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Introduction 

Essential hypertension affects over 40 million Americans and is associated with significant 

morbidity and mortality. Blood pressure (BP) response to specific antihypertensive agents is 

highly variable with the mean BP response typically similar to the standard deviation of the 

response measured. Although physiologic pathways are known that regulate BP and BP response 

to specific classes of antihypertensive agents, the management of patients with essential 

hypertension has suffered from a “hit or miss” approach and BP control rates remain low, at 

approximately 40% in the general population. Demographic characteristics including age, gender, 

and ethnicity are informative regarding the selection of class of antihypertensive agent; however, 

other variables (including genotype) that predict BP response are lacking. In part, measures of 

relative activation of the renin-angiotensin-aldosterone system (RAAS) including plasma renin 

activity, plasma renin activity/aldosterone ratios, and plasma renin activity indexed for sodium 

intake have helped to guide selection choice of antihypertensive agent (typically diuretic vs. no 

diuretic), but significant variation in response to antihypertensive agents exists, even when these 

characteristics are included when using a specific class of antihypertensive agent.  

Hypertension is a multifactorial disease with convergent and divergent physiologic-regulating 

systems contributing to its presence, severity, and pathways involved in pharmacologically 

mediated reduction in BP levels. Counter-regulatory systems play a significant role in the 

development of hypertension as well as response to therapy and establishing genetic predictors of 

antihypertensive response have been less than ideal. While candidate gene approaches and 

genome wide association studies are beginning to demonstrate validated genetic predictors of BP 

response to antihypertensive therapy, it is most likely that yet to be identified significant genetic 

predictors exist in the form of rare (<1% allele frequency) variants, copy number variation, 

intronic flanking polymorphisms, RNA variation, and finally that there is a high likelihood that 

BP response to a given antihypertensive agent is due to polygenic causes. In this review, we have 
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elected to review in a physiologically guided manner, the pharmacogenomics of hypertension and 

provide a review of available and published studies, including their findings reproducibility and 

their limitations (Table 1).  
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Metabolism polymorphisms 

Polymorphisms in genes encoding the enzymes responsible for phase I and phase II 

biotransformation contribute to inter-individual differences in antihypertensive drug 

pharmacokinetics. The cytochrome P450 enzymes are part of a microsomal metabolism system in 

the smooth endoplasmic reticulum that residespredominantly in hepatocytes and in other cells. 

These enzymes catalyze phase I non-synthetic metabolism of xenobiotics through oxidation, 

reduction, and hydrolysis. In contrast, phase II synthetic biotransformation enzymes catalyze the 

conjugation of drugs through glucuronidation, acetylation, sulfation, and methylation. The phase I 

and phase II metabolism of antihypertensive drugs often lead to their activation or deactivation. 

Functional polymorphisms may modify either expression or function of metabolic enzymes that 

will ultimately influence the parent drug and metabolite concentrations. These concentration 

changes manifest as alterations in the pharmacogenetic response (BP response to a drug) and in 

pharmacokinetic parameters such as drug clearance, area under the curve (AUC), or maximum 

concentration (Cmax). During drug development, the United States Food and Drug Administration 

(FDA) provides regulatory guidance to pharmaceutical companies regarding both in vitro and in 

vivo drug metabolism and drug interaction studies. As a result, a drug’s metabolic enzymes are 

often known and have received great attention in candidate gene analyses in order to explore 

relevant genotype-drug interactions. 

Metoprolol is predominantly metabolized by CYP2D6. At least 74 variant alleles of CYP2D6 

have been described, including non-functional and loss of or reduced function alleles1. 

Individuals who are homozygous for the non-functional alleles are defined as poor metabolizers 

with a resultant extended half-life of metoprolol. Intermediate metabolizers are heterozygous for 

non-functional alleles or homozygous for reduced function alleles, while extensive (normal) 

metabolizers are homozygous or heterozygous for reference functional alleles. The functional 



5	
	

allele frequency for Caucasians is 71%, and for those of African and Asian ancestry is closer to 

50%2. The FDA label of metoprolol succinate cautions that the CYP2D6 enzyme is absent (poor 

metabolizer status) in about 8% of Caucasians and about 2% of most other populations. Gene 

duplication is also not uncommon for CYP2D6, with 12 or more copies previously reported3. 

Individuals with increased CYP2D6 copy number are considered ultra-rapid metabolizers. 

Variant alleles in poor and intermediate metabolizers of CYP2D6 have been associated with 

increased plasma metoprolol levels even after extended year-long dosing. Poor metabolizers also 

have corresponding changes in their ratio of metoprolol to alpha-hydroxy-metoprolol metabolite4. 

