
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

8-10-2016

Synthetic Studies Toward a Novel Hydroxylamine
of Potential Utility in the Preparation of
Mitochondriotropic Nitrones
Gloria Patricia Perez
gpere159@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the Organic Chemistry Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Perez, Gloria Patricia, "Synthetic Studies Toward a Novel Hydroxylamine of Potential Utility in the Preparation of Mitochondriotropic
Nitrones" (2016). FIU Electronic Theses and Dissertations. 3052.
http://digitalcommons.fiu.edu/etd/3052

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/138?utm_source=digitalcommons.fiu.edu%2Fetd%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/3052?utm_source=digitalcommons.fiu.edu%2Fetd%2F3052&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


 

FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida 

 

 

 

SYNTHETIC STUDIES TOWARD A NOVEL HYDROXYLAMINE OF POTENTIAL 

UTILITY IN THE PREPARATION OF MITOCHONDRIOTROPIC NITRONES 

 

A thesis submitted in partial fulfillment of 

the requirements for the degree of 

MASTER OF SCIENCE 

in 

CHEMISTRY 

by 

Gloria P. Perez 

 

 

 

 

 

2016 

  

 



ii 
 

To:  Dean Michael R. Heithaus      choose the name of dean of your college/school   
 College of Arts, Sciences and Education    choose the name of your college/school  

 
This thesis, written by Gloria P Perez, and entitled Synthetic Studies Toward a Novel 
Hydroxylamine of Potential Utility in the Preparation of Mitochondriotropic Nitrones, 
having been approved in respect to style and intellectual content, is referred to you for 
judgment. 

 
We have read this thesis and recommend that it be approved. 

 

 
_______________________________________ 

Watson Lees 
 
 
 

_______________________________________ 
Stainslaw Wnuk 

 
 
 

_______________________________________ 
David Becker, Major Professor 

 

Date of Defense: August 10, 2016 

The thesis of Gloria P Perez is approved. 

 
 

_______________________________________ 
choose the name of your college/schools dean   Dean Michael R. Heithaus 

choose the name of your college/school   College of Arts, Sciences and Education 
 
 
 

_______________________________________ 
Andrés G. Gil 

Vice President for Research and Economic Development  
and Dean of the University Graduate School 

 
 

Florida International University, 2016 



iii 
 

© Copyright 2016 by Gloria P Perez 

All rights reserved. 



iv 
 

DEDICATION 

I dedicate this work to the man that instilled me love for science, my mentor, my friend, 

my inspiration, my hero and one of the most brilliant minds I ever known: my father Jorge 

Perez. Daddy without you, this work would not have been possible. 

  



v 
 

ACKNOWLEDGMENTS 

I would like to thank Professor David Becker for giving me the honor to be part of 

his lab. My experience working in his lab, not only contributed to my professional 

development as a chemist but also to my personal growth. Without his patience, 

understanding and valuable mentorship this work would not have been completed.  

I would also like to take this opportunity to thank my committee members: Dr. Lees 

and Dr. Wnuk for their service and support throughout my studies at this institution. 

Equally important, I would like to extend my gratitude to Lilia San Miguel and her 

collaborators, members of Dr. Wnuk’s lab, and my lab mate Nagaraju for their 

unconditional support. 

Last but not least, I would like to thank my parents and my husband. The work 

accomplished in this research is the sole reflection of your support, love, patience and 

encouragement. Thank you all for believing in me and for reminding me that anything you 

set your mind to do you can accomplish. 

  



vi 
 

ABSTRACT OF THE THESIS 

SYNTHETIC STUDIES TOWARD A NOVEL HYDROXYLAMINE OF POTENTIAL 

UTILITY IN THE PREPARATION OF MITOCHONDRIOTROPIC NITRONES 

by 

Gloria P. Perez 

Florida International University, 2016 

Miami, Florida 

Professor David Becker, Major Professor 

Mitochondrial dysfunction and oxidative stress have been linked with many 

pathological conditions. Studies suggest that antioxidants able to accumulate in the inner 

regions of the mitochondria as well as possessing the chemical entities to cross membranes 

such as the blood brain barrier, could potentially overcome many of the limitations found 

with current antioxidants.  

