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Abstract 

One important factor in many macro-level theories of crime is income inequality. Although 
research generally shows that low levels of neighborhood income are associated with crime, 
research studies have been less clear on whether income inequality is a robust, independent 
predictor of crime, particularly in small area studies and few studies have explicitly considered 
income inequality between neighborhoods, and those that do typically focus on homicide. The 
current study examines whether within and between-neighborhood income inequality is 
associated with variation in violent and property crime. We employ geocoded Uniform Crime 
Report data from the Indianapolis police department and economic and demographic 
characteristics of the population from the American Community Survey for 2005 to 2009.  
Consistent with prior research, lower levels of income were associated with higher violent and 
property crime counts.  Within-tract income inequality was also associated with higher UCR 
violent and property crimes in most models.  Results also showed that the ratio of tract income 
levels to neighboring tracts is associated with variation in crime. Thus, both local and nearby 
income inequality affect crime. Implications for theory and policy are discussed. 
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Introduction 

 The detrimental effects of high levels income inequality have recently become the subject 

of discussion in national political circles.1  Yet, the potentially harmful effects of income 

inequality have been a longstanding concern for crime researchers.  A substantial amount of 

research has examined whether low levels of income in an area are associated with higher 

crime.2 These studies typically focus on how poverty and unstable housing or families affect 

intra-community informal social control and ultimately crime (e.g. Morenoff, Sampson, and 

Raudenbush 2001; Sampson and Groves 1989; Sampson, Raudenbush, and Earls 1997). Others 

(see Hipp 2007) argue that income inequality can also increase crime, though empirical findings 

have been mixed (for discussions see Ousey and Lee 2013; Patterson 1991). In addition, many 

studies of income inequality and crime have been conducted at large levels of aggregation such 

as nations (Chamlin and Cochran 2006; Nivette 2011; Pratt and Godsey 2003), cities (Harer and 

Steffensmeier 1992; Kovandzic, Vieraitis, and Yeisley 1998; Parker and McCall 1997; Shihadeh 

and Steffensmeier 1994) or SMSAs (Blau and Blau 1982) (see Ousey and Lee 2013 for an 

overview).  Several studies (e.g. Crutchfield 1989; Hipp 2007; Mears and Bhati 2006; Messner 

and Tardiff 1986; Patterson 1991; Wang and Arnold 2008), have considered these issues at lower 

levels of analysis such as neighborhood clusters or census tracts.  As elaborated further below, 

theory and some research evidence suggest that income levels and inequality within 

neighborhoods affect crime.  Boggess and Hipp (2014:7) note that recent research focuses on 

how the economic conditions of nearby areas may matter for neighborhood crime. Thus, it is 

1 The New York Times even has a section of its website devoted to the issues surrounding income inequality. 
http://topics.nytimes.com/top/reference/timestopics/subjects/i/income/income_inequality/index.html. 
2 For recent research focusing on the effects of the related but broader concept “disadvantage” on crime see Hipp 
2010; Hipp and Yates 2011; Krivo, Peterson, and Kuhl 2009; Peterson and Krivo 2009; Stretesky, Shuck, and 
Hogan 2004.   
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important to also consider between neighborhood income inequality.  To date, most studies that 

have explicitly modeled within and between neighborhood income inequality have focused on 

homicide and used data from the city of Chicago (e.g. Mears and Bhati, 2006; Morenoff et al, 

2001). In this study, we explore whether and how within and between neighborhood income 

inequality affect several types of serious crime, controlling for low levels of income. To do this, 

we employ geocoded UCR crime data from 2007-2009 from the Indianapolis Metropolitan 

Police Department (IMPD) combined with income and socio-demographic characteristics of 

census tracts from the American Community Survey from 2005-2009.  

Income Inequality and Crime 

 There are several theoretical reasons why income inequality and crime may be related 

(see Hagan and Peterson 1995; Hipp 2007; Ousey and Lee 2013 for discussions). 3  Indeed, Hipp 

(2007: 668, Table 1) notes four different potential mechanisms by which general inequality and 

crime may be related, including social disorganization, relative deprivation, social distance, and 

routine activities theory.4  For example, social disorganization theory focuses on the ability to 

maintain informal social control within a neighborhood.  Income inequality may reduce the 

capacity for community informal social control by adversely affecting family stability, social 

networks, supervision of youth and what Sampson, Raudenbush, and Earls (1997) refer to as 

“collective efficacy”.  Income inequality may also increase social distance between the rich and 

the poor, reducing the likelihood of social interaction necessary for maintaining informal social 

control and lead to social and cultural isolation that can create criminogenic cultural 

3 Although we focus here on inequality, research generally shows that low levels of income (poverty) and crime are 
related, though this finding is not universal (see Ousey and Lee 2013; Patterson 1991).   
4 Hipp (2007) adds two additional mechanisms when discussing inter-racial inequality or ethnic heterogeneity, 
namely consolidated inequality and group threat. 
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adaptations.5 Income inequality may also induce feelings of “relative deprivation” for those with 

fewer resources.6  From this perspective, crime would likely result from resentment or anger on 

the part of the “have nots” against the “haves”.  Finally, routine activities theory suggests that 

crime occurs when motivated offenders encounter suitable targets in the absence of capable 

guardians.  Inequality could lead to crime by increasing the pressure for the poor to obtain goods 

and thereby increasing the number of motivated offenders.  It could also lead to increased crime 

by reducing guardianship because those with few resources might be less able to take appropriate 

security measures.  Finally, it may be that inequality increases crime by placing those with few 

resources near those with greater resources (and therefore goods or people that can be considered 

suitable targets).  Therefore, there are good theoretical reasons to believe that income inequality 

is related to crime.  

 Studies with large units of analysis generally show a link between inequality and crime. 

Pratt and Godsey (2003), for example, found that income inequality predicted cross-national 

variation in homicide rates in 46 countries. There have also been several studies at lower levels 

of aggregation such as cities (Harer and Steffensmeier 1992; Kovandzic, Vieraitis, and Yeisley 

1998; Parker and McCall 1997; Shihadeh and Steffensmeier 1994) or SMSAs (Blau and Blau 

1982).  For example, Kovandzic, Vieraitis, and Yeisley (1998) found that three separate 

measures of income inequality and income levels (poverty and unemployment) have independent 

effects on homicide in a study of 190 large cities in 1990.7  

5 For an excellent discussion of modern thinking on culture and crime see Sampson and Bean 2006. 
6 Blau and Blau (1982) argue that inter-racial income inequality may engender anger and resentment and we agree.  
However, there is no reason to believe that intra-racial income inequality could not also produce a feeling of relative 
deprivation. We appreciate the suggestion of an anonymous reviewer that this point be clarified. 
7Also at the city-level, Velez, Krivo, and Peterson (2003) examined the effects of black-white gaps in poverty, 
female headed families, male unemployment, income, percentages of college graduates on the racial gap in 
homicide offending in 126 central cities in 1990.  They found that higher homicide rates for blacks are due to lower 
rates of income, college graduates and professionals in the work force among Blacks (see also Ulmer, Harris, and 
Steffensmeier 2012). 
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 Studies have also examined the effects of income inequality on crime with smaller units 

of analysis. For two early studies see Messner and Tardiff (1986) who studied 26 identified 

neighborhoods (somewhat larger than census tracts) in Manhattan, NY and Crutchfield (1989) 

who studied the effect of poverty and income inequality in Seattle census tracts.  Hipp (2007) 

focused on income inequality in his study of crime in census tracts in 19 cities in 2000.  

Controlling for several other factors, he finds that overall and within-race income inequality in a 

tract are significant predictors of homicide, aggravated assault, and robbery but not burglary or 

theft. Finally, though the main focus of the study was on examining whether there are non-linear 

effects of poverty on crime, Hipp and Yates (2011) found that inequality was a significant 

predictor of violent and property crime (see Table 2, p.980) in census tracts in 25 cities. Thus, 

several recent studies suggest that income inequality within a neighborhood affects crime. 8 

Local and Nearby Income Inequality  

As noted above, Hipp (2007) specifies four theories that relate overall income inequality 

and crime, each operating at potentially distinct geographic levels.  Social disorganization and 

social distance theories are posited to operate primarily within a neighborhood.  Routine 

activities theory is posited to operate “nearby”.  Thus, routine activities theory would suggest 

that crime would be higher when those with few resources live in proximity to those with items 

that can be stolen, as these situations provide more opportunities for motivated offenders and 

suitable crime targets to come into contact (Hipp 2007).  The “travel to crime” literature suggests 

that offenders generally stick close to home so “nearby” is more likely to be one’s neighborhood 

8 Studies at the city level also suggest that poverty and inequality clustering are associated with crime. Stretesky, 
Shuck, and Hogan (2004) examined the link between the geographic clustering of poverty and violent crime. They 
found that an index of disadvantage (percent poor, percent female headed households, percent black, percent 
unemployed) had a stronger effect on homicide in cities with high levels of poverty concentration.  Similarly, Hipp 
(2011) examined 352 cities from 1970 to 2000 that experienced rapid growth and found (p.649) that “[c]ities with 
very high levels of inequality and economic segregation—walled-off fortresses of wealth—will have the highest 
assault rates…”  
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or those in close proximity (see e.g. Bernsaco, 2010; Townsley &Sidebottom, 2010) than across 

town.  According to Hipp (2007), relative deprivation theory does not articulate a specific 

geographic level at which it operates.  We argue, however, that the conditions in one’s 

neighborhood and those nearby are more likely to be relevant comparison points for the theory 

than the city as a whole or areas across town.  One’s own and immediately surrounding 

neighborhoods likely serve as important mental reference points, particularly given the 

geographically finite “awareness spaces” within which most people (including criminals) 

typically operate (see Brantingham and Brantingham 1984, 1993).  So, spatially proximate 

neighborhoods are those that are most important in determining whether one feels poor in 

comparison to others (for a similar argument, see Crutchfield 1989: 497).   

 Boggess and Hipp (2014:7) note that there has been an increasing focus on the spatial 

context of neighborhoods and how the characteristics of surrounding areas might matter for 

crime.  In their study, Boggess and Hipp (2014) considered gentrification over time in Los 

Angeles census tracts.  They found that tracts experiencing economic revitalization 

(gentrification) were more likely to have higher crime if they were near areas that were not 

experiencing economic development than those neighborhoods that were surrounded by other 

neighborhoods experiencing revitalization.  Consistent with this logic (though unlike Boggess 

and Hipp (2014) focusing on current conditions rather than change over time), we argue that 

theory and empirical evidence suggest that economic conditions such as inequality in one’s own 

area and those that surround it are likely to matter for crime. A few research studies have 

explicitly considered within and between neighborhood income inequality .  

Morenoff, Sampson, and Raudenbush (2001) studied the effects of concentrated 

disadvantage, inequality, and collective efficacy on homicide in 343 neighborhood clusters in 

6 
 



Chicago.  Net of other factors, including a spatial lag, Morenoff et al. (2001) found that the 

effects of inequality on homicide were greatest within the neighborhood but extended to areas 

beyond the neighborhood.  Thus, there were fairly substantial effects of concentrated 

disadvantage in the first order neighbors of the neighborhood and to a much lesser extent the 

second and third order neighbors.  This is a very illuminating study and shows the desirability of 

considering areas beyond the immediate neighborhood.  Similarly, Mears and Bhati (2006) 

considered the effects of the somewhat broader concept of “resource deprivation” (an index of 

percent poor, percent female-headed households, percent unemployed, median family income, 

and median household income) in nearby areas on homicide in 343 Chicago neighborhood 

clusters (aggregated from census tracts). They found that resource deprivation in nearby areas 

has a greater effect on homicide in areas that are both spatially proximate and similar in terms of 

race/ethnic composition.  The Mears and Bhati (2006) study suggests that crime is a function of 

characteristics in nearby areas but does not specifically measure income inequality and focuses 

only on homicide.  Finally, Wang and Arnold (2008) include a measure of “localized income 

inequality” in their study of homicide for census tracts, neighborhood clusters, and community 

areas in Chicago.  Unfortunately, this measure is included as part of a deprivation index, so it is 

not possible to determine the independent effect of income inequality in the study. Thus, one 

question that remains is whether similar effects would be seen with other crimes and in other 

cities.  We believe the theories discussed here are somewhat agnostic on the degree to which 

inequality would affect violent or property crime, or both.  For example, relative deprivation 

theory might suggest that inequality would produce anger and therefore violent crime (though 

perhaps not just homicide).  However, routine activities theory would suggest that property 

crimes such as burglary and theft could be increased as well as robbery when inequality leads to 
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more motivated offenders meeting suitable targets.  Thus, we argue that a study that considers all 

types of crime is useful. 