Some small studies have failed to reveal significant adverse events or BP effects associated with 

metabolizer status, despite changes in pharmacokinetic parameters5. However, a prospective, 

double-blind, longitudinal study of metoprolol use found significant differences in diastolic BP 

(DBP), QT interval, heart rate, and incidence of bradycardia6,7. As such, the Dutch 

pharmacogenomics working group (DPWG) has endorsed CYP2D6 screening with the use of 

metoprolol8. The group recommends selection of an alternate drug or a 75% dose reduction in 

poor metabolizers, 50% dose reduction in intermediate metabolizers, and titration up to a 

maximum of 250% of the normal dose in ultra-rapid metabolizers. 

The role of CYP2D6 has been explored with other beta-blockers, including carvedilol. Genotype 

appears to affect carvedilol clearance and concentration9,10. Analogously, genotype is a predictor 

of drug dose in retrospective analyses11. However, alterations in clinical phenotype or therapy 

response have not been observed10,11. Variant alleles in UGT1A1 have also been shown to alter 

clearance and glucuronidation of carvedilol, without affecting clinical phenotype12. 

Other cytochrome P450 enzymes similarly alter antihypertensive medication metabolism. 

Losartan is a prodrug metabolized into its active carboxylic acid metabolite by CYP2C9 and 

CYP3A4. The metabolite is predominantly responsible for the angiotensin II receptor antagonism 
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of losartan. Losartan’s FDA label cautions that in approximately 1% of individuals, minimal 

conversion of losartan to the active metabolite occurs. In vitro studies have suggested CYP2C9 

contributes to losartan metabolism to a greater extent than CYP3A413. Candidate 

pharmacogenomic analyses have illustrated that the CYP2C9*3 reduced function allele is 

associated with decreased formation of losartan’s active metabolite14,15. Limited clinical data is 

available to confirm pharmacodynamic effects. However, associations have been uncovered 

between the *3 allele and less favorable BP and proteinuria reduction in Caucasians with chronic 

kidney disease (CKD)16. In the Losartan Intervention for Endpoint reduction in Hypertension 

study, homozygotes with the *2 allele had decreased losartan response; however, this association 

did not remain significant after adjusting for multiple-testing17. 

Data regarding amlodipine and verapamil is less convincing. These calcium channel blockers are 

known to be metabolized by CYP3A4 and CYP3A5 through drug interaction data. In a small 

Korean population, amlodipine concentrations (AUC and Cmax) were reduced in individuals with 

a CYP3A5*1/*1 genotype18. This data is the opposite of that expected and conflicts with in vitro 

data suggesting amlodipine is primarily metabolized by CYP3A419. CYP3A5 genotypes have not 

been found to be associated with amlodipine efficacy18,20. Similarly, the CYP3A5*3 and *6 

alleles were not significantly associated with verapamil response21. In contrast, the SNPs 

rs2740574 and rs2246709 affecting CYP3A4 metabolism were associated with target BP goals in 

the African-American Study of Kidney Disease and Hypertension Trial20. More studies are 

required to understand the clinical relevance of cytochrome P450 pharmacogenetics in calcium 

channel blocker metabolism. 

Hydralazine undergoes phase II biotransformation by N-acetyltransferase 2. A slow acetylation 

phenotype is found in 90% of North Africans, 50% of Caucasians, and up to 30% of Asians22. 

The slow phenotype is associated with the NAT2*5, *6, and *7 alleles. The FDA label of 

hydralazine warns that plasma levels of hydralazine vary widely among individuals. Patients with 
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*5, *6, and *7 alleles will display higher plasma levels of hydralazine and the drug provides more 

efficacious BP control in individuals with these slow acetylator genotypes23. Currently, it is 

unclear whether slow acetylator genotypes also predict the development of adverse effects, such 

as hydralazine-associated systemic lupus erythematosus24. 

 

Candidate pharmacodynamic polymorphisms of the renin-angiotensin system 

 

In contrast to metabolic variants that affect drug concentration and kinetics, genetic variation in 

receptors and intracellular targets of antihypertensive pathways mediate pharmacodynamic 

effects of drugs. These variants alter a compound’s effect on a biologic system at a given drug 

concentration. Candidate variants affecting the signaling of the RAAS have been investigated in 

detail. However, none of these variants has been endorsed by the Clinical Pharmacogenomics 

Implementation Consortium (CPIC) or DPWG as ready for broad clinical implementation.  

 

Polymorphisms of the RAAS remain attractive candidates for the study of pharmacogenomics 

and hypertensive drug response because of their physiologic plausibility. Variants associated with 

angiotensin-converting enzyme 1 and 2 (ACE1, ACE2), angiotensinogen (AGT), angiotensin II 

type 1 and 2 receptors (AT1, AT2), and renin (REN) have all been explored to varying extents. 

The most studied of these variants is rs1799752, an insertion and deletion genetic variant in intron 

16 of the ACE gene (ACE I/D), with an insertion variant allele frequency of about 40–50%. The 

insertion variant has been associated with lower serum ACE levels, accounting for 47% of ACE 

level variance among individuals25. As a result, rs1799752 has been evaluated extensively as a 

predictor of ACE-inhibitor (ACEI) or angiotensin II receptor blocker (ARB) efficacy. Initial 

candidate studies showed increased ACEI and ARB response in individuals with the II genotype 

compared with the DD genotype26-32. These studies were marked by small sample sizes, 

significant inter-study heterogeneity, and disparate endpoints as markers of response. These 
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endpoints have ranged from improvement in measured hemodynamics to reduction in proteinuria 

to BP response.  However, significant conflicting data have since been reported that reveal no 

association between rs1799752 and ACEI or ARB BP response17,33-39. Although evidence does 

not support the use of rs1799752 as a predictor of ACEI or ARB response, a few studies suggest 

this SNP may remain a predictor of diuretic response40-42. Additional investigation is required to 

confirm these results. 

 

For variants in AGT, AT1, and AT2, most well-powered studies have failed to show consistent 

interactions between genotype and antihypertensive response17,34,35. In contrast, polymorphisms of 

REN have shown promise in Asian populations. The Renin C-5312T polymorphism was found to 

be a predictor of valsartan response. While C allele homozygotes do not have altered baseline 

plasma renin activity, the CC genotype is associated with both improved DBP response to 

valsartan and lower renal gene expression of REN34,43. After 5 months of valsartan therapy, a 

second study revealed reflexive rises in serum renin levels were higher in patients with the CT/TT 

genotypes44. This study also replicated the greater DBP response in C allele homozygotes in the 

small but independent cohort. An additional variant of REN, rs11240688, was associated with 

HCTZ-induced BP reduction45. It remains to be understood whether these results can be 

extrapolated to populations without Asian ancestry. 

 

Candidate pharmacodynamic polymorphisms of adrenergic response 

 

Beta-adrenergic receptor blockade endures as a mainstay in the treatment of hypertension, 

congestive heart failure, and cardiac arrhythmia. Adrenoceptor β1 and β2 stimulation increases 

intracellular cyclic adenosine monophosphate (cAMP) production, augmenting cardiomyocyte 

contractility and chronotropy. Adrenoceptor β3 stimulation mitigates these effects. These 

adrenoceptors are G-protein-coupled receptors that initiate intracellular signaling cascades. G-
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protein-coupled receptor Kinase 4 (GRK4) mediates phosphorylation of the adrenoreceptors, 

inhibiting cAMP production. Polymorphisms involved in the signal transduction and receptor 

antagonism of the adrenergic system have received considerable attention. Variants associated 

with expression of, function of, or chromosomal proximity to ADRB1, ADRB2, ADRB3, and 

GRK4 have all been implicated as predictors of antihypertensive response.  

 

The most studied variant of ADRB1, rs1801253, is a missense coding polymorphism that results 

in a single amino acid substitution of glycine for arginine with the G allele. The SNP has a minor 

allele frequency of 29.8% for the G allele. In a large dataset of over 86,000 patients, the C allele 

was associated and replicated with increased baseline systolic blood pressure (SBP) and DBP.46 

The association of this allele with antihypertensive response to beta-blocker therapy is less 

straight forward. Several small studies have revealed positive results with the C allele 

corresponding to an improved response to beta-blockade as defined by reduction in BP or heart 

failure endpoints47-51.  Studies have also illustrated contradictory results where the G allele is 

associated with more favorable rate control with verapamil and multiple beta-blockers52. 

However, negative studies, including larger, well-powered investigations, predominate suggesting 

that rs1801253 cannot reliably predict antihypertensive response, rate control, or heart failure 

outcomes11,17,53-58.   

 

Adrenoceptor-β2 agonism is not specific to cardiomyocytes, as its principle effect in bronchial 

epithelial cells is to facilitate smooth muscle relaxation and bronchodilation. Variants of ADRB2 

have been associated with asthma exacerbations and salmeterol response59,60. However, 

antihypertensive and cardiac investigations of beta-blockers and ACEIs have yielded mixed 

results of the ADRB2 variants, rs1042713 and rs1042714, in predicting BP and congestive heart 

failure responses10,17,56,57,61-63. Rs4994, a polymorphism in ADRB3, has been evaluated in 

hypertensive studies. This variant is associated with essential hypertension in Han Chinese64, 
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mean thiazide BP response in Japanese individuals65, and pulse pressure variation between 

atenolol and losartan in whites17. These associations were not corrected for a multiple testing 

penalty and have not been replicated. Presently, no variants in ADRB1, ADRB2, or ADRB3 have 

been recommended for routine screening by CPIC or the DPWG. 