Nitrones have demonstrated great antioxidant potential due to their free radical 

scavenging properties, cardio and neuro-protective activities.  In this research, several 

synthetic studies were performed with the aim of synthesizing a novel hydroxylamine of 

potential utility for the preparation of mitochondria targeted nitrones. These studies 

resulted in the generation of a synthetic intermediate, N-(3-(1H-imidazol-1-yl)propyl)-

2,2,3-trimethyl-3-nitrobutaminde, that although lacking the desired hydroxyl- amino 

functionality, this intermediate is, in theory, an immediate precursor to a molecule that is  

endowed with the structural characteristics to deliver tethered nitrones to the inner regions 

of the mitochondria.  
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 [1] INTRODUCTION 

Many studies have suggested that mitochondrial dysfunction is associated with 

several pathological conditions such as Alzheimer’s disease  (AD), ischemic stroke, 

Parkinson’s disease (PD), ischemia reperfusion, and amyotrophic lateral sclerosis (ALS) 

among other neurodegenerative diseases1. The mitochondrion is the site of energy 

production inside the cell and is constantly exposed to oxidative damage1,2. As the power 

source of the cell, the mitochondrion is a major source of reactive oxygen species (ROS) 

such as superoxide anion radical, O2x�, and hydrogen peroxide, H2O2.  These oxygen 

species can lead to the formation of even more deleterious species like hydroxyl radicals, 

�OH1,3.  Studies have revealed that these ROS can cause damage to mitochondrial 

components as well as the triggering of harmful processes inside the cell3,4. 

Previous studies on animal models have shown that mitochondrial protection 

against oxidative stress is crucial in attenuating or delaying the progress of several neuronal 

pathologies5. Because there is great evidence that mitochondrial dysfunction is intimately 

associated with a myriad of cellular processes that lead to cell death and necrosis, 

mitochondria targeted antioxidants can serve as promising therapeutic agents5,6. 

The work herein describes the strategies used to design mitochondria targeted 

nitrones as well as the role of nitrone chemistry in biological systems. In the present 

research, several studies were performed in order to synthesize N-(3-1H-imidazol-l-

yl)propyl)-3-(hydroxyamino)-2,2,3-trimethylbutamide (14), a novel hydroxylamine of 

potential utility for the preparation of mitochondria targeted nitrones. Through this 

scientific endeavor, a nitro amide precursor, N-(3-(1H-imidazol-1-yl)propyl)-2,2,3-
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trimethyl-3-nitrobutaminde (7) was successfully synthesized. Although lacking the desired 

hydroxyl- amino functionality, this intermediate appears to be a viable precursor to a 

molecule that is endowed with the structural characteristics to deliver tethered nitrones to 

the inner regions of the mitochondria. Therefore, the work presented in this research entails 

the discussion of the therapeutic applications of nitrones and future synthetic 

methodologies that can be utilized to create a new class of pseudoazulenyl 

mitochondriotropic nitrones.  

[1.1] Mitochondrial Oxidative Damage and Free Radical Generation 

One of the most important functions of the mitochondrion is the production of ATP, 

which provides the energy for nearly all biological processes inside the cell. However, this 

energy generation could trigger unwanted events such as the production of ROS. Under 

normal aerobic conditions the mitochondria produces 90% of the cellular energy through 

the electron transport chain (ETC)7,8,9. During this process about 2% of electrons leak out, 

causing a downstream of free radical reactions that, if unregulated, can interfere with 

mitochondrial function7,10.  

The antioxidant defense system of the mitochondria contains several enzymes that 

help maintain the cellular homeostasis. For instance, superoxide dismutase (SOD) 

detoxifies superoxide species produced by electron leakage from the ETC and forms H2O2.  

Glutathione peroxidase (GPx) is another antioxidant enzyme that converts H2O2 to water. 

Detoxification of H2O2 prevents the formation of hydroxyl radicals (OH.) and hydroxide 

ions (OH.), which can result in irreversible oxidative damage to the cell7,10-12. The Fenton 
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reaction illustrates the production of this deleterious hydroxyl radical by the reaction of 

unquenched H2O2 with metal ions such as iron (Figure 1).  

 

Figure 1. Formation and dismutation of reactive oxygen species. 
(Adapted from Oyewole et al7)  

 Despite the protective action of these endogenous antioxidants, enhanced 

production of ROS can result in a redox imbalance that leads to oxidative stress and 

mitochondrial dysfunction.  Overproduction of free radicals generates a cascade of 

calamitous events to the cell such as induced apoptosis, DNA injury, and protein and tissue 

damage among others3,7,10. It is important to note, however, that regulated free radical 

production has a crucial role in biological processes such as signal transduction, 

inflammation, gene transcription and more3,7,10.  

[1.2] Free Radical Involvement in Human Pathologies  

A strong body of evidence has shown that oxidative damage is present in a wide 

range of pathologies13-15. Whether oxidative damage is a cause or consequence of a specific 

O2 O2 H2O2

GPx

H2O + O2

O2

e- SOD
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pathology is unknown7,10. Neurodegenerative disorders such as Parkinson’s disease (PD), 

Alzheimer’s disease (AD) and Amyotrophic lateral sclerosis (ALS) have displayed 

increased indices of ROS in postmortem brain tissues10. Also, common markers of 

oxidative damage such as 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), and 

protein nitration among others have as well been identified. It is hypothesized that 

oxidative stress is strongly associated with neuronal cell death that takes place in these 

neurodegenerative conditions3,13,16.  