In sum, there are good reasons to believe that income levels and inequality within 

neighborhoods affect crime (see Hipp 2007). A few studies have considered how income 

inequality between neighborhoods might matter for crime but they have focused mainly on 

homicide (Mears and Bhati 2006; Morenoff et al. 2001; Wang and Arnold, 2008) or have 

included income inequality as part of a broader “disadvantage” measure (Mears and Bhati, 2006; 

Wang and Arnold, 2008). The goal of the current study is to focus specifically on income 

inequality and explore whether and how within and between-neighborhood income inequality 

affect a variety of serious crimes.  In the next section, we discuss the data and methods used in 

the current study. 

DATA AND METHODS 

 Crime data for this analysis come from Uniform Crime Reports (UCR) obtained from the 

Indianapolis Metropolitan Police Department (IMPD). Income and other neighborhood attributes 

were collected from the U.S. Bureau of the Census, American Community Survey (2005-2009). 

The unit of analysis is the census tract, and we employ tracts as specified in the 2000 census. The 

study area includes all areas in Marion County in which police services were consolidated in 

2008.9 Four municipalities were excluded from the IMPD consolidation. Tracts with over 10 

percent land area within excluded municipalities were not included in the analysis. Excluding 

those tracts reduced the number of observations from 212 to 188. 

9 Prior to 2008, the Indianapolis Police Department service area was essentially congruent with City of Indianapolis 
boundaries before the city and county consolidated most other public service in 1970. In 2008, the Indianapolis 
Police Department merged with the Marion County Sheriff’s Department to form the Indianapolis Metropolitan 
Police Department. That merger expanded the service area controlled by the City of Indianapolis to nearly all of 
Marion County, with exception of municipalities that have remained excluded from major municipal services in 
Marion County. Those excluded areas include: Beech Grove, Lawrence, Southport, and Speedway. 
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Dependent Variables 

UCR crime counts in the study area, by census tract, from 2007 through 2009 are utilized 

as outcomes. Aggregating three years of reported crimes minimizes the potential error associated 

with random year-to-year variation. This analysis considers aggregate counts of UCR property 

and violent crimes within the census tracts. Individual crime types are also examined separately 

(i.e., criminal homicides, rapes, robberies, aggravated assaults, burglaries, larcenies, and vehicle 

thefts).  

Income Variables 

The present study examines income levels and inequality within and between tracts, 

specifically: tract mean income, within tract inequality, as measured by the Gini coefficient, and 

between tract income inequality, as indicated by the ratio of adjacent to tract mean income.  

Because there are several measures that could potentially be used to predict the effects of each 

aspect on crime and prior research has produced mixed findings on the effects of income 

inequality on crime, we extensively examined several indicators of income levels and inequality 

to ensure that conclusions drawn are not dependent upon the operationalization of income. For 

more information on the strategy we used to determine which income variables to include in the 

models reported here and additional results see Appendix 1. 

Level of tract income is measured by the mean household income.  Household income 

was chosen because it is the most inclusive income measure and is most consistent with the 

primary focus of measuring income inequality by the U.S. Census Bureau (e.g., Persky and Tam 
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1990; Weinberg 2011). We chose mean, rather than the median, because it exploits the entire 

income distribution.10   

The Gini coefficient is the most commonly used measure of income inequality (see Jones 

and Weinberg 2000; Kim and Jargowsky 2005). Therefore, to capture within tract income 

inequality, we employ the Gini coefficient, which is based on the frequency of households at 

different levels of income. That measure ranges from zero to one. Zero represents perfect 

equality and one indicates maximum inequality within each tract.11 Between tract income 

inequality is measured by dividing adjacent tract mean household income by tract mean 

household income. Using this ratio as a measure of income inequality between groups or 

neighborhoods has been suggested by several scholars (e.g., Fossett and South 1983; Wang and 

Arnold 2008)12.  Using the ratio as a measure of intergroup income inequality preserves 

important qualities about direction of the intergroup inequality and the magnitude of difference 

between two groups. 

Control Variables 

10 Fossett and South (1983) provide a compelling argument about the choice of using mean income instead of 
median income when comparing group differences. They acknowledge that the median is justified when there is 
reason to believe that extreme values are “misrepresented.” Their argument reasonably suggests that if there is no 
reason to believe that there is a misrepresentation of extreme values, then the entire distribution (e.g., lower income, 
middle income, and higher income) should be considered when attempting to represent the level of income of a 
group. We contend that the ACS Census tract level data, sampled over a five year period, mitigates much of the 
expected misrepresented error associated with extreme values. Therefore, including the entire distribution in the 
estimate of income level is reasonable. While focus on the level of income through the mean is consistent with that 
reasoning, we performed multiple sensitivity analyses that indicate that conclusions are relatively unaltered when 
considering median-based measures. 
11 The Pareto-linear estimation method was use to estimate the within income interval means necessary to calculate 
the Gini coefficient (see Miller 1966, pp. 215-216). This method has been used by the Census (1987) and several 
scholars (Cloutier 1988, 1997; Hipp 2007, 2011; Jargowsky 1995, 1996; Lee 2005; Neilsen and Alderson 1997; 
Persky and Tam 1990; Watson 2009). The Pareto-linear method assumes a linear distribution in lower income 
intervals and a Pareto distribution in upper income categories. The upper income intervals include the interval 
containing the median and those above. 
12 Similar to the justification of the tract mean level of income, the logic of Fossett and South (1983) suggests that 
the ratio of means is the most reasonable measure of intergroup comparisons. Again, sensitivity analyses indicate 
that median-based measures of inter-neighborhood income inequality do not affect our overall conclusions.  
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To determine the other variables to include in our analyses, we conducted a survey of several 

other studies of income inequality (Hipp 2007, 2010, 2011; Hipp and Yates 2011; Kovandzic et 

al 1998; Mears and Bhati 2006; Morenoff et al 2001).  Although space considerations preclude 

an extended discussion of this analysis, we concluded that most studies include some indicator of 

the broad set of empirical indicators we include in our analyses.  The specific indicators of these 

concepts, however, were measured in a variety of ways.  So we chose the empirical indicators 

that we felt best captured the important macro-level factors associated with crime in census 

tracts.   

Disadvantage Index 

Following previous research, a disadvantage index is included in the models (Land, McCall 

and Cohen 1990; Parker and McCall 1999). Indicators in that index include: percentage of 

female headed households and percentage of persons in the labor force who are unemployed. 

Principal Components Analysis was used to reduce those indicators into one index. The Factor 

loading on this index is 0.88 and the variation accounted for by the first component is 0.77. It 

should be noted that income is often included in disadvantage indices. Since we are interested in 

the independent effect of income, it is not included in the disadvantage index for this analysis.    

Stability Index 

 Previous research also finds a relationship between crime and neighborhood instability 

(e.g., Wilcox et al. 2004). Using principal components analysis, a stability index was created that 

included the percentage of owner-occupied housing units and the percentage of the population 

that had not moved within five years. The absolute value of the factor loading for this index is 

0.92 and the proportion of the variation accounted for by the first component is 0.83. 
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Adapted Herfindahl Index 

 Social disorganization theory also focuses on the detrimental effects of ethnic 

heterogeneity.  Therefore, Hipp’s (2011) adapted Herfindahl index is used to measure the extent 

of variation in racial and ethnic makeup of tract population.13 That index takes the minimum 

value when all members of the population are the same race or ethnicity, while the maximum 

value indicates that there is an even distribution across all groups. The formula for the index is: 

𝐻𝐻 = 1 −  �𝑝𝑝𝑖𝑖2
𝑛𝑛

𝑖𝑖−1

 

where pi is the proportion of the population in each of n racial and ethnic groups.14 The index 

includes four groups: Not Hispanic or Latino, White alone; Not Hispanic or Latino, Black or 

African-American alone; Hispanic or Latino; Not Hispanic or Latino, all other races.15  

Other Control Variables 

The percentage of Hispanic population, African American population, and percentage of 

population aged 15-24 within each census tract are included as additional control variables, 

based on a survey of several prior studies in this area (e.g. Hipp 2007, 2010, 2011; Hipp and 

Yates 2011; Kovandzic et al 1998; Mears and Bhati 2006; Morenoff et al 2001).  Table 1 shows 

basic descriptive statistics for variables used in the analyses.   

Prior studies have shown that socio-economic factors such as those included in the 

current study are often highly correlated.  In addition to the multiple sensitivity analyses 

13 The original Herfindahl (or Herfindahl-Hirschmann) index was a measure of homogeneity. Specifically, the index 
was created to measure market concentration.  
14 Note that the adaptation is that the original index is subtracted from one, making it a measure of heterogeneity 
rather than a measure of homogeneity.  
15 Unlike Hipp (2011), we do not include Asians as a separate group because of the small Asian population in 
Indianapolis. 
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associated with the specification of income inequality measures reported in the Appendix, we 

examined the influence of potential multicollinearity. Because it is not possible to directly test 

for multicollinearity in negative binomial models, we estimated a series ordinary least square 

(OLS) models that are analogous to the negative binomial modes presented in Tables 2 and 3.  

Understanding that such models are not perfect substitutes for preferred count models, we are 

able to provide some evidence that multicollinearity is likely not driving our results. Variance 

inflation factors produced from our OLS models were thoroughly examined and generally do not 

indicate any issues related to the multicollinearity of independent variables.  VIFs values in these 

models averaged 2.03 and only one variable had a VIF higher than 3 (the disadvantage index had 

a value of 3.37 with all control variables included). 

Table 1 about here 
 
Modeling Strategy 

 Theory and empirical evidence suggest that crime is a function of neighborhood stability 

(e.g., extent to which the neighborhood experiences high levels of resident mobility), levels of 

disadvantage (i.e., extent to which residents are disadvantaged) and demographic characteristics 

of neighborhoods (e.g., racial composition and age of population).  In this paper, we focus 

primarily on the impact of income inequality within and between neighborhoods, measured in a 

variety of ways.  

The count of crimes in each census tract serves as the dependent variable. Crime counts 

are distributed such that large numbers of tracts have few crimes whereas a small number of 

tracts have higher numbers of reported crimes. Therefore, the normality assumption necessary 

for linear regression is violated. Count data (e.g., crime events in a census tract) more closely 

follow a Poisson or negative binomial distribution (Greene 2000; Osgood 2000; Osgood and 
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Chambers 2000). Poisson regression assumes that the mean of the outcome is equal to its 

variance. If that assumption is violated, then Poisson regression is not an appropriate method due 

to over-dispersion and the more appropriate model is negative binomial regression because a 

dispersion parameter is included in the model. For those reasons, negative binomial regression is 

used to estimate the results reported below. The models reported below also include population 

as an exposure variable and a spatial lag crime variable (i.e., the average count of crime in 

spatially contiguous tracts). The exposure variable is included to address the expected increase in 

potential for crime as population in a tract increases. The spatial lag variable is included to 

mitigate expected spatial autocorrelation. The Moran’s I statistic, calculated for violent crimes 

and property crimes, is consistent with that expectation. The global Moran’s I statistic for violent 

crimes was 0.415 and was 0.157 for property crimes. Both of those values were statistically 

significantly different from zero at p<0.001.  As a measure including income in the surrounding 

tracts is already included in the model, the addition of the spatial lag of crime could be 

introducing a degree of endogeneity into the models. Given the high levels of spatial 

autocorrelation for many of the models and the significance of the spatial lag variable in many of 

the models, we chose to include the spatial lag in the models reported. Models without the spatial 

lag produce similar results, with virtually no differences in patterns of significance. The z-scores 

for the income variables in the models with the spatial lag are lower than those in the models 

without (in 24 out of 27 cases). Therefore, reporting the results for the models with the spatial 

lag is the more conservative alternative. 