 

The adrenergic signaling cascade intermediates, GRK4 and G-protein subunit β3 (GNB3), are 

promising mediators of antihypertensive response. The SNP rs1024323 is a missense variant of 

GRK4 with a minor allele frequency of 37%. In the African American Study of Kidney Disease 

and Hypertension (AASK) trial, the CC genotype of rs1024323 was associated with metoprolol 

BP response. However, the association was only significant in men who were heterozygous or 

homozygous for the rs2960306 T allele as well66. Significant associations were not found in 

women or in men homozygous for the rs2960306 G allele. These results have been replicated in a 

mixed gender population of whites and Hispanics in the Pharmacogenomic Evaluation of 

Antihypertensive Responses (PEAR) trial and the International VErapamil SR/Trandolapril 

STudy (INVEST-GENES). These trials similarly found that the haplotype consisting of the C 

allele of rs1024323 and T allele of rs2960306 were associated with greater atenolol-induced DBP 

reduction67. This haplotype was also associated with improved cardiovascular outcomes 

independent of the BP effect. These associations were additive and stronger in individuals with 

the rs1801253 CC genotype of ADRB1, supporting the polygenic nature of hypertension.  

 

Several SNPs associated with the G-protein subunit β3 (GNB3) have been associated with beta-

blocker, clonidine, and diuretic response. A single trial suggested the C allele of variant rs5443 is 

associated with improved SBP response to atenolol54. This trial suggested that two additional 

SNPs, rs11064426 and rs2301339, were also associated with atenolol response. However, 

conflicting data have been reported; the T allele of rs5443 was found to be linked to greater heart 

rate attenuation68 in a separate study. The T allele was also predictive of net sodium chloride and 
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calcium excretion in response to loop diuretic use in healthy volunteers42. The rs5443 T allele 

may further predict response to clonidine in cirrhotics and healthy individuals69,70; caution should 

be employed in interpreting these results as the studies were small and employed non-traditional 

endpoints.  

 

In summary, variants of ADRB1, ADRB2, ADRB3, and GNB3 have not been reproducibly 

associated with antihypertensive drug response. Data regarding polymorphisms of GRK4, 

particularly rs1024323 and rs2960306, are encouraging and warrant further investigation. 

 

Candidate variants contributing to sodium reabsorption 

 

Linkage studies in hypertensive families have vaulted the chromosomal region near the neural 

precursor cell expressed developmentally downregulated 4-like gene (NEDD4L) to candidate 

gene status71. These investigations uncovered a variant (rs4149601) responsible for alternative 

splicing of NEDD4L. The alternative isoform I, from the A allele of rs4149601, led to decreased 

expression of the distal epithelial sodium channel (ENaC). Furthermore, the A allele was 

associated with lower DBP compared to the G allele. 

 

Larger candidate gene investigations have both replicated and contradicted these findings. For 

example, in the Nordic Diltiazem Study (NORDIL), the G allele of rs4149601 was a predictor of 

thiazide and atenolol response over diltiazem response without consideration of other loci72.  In 

contrast, it was the A allele of rs4149601 that was found to predict thiazide responsiveness in a 

case-control study of hypertensive Chinese subjects73.  One explanation is that the rs4149601 

locus does not fully explain the hypertensive phenotype alone, as additional cotransmitted loci 

may augment or mitigate the effects observed. In the initial linkage analyses, rs4149601 was only 

partially causative and the presence of a second intronic variant (rs2288774) was required to 
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account for significant differences in SBP71. In the PEAR and INVEST trials, a haplotype 

consisting of the G allele of rs4149601 and C allele of a second SNP rs292449 predicted greater 

BP response to hydrochlorothiazide as well as adverse cardiovascular outcomes in whites not 

treated by hydrochlorothiazide74. 

 

Polygenic drug-gene interactions may also be required to explain phenotypic variation. An Italian 

study evaluated the NEDD4L variant in concert with variants of other genes involved in sodium 

reabsorption, WNK1 rs880054 and alpha-adducin (ADD1) rs496175. The combination of the 

ADD1 T allele, the WNK1 G (T) allele, and the NEDD4L A allele was consistently associated 

with improved BP response to a saline load and greater urinary sodium excretion. As expected, 

these individuals were also the least responsive to thiazide diuretic-induced BP reduction. The 

ADD1 variant rs4961 has been studied extensively on its own. However, results have been 

conflicting as the T allele has been found to confer increased diuretic efficacy in some studies, 

but reduced efficacy in others42,75-84. 

 

Plausible variants uncovered in unbiased analyses 

 

Knowledge of antihypertensive pharmacogenomics has been greatly expanded by candidate gene 

exploration into the RAAS, adrenergic, and sodium reabsorption pathways. However, the field 

has been reinvigorated by more recent unbiased investigations in large, hypertensive cohorts. 

Many of these investigations began as genome-wide association studies (GWAS) that were later 

replicated or linked to physiologic relevant functional evidence. Several examples of these novel 

variants are illustrated below. 

 

A GWAS of atenolol and metoprolol BP response was conducted in a cohort of African-

American, hypertensive participants from the PEAR studies85. Two replicated variants, 
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rs201279313 in SLC25A31 and rs11313667 in LRRC15, were found to predict improved BP 

response to β-blocker monotherapy in African Americans. SLC25A31 encodes a mitochondrial 

ADP/ATP carriers, while LRRC15 encodes the leucine-rich repeat containing receptor-like kinase 

protein 15, whose function is not well characterized. Neither of these variants would have been 

discovered without an unbiased approach. 

 

Analogously, a GWAS examining atenolol monotherapy was conducted in white participants of 

the PEAR trials86. This analysis identified two polymorphisms, rs12346562 and rs1104514, near 

the PTPRD gene that were associated with improved atenolol BP reduction in whites. PTPRD 

encodes protein-tyrosine phosphatase delta, a signaling molecule that regulates cell growth and 

differentiation. The significance of rs12346562 was replicated in a cohort of Finnish men from 

the genetics of drug responsiveness in essential hypertension study (GENRES)87.  Three other 

independent groups of hypertensive individuals were examined as part of the replication and 

validation process. Several other variants of PTPRD were identified as significant in these 

populations, including rs10739150 in black, hypertensive individuals. 

         

An initial GWAS of patient samples from the GERAS trial88 identified a SNP in YEATS4, 

rs7297610, as a significant predictor of DBP response to hydrochlorothiazide in a mixed 

population of Caucasians and African Americans89. YEATS4 encodes the YEAT domain-

containing protein 4, a transcription factor that aids in gene activation through acetylation of 

nucleosomal histones H4 and H2A. The association was replicated in the PEAR trial cohort and 

functional evidence of its direct role in the pathogenesis of hypertension has been proposed90. The 

leukocyte expression of YEATS4 significantly declines following hydrochlorothiazide treatment 

in African Americans homozygous for the C allele. Baseline YEATS4 expression was also lower 

in T carriers as opposed to C allele homozygotes. These expression data add functional relevance 

to the role of rs7297610 as a predictor and mediator of hydrochlorothiazide response. 
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A combined association study of the PEAR, GERAS, and NORDIL trials highlighted a 

significant variant of PRKCA, protein kinase C alpha, as significantly associated with DBP 

reduction in response to thiazides91. The SNP, rs16960228, was replicated in the GENRES study 

cohort. Individuals treated with thiazides had a 4.16 mm Hg increased reduction of DBP per A 

allele. 

In summary, these variants identified from unbiased GWAS teach us a great deal about the 

underlying pathogenesis of hypertension. All of these variants have been replicated and some also 

have corresponding functional evidence to corroborate their significance. These data reveal a 

vibrant culture of discovery in the field. Randomized, controlled trials and implementation efforts 

are now required to translate these innovations into clinical practice. 

 

Implementation 

 

CPIC and DPWG are collaboratives that curate the literature and produce clinical guidelines with 

information necessary for clinical implementation. These recommendations are available in the 

Pharmacogenomics Knowledgebase (PharmGKB, www.pharmgkb.org), but significant barriers to 

the broad adoption of pharmacogenetic testing in clinical practice remain92. These barriers include 

genotyping logistics to provide rapid results; a dearth of prospective, randomized, clinical trials; 

clinician inexperience with pharmacogenomics; inconsistent reimbursement of pharmacogenomic 

screening; and a lack of consensus regarding treatment algorithms and professional society 

recommendations. In order to expend the resources to overcome these obstacles, genetic 

biomarkers must hold value over and above traditional biomarkers in clinical practice.  
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The inherent properties of antihypertensive agents magnify some of the obstacles delineated 

above. These drugs are inexpensive, low in toxicity, frequently titrated, and easily monitored. 

Traditional biomarkers of efficacy and toxicity such as BP, pulse, and urine output are reliable 

and readily assessed in clinic. Other adverse events such as hyperuricemia or hypokalemia can be 

transient and would require serologic monitoring with or without genetic testing. Furthermore, the 

sheer number of alternative agents allows clinicians the opportunity to optimize a patient’s 

regimen based on trial and error. Although some of the variants discussed in this review are 

considered of sufficient importance to warrant listing within FDA package inserts, most tests are 

not routinely reimbursed by the Centers of Medicare and Medicaid Services. Finally, the 

polygenic nature of hypertension adds complexity to the interpretation of pharmacogenetic 

testing. These obstacles are reflected in the relative paucity of recommendations for routine use of 

pharmacogenomic screening in the treatment of hypertension. Presently, CPIC and DPWG have 

recommended only one genetic screening test for routine use: CYP2D6 screening for metoprolol 

(DPWG). 

 

Despite these impediments, the opportunity to benefit patients and practitioners is readily 

apparent. Hypertension is among the most commonly treated diseases worldwide. The American 

Society of Hypertension has noted that in many communities, fewer than half of all hypertensive 

patients have adequately controlled BP93.  For some patients, serial follow-up may be required to 

develop an adequate regimen. Thus, selecting the right agent first may net cost savings to health 

systems by decreasing required follow-up and reducing adverse events. Indeed, the emphasis of 

this review has been on drug efficacy and agent selection. However, there is significant evidence 

supporting variants predicting adverse events including the hyperuricemia of thiazide use94, 

bradycardia associated with β-blockers5-8,95,96, and ACEI-related cough97. 
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Pharmacogenomic implementation efforts are underway at universities across the United States98-

102; yet, few of these programs place emphasis on translating genetic predictors of 

antihypertensive drug efficacy or toxicity. Two distinct models of implementation may be 

discerned from these programs. The first is to implement screening for well-defined CPIC- and/or 

DPWG-endorsed variants broadly across an entire health care system. Examples include the 

programs at St. Jude Children’s Research Hospital98 and Indiana University’s Eskenazi Health 

System102. Since the genetic test results are available to all practitioners, clear evidence-based 

dosing algorithms are required to inform clinicians who may have limited prior experience with 

pharmacogenomic test interpretation. Neither of these programs provides testing for variants with 

lower levels of evidence. Few variants related to antihypertensive agents meet these evidence 

thresholds. 

 

An alternative model of pharmacogenomic implementation includes screening for investigational 

variants, but restricts the results to a small population of physicians with significant 

understanding of pharmacogenomics. A successful example of this program is found in 

University of Chicago’s “1,200 Patient’s Project”101. The University of Chicago’s open array 

platform includes screening of variants for hydrochlorothiazide (REN and ADD1), amlodipine 

(CYP3A4 and CACNA1C), metoprolol (ADRB1 and GRK4), and atenolol (LDLR, GNB3, and 

AGT). Most CLIA-approved pharmacogenomic laboratories utilize custom PCR-based 

OpenArrayTM platforms for genotyping. These arrays assess up to 64 variants in a single 

individual. Given the polygenic nature of hypertension, the using pharmacogenomics as a tool to 

assist in hypertensive therapy selection lends itself to having a panel of already-available genetic 

variants in the medical record. The clinical functionality decreases if the genetic screening is 

prompted by a new antihypertensive agent prescription. Although the cost of genotyping has 

declined, broad-based genetic screening has not become universal. Until that time, further 
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randomized, controlled trials are required to validate the utility of genetic variants associated with 

antihypertensive traits. 
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Table 1: Description of key pharmacogenomics of hypertension studies by antihypertensive agent. 
Class / Drug Gene Variant Allele Level of 

Evidence 
Clinical Significance Ref 

Hydralazine NAT2 *5,*6,*7,*14  FDA label Homozygotes for slow acetylation alleles (*5, *6, *7, *14) have greater response to hydralazine. 23 

Beta-Blockers ADRB1 rs1801253 G > C Conflicting data CC genotype may predict increased response to beta-blockers and non-dihydropyridine CCBs 11,46-

55,57,58,10

3-109 

 GRK4 rs2960306 G > T Replicated T allele predicts reduced atenolol and metoprolol efficacy 66,67 

 GRK4 rs1024323 C > T Single study data CC genotype predicts reduced metoprolol efficacy in black males with TC/TT rs2960306 genotype 66 

 SLC25A3
1 

rs201279313 *del Replicated The deletion allele was associated with greater BP reduction after β-blocker treatment 85 

 LRRC15 rs11313667 *del Replicated The deletion allele was associated with better BP response to β-blocker monotherapy 85 

 PTPRD rs12346562 A > C Replicated A allele associated with improved BP response to atenolol 86 

Metoprolol CYP2D6 *2,*3,*4, 
etc. 

 DPWG guideline Poor metabolizers require dose reduction and are at risk for bradycardia 5-8,95,96 

Atenolol LDLR rs688 C > T Single study data TT genotype predicts reduced atenolol efficacy (N = 49) 110 

 FTO rs9940629 A > G Single study data Caucasians with AA genotype had smaller HDL reductions in response to atenolol (N = 232) 111 

  rs12595985 C > A Single study data African Americans with AA genotype had higher HDL cholesterol with atenolol (N = 152) 111 

 PLA2G4A rs1015710 G > C Single study data CC genotype predicts higher HDL cholesterol in whites using atenolol (N = 232) 111 

 PTGS2 rs4648287 A > G Single study data GG genotype predicts higher HDL cholesterol in African Americans using atenolol (N = 152) 111 

 ABCB1 rs3213619 A > G Single study data GG genotype of rs3213619 and rs10267099 predict higher HDL cholesterol in African Americans 111 

 PROX1 rs340874 T > C Single study data C allele is associated with increased fasting glucose in whites using atenolol 112 

 GALNT2 rs2144297 T > C Single study data TT genotype predicts higher HDL cholesterol in African Americans using atenolol (N = 152) 111 

 GALNT2 rs2144300 C > T Single study data CC genotype predicts higher HDL cholesterol in whites using atenolol (N = 232) 111 

Carvedilol CYP2D6 *2,*3,*4, 
etc. 

 FDA label Asian poor metabolizers of CYP2D6 have increased concentrations of carvedilol 8,9,113 
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 UGT1A1 *6, *28  Conflicting data *28 allele predicts increased and *6 predicts decreased glucuronidation of carvedilol 11,12 

Angiotensin II 
Receptor Blockers 

CYP11B2 rs1799998 A > G Conflicting data AA genotype predicts reduced response to candesartan, but increased response to benazepril or 
imidapril in Asians. 

114,115 

Losartan STK39 rs6749447 T > G Single study data TT genotype predicts increased losartan response in whites (N = 202) 116 

 CYP2C9 rs1057910 C > A FDA label *2 and *3 allele associated with decreased losartan effect, metabolism and metabolite appearance 13,14,17 

Irbesartan APOB rs1367117 G > A Single study data AA genotype predicts reduced irbesartan response in whites (N = 48) 110 

Valsartan REN C-5312T C > T Replicated CC genotype predicts improved valsartan response and lower renal expression of REN. 34,43,44 

ACE Inhibitors AGTR1 rs5182 C > T Single study data CC genotype predicts increased cardiovascular event risk with ACEI use (N = 786) 117 

 AGTR1 rs5186 A > C Conflicting data AA genotype may predict improved ACEI + ARB response and  cardiovascular event risk 30,117,118 

 BDKRB2 rs1799722 C > T Conflicting data TT genotype may confer increased risk of ACEI-related cough in Asians (2 of 4 studies positive) 
and decreased enalapril response 

119-123 

  rs8012552 C > T Single study data TT genotype confers lower risk of ACEI-related cough (N = 106) 97 

 PTGER3 rs11209716 T > C Single study data CC genotype confers lower risk of ACEI-related cough (N = 249) 97 

 ABO rs495828 T > G Replicated TT genotype predicts development of cough with ACEI treatment 124,125 

Enalapril VEGFA rs699947 A > C Single study data AA genotype predicts increased response to enalapril (N = 54) 126 

 NR3C2 rs5522 C > T Single study data TT genotype predicts increased enalapril response in Asians (N = 263) 127 

Ramipril ACE rs4344  G > A Single study data Homozygosity of either allele predicts increased ramipril response (N = 347) 128 

  rs4359 T > C Single study data Homozygosity of either allele predicts increased ramipril response (N = 347) 128 

Benazapril AGT rs7079 G > T Single study data TT genotype predicts increased benazepril response in Chinese 129 

 AGT rs4762 G > A Single study data G allele predicts increased benazepril response in Asians 129 

 PRCP rs2229437 T > G, 
A 

Single study data TT genotype predicts increased benazepril response in Asians (N = 1092) 130 

Calcium Channel 
Blocker 

TANC2 rs2429427 G > A Single study data GG genotype predicts increased BP response to calcium channel blockers in Asians (N = 93) 131 

 CACNA1 rs2239128 T > C Single study data CC genotype predicts increased calcium channel blocker BP response in whites (N = 120) 132 
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C 

  rs2238032 T > G Single study data TT genotype predicts increased calcium channel blocker BP response in whites (N = 120) 132 

Diltiazem PLCD3 Rs12946454 A > T Single study data A allele predicts improved BP response for white diltiazem users in NORDIL trial (N = 1990) 133 

Verapamil KCNIP1 rs2301149 C > G Single study data GG genotype predicts increased cardiovascular events with verapamil use compared to CC or CG 134 

  rs11739136 C > T Replicated T allele confers improved BP control with verapamil 134-136 

 NR1H3 rs2279238 C > T Single study data Verapamil use in TT genotype associated with increase in death, myocardial infarction, or stroke 137 

  rs12221497 G > A Single study data Verapamil use in GG genotype associated with increase in death, myocardial infarction, or stroke 137 

 NOS1AP rs10494366 T > G Single study data GG genotype predicts increased risk of QTc prolongation in whites (N = 7565) 138 

Amlodipine CYP3A5 rs776746 T > C Single study data *1/*1 genotype predicts lower amlodipine AUC and Cmax in Korean males (N = 40) 18 

 CYP3A4 rs2246709 A > G Single study data G allele predicts increased efficacy of amlodipine in African Americans (N = 145) 20 

  rs2740574 C > T Single study data T allele genotype predicts increased efficacy in African American women 62

Nifedipine SLC14A2 rs3745009 G > A Single study data GG genotype predicts greater BP reduction in Asians using nifedipine (N = 405) 139 

  rs1123617 G > A Single study data AA genotype predicts greater BP reduction in Asians using nifedipine (N = 405) 139 

Thiazides PRKCA rs4791040 T > C Conflicting data TT genotype predicts reduced thiazide response in NORDIL, but not PEAR and GERA trials 91 

 TLE1 rs2378479 G > T Replicated T allele is associated with BP response in African Americans ** 

