. Introduction 

The 15q13.3 microdeletion copy number variation (CNV) is strongly associated with 

schizophrenia (OR=11.5-17.9), idiopathic generalized epilepsy (OR=68) and autism spectrum 

disorders (OR=∞) in humans (Dibbens et al., 2009,Moreno-De-Luca et al., 2013,Sebat et al., 

2009). Cognitive deficits are also prevalent: 15q13.3 deletion carriers have an average non-

verbal IQ of 60, show behavior abnormalities such as attention problems, hyperactivity and 

impairments in functional communication (Ziats et al., 2016). 

While 25% of this microdeletion occurs de novo, in the majority of cases (75%) it is inherited 

(Hoppman-Chaney et al., 2013). The microdeletion comprises a region of approximately 1.5 

megabase (million base pairs of DNA), encompassing 7 genes (MTMR15, MTMR10, TRPM1, 

MIR211, KLF13, OTUD7A, CHRNA7). Convergent evidence has led to the hypothesis that the 

CHRNA7 gene, encoding nicotinic acetylcholine alpha 7 receptors (nAChA7Rs), is one of the 

genes in this deletion responsible for the neuropsychiatric phenotype. For example, carriers of 

smaller deletions, encompassing only CHRNA7, manifest similar phenotypes (Gillentine and 

Schaaf, 2015); CHRNA7 promoter mutations downregulating transcription are associated with 

schizophrenia and auditory gating deficits (Leonard et al., 2002),  although this mutation is a 

weaker predictor of the schizophrenia phenotype, thus suggesting that other 15q13.3 CNV  

genes also contribute to the phenotype. Schizophrenia patients have reduced levels of nAChA7Rs 

in the hippocampus, reticular nucleus of thalamus, dentate gyrus and frontal cortex (Rowe et al., 

2015); and expression of CHRNA7 is reduced in autism (Yasui et al., 2011). 

 

Pharmacological stimulation of nAChA7Rs restores auditory gating deficits in schizophrenia 

models in rodents (Hajos and Rogers, 2010), and results in activation of the prefrontal cortex 

and shell of nucleus accumbens, similar to conventional antipsychotics (Hansen et al., 2007). 

nAChA7Rs rapidly (within just a few milliseconds) desensitize in response to a full agonist; 

therefore positive allosteric modulators (PAMs) seem to be an ideal approach as they do not 

bind to the orthosteric receptor agonist binding site, but rather act via the allosteric binding site 

to increase the channel conductance without affecting receptor desensitization (Type I), or 

reducing receptor desensitization (Type II) (Hajos and Rogers, 2010). A novel brain-penetrant 

PAM, Lu AF58801, has been recently developed and shown to attenuate phencyclidine-induced 

deficits in a novel object recognition task in rats, a paradigm which has some relevance to 

cognitive deficits in schizophrenia (Eskildsen et al., 2014). It belongs to Type I PAMs which 

facilitate transition from resting to open channel state upon binding of an agonist, increasing 

agonist response amplitude without significant effect on response decay rate. The compound 

was tested in a number of in vitro safety toxicology and pharmacology assays and has been 
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shown to be non-cytotoxic and not leading to formation of reactive oxygen species (Eskildsen et 

al., 2014). Also it has no effect on basal locomotion and exploratory activity in the novel object 

recognition task (internal Lundbeck data). 

 

Increasingly, psychiatric disorders are being conceptualized in terms of dysregulation of 

extended brain networks, and aberrant connectivity between brain regions, as measured by 

electrophysiological or functional imaging methods, is emerging as an important biomarker 

(Dawson et al., 2015). Dysfunctional connectivity indicates a disruption of information flow and 

interaction between distinct brain regions and is thought to underlie specific symptoms. For 

example, auditory hallucinations in schizophrenia are hypothesized to result from 

disengagement of default-mode-network functional connectivity to the auditory cortex and the 

latter’s association with the control executive network, which could assign an external origin to 

the hallucinated voices rather than relating them to the internal origin (Northoff, 2015). In 

addition, the hippocampal-prefrontal network has abnormal connectivity in schizophrenia 

(Esslinger et al., 2009), which may underlie the working memory deficits in that disorder. 

Recently, a mouse model of the 15q13.3 deletion has been developed and described, in which 

mice have approximately 50% downregulation of nAChA7 receptors expression in the brain 

(Fejgin et al., 2014). Mice carrying 15q13.3 deletion display auditory processing deficits similar 

to schizophrenia, propensity to develop myoclonic seizures, impaired long-term spatial 

reference memory and reduced capacity to generate gamma oscillations in response to auditory 

stimulus (Fejgin et al., 2014).  

In the current study we tested the brain connectivity profile of 15q13.3 mice to delineate 

systems-level brain changes that could represent a translational endophenotype and provide a 

platform for target validation and proof-of-mechanism studies in drug discovery. We 

hypothesized that positive modulation of nAChA7 receptor by the highly selective PAM Lu 

AF58801 could pharmacologically normalize the connectivity signature.  

 

2. Experimental procedures  

Imaging experiments were performed at the Central Institute of Mental Health in Mannheim, 

Germany. Mice were generated and shipped by Taconic Artemis (Köln, Germany). We 

investigated male mice carrying a deletion orthologous to 15q13.3 (at chromosome 7qC) 

(15q13.3 mice, N=10, 24-30 g; wild-type mice, N=10, 24-30 g). The 15q13.3 mice were litter-

mates of the used wild-type mice. 
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In the previous study from Lundbeck two doses of Lu AF58801, 10 and 30 mg/kg (p.o.), were 

investigated in rats (Eskildsen et al., 2014). The dose of 30 mg/kg was shown to be the minimal 

effective dose providing ~10.000 ng/ml plasma exposure level. Since in the current study we 

used anesthetized mice, our strategy was to find a MRI-suitable vehicle and route of 

administration for mouse, which would give approximately the same exposure as the minimal 

effective dose in the published rat study. A preliminary exploratory exposure study was 

performed in C57 mice and demonstrated that the same 10.000 ng/ml exposure is reached when 

using the 15 mg/kg dose (i.p.). 

The experimental design comprised three conditions. To test the effect of nAChA7 positive 

allosteric modulation on the 15q13.3 connectivity pattern, the 15q13.3 mice each underwent 

two imaging sessions, one week apart. In the first experimental session, saline vehicle was 

administered, in the second session - 15 mg/kg Lu AF58801 dissolved in 40% 2-hydroxypropyl-

beta-cyclodextrin (HPbCD) (i.p.). As there could be a high risk of long-lasting carry-over effects 

for NAchA7 receptors activation mechanism after a single dose (Werkheiser et al., 2011), we did 

not use cross-over design with randomization, and hence all mice received saline in the first 

experimental session. In a control condition we used saline vehicle, since HPbCD does not cross 

the blood-brain barrier (Camargo et al., 2001). The third condition included the control group of 

the wild-type mice which underwent a single imaging session with saline vehicle injection 

(N=9).   

The final number of 15q13.3 mice in the saline group was N=8, as two mice woke up during the 

experiment and had to be excluded. In the Lu AF58801 group the number of 15q13.3 mice was 

N=9 (from N=8 saline group one mouse died, so N=7 mice were the same as in the saline group, 

plus additional two 15q13.3 mice which woke up in saline condition). 

As this is the first study to examine effects of PAM Lu AF58801 on rs-fMRI, it is an exploratory 

(hypothesis-generating) rather than confirmatory study. Thus no formal power or sample size 

estimation was performed, but the group sizes (N=8-9 per group) are typical of those used in rat 

fMRI experiments. The present results can be used to power future confirmatory or other 

experiments that build on this work. 

The mice were housed under controlled conditions (19-23°C, 40-60% humidity) on a 12:12 h 

light-dark cycle (lights on at 7 a.m.) and underwent a 2-week adaptation period between their 

arrival and the start of the MRI experiments. The mice were 11-12 weeks old at the time of the 

imaging experiments. 

All experiments were conducted according to the regulations covering animal experimentation 
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within the European Union (European Communities Council Directive 86/609/EEC) and within 

the German Animal Welfare Act. The experimental procedures were approved by the German 

animal welfare authorities (Regierungspräsidium Karlsruhe). 

 

2.1. MRI acquisition 

The experiments were performed using a 94/20 Bruker Biospec MRI scanner (9.4 Tesla; Bruker 

BioSpec, Ettlingen, Germany) with Avance III hardware, BGA12S gradient system with the 

maximum strength of 705 mT/m and running ParaVision® 6 software. Transmission and 

reception of the MR signal were achieved using an anatomically-shaped cryogenically-cooled 1H 

two-element surface coil (MRI CryoProbe, Bruker BioSpec, Ettlingen, Germany). 

Anesthesia was induced at 4% isoflurane in a mixture of 70% N2/30% O2. During positioning 

the mouse in the scanner (head first, prone), isoflurane concentration was reduced to ~1.5%. A 

0.4 mg/kg bolus of medetomidine (0.2 ml) was injected subcutaneously. Then, isoflurane was 

slowly discontinued (starting 2 min after bolus and then reduced by 0.2% every min). When the 

isoflurane level was at 0.3%, a continuous infusion of medetomidine at 0.8 mg/kg/h was 

initiated, and then isoflurane was switched off. 

The MRI acquisition protocol for each animal comprised a FieldMap, one rs-fMRI time series and 

a 3D structural dataset. Rs-fMRI was acquired following stabilization of physiological 

parameters after medetomidine anaesthesia induction (20 min after beginning of the continuous 

medetomidine administration) and 15 min after Lu AF58801 injection, corresponding to the 

maximal brain and plasma concentrations of Lu AF58801 (see Supplemental Material).  

The rs-fMRI time series were acquired using a T2*-weighted echo-planar imaging - free 

induction decay (EPI-FID) sequence with the following parameters: repetition time (TR)/echo 

time (TE) 1300/18 ms, flip angle 50°, 21 slices, 96x64 matrix, field of view (17.28x11.52) mm2, 

slice thickness 0.4 mm, 400 acquisitions, acquisition time ~8.5 min.  

Magnetic field (B0) inhomogeneity was measured with a 3D double gradient echo FieldMap 

sequence (TR=20 ms, short TE=1.7 ms, long TE=5.7 ms) acquired before each EPI. The measured 

field values were then used in a pre-processing step to calculate and compensate the geometric 

distortions. 

Structural data were acquired using rapid acquisition with refocused echoes (RARE) sequence 

with the following parameters: RARE factor 16, TR/TE 1200/50 ms, flip angle 180°, 225x192x96 

matrix, acquisition time 23 min. 
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Breathing and cardiac rates were monitored using a respiration pad placed beneath the chest 

(Small Animal Instruments Inc., NY, USA) and a pulse oximeter attached to the tail, respectively. 

During EPI acquisition signals were recorded (10-ms resolution) using a signal breakout module 

(Small Animal Instruments Inc., NY, USA) and a 4-channel recorder (Velleman N.V., Gavere, 

Belgium) together with the scanner trigger pulses for each measured brain volume.  

 

2.2. Image pre-processing 

EPI time series images were corrected for magnetic field (B0) inhomogeneities using the 

FieldMap data and realigned (SPM8: http://www.fil.ion.ucl.ac.uk/spm/software/spm8). To minimize 

the effect of movement on the intensity of the signal, the estimated movement parameter vectors 

(from realignment step) were regressed out from each voxel (FSL, version 4.1. 

http://www.fmrib.ox.ac.uk/fsl). Next, respiratory and cardiac signals were filtered out from 

each voxel using Aztec software (van Buuren et al., 2009). A slice-timing correction was then 

applied to the images (SPM8). Then the functional data were spatially normalized (SPM8) to a 

mouse brain template with co-registered anatomical atlas (Dorr et al., 2008) using a three-step 

process: (1) linear coregistration (6 degree-of-freedom rigid-body transformation) to individual 

3D structural datasets (without reslicing); (2) non-linear spatial normalization (estimate & 

write) of 3D datasets to atlas template; (3) normalization (write) of EPI datasets to atlas using 

transformation matrix from step (2). 

Afterwards, the time course from cerebrospinal fluid (CSF) was filtered from the normalized 

images. First, a CSF mask was created for each dataset, and then its time course was extracted 

and filtered out (FSL). Finally the images were band-pass filtered (0.01-0.1 Hz) (Analysis of 

Functional Neuroimages (AFNI) version 2) (Cox, 1996).  

 

2.3. Definition of functional ROIs 

Due to the lack of an MRI-compatible mouse brain atlas with a fine grained parcellation of the 

cortex, we performed a group independent component analysis (ICA) decomposition on an 

independent cohort of C57BL/6 mice (N=10, 11-week old, 22-27g) measured under the same 

conditions (scanner and anesthetic protocol) to define a set of meaningful brain nodes for use as 

seeds in the connectivity analysis. ICA was performed using 40 components that were then 

thresholded to contain the top 0.5% voxels in each component map. For the seed-based analysis 

we selected 10 components covering the prefrontal/cingulate, hippocampal, amygdala and 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8
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sensory-related brain areas (Figure 1). 

Specifically, we selected seeds that were plausibly located in the mouse brain parenchyma and 

comprised prefrontal/cingulate regions (orbitofrontal cortex, cingulate cortex and retrosplenial 

cortex), hippocampus (ventral hippocampus and subicular complex), sensory areas (auditory 

cortex and anterior and posterior visual cortex), amygdala (rostral basolateral amygdaloid 

nucleus and anterior central amygdaloid nucleus). For all non-midline regions (i.e. all seeds 

except prefrontal/cingulate regions) we created a contralateral counterpart and combined it 

with the original seed to create a bilateral seed region, as we did not expect nor hypothesize 

specific unilateral effects.  

 

2.4. Seed region analyses 

Mean time courses were extracted from each mouse, for each of the above 10 seed regions, and 

were used for seed-based functional connectivity analyses (SPM8).  A time course was extracted 

from each normalized CSF- and band-pass-filtered unsmoothed fMRI dataset; then the image 

data were spatially smoothed by 0.4 mm (approximately 2 voxels in-plane). Correlation 

coefficients r were calculated for the extracted time courses voxel-wise and transformed to 

Fisher z-scores. Next, these individual subject z-score maps were fed into the second-level 

analysis, comprising two-sample t-tests using contrasts [1 -1] and [-1 1] to assess functional 

connectivity changes across the whole brain for a given seed.  

We calculated two types of comparisons for each seed region: 

(1) 15q13.3 mice (saline treatment) versus wild-type mice (saline treatment); 

(2) 15q13.3 mice (Lu AF58801 treatment) versus 15q13.3 mice (saline treatment). 

The obtained statistic images were corrected for multiple comparisons using family-wise error 

(FWE) correction (SPM8: Gaussian random-field theory correction, pFWE<0.05, whole-brain 

corrected, cluster-level inference). 

 

3. Results 

In both wild-type and 15q13.3 groups, the presence of expected connectivity networks was 

confirmed qualitatively by placing seeds in the orbitofrontal cortex, primary somatosensory 

cortex and retrosplenial cortex (see Supplemental Material, Figure S2). The observed networks 

are comparable to the recently reported data obtained in the mouse brain (Sforazzini et al., 
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2014,Zerbi et al., 2015).  

The results of the seed analysis are presented in Figures 2-5 and Table S2 (Supplemental 

Material). Compared to wild-type mice, 15q13.3 mice exhibited a predominant 

hyperconnectivity pattern. In these mice, administration of Lu AF58801 resulted in a reduced 

functional connectivity for most seeds, and these patterns of modulated connectivity overlapped 

in many brain regions with the patterns of aberrant connectivity in the 15q13.3 mice per se, 

reflecting a pharmacological reversal of the hyperconnectivity associated with the CNV 

mutation.  Both hyper- and hypoconnectivity patterns were associated with the subicular seed in 

the 15q13.3 mice, and both effects were reversed by Lu AF58801 (Figure 3(B,C)). 

Specifically, positive allosteric modulation of nAChA7Rs by Lu AF58801 reversed the increased 

functional connectivity between the following regions (Figures 2-5): 

- the orbitofrontal cortex and somatosensory, motor and cingulate cortices (Figure 2); 

- the cingulate cortex and the hippocampus, subicular complex, mediodorsal thalamus, 

and superior colliculus (Figure 2); 

- the retrosplenial cortex and the hippocampus, subicular complex, periaqueductal gray, 

and superior colliculus (Figure 2); 

- the ventral hippocampus and the caudate-putamen, lateral septal nucleus, cingulate 

cortex, somato-motor regions, visual and auditory cortices, subicular complex and 

dentate gyrus (Figures 3A); 

- the subicular complex and the caudate-putamen, lateral septal nucleus (Figure 3B); 

- the amygdala (central amygdaloid nucleus) and the caudate-putamen, cingulate cortex, 

mediodorsal thalamus and anterior amygdaloid area (Figures 4A); 

- the auditory cortex and the hippocampus, cingulate cortex (Figure 4B). 

The only regions where an effect of the opposite valence was observed, meaning Lu AF58801 

reversed a reduced functional connectivity observed in 15q13.3 mice, was between the 

subicular complex and superior colliculus, periaqueductal gray and visual cortex, and within the 

subicular complex per se (Figure 3C). 

 

Physiological parameters 

Since 15q13.3 mice have an excitability phenotype and therefore might have different 

susceptibility to anesthezia compared to wild-type mice, we measured and analyzed the 
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individual physiological parameters related to anesthezia depth, such as respiratory and cardiac 

rates, which could in the end affect functional connectivity strength. We found that neither 

respiratory frequency (p=0.659), nor cardiac pulse (p=0.971) were different between the strains 

(IBM SPSS Statistics 20, two-sample T-test).  

 

4. Discussion 

Similarity to neuropsychiatric phenotypes 

15q13.3 mice displayed a predominant hyperconnectivity profile. Hyperconnectivity is mostly 

reported for autism (Baribeau and Anagnostou, 2013) and implies a dysfunction of inhibitory 

networks. To be able to make an appropriate comparison to human neuropsychiatric 

phenotypes, we took into account only those studies which investigated resting-state 

connectivity (no task) and used drug-naïve patients. 

Notably the midline cortical regions including orbitofrontal, cingulate and retrosplenial cortex 

had increased connectivity with the hippocampus. Hippocampal-prefrontal connectivity is 

aberrant in schizophrenia patients (Rotarska-Jagiela et al., 2010,Zhou et al., 2008) and is 

hypothesized to represent a vulnerability trait for psychosis, since it has been observed in both 

first-episode SZ patients and persons at risk for psychosis (Benetti et al., 2009). Also this 

network is relevant for working memory, prepulse inhibition and sleep which are compromised 

in preclinical models of schizophrenia (Dickerson et al., 2010,Phillips et al., 2012,Sigurdsson et 

al., 2010). The orbitofrontal cortex is thought to be involved in sensory processing, adaptive 

learning and goal-directed behavior – the processes compromised in schizophrenia.  

Next, an increased coupling between the cingulate cortex and mediodorsal thalamus in 15q13.3 

mice is another feature similar to schizophrenia findings (Klingner et al., 2014). 

It should be taken into consideration that the majority of studies on schizophrenia employ 

subjects with chronic schizophrenia and a history of medication. Since antipsychotics and the 

duration of disease have profound effect on brain function and connectivity, it is important to 

distinguish data obtained on chronically ill medicated patients and first-episode drug-naïve 

schizophrenia patients. When comparing our data with connectivity patterns in first-episode 

drug-naïve schizophrenia patients, we have observed that the elevated connectivity within the 

cingulate/retrosplenial/auditory network observed in 15q13.3 mice in the present study was 

consistent with the increased fronto-parietal-temporal coupling in patients (Lui et al., 2010). 

Taken together, our findings suggest that the observed pattern in the 15q13.3 CNV mouse line 
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may recapitulate a pattern of common valence-independent vulnerability markers for symptoms 

in psychiatric disorders. 

 

Modulation of brain connectivity by Lu AF58801  

We found that positive allosteric modulation of nAChA7 receptor in mice carrying a hemizygous 

15q13.3 microdeletion could effectively reverse the elevated functional connectivity between 

numerous brain regions, mainly cortical, hippocampal and sensory-related regions, thus 

normalizing the hyperconnectivity pattern characteristic of this model.  

The hippocampus was one of the key regions which showed increased connectivity with the 

prefrontal, frontal and retrosplenial cortices, as well as with sensory-related (auditory/visual) 

regions in 15q13.3 mice; Lu AF58801 reduced the hyperconnectivity in this hippocampal-

prefrontal network. The over-engagement of this circuit in 15q13.3 mice might result from 

reduced nAChA7Rs levels and a consequent deficient inhibitory processing, which in the end 

could lead to network overload and memory and learning disturbances. Both 15q13.3 and 

Chrna7 knock-out mice have learning deficits (Fejgin et al., 2014,Lendvai et al., 2013). Activation 

of nAChA7Rs by Lu AF58801 reduced cortico-hippocampal connectivity which could 

theoretically improve learning and memory processes. Indeed, nAChA7R stimulation improves 

cognitive performance both in rodents (Eskildsen et al., 2014) and humans (Olincy et al., 2006). 

NAChA7R activation results in Ca2+ influx and a consequent facilitation of neurotransmitter 

release (Hajos and Rogers, 2010). Also Ca2+ influx activates Ca2+-regulated second messenger 

signaling pathways, such as MAPK-ERK signal transduction, a pathway regulating LTP and 

synaptic plasticity (Hajos and Rogers, 2010). Altogether, these processes mediated by nAChA7Rs 

modify synaptic plasticity and are particularly relevant for cognitive function in the cortico-

hippocampal circuit.  

The periaqueductal gray exhibited increased coupling with the retrosplenial cortex and 

subiculum. Periaqueductal gray might represent a critical site in the midbrain through which 

epileptical seizures of brainstem origin might spread to the forebrain (Sanada et al., 2007). 

Interestingly, Lu AF58801 reduced this coupling exactly in the same region of periaqueductal 

gray where it was elevated. Similarly, the subicular complex plays a pivotal role in seizure 

propagation in epilepsy (O'Mara et al., 2001). In the similar manner, thalamocortical and motor 

cortex coupling were increased in 15q13.3 mice, and spike discharges in idiopathic generalized 

epilepsy are related to these networks (Pittau and Vulliemoz, 2015). Taken together, we can 

speculate that Lu AF58801 might also normalize the overactivation of neural networks involved 
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in epileptogenesis. 

We also found that the connectivity between the ventral hippocampus and lateral septum – both 

involved in reward, fear and anxiety behavior (Sotres-Bayon et al., 2012,Talishinsky and Rosen, 

2012) – was increased in 15q13.3 mice and normalized by Lu AF58801. This may also 

contribute to behavioural abnormalities in deletion carriers.  

Most of the brain regions where we observed Lu AF58801 effects express nAChA7Rs, namely the 

cerebral cortex, hippocampus, thalamus, superior colliculus and striatum. nAChA7Rs are 

expressed at GABAergic interneurons and glutamatergic cells and enhance GABAergic inhibition. 

Presynaptic nAChA7Rs have been found on glutamatergic terminals where they facilitate 

glutamate release, which in turn increase a variety of neurotransmitters e.g. dopamine and 

norepinephrine (Hajos and Rogers, 2010). Post-synaptic nAChA7Rs have been found on 

inhibitory GABAergic interneurons where they facilitate neuronal functioning (Morales et al., 

2008). A reduced number of nAChA7Rs might result in reduction of inhibition and a consequent 

increase in excitability could lead to the deficient sensory and overall inhibition and epilepsy 

(Stevens et al., 2015) and to cognitive and learning disturbances observed in schizophrenia 

(Feuerbach et al., 2009).  

It is hypothesized that a deficient inhibitory processing might underlie the 15q13.3 

neuropsychiatric phenotype due to reduced CHRNA7 expression and impaired activation of 

GABAergic interneurons, but the contribution of other CNV genes to the phenotype cannot be 

excluded. The hyperconnectivity observed in our study in 15q13.3 mice might also result from 

this imbalance of inhibition-excitation processes. In line with this hypothesis, it has been 

demonstrated that the activation of nAChA7Rs has an antiepileptic effect via increasing 

presynaptic GABAergic neurotransmission (Feuerbach et al., 2009). Interestingly, mice with 

reduced Chrna7 expression have less GABAA receptors in the hippocampus, as well as reduced 

expression of hippocampal GAD65 (GABA synthetic enzyme) (Adams et al., 2012). 

Antipsychotics, such as clozapine and olanzapine, has been suggest to improve deficient 

inhibitory processing via a cholinergic mechanism by interaction with nAChA7Rs (Simosky et al., 

2003,Simosky et al., 2008).  

In addition, nAChA7Rs have neuroprotective anti-inflammatory role (Egea et al., 2015), and a 

reduced activation of anti-inflammatory pathway due to their lower expression could result in 

abnormal brain metabolism and consequently lead to altered functional coupling between the 

regions. 

Further experiments may be helpful to extend the pharmacological mechanism associated with 
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the current findings, namely those potentiating endogenous phasic tone of acetylcholine at the 

nAChA7Rs. For example, it would be of interest to test whether a selective antagonist (e.g., 

methyllycaconitine (MLA)) would block the effects of Lu AF58801. However, MLA is a large 

molecule with poor brain penetration, especially in mice, and supporting data (e.g., in vitro) to 

guide the selection of MLA dose expected to block the PAM effect of Lu AF58801, should inform 

such an experiment. It would also be of interest to compare the effects of a direct nAChA7R 

orthosteric agonist on the connectivity signature of the 15q13.3 mice. This would address a 

different (albeit related) hypothesis, namely whether a tonic activation of the nAChA7Rs would 

affect the 15q13.3 phenotype. Design considerations for such experiments should include dose 

selection, since both directly activating doses (based on in vitro data) as well as ultra-low doses 

(hypothesized to act as “co-agonists” to endogenous acetylcholine) may be relevant.  

 

Comparison with EEG activity 

Our results on hyperconnectivity are consistent with electrophysiological data in 15q13.3 mice 

showing increased resting gamma (30-48 Hz) power (Fejgin et al., 2014). Gamma band features 

are of particular interest in schizophrenia since they are linked to perceptual feature binding 

and synchronization between brain regions (Cardin et al., 2009). Cortical gamma oscillations 

and therefore the synchronization between the regions, as reflected by functional connectivity, 

are mediated by fast-spiking interneurons that are positively modulated by nAChA7Rs (Cardin 

et al., 2009). Interestingly, gamma activity after auditory stimulus and the amplitude of auditory-

evoked potentials are reduced in 15q13.3 mice, reminiscent of schizophrenia patients (Fejgin et 

al., 2014), and bringing to attention the fact that resting-state and task-evoked gamma activity 

might reflect different mechanisms. stimulation can increase gamma oscillations in the 

hippocampus (Wang et al., 2015) and is also effective in restoring auditory gating deficits 

characteristic of schizophrenia and 15q13.3 deletion model (Hajos and Rogers, 2010). 

 

Notably, schizophrenia patients have a much higher incidence of cigarette smoking (>80%) 

compared to the general population (Miwa et al., 2011) – a fact interpreted as a form of self-

medication to improve cognitive processes and sensory deficits. Indeed, nicotine transiently 

improves auditory gating deficits in schizophrenia patients (Hajos and Rogers, 2010). The 

majority of nicotine smoking studies in schizophrenia has focused on α4β2 receptors, however 

nicotine also induces an increase in CHRNA7 mRNA and protein levels to values similar to those 

in control non-schizophrenic smokers (Mexal et al., 2010). It can be speculated that a positive 
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modulation of nAChA7Rs might more meaningfully enhance cognition in schizophrenia without 

the addictive effects of nicotine. 

Although the reduced expression of the other genes in the microdeletion region may also 

contribute to the aberrant electrophysiological profile of this model (Fejgin et al., 2014), the 

nAChA7Rs are better understood and have long been a drug discovery target. Many nAChA7R 

agonists have been in clinical development, but with limited clinical success. This may be due to 

rapid desensitisation of this receptor upon binding of orthosteric agonists, which may lead to 

agonist-induced receptor desensitisation. To date, clinical trials in schizophrenia with a 

nAChA7R positive allosteric modulator have not been reported. Positive allosteric modulators 

have an advantage of preventing receptor desensitization and may provide more potent activity 

with less of a ceiling effect. Lu AF58801 effectively reversed aberrant connectivity within many 

brain circuits affected in schizophrenia and involved in epileptogenesis. Based on these results, 

we hypothesize that Lu AF58801 would also restore memory and auditory gating deficits in 

15q13.3 mice. 

 

Limitations 

Due to concerns around long-lasting carry-over effects for NAchA7 receptors activation 

mechanism after a single dose (Werkheiser et al., 2011), the experimental design did not include 

randomization, and hence all mice received saline in the first experimental session.  

Another limitation of the study is that saline vehicle was used in a control condition instead of 

HPbCD. However HPbCD does not cross the blood-brain barrier (Camargo et al., 2001) and we 

can suppose that it would not have a profound effect on the brain connectivity in the compound 

solution. 

 

Conclusions 

In summary, a 15q13.3 CNV mouse model was shown to exhibit widespread patterns of 

hyperconnectivity, including many brain networks known to be dysregulated in schizophrenia 

and epileptiform activity. Hippocampal connectivity with the 

orbitofrontal/cingulate/retrosplenial cortex might represent a common valence-independent 

vulnerability marker. Acute treatment with the nAChA7R positive allosteric modulator Lu 

AF58801 reversed these effects. This mouse line may provide a useful model to explore 

nAChA7R-related deficits, and the present results suggest that nAChA7R positive allosteric 
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modulation may be a useful mechanism for their treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure legends 

Figure 1. A 3D overview of mouse brain representing seed regions used in the functional 

connectivity analysis. Abbreviations: Au – auditory cortex, AV – anterior visual cortex, CA – 
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anterior central amygdaloid nucleus, BLA – rostral basolateral amygdaloid nucleus, Cg – 

cingulate cortex, OFC – orbitofrontal cortex, PV – posterior visual cortex, RS – retrosplenial 

cortex, Sub  – subicular complex, vHC – ventral hippocampus. 

 

Figure 2. Upper panel: Maps of functional connectivity patterns for cortical (A) orbitofrontal, 

(B) cingulate and (C) retrosplenial cortex seeds. Coronal slice coverage in z-bregma is from -4.8 

to 2.8 mm. Color coding: red - increase of functional connectivity in 15q13 mice compared to 

wild-type mice; blue - decrease of functional connectivity after Lu AF58801 compared to control 

saline-treated 15q13 mice; yellow - overlap area for reversal effect on connectivity by Lu 

AF58801. Maps are thresholded at pFWE<0.05. Abbreviations: Cg – cingulate cortex, DG – dentate 

gyrus, M1 – primary motor cortex, M2 – secondary motor cortex, MDT – mediodorsal thalamus, 

PAG – periaqueductal gray, S1 – primary somatosensory cortex, SC – superior colliculus, Sub  – 

subicular complex. 

Lower panel: Group mean correlation values were calculated from regions of connectivity 

reversal identified in the statistical parametric mapping, namely orbitofrontal cortex and 

overlapping area from (A), orbitofrontal cortex and yellow overlapping area from (B), 

retrosplenial cortex and yellow overlapping area from (C). The mean Pearson correlation 

coefficient values for a given overlapping area were extracted from the functional connectivity 

maps for each group (15q13.3 mice treated with Lu AF58801, 15q13.3 mice treated with saline, 

wild-type mice treated with saline). These values are presented as bar plots for the clear 

visualization of reversal of the connectivity by Lu AF58801 to the pattern resembling the wild-

type mice. Vertical axis represents correlation coefficient (r) values. The error bars represent the 

standard error of the mean values. 

 

Figure 3. Upper panel: Maps of functional connectivity patterns for ventral hippocampus and 

subicular seeds. Coronal slice coverage in z-bregma is from -4.8 to 2.8 mm. Panels (A) and (B) 

show hyperconnectivity in the CNV mice with respect to (A) ventral hippocampus and (B) 

subicular seeds. Color coding for (A) and (B): red - increase of functional connectivity in 15q13 

mice compared to wild-type mice; blue - decrease of functional connectivity after Lu AF58801 

compared to control saline-treated 15q13 mice; yellow - overlap area for reversal effect on 

connectivity by Lu AF58801. Panel (C) shows the hypoconnectivity associated with the subicular 

complexum in the 15q13 mice and its reversal with Lu AF58801. Color coding for (C):  blue - 

decrease of functional connectivity in 15q13 mice compared to wild-type mice; red - increase of 
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functional connectivity after Lu AF58801 compared to control saline-treated 15q13 mice. Maps 

are thresholded at pFWE<0.05. Abbreviations: Au – auditory cortex, Cg – cingulate cortex, CPu – 

caudate-putamen, LS – lateral septal nucleus, M – motor cortex, PAG – periaqueductal gray, S1 – 

primary somatosensory cortex, SC – superior colliculus, Sub  – subicular complex, V – visual 

cortex. 

Lower panel: Group mean correlation values from regions of connectivity reversal identified in 

the statistical parametric mapping, namely ventral hippocampus and overlapping area from (A), 

subicular complex and yellow overlapping area from (B), subicular complex and yellow 

overlapping area from (C). The explanation of the calculation is the same as in the legend for the 

Figure 2. Vertical axis represents correlation coefficient (r) values. The error bars represent the 

standard error of the mean values. 

 

Figure 4. Upper panel: Maps of functional connectivity patterns for (A) amygdala and (B) 

auditory cortex. Coronal slice coverage in z-bregma is from -4.8 to 2.8 mm. Color coding: red - 

increase of functional connectivity in 15q13 mice compared to wild-type mice; blue - decrease of 

functional connectivity after Lu AF58801 compared to control saline-treated 15q13 mice; yellow 

- overlap area for reversal effect on connectivity by Lu AF58801. Maps are thresholded at 

pFWE<0.05. Abbreviations: AA – anterior amygdaloid area; Cg – cingulate cortex, CPu – caudate-

putamen, HC – hippocampus, MDT – mediodorsal thalamus, mRt – mesencephalic reticular 

formation. 

Lower panel: Group mean correlation values from regions of connectivity reversal identified in 

the statistical parametric mapping, namely amygdala and overlapping area from (A), auditory 

cortex and yellow overlapping area from (B). The explanation of the calculation is the same as in 

the legend for the Figure 2. Vertical axis represents correlation coefficient (r) values. The error 

bars represent the standard error of the mean values. 

 

Figure 5. Schematic illustration of connections which were normalized by Lu AF58801 

administration in 15q13.3 mice.  Abbreviations: Amyg – amygdala, Cg – cingulate cortex, HC – 

hippocampus, LS – lateral septal nucleus, M1/M2 – primary and secondary motor cortex, MDT – 

mediodorsal thalamus,  OFC – orbitofrontal cortex, PAG – periaqueductal gray, RS – retrosplenial 

cortex, SC – superior colliculus, Sub  – subicular complex, V – visual cortex. 
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Table S1. Anatomical localization (center of gravity) of seeds used in seed-based connectivity analysis. Coordinates are given in the stereotaxic space of Paxinos 
and Franklin (2013). 

Seed region 

Center of gravity coordinates 
X  

(M-L) 
mm 

Y  
(D-V) 
mm 

Z  
(A-P) 
mm 

Amygdala: (baso)lateral 
amygdaloid nucleus 0.0 -4.8 -2.5 

Amygdala: central 
amygdaloid nucleus 0.0 -4.6 -0.9 

Anterior visual cortex -0.1 -2.8 -2.5 

Auditory cortex 0.0 -2.3 -3.3 

Cingulate cortex, area 24 0.0 -1.8 1.2 

Orbitofrontal cortex -0.1 -2.5 2.4 

Posterior visual cortex 0.0 -0.6 -3.3 

Retrosplenial cortex -0.1 -0.7 -1.0 

Subicular complex 0.0 -4.3 -4.4 

Ventral hippocampus 0.0 -3.4 -2.4 
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Table S2. Loci of significant clusters/peak voxels obtained from seed-based connectivity analysis. Coordinates are given in the stereotaxic space of Paxinos and 
Franklin (2013). 

Seed region Contrast 
Number of 
voxels in 
cluster 

PFWE 
cluster 
level 

QFDR 
cluster 
level 

Cluster coordinates 

Anatomical localization X  
(M-L) 
mm 

Y  
(D-V) 
mm 

Z  
(A-P) 
mm 

Amygdala: (baso)lateral 
amygdaloid nucleus Lu AF58801<Sal 729 0.000 0.000 0.7 -3.5 -1.8 Paracentral thalamic nucleus 

Amygdala: central 
amygdaloid nucleus 

Lu AF58801<Sal 
1584 0.000 0.000 1.2 -2.6 -2.0 Lateral posterior thalamic nucleus 
545 0.006 0.003 0.7 -0.7 -0.2 Secondary motor cortex 

15q13>Wt 
622 0.003 0.002 0.5 -3.5 -4.5 Isthmic reticular formation 

1132 0.000 0.000 -0.8 -1.2 0.5 Secondary motor cortex 

Anterior visual cortex 15q13>Wt 
923 0.000 0.000 1.2 -4.4 -1.3 Zona incerta 
510 0.009 0.004 -0.9 -0.5 -2.1 Seconadry visual cortex/retrosplenium 

Auditory cortex 
Lu AF58801<Sal 

385 0.034 0.015 1.4 -3.2 -3.9 Mesencephalic reticular formation 
389 0.032 0.015 1.4 -2.1 -1.8 CA3 region of the hippocampus 

15q13>Wt 
2096 0.000 0.000 -2.3 -3.0 1.2 Caudate-putamen 
540 0.005 0.002 0.0 -3.7 -2.7 Periaqueductal gray 

Cingulate cortex, area 24 
Lu AF58801<Sal 1537 0.000 0.000 0.4 -3.2 -2.0 Parafascicular thalamic nucelus 

15q13>Wt 
 

1437 0.000 0.000 -1.1 -2.3 -3.1 Superior colliculus 

Orbitofrontal cortex 
Lu AF58801<Sal 588 0.005 0.004 1.6 -2.1 -1.6 CA3 region of the hippocampus 

 15q13>Wt 
 

415 0.033 0.037 -0.9 -0.5 -0.4 Primary motor cortex 

Retrosplenial cortex 
Lu AF58801<Sal 

1125 0.000 0.000 -1.5 -4.6 -1.2 Entopeduncular nucleus 
421 0.024 0.007 -0.8 -3.2 -2.5 Periaqueductal gray 

846 0.000 0.000 -1.6 -2.6 -4.9 Sagulum nucleus 
15q13>Wt 1114 0.000 0.000 -0.8 -3.2 -2.5 Periaqueductal gray 

Subicular complex 
 

Lu AF58801<Sal 435 0.020 0.021 -1.7 -2.6 0.8 Caudate-putamen 

Lu AF58801>Sal 
510 0.008 0.006 -0.6 -1.2 -4.3 Superior colliculus 
455 0.015 0.006 1.6 -0.9 -1.8 Primary somatosensory cortex 



3 
 

15q13>Wt 541 0.005 0.005 0.4 -2.1 0.0 Cingulate cortex, area 24 
15q13<Wt 437 0.017 0.014 -1.7 -2.3 -3.7 Superior colliculus 

Ventral hippocampus 
Lu AF58801<Sal 

1383 0.000 0.000 0.2 -1.2 0.5 Cingulate cortex, area 24 
799 0.000 0.000 1.6 -2.7 -2.9 Lateral posterior nucleus 

15q13>Wt 3320 0.000 0.000 1.8 -1.8 -1.0 Primary somatosensory cortex 
 

 

Reference for tables S1 and S2: 

Paxinos G. and Franklin  K.B.J. The Mouse Brain In Stereotaxic coordinates. Academic Press, 2013. 
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Figure S1. Concentration of Lu AF58801 in brain (blue) and plasma (red) tested after 15 mg/kg dose (i.p.) in N=3 mice. 
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Figure S2. Functional networks for the orbitofrontal , retrosplenial and primary somatosensory cortical seeds, demonstrating the presence of expected 
connectivity in 15q13.3 mice comparable to wild-type mice (voxel-wise, p<0.001, uncorrected). Sagittal slice is at 0.0 mm in z-bregma, transversal slice is at -1.2 
mm in z-bregma. 
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