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Key Points 

1. Novel germline mutation within the 5’-UTR of GATA1 disrupts splicing of full-length GATA1, causing

congenital dyserythropoiesis and megakaryocyte dysplasia 

2. Human full-length GATA1 isoform is produced exclusively in erythroblasts and megakaryocytes to

orchestrate RBC and platelet production 

Abstract 

Inherited mutations in the X-linked hematopoietic transcription factor GATA1 lead to a wide range of blood 

disorders, from Diamond-Blackfan anemia to myelodysplastic syndrome. Alternative splicing produces two 

functionally distinct isoform of GATA1: full-length GATA1 and short GATA1 (GATA1s), which lacks the N-

terminal activity-regulating module. The in vivo role of the N-terminal GATA1 domain in human hematopoiesis 

is not fully understood. Here, we describe the first congenital disease-causing mutation within the 5’UTR of 

human GATA1 (GATA1c.21A>G). We show that loss of full-length GATA1 expression due to disruption of 

consensus splice site by the GATA1c.21A>G mutation results in a constellation of dyserythropoietic anemia; 

thrombocytosis; functional platelet dysfunction and megakaryocyte dysplasia. We employed a novel 

immunohistochemistry-based approach to demonstrate that expression of the GATA1 N-terminus is restricted to 

erythroblasts and megakaryocytes in normal human bone marrow, consistent with impaired erythropoiesis and 

megakaryopoiesis seen in the GATA1c.21A>G patient. Our findings provide novel insights into the clinically relevant 

in vivo function of the N-terminal domain of GATA1 in human hematopoiesis. 



Introduction 

 

The X-linked transcription factor GATA1 (globin transcription factor 1) orchestrates the production of red blood 

cells (RBCs) and platelets (1-3). Alternative RNA splicing produces two GATA1 isoforms (4). Shortened 

GATA1 (GATA1s) differs from full-length GATA1 (flGATA1) by the lack of the 83 amino acid-long N-terminus 

that activates GATA1-driven erythropoiesis program (4, 5) and recruits flGATA1 to a subset of megakaryocyte 

and erythroblast genes (6). Thus, the GATA1 isoforms control partially overlapping but not identical 

transcriptional modules of erythroblast and megakaryocyte maturation. 

 

Germline GATA1 mutations occur in a spectrum of blood disorders (7). Mutations affecting the DNA/cofactor-

binding zinc fingers of GATA1 cause X-linked macrothrombocytopenia (8, 9) and erythrodysplasia (10). The 

clinical importance of the N-terminal GATA1 domain was realized upon the discovery of disease-associated 

mutations disrupting flGATA1 and promoting synthesis of the truncated GATA1s isoform (known as “GATA1s 

mutations” (6)). Germline GATA1s mutations are the only non-ribosomal genetic defects implicated in Diamond-

Blackfan anemia (DBA) (11, 12), a syndrome of RBC aplasia and otherwise normal hematopoiesis (13). 

Ribosomopathy in DBA selectively impairs GATA1 translation (14) and GATA1s binds erythroid promoters less 

efficiently than flGATA1 (5); thus, reduced net GATA1 activity may contribute to the RBC aplasia in DBA. The 

GATA1s function is not fully conserved between species as baseline postnatal hematopoiesis in Gata1s mice 

appears normal (15), although inhibition of the interferon cascade unblocked megakaryocyte hyper-proliferation 

in Gata1s mice (16), suggesting a persistent signaling defect in postnatal Gata1s megakaryocytes. 

 

Since some GATA1s patients develop only an isolated RBC aplasia (11, 12), human flGATA1 may be dispensable 

for megakaryopoiesis. However, all the affected members of one GATA1s family developed platelet abnormalities 

and dyserythropoiesis instead of isolated erythroblast aplasia (17), and an unrelated GATA1s patient suffered from 

a childhood myelodysplastic syndrome (MDS) (18). Thus, the clinical impact of GATA1s mutations on non-



erythroid hematopoiesis needs clarification. Here, we identified the first pathogenic mutation within the 5’UTR of 

human GATA1 and explored its impact on transcript splicing and hematopoiesis. 



Methods 

Patient history: A non-dysmorphic anemic male was referred to Bone Marrow Failure Clinic at Riley 

Hospital for Children. An informed consent was obtained from his family per protocol approved by 

Indiana University IRB. His folate and vitamin B12 levels were normal. Normal chromosome-breakage 

test and lymphocyte telomeres excluded Fanconi anemia and dyskeratosis congenita. Normal 

cytogenetics, MDS-FISH and blast count excluded MDS. Past medical history revealed pyloric stenosis 

and undescended testis; family history revealed “anemia” on paternal side. GATA1 sequencing was 

performed by Prevention Genetics (Marshfield, WI) and DBA sequencing panel (RPL11, RPL35a, 

RPL5, RPS10, RPS17, RPS19, RPS24, RPS26, and RPS7) by Ambry Genetics (Aliso Viejo, CA). 

GATA1 antibodies: The polyclonal GATA1 antibody (Abcam, ab173816) was used to detect both 

GATA1 isoforms via immunohistochemistry and Western. Novel monoclonal rabbit antibody against 

first 20 GATA1 residues (Abcam, ab76121) was employed for immunohistochemistry of the GATA1 N-

terminus. 

Microscopy. Images were acquired on a Zeiss Axiolab-A1 microscope with an Axiocam-105 color 

camera and processed with ZEN (Carl-Zeiss, Jena) and Imaris (Bitplane, Zurich) software.  

Bioinformatics, immunohistochemistry, Westerns and RT-PCR are detailed in Supplementary Methods. 



Results and Discussion 

 

A 4-year old male developed fatigue and pallor secondary to anemia (hemoglobin: 4.4 g/dL). His growth and 

development were normal (Supplementary Figure 1). DBA was suspected due to progressive macrocytic anemia 

with low reticulocytes and persistent fetal hemoglobin first noted at 3 months of age (13). Additionally, past blood 

counts revealed chronic thrombocytosis (platelets: 387-947,000/mm3) and occasional neutropenia (lowest 

absolute neutrophil count: 495/mm3) (Figure 1A; Supplementary Table 1).  

 

Bone marrow analysis showed paucity of RBC precursors (Figure 1B-C), dyserythropoiesis (Supplementary 

Figure 2) and prominent megakaryocytosis (Figure 1B-C) with megakaryocyte dysplasia (Figure 1B; 

Supplementary Figure 3), which is not seen in classic DBA (13). Since the patient’s nine DBA-associated 

ribosome genes were mutation-free, we asked whether his anemia mimicking DBA (11, 12) but associated with 

megakaryocyte dysplasia (17) reflected a germline GATA1 defect. Indeed, Sanger sequencing revealed a novel 

mutation within the 5’ untranslated region (UTR) of GATA1 (c.21A>G) at position 48,791,089 on the X 

chromosome (GRCh38.p2 primary assembly) (Figure 1D). Consistent with an X-linked recessive inheritance, 

mother was an asymptomatic carrier, and all healthy male siblings had wild-type GATA1 (Figure 1D).  

 

We hypothesized the GATA1c.21A>G transcript splicing may be abnormal as our in silico analysis (19) suggested 

disruption of the 5’UTR consensus splice site. Accordingly, the GATA1c.21A>G mutation almost entirely abolished 

in vivo flGATA1 expression and elevated GATA1s production (Figure 1E-F), recapitulating the pattern reported 

in GATA1s patients with different mutations (11, 12, 17, 18). Our patient’s anemia improved on oral 

corticosteroids similar to other GATA1s patients (11, 12, 18). To our knowledge, the GATA1c.21A>G mutation is the 

first known human genetic defect producing the GATA1s phenotype through destroying splice site within the 

5’UTR of GATA1 (Figure 1G).  

 



Full-length GATA1 is a megakaryocyte tumor suppressor in Down syndrome (20-22), but the role of flGATA1 in 

non-trisomy-21 human megakaryopoiesis in vivo is unclear. Several lines of evidence implicate flGATA1 in 

megakaryopoiesis. First, GATA1s patients experience quantitative platelet abnormalities, from thrombocytopenia 

(17) to thrombocytosis [(12); this work]. Second, GATA1s platelets are functionally defective. We found that the 

GATA1c.21A>G platelets display subclinical aggregation deficiencies consistent with a granule defect 

(Supplementary Figure 4). This finding is in agreement with ultrastructural platelet -granule/dense body 

abnormalities reported in GATA1c.220G>C patients (17), likely secondary to disrupted cytoskeletal remodeling in 

flGATA1-deficient megakaryocytes (23). Third, dysplastic megakaryocytosis in the GATA1c.21A>G marrow (Figure 

1) may reflect increased cell-cycle progression due to the E2F cell-cycle regulator being unleashed from the

repression mediated by the N-terminus of GATA1 (24). Our observations validate elegant ex vivo studies showing 

that hematopoiesis in GATA1s patient-derived pluripotent stem cells is skewed towards generation of abnormal 

megakaryocytes at the cost of erythropoiesis (6). However, some GATA1s patients were diagnosed with isolated 

RBC aplasia (11, 12). Thus, we systematically analyzed GATA1 splicing in bone marrow, hypothesizing that 

flGATA1 expression correlates with the role of flGATA1 in distinct hematopoietic lineages. 

To explore GATA1 splicing at single-cell level, we developed an immunohistochemistry assay specific for the 

GATA1 N-terminus (Figure 2A). Full-length GATA1 was absent from the GATA1c.21A>G marrow, confirming that 

the mutation confers GATA1s phenotype (Figure 2B-C). Double-immunohistochemistry detected flGATA1 in 

control megakaryocytes and erythroblasts, but not in other hematopoietic lineages (Figure 2C), consistent with 

the role of flGATA1 in erythropoiesis and megakaryopoiesis. Upon further validation, this assay may provide a 

rapid screening tool for suspected GATA1s syndrome. 

Our data support GATA1 sequencing (including non-coding regions) in males with congenital multilineage 

dysplasia (this work; (17)) and DBA-like phenotype (11, 12). Megakaryocyte and platelet abnormalities (this 

work; (10)) provide subtle clinical clues to differentiate GATA1s patients from DBA caused by ribosomopathy 

(13). The GATA1c.21A>G patient’s disease manifestations fall within the broad spectrum of reported GATA1s 



phenotypes, from DBA (11, 12) to erythroblast and megakaryocyte dysplasia (10) and overt MDS (18) (Figure 

2D). Potential genotype-phenotype correlations will remain unknown until more GATA1s patients are identified, 

especially since the same GATA1c.220G>C mutation caused DBA in one family (12) and multilineage dysplasia in 

another (10). Interestingly, MDS-associated spliceosome mutations globally alter expression of multiple 

hematopoietic regulators, including GATA1 (25). Given the potential risk of MDS in GATA1s patients (18), 

hematopoiesis should be closely monitored in individuals with the GATA1s syndrome. 
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Figure legends 

Figure 1. Hypoplastic anemia, megakaryocyte dysplasia and thrombocytosis due to mutation within the 

5’UTR of GATA1. (A) Chronic anemia and macrocytosis over the course of 5 years. (B) Decreased 

erythropoiesis and megakaryocyte dysplasia seen on bone marrow aspirate. (C) Immunohistochemistry with 

CD71 (erythroblast marker) and CD61 (megakaryocyte marker) reveals decreased erythropoiesis and 

accumulation of megakaryocytes in the patient’s bone marrow compared to a healthy individual. Right panel 

confirms accumulation of dysplastic megakaryocytes (black arrows) in the patient’s marrow (Wright-Giemsa 

stain). (D) GATA1 sequencing reveals a novel mutation in the affected child. RT-PCR and Western blotting 

demonstrate loss of full-length GATA1 transcript (E) and protein (F) in the patient. (G) Schematic representation 

of GATA1 alternative splicing (only first three exons are shown for simplicity). The GATA1c.21A>G mutation 

produces GATA1s phenotype by disrupting full-length GATA1 splicing. 

Figure 2. Full-length GATA1 expression is restricted to erythrocyte and megakaryocyte precursors during 

hematopoiesis. (A) Antibodies used for immunohistochemistry. Antibody against the N-terminus of GATA1 

recognizes only full-length GATA1, while C-terminal antibody recognizes both GATA1 isoforms (flGATA1 and 

GATA1s). (B) Loss of flGATA1 expression in the GATA1c.21A>G patient’s bone marrow. Note that (a) flGATA1 is 

not expressed in all hematopoietic cells of a healthy individual, and (b) GATA1s production is not affected by the 

GATA1c.21A>G mutation. (C) Expression of N-terminal GATA1 domain (flGATA1; blue) is restricted to 

erythroblasts and megakaryocytes during human hematopoiesis. Appropriate hematopoietic lineage markers 

(brown) were co-stained as shown. (D) GATA1s mutations cause a range of phenotypes from Diamond-Blackfan 

anemia (red) to multilineage hematopoietic dysplasia (blue). Novel mutation described in this work is marked 

with asterisk. 
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SUPPLEMENTAL MATERIALS & METHODS 

 

Bioinformatics. GATA1 splice site analysis and identification of the ctcgcaggttaatcc consensus 

sequence affected by the novel GATA1c.21A>G mutation was performed using the neural network 

prediction method (2) (http://www.fruitfly.org/seq_tools/splice.html) and validated with a 

SplicePort analysis tool (3) (http://spliceport.cbcb.umd.edu/SplicingAnalyser.html). 

 

Immunohistochemistry: Formalin-fixed paraffin-embedded tissue blocks were cut in 4-mm sections 

and picked up onto positively charged slides. The sections were then deparaffinized and 

rehydrated. The antigen was retrieved in Dako’s ‘PT Module’ with their high pH-Target 

Retrieval Solution. Endogenous peroxidase was blocked with 3% H2O2 for 5 min. Antibodies 

against GATA1 (Abcam ab76121, 1:100) were then applied to sections from each case for 30 

min. Detection was performed using Dako’s Flex+Rabbit avidin–biotin system, which were 

incubated 30 min each. Horseradish peroxidase (hrp) conjugated to the final reagent developed 

the brown diaminobenzidine chromogen (DAB, 10 min incubation) and the samples were 

counterstained with hematoxylin. All washes between steps were in TBS (DAKO K8000). The 

immunostains were then qualitatively reviewed and assessed for the presence or absence of 

staining. 

 

Double stains of GATA1 with ready-to-use (RTU), mouse monoclonal antibodies, CD34 (DKO 

IR632), CD61 (Cell Marque 161M-18), CD79a (DAKO IR621), and p53 (DAKO IR616) and 

1:100 CD71 (Invitrogen 13-6890) were performed similarly. Briefly, after retrieval, cocktails of 

GATA1 and the other antibody of interest placed on the samples and incubate for 30 min. This 

http://www.fruitfly.org/seq_tools/splice.html


was followed by 30 min with Biocare’s Mach 2/double stain 2 (mouse-hrp and rabbit-AP, 

MRCT525L). Then hrp was developed with DAB for 10min followed by alkaline phosphatase 

(AP) development with Ferengi Blue (Biocare FB813S) for 10 min and the sections were 

counterstained with neutral fast red. 

The one double stain with two rabbit antibodies, GATA1 and myeloperoxidase (MPO, DAKO 

IR511) was performed with a 7-step technique. First, RTU MPO was incubated for 10 min 

followed by Envision Flex-hrp (DAKO K8010) and DAB for 10 minutes each. Then samples 

were incubated with a double stain block (DAKO K5361) for 3 min followed by GATA1 (1:100, 

45 min) and swine-anti-rabbit-AP (1:100, 30 min, DAKO D0306). This was developed with 

Ferengi Blue for 20 min. 

Western blotting:  Whole blood was obtained from the proband and from normal controls.  

Protein was isolated by diluting 1 mL whole blood 1:20 with 1X RBC Lysis Buffer (QIAGEN).  

Samples were spun down at 350 x g for 10’.  Supernant was decanted and the resulting pellet 

was resuspended in an additional mL of 1X RBC Lysis Buffer and spun again.  Pellets were 

washed in phosphate buffered solution x 1.  Cells were then incubated on ice for 1 hour in 

xTractor Cell Lysis buffer (Clontech, Takara Bio) with added 1X cOmplete Protease Inhibitor 

Cocktail Tablets (Roche). Samples were sonicated at high-power 3 cycles of 30” on and 30” off.  

Cellular debris was pelleted at 15,000 x rpm at 4⁰C for 10 minutes.  The resulting supernatant 

was quantified by Bradford protein assay.  20 µg of sample protein was supplemented with PBS 

and combined with the appropriate volume of 4X SDS sample buffer for a final volume of 20 

µL.  Samples were incubated at 80⁰C for 10 minutes and spun again at 15,000 x rpm for 5’ to 



remove insoluble protein.  Samples were resolved on NuPAGE Novex 4-12% Bis-Tris Protein 

Gels (lifeTechnologies, Thermo Fisher Scientific) running with 1X MOPS buffer.  Protein was 

transferred to activated PDVF membranes overnight at 4⁰C.  Membranes were blocked in 5% 

milk overnight at 4⁰ with gentle rocking.  Membranes were incubated with rabbit polyclonal 

anti-GATA1 antibody (ab173816, Abcam) diluted 1:500 in 5% milk at 4⁰C overnight.  

Membranes were washed in 1X PBST/0.1%Tween for 15 minutes X 4 with gentle rocking at 

room temperature.  The membrane was then incubated with anti-rabbit HRP antibody diluted 

1:5000 in 2% milk at RT for 2 hours.  A final wash of membranes in 1X PBST/0.1% Tween was 

performed 15 minutes X 4 with gentle rocking at RT.  Blots were developed per manufacturer 

instruction with SuperSignal West Pico Chemiluminescent Substrate (Pierce,ThermoScientific) 

RT-PCR. Total RNA was extracted from peripheral blood of the proband and control with 

TRIzol Reagent (Life Technologies, Thermo Fisher Scientific Inc.).  RT-PCR was performed 

using on freshly isolated RNA using the OneStep RT-PCR Kit (QIAGEN).  RT-PCR primers 

were designed as previously described (4) for GATA1 exon 1 forward, 5’-

ACACTGAGCTTGCCACATC-3’ and GATA1 exon 3 reverse, 5’-CACAGTTGAGGCAGGG-

TAGAG-3’. RT-PCR conditions were 50⁰C for 30 seconds for reverse transcription; 95⁰ 

denaturation for 15 seconds, (95⁰C-45 seconds, 57⁰C-45 seconds, 72⁰C-1 minute) runs for 40 

cycles, 72⁰C-5’ for amplification.  PCR products were resolved on a 1.5% agarose gel by 

electrophoresis, visualized with ethidium bromide and shown on Figure 1E. 

Platelet aggregometry: Clinically approved platelet aggregation test was performed at IU Health 

Pathology Laboratories and interpreted by a certified pathologist. The following platelet agonists 



were used: arachidonic acid (500 g/ml); collagen (1.5 g/ml); ADP (10 M), and ristocetin (1 

mg/ml) at a stir speed of 1200 rpm for 10 minutes. Healthy control platelets were tested in 

parallel. 

SUPPLEMENTAL FIGURE LEGENDS 

Supplemental Figure 1. Normal weight (a) and height (b) growth curves of the patient. 

Supplemental Figure 2. Binucleated erythroblasts (a-c) with nuclear bridges (d), abnormal 

chromatin condensation (e-h), nuclear budding (i) and micronucleation (j). Scale bar: 2 m. 

Supplemental Figure 3. Micromegakaryocytes (a) with nuclear lobes connected by chromatin 

bridges (b), abnormal nuclear morphology (c-e) and decreased cytoplasm:nuclear ratio (e). Scale 

bar: 10 m. 

Supplemental Figure 4. Platelet aggregation test reveals mild platelet aggregation defect in the 

GATA1c.21A>G patient. Platelet aggregation curves in response to indicated agonists (a) are notable 

for decreased, partially reversible aggregation upon exposure to arachidonic acid (blue curves 

and asterisks) in comparison to healthy control. Note minor disaggregation of ADP-induced 

platelet aggregates (red) and high amplitude of ristocetin-induced platelet aggregation curve 

(green). Maximum platelet aggregation to indicated agonists is shown in (b). 
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