Hydrochlorothiazide KCNJ1 rs675388 G > A Single study data A allele predicts increase in fasting glucose during HCTZ use 140 

  rs658903 T > A Single study data TT genotype predicts increased risk of DM in Hispanics (N = 464) 140 

  rs59172778 A > G Single study data AA genotype predicts lower serum potassium 140 

  rs12795437 G > C Single study data CC genotype predicts increased risk of DM in whites and Hispanics (N = 835) 140 

  rs11600347 C > A Single study data AA genotype predicts increased risk of DM in whites and Hispanics (N = 835) 140 

 PRKCA rs16960228 G > A Replicated AA genotype predicts increased response to HCTZ in whites 91 

 YEATS4 rs7297610 C > T Replicated TT genotype predicts decreased HCTZ response and decreased whole blood YEATS4 expression in 
African Americans 

89,90 
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 WNK1 rs880054 C > T Single study data TT genotype predicts decreased SBP response to atenolol (N = 193) 75 

 LUC7L2 rs6947309 C > T Single study data T Allele predicts higher uric acid levels with HCTZ use (N = 276) 94 

 FTO rs4784333 C > G Single study data C allele predicts higher uric acid levels with HCTZ use (N = 276) 94 

 TCF7L2 rs4506565 A > T Single study data TT genotype predicts increased risk of DM in whites using HCTZ (N = 1435) 141 

  rs4132670 G > A Single study data AA genotype predicts increased risk of DM in whites using HCTZ (N = 1435) 141 

  rs7917983 T > C Single study data TT genotype predicts increased risk of DM in whites using HCTZ (N = 1435) 141 

 REN rs11240688 C > T Single study data CC genotype predicts improved response to thiazide diuretics in Asians (N = 90) 45 

Cross-Class Variants       

Atenolol, ACEI/ARB AGT rs5051 C > T Single study data TT genotype predicts greater atenolol response (white), but reduced ACEI response (Asian) 142,143 

 AGT rs699 A > G Conflicting data GG genotype may predict greater SBP reduction and LVH decrease with atenolol/ irbesartan, but 
there is conflicting data for response to ACEI. 

30,129,142,

144-148 

BB, CCB, ACEI/ARB AGTR1 rs5186 A > C Conflicting data AA genotype predicts increased response to HCTZ, nitrendipine, and candesartan, but poorer 
response to perindopril, captopril, irbesartan, and inconclusive results for losartan and quinapril 

30,117,118,

144,146,148

-153 

BB, CCB,ACEI, 
diuretic 

ADD1 rs4961 G > T Conflicting data T allele confers increased diuretic efficacy in some studies and decreased efficacy in others ADD142

,75-84 

 ACE rs1799752 *del Replicated with 
conflicting data 

del/del genotype predicts increased diuretic response and may decrease RAAS blockade response 26-

42,117,144,

154-165 

 ACE2 rs2106809 A > G Single study data GG genotype is associated with increased captopril efficacy, but decreased response to other drugs  166 

 NOS3 rs2070744 C > T Replicated CC genotype predicts resistant hypertension to a variety of drugs 167,168 

CCB, thiazide CLCN6 rs5065 A > G Single study data GG genotype predicts greater thiazide response compared to amlodipine (N = 38,462)  169 

Atenolol, verapamil CACNA1
C 

rs1051375 G > A Single study data AA genotype predicts fewer cardiovascular events with atenolol compared to verapamil 170 

 NR1H3 rs11039149 A > G Single study data GG genotype associated with increased cardiovascular events with verapamil or atenolol 137 

Atenolol, HCTZ NEDD4L rs75982813 A > G Replicated GG genotype predicts improved BP response to atenolol and HCTZ in whites (N = 767) 74 
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 NEDD4L rs292449 G > C Single study data CC + CG genotype predicts improved BP response to HCTZ in whites (N = 767) 74 

BB, CCB, diuretics NEDD4L rs4149601 G > A Replicated AA genotype predicts adverse cardiovascular events and reduced BP response in whites in PEAR 
(N = 767), INVEST (N = 1345), and NORDIL (N = 2594) trials, but greater BP response in Asians. 

72-75 

CCB, ACEI PTPRD rs4742610 C > T Replicated TT genotype predicts resistant hypertension in whites and Hispanics 86 

Thiazide, ACEI MMP3 rs3025058 A > del Single study data AA genotype predicts increased stroke risk in ALLHAT study with Lisinopril over chlorthalidone 171 

Abbreviations: Ref, reference; BP, blood pressure; BB, beta-blocker; CCB, calcium channel blocker; ACEI, angiotensin-converting-enzyme inhibitor; ARB, angiotensin II 
receptor blocker; AUC, area under curve; Cmax, maximum concentration; HCTZ, hydrochlorothiazide; DM – diabetes mellitus; DPWG, Dutch pharmacogenomics working 
group recommendation; Replicated, replicated in multiple studies, studies may have large or small effect size. FDA label, pharmacogenomics mentioned in the FDA drug label. 
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