RESULTS 

 The purpose of this paper is to examine the effect of within and between tract income 

inequality on violent and property crimes. Table 2 shows the results of negative binomial models 
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predicting aggregated and individual UCR violent crime counts (homicide, rape, robbery, and 

aggravated assault). Consistent with most prior studies, the level of tract income is statistically 

negatively associated with aggregate UCR violent crime counts, as well as counts of specific 

UCR violent crimes by type in all models in Table 2. Thus, fewer violent crimes are expected in 

higher income neighborhoods.   In addition, within tract income inequality, as measured by the 

Gini coefficient is a statistically significant (p < 0.05) predictor of aggregated and individual 

UCR violent crime counts (except homicide).  The number of violent crimes is also significantly 

associated with between tract income inequality (i.e., ratio of adjacent tract mean income to tract 

mean income) for aggregated UCR violent crime counts. Thus, violent crimes are generally 

higher when the surrounding tracts have lower incomes.  The significance of that relationship 

with aggregated violent crime may be particularly driven by rapes and aggravated assaults, as 

there seemingly is not a significant relationship between nearby neighborhood income and 

homicides or robberies.   

Table 2 about here 
 

Table 3 shows the results of identical models to predict aggregated and individual UCR 

property crimes (burglary, larceny, motor vehicle theft).  In all models of table 3, property crime 

is statistically significantly lower when within-tract income levels are higher.    Property crimes 

(aggregated and individual) are also statistically significantly higher when income inequality (i.e. 

the Gini coefficient) within a tract is higher.  In addition, aggregated and individual UCR 

property crime counts are higher when between tract income inequality is higher, particularly 

when the income levels of adjacent tracts are lower compared to the tract income (as indicated by 

the ratio of adjacent to tract mean income). Thus, the effects of income levels and inequality 

within a tract and the ratio of income in adjacent tracts matter for property crime. 
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Table 3 about here 
 
The results of the models presented here are generally consistent across different 

measures for income inequality and crime type.  Mean tract income levels are statistically 

significantly negatively associated with aggregated and individual UCR violent and property 

crime counts in all models in Tables 2 and 3.  Within tract income inequality (Gini coefficient) is 

significantly related to higher counts of aggregated and individual UCR violent and property 

crime counts except homicide.  Interestingly, between tract income inequality was a significant 

predictor of aggregated and individual violent and property crime counts except homicide and 

robbery.   

To illustrate the magnitude of each key variable, Table 4 shows predicted marginal effect 

of increasing each of the key variables by one standard deviation on the three year count of 

specific types of crime. The predicted marginal change of those variables was calculated 

separately while holding all other variables at the mean. For instance, a one standard deviation 

increase in tract mean income (i.e., $55,874 to $83,686), while holding all other neighborhood 

characteristics at the mean, is predicted to decrease the average number of homicides (µ= 1.5) by 

0.13. Under the same conditions, a one standard deviation increase in mean income is predicted 

to result in 3.0 fewer rapes (µ=6.7), 22.3 fewer robberies (µ=57.2), and 34 fewer aggravated 

assaults. (µ=75.2). Within-tract income inequality (the Gini coefficient) was a statistically 

significant predictor of rape, robbery, and aggravated assault, but not homicide.  Increasing 

within tract inequality (i.e., the tract income Gini coefficient) by one standard deviation from the 

mean is estimated to increase the number of rapes by 1.6, robberies are predicted increase by 

18.6, and aggravated assaults are expected to increase by 9.5.  Finally, between-tract income 

inequality also is not a statistically significant predictor of homicide, but is statistically 
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significant for the other three individual types of violent crimes.  Specifically, all types of violent 

crime are higher when tract income is higher relative to the mean income of adjacent tracts. 

When the mean of that ratio (1.13) is increased by one standard deviation (0.33), the estimated 

result is 0.8 fewer rapes, 5.8 fewer robberies, and 13.7 fewer aggravated assaults. 

Table 4 about here 
 
The key inequality variables were significantly related to change in each of the specific 

types of property crime. Based on our models, a one standard deviation increase in tract level 

income is predicted to result in 63 fewer burglaries, approximately 105 fewer larcenies, and 42 

fewer vehicle thefts.  In terms of within tract inequality, increasing the tract income Gini 

coefficient by one standard deviation is predicted to result in a 13.85 increase in burglaries, 41 

more larcenies, and 10 more vehicle thefts. Finally, with respect to between tract inequality,  a 

one standard deviation increase in the adjacent tract ratio is estimated to decrease burglaries by 

14, result in 38 fewer larcenies, and 14 fewer vehicle thefts.  

Next, we briefly discuss the effects of control variables on tract violent and property 

crime counts. The most consistent control variable is the measure of residential stability, which is 

statistically significantly negatively associated with the aggregated UCR violent crime counts 

and all individual UCR violent crimes, except homicide.  Somewhat surprisingly, the 

disadvantage index is not a consistent predictor of any UCR violent crime in Table 2, net of the 

other variables in the model.  Although this might seem counterintuitive, given the consistent 

significance of this variable in other studies, most other studies include income variables in 

disadvantage indices (e.g. Parker and McCall 1999).  Although this is not the main focus of the 

study, this finding deserves additional research in the future.  It may be that these income 

variables are the most important drivers of the effects of the disadvantage index on crime in 
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macro-level studies.  In terms of race and ethnicity, the percent of tract residents who are African 

American is a statistically significant predictor of aggregated UCR violent crime counts, 

homicides and aggravated assaults but not rapes or robberies.  Interestingly, the percent of 

residents who are Hispanic and the Herfindal heterogeneity index are not statistically significant 

predictors of aggregated or individual types of UCR violent crime counts in Table 2. Three of 

five models indicate that a higher percentage of males aged 15-24 is associated with significantly 

lower crime, which is unexpected.  And, consistent with the significance of the Moran’s I 

statistic for spatial autocorrelation, aggregated violent crime counts, robberies, and aggravated 

assaults (though not homicides or rapes) are higher in tracts where the surrounding tract counts 

of those crimes are higher (spatial lag variable). 

The results for property crime generally mirror those of the violent crime models.  For 

example, racial heterogeneity and the percent of tract residents who are Hispanic are not 

statistically significant predictors of UCR property crime counts in any model in Table 3 and 

percentage African American in a tract is only a statistically significant predictor of burglary 

counts.  Tract residential stability is also a significant predictor of aggregated UCR property 

crime counts and larcenies and vehicle thefts (but not burglaries).  And similar to the violent 

crime models, the disadvantage index is not a significant predictor of tract property crime counts, 

net of the other variables in the model.  Percent of males age 15-24 in a tract is statistically 

significantly negatively associated with burglaries and vehicle thefts (again surprisingly).  The 

spatial lag variable is significant for burglaries, and vehicle thefts but not aggregated property 

crimes or larcenies. 

 Because the results of the effects of income inequality on crime in prior studies have been 

mixed, we estimated models that captured income levels and inequality, both within and across 
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tracts.  Although the models presented in Tables 2 and 3 produce fairly consistent results of the 

effect of income variables, controlling for a variety of other factors, the results presented here 

could be dependent on model specification.  To test the robustness of these results to model 

specification, similar models were estimated using ordinary least squares (number of crimes plus 

one as the dependent variable), negative binomial regression without an exposure variable, and 

negative binomial regression with area of tract as the exposure variable.  We also examined 

multiple measures of tract income level, intra-tract income inequality, and inter-tract inequality 

(see Appendix for discussion). The general substantive conclusions one would draw regarding 

the effects of within and across tract income levels and inequality on crime are consistent, 

regardless of model specification.  

DISCUSSION AND CONCLUSIONS 

There has been a longstanding focus on the effects of income inequality on crime, with 

mixed results (see Ousey and Lee 2013). Recent research focuses on how aspects of the 

neighborhood and surrounding areas matter for crime (e.g. Boggess and Hipp 2014).  We noted 

that there are good theoretical and empirical reasons to consider income inequality within and 

between neighborhoods.  Indeed, several prior studies have considered how inequality in nearby 

areas affects homicide in Chicago (Mears and Bhati, 2006; Morenoff et al. 2001; Wang and 

Arnold 2008).16  Extant theory does not appear to suggest that the impact of inequality would be 

limited to homicide, therefore, we examined the effects of within and between neighborhood 

income inequality on several measures of a variety of serious violent and property crimes, using 

crime data for census tracts from 2007 to 2009 in Indianapolis. We controlled for low income 

levels within tracts and perhaps not surprisingly, net of other factors, low income tracts had more 

16Hipp (2007) also explores these issues using a two stage least squares approach.  Thus, no empirical estimate of 
between tract income inequality is reported in the study. 
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crime. We also found fairly consistent evidence that, net of income levels and other factors, 

higher within-tract income inequality was associated with higher violent and property crime 

counts. These findings are generally consistent with similar prior studies of income inequality 

and crime (e.g. Hipp 2007, Mears & Bhati 2006; Morenoff et al 2001).  Somewhat surprisingly, 

however, we did not find strong effects of inequality on homicide in the current study, whereas 

those studies focused exclusively on homicide.   

Because theory suggested that the relative income of the tract and those surrounding it 

might affect crime, we also investigated whether between-tract income inequality was related to 

crime.  We found evidence across a variety of model specifications and most types of crimes that 

it was.  Specifically, between tract income inequality (i.e. the ratio of mean income to adjacent 

tract income) predicted crime, net of other factors.  The coefficient was negative, which means 

that tract crime is lower when neighboring tracts have higher income. Interestingly, we did not 

find that homicide and robberies were predicted by this ratio.  This was somewhat surprising 

given that several other studies had found an effect of inequality in surrounding areas on 

homicide (Mears and Bhati, 2006 and Morenoff et al 2001).    

The findings of the current study add to a growing body of research that shows the 

importance of the characteristics of surrounding neighborhoods for crime.  As we noted above, 

Boggess and Hipp (2014) found that gentrification in nearby areas affects crime in the 

neighborhood.  Though our study was cross-sectional, it also suggests that the economic 

conditions of nearby areas affect crime.  These findings deserve additional research in the future 

and could have implications for theory.  For example, social disorganization theory has been 

critiqued in the past for treating neighborhoods as freestanding independent entities.  The 

findings of the current study add weight to the idea that both the area and its surroundings matter 
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for crime.  Therefore, it would seem that one logical next step for examining social 

disorganization theory is to consider the embeddedness of the neighborhood in its surroundings.  

One intriguing avenue for such efforts comes from a recent paper by Hipp and Boessen (2013) 

who described a city in terms of “egohoods”.  So rather than having discrete boundaries, 

neighborhoods extend in waves outward from the focal location.  Though it was beyond the 

scope of the current paper to incorporate the specific empirical technique, we applaud Hipp and 

Boessen’s work in attempting to push past the traditional boundary driven approach to thinking 

about units of analysis and “neighborhood”.  Of course, Hipp and Boessen’s (2013) study also 

showed the importance of income inequality for predicting crime. Indeed, we argue that our 

approach for capturing inequality across neighborhoods is consistent with the logic Hipp and 

Boessen (2013: 315) describe, “one might wish to construct a measure of the difference in the 

income level of the surrounding buffer and in the income level of the block as one way to capture 

inequality in the ISE approach.”  Though we employed census tracts, we compared income in the  

tract to income in the surrounding tracts as a measure of inequality.    

These findings add to the research literature by providing additional evidence that income 

inequality affect a variety of property and violent crimes, and that both within and between 

neighborhood income inequality matter for crime.  Although not the main focus of this study, we 

also found that race and ethnicity variables were not consistently associated with tract crime, in 

multivariate models controlling for income levels and inequality. Indeed, ethnic heterogeneity 

and the percent Hispanic were unrelated to any crime and percent African American predicted 

primarily violent crimes.   Similarly, other elements of disadvantage (unemployment and female 

headed households) were not consistent predictors of crime with income included as a separate 

measure.  This pattern of results suggests that income may be the most critical element of socio-
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economic disadvantage to consider for crime, but this finding should be explored more fully 

using other data in the future.  A measure of residential stability was a fairly robust predictor of 

violent and property crimes (except homicide and burglary) in the models estimated here, net of 

controls.   

This study is not without its limitations.  First, it should be noted that the current study 

relies on reported crime (which has widely-recognized limitations), and focuses on a single city.  

The city of Indianapolis is fairly typical of Midwest large cities and we believe it is a generally 

appropriate place to conduct research on the relationship between income inequality and crime.  

However, generalizing these findings beyond cities of similar size should be done with caution.  

The study also focuses on overall inequality rather than within and between race inequality 

Another avenue for future research is to consider whether the effects of between neighborhood 

income inequality vary by race and ethnic composition of the neighborhood and surrounding 

areas.  Prior research (e.g. Harer and Steffensmeier 1992; Hipp 2007; Shihadeh and 

Steffensmeier 1994) suggests that this is quite likely, so an obvious next step is to examine the 

effects of inter-racial income inequality within and across census tracts. 

 In sum, we find that within and between-tract income inequality are  fairly robust  

predictors of several types of serious crime, net of other factors including poverty. These results 

have some important policy implications. First, both local income levels and inequality matter.  

So policies should focus on ways to reduce both poverty and inequality, though as we noted at 

the outset, there is currently much discussion of inequality in national-level policy circles and 

real progress is likely to be difficult and slow.  Second, local and nearby economic conditions 

matter for crime.  So city planners should consider how development or revitalization efforts are 

likely to affect the relative mix of incomes in neighborhoods across the city.  The effects of any 
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policies are likely to extend beyond the area where money is being spent.  Most neighborhood 

revitalization programs are place-based and require decisions on where limited resources should 

be invested.  Combined with the work of others (e.g. Boggess and Hipp 2014), our research adds 

to the evidence that specific neighborhood investments (e.g., Neighborhood Stabilization 

Program, Homeownership Zone, Empowerment Zone) should be considered in light of economic 

conditions in surrounding neighborhoods.  For example, the City of Indianapolis recently 

followed the strategy of focusing on both distressed neighborhoods and neighborhoods 

surrounding distressed neighborhoods targeting areas of the city to invest Neighborhood 

Stabilization Program funds (Author 2009). This study adds to the growing evidence that, in the 

words of Mears and Bhati (2006), “no community is an island.” 
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Table 1: Descriptive Statistics 
  Variable  Mean  Std.Dev. 

Dependent Variables 
Violent Crime 2007-2009 140.61  91.07  
Property Crime 2007-2009 717.49  404.95  
Homicides 2007-2009 1.53  1.85  
Rape 2007-2009 6.66  5.72  
Robbery 2007-2009 57.20  40.35  
Aggravated Assault 2007-2009 75.22  51.30  
Burglary 2007-2009 207.58  106.68  
Larceny 2007-2009 418.26  303.32  
Vehicle Theft 2007-2009 91.65  55.47  

Income Variables 
Tract Mean Household Income $55,874.38  $27,811.87  
Tract Gini Coefficient 0.40  0.06  
Ratio adjacent tract to tract income 1.13  0.33  

Control Variables 
Percent African-American 30.69  29.12  
Percent Hispanic 6.36  7.43  
Percent Population Males aged 15 to 24 13.99  7.79  
Disadvantage Index (female headed households and unemployed) (0.00) 1.24  
Stability Index (Same Residence for Past 5 years and owner-occupied) (0.00) 1.29  
Adapted Herfindahl Index 0.37  0.18  
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Table 2. Violent Crime           
Independent variables Violent 

crimes 
Homicides Rapes Robberies Aggravated 

assaults 
Mean income (thousands) -0.0206*** -0.0114* -0.0278*** -0.0172*** -0.0228*** 

(0.00232) (0.00577) (0.00417) (0.00287) (0.00250) 
Tract income Gini 
coefficient 

3.088*** 2.558 3.726*** 4.372*** 1.942** 
(0.601) (1.338) (0.881) (0.774) (0.594) 

Ratio adjacent to tract 
mean income 

-0.478*** -0.560 -0.585** -0.275 -0.596*** 
(0.131) (0.288) (0.200) (0.155) (0.137) 

Herfindahl race-ethnicity 
heterogeneity index 

-0.354 -0.369 -0.173 -0.279 -0.375 
(0.225) (0.490) (0.345) (0.297) (0.219) 

Percent African-American 0.00395* 0.0146*** 0.00125 0.00391 0.00386* 
(0.00164) (0.00414) (0.00227) (0.00216) (0.00157) 

Percent Hispanic 0.00394 0.0178 -0.00364 0.00505 0.00245 
(0.00554) (0.0127) (0.00814) (0.00704) (0.00539) 

Percent males aged 15-24 -0.0146** -0.0222 -0.00740 -0.0183** -0.0110* 
(0.00465) (0.0130) (0.00661) (0.00637) (0.00441) 

Disadvantage index 
(female-headed & 
unemployed) 

-0.0248 0.161 -0.0571 -0.0659 0.00461 

(0.0467) (0.101) (0.0686) (0.0617) (0.0454) 
Stability index (same 
residence & owner-
occupied) 

-0.176*** -0.0809 -0.169*** -0.164*** -0.171*** 

(0.0343) (0.0862) (0.0499) (0.0453) (0.0332) 
Spatial lag of crimes 0.00314*** 0.144 0.0147 0.0113*** 0.00642*** 

(0.000706) (0.0878) (0.0181) (0.00208) (0.00123) 
Constant -3.166*** -8.152*** -5.665*** -5.161*** -3.203*** 

(0.355) (0.769) (0.535) (0.420) (0.369) 
Observations 188 188 188 188 188 
Log likelihood -993.6 -274 -489.6 -867.3 -867.2 
Chi2 273.9*** 124.1*** 156.9*** 193.8*** 302.1*** 

 
          

Standard errors in parentheses, *** p<0.001, ** p<0.01, * p<0.05        
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Table 3. Property Crime         

Independent variables Property 
crimes 

Burglaries Larcenies Vehicle 
thefts 

Mean income (thousands) -0.0135*** -0.0130*** -0.0108*** -0.0200*** 

(0.00187) (0.00166) (0.00220) (0.00234) 
Tract income Gini coefficient 1.572** 1.263** 1.482* 1.694** 

(0.589) (0.479) (0.708) (0.590) 
Ratio adjacent to tract mean 
income -0.400*** -0.281** -0.348** -0.467*** 

(0.113) (0.0985) (0.132) (0.125) 
Herfindahl race-ethnicity 
heterogeneity index -0.137 0.215 -0.295 -0.0825 

(0.219) (0.183) (0.266) (0.217) 
Percent African-American 0.000153 0.00272* -0.00212 0.00299 

(0.00164) (0.00133) (0.00201) (0.00159) 
Percent Hispanic 0.000665 0.00228 0.00167 -0.00152 

(0.00535) (0.00446) (0.00647) (0.00531) 
Percent males aged 15-24 -0.00880 -0.0154*** -0.00571 -0.0103* 

(0.00484) (0.00403) (0.00592) (0.0048) 
Disadvantage index (female-
headed & unemployed) -0.0614 0.0300 -0.0843 -0.0484 

(0.0448) (0.0382) (0.0543) (0.0450) 
Stability index (same 
residence & owner-occupied) -0.172*** -0.0293 -0.232*** -0.149*** 

(0.0327) (0.0301) (0.0388) (0.0338) 
Spatial lag of crimes 0.000163 0.00153** 0.000218 0.00570*** 

(0.000154) (0.000491) (0.000258) (0.00109) 
Constant -1.012** -2.659*** -1.625*** -3.255*** 

(0.332) (0.290) (0.371) (0.362) 

Observations 188 188 188 188 

Log likelihood -1,312 -1,043 -1,238 -913.4 

Chi2 134.7*** 190.1*** 106.6*** 242.2*** 
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Table 4: Marginal Effect* based on Standard Deviation Change in Inequality Variables** 

Dependent Variables Mean Income 
Tract income 
Gini coefficient Ratio Adjacent to Tract 

 

Violent Crime 

Homicides (µ= 1.5) -0.13 0.20 -0.09 

Rapes (µ=6.7) -3.03 1.60 -0.80 

Robberies (µ=57.2) -22.34 18.20 -5.83 

Aggravated Assaults (µ=75.2) -33.94 9.54 -13.71 

 

Property Crime 

Burglaries (µ=207.6) -63.10 13.85 -14.09 

Larcenies (µ=418.3) -104.58 41.71 -37.73 

Vehicle Thefts (µ=91.7) -42.35 10.42 -13.80 

* Marginal effect is estimated separately for each income variable while holding all other variables at 
their mean. 
**Bold indicates significant at p<0.05 . 
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Appendix 
 

Our preferred models include mean household income, the Gini coefficient, and the ratio 

of adjacent tract income to immediate tract income.  However, given the mixed results of 

previous studies, we acknowledge and are sensitive to the possibility that the misspecification of 

income inequality measures may affect our conclusions.  We examined multiple models using 

different measures of income level and within and between tract inequality to determine the 

extent to which our preferred operationalization of income inequality affects outcomes, and 

ultimately our conclusions. Each income measure was replaced in the base model one at a time, 

while all other variables in the models remained the same (see Table 2 for base model).  For 

instance, in one model, mean tract income was replaced with mean log income in the base 

model. In another model, median tract income was included as the measure for income level. A 

total of 10 models with replacements were considered. Table 1a summarizes the results for each 

of the models and the relationship between each measure and total violent and property crime 

counts. Results for all other variables are suppressed and available upon request. Specifically, 

Table 1a shows the sign (i.e., directionality) and significance of the variables of interest. 

TABLE 1a here 
 
As shown, the fit of each model is generally consistent. There is little variation in the 

model log likelihoods and Chi2 statistics. The sign of each coefficient is consistent across all 

models. All measures of tract income level and adjacent tract variation are negatively related to 

violent and property crimes. With the exception of the coefficient of variation of log income, 

within tract inequality measures are consistently positively related to violent and property crimes 

at p<0.01.  
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Table 1a: Comparison of Directionality and Significance of Repeated Measure Substitution in Preferred 
Model 
 Relationship Log likelihood Chi2 
 Violent Crimes 
Income Levels 
Mean income (preferred measure) -*** -994 273.9*** 
Mean log income -*** -1,000 261.8*** 
Median income -*** -999 263.5*** 
Within Tract Income Inequality 
Tract income Gini Coefficient (preferred measure) +*** -994 273.9*** 
Coefficient of variation of log income +*** -1,000 261.5*** 
Coefficient of variation of income +*** -990 280.2*** 
Interquartile range divided be median income +*** -996 269.9*** 
Between-tract Inequality 
Ratio adjacent to tract mean income (preferred measure) -*** -994 273.9*** 
Ratio adjacent to tract mean log income -*** -994 273.7*** 
Ratio adjacent to tract median income -*** -991 277.6*** 
 Property Crimes 
Income Levels    
Mean income (preferred measure) -*** -1,312 134.7*** 
Mean log income -*** -1,313 131.8*** 
Median income -*** -1,311 136.5*** 
Within Tract Inequality 
Tract income Gini Coefficient (preferred measure) +** -1,312 134.7*** 
Coefficient of variation of log income + -1,315 128.8*** 
Coefficient of variation of income +*** -1,309 139.3*** 
Interquartile range divided be median income +** -1,312 135.1*** 
Adjacent Tract Inequality 
Ratio adjacent to tract mean income (preferred measure) -*** -1,312 134.7*** 
Ratio adjacent to tract mean log income -*** -1,311 135.9*** 
Ratio adjacent to tract median income -*** -1,309 139.3*** 
(-) indicates negative relationship 
(+) indicate positive relationship 
*** p<0.001, ** p<0.01, * p<0.05 
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