Free radicals have also been involved in chemical carcinogenesis, which includes 

initiation, promotion and progression stages. The activation of many of these steps is 

postulated to involve free radical intermediates17,18. For example, the free radical mediated 

oxidation of a polycyclic aromatic hydrocarbon to an electrophilic species can generate 

mutations by binding to DNA. If DNA is damaged, a myriad of events will trigger aberrant 

processes inside the cell including apoptosis. Uncontrolled program cell death can 

eliminate healthy cells that could otherwise keep homeostasis in the affected tissues. 

Another piece of evidence suggesting free radical involvement in cancer is the role of 

radical scavengers and/or antioxidants in protecting cells from tumor formation. In 

addition, the pro-inflammatory state associated with tumor development encompasses 

higher concentrations of endogenous radicals such as superoxide17,19,20.  

[1.3] Mitochondria Targeted Antioxidants  

Mitochondria carry out imperative metabolic functions that include energy 

biogenesis, redox signaling, heme biosynthesis, iron-sulfur center assembly, as well as 

playing important roles in the process of ageing1,6,21. If mitochondrial function is impaired 
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and ATP production is compromised, necrotic cell death can occur as a result of disruption 

of cell functions, tissues and organs22. Thus, it is reasonable to think that mitochondrial 

dysfunction resulting from oxidative damage is highly associated with the etiology of 

countless human pathologies. In fact, there is evidence that imbalanced metabolism and 

overproduction of ROS can cause oxidative damage to biomolecules (DNA, lipids, 

proteins) resulting in worsening a range of disorders such as cancer, stroke, chronic 

inflammation and neurodegenerative diseases22,17,23. Therefore, targeting antioxidants to 

mitochondria is a promising approach to prevent or delay progression of these 

conditions24,25.  

Natural antioxidants such as green tea (polyphenols), vitamin E and coenzyme Q 

(Co Q) have shown protective effects in animal models of PD, AD and ALS but have not 

shown clinical significant benefits in human trials5,26. One possible explanation for these 

poor outcomes is the lack of antioxidant accumulation inside the mitochondria. For 

example, Vitamin E and CoQ are highly lipophilic and failed to accumulate inside the 

mitochondria, which are the sites where most ROS are generated5,6,22.  

Using the aforementioned rationale, several antioxidants have been engineered to 

target the mitochondria and these include but are not limited to: triphenylphosphonium 

(TPP+) – conjugated vitamin E, CoQ, nitrones and SS peptides. These compounds will be 

discussed in detail in the following section:  

 [1.3.1] TPP+ Conjugated Vitamin E and CoQ antioxidants   

 Inspired by the work of Dr. Skulachev and coworkers who first introduced the use 

of the triphenylphosphonium (TPP) cation to determine mitochondrial membrane potential, 
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the groups of Murphy and Smith have been able to synthesize antioxidants that accumulate 

inside the mitochondrion using this cationic moiety. The lipophilic antioxidants that were 

conjugated to the TPP cation were coenzyme Q (MitoQ) and vitamin E (MitovitE) (Figure 

2)6,22,27.  The accumulation of these compounds inside the inner regions of the 

mitochondrion is dependent on the gradient potential across the mitochondrial inner 

membrane6,5,22.  

 

Figure 2. Mitochondria targeted antioxidants: mitovitE and mitoQ. 

Lipophilic cations have the ability to cross the lipid bilayers of the membrane because of 

their hydrophobic nature and are delivered inside using the negative potential that is 

generated through the ATP production. The dynamics of this process can be explained by 

the Born energy equation: 

𝑊𝐵 =
339𝑍2
𝑟  

 

+P
O

O

H3CO

H3CO

O

+P
HO
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The Born energy is represented by WB in kJ/mol for a cation with Z (charge) and r (radius) 

of the cation. The equation depicts the activation energy required to move the cation from 

the aqueous phase to the hydrophobic core of the membrane. The Born energy is inversely 

proportional to the radius of the cation. Thus, the large radius of the TPP cation results in 

a small enthalpy required to move the cation into the membrane22,28. The increase in 

hydrophobicity of these positively charged ions facilitates crossing of the phospholipid 

bilayer relative to other cations22,29,30.  

In order to penetrate the center of the membrane the cations need to overcome the 

repulsive electrostatic forces in the external compartment, which is positively charged. The 

electrostatic repulsion is offset by the attractive hydrophobic forces that increase the 

entropy favoring the movement across the membrane22,28 (Figure 3). 

 

Figure 3. Uptake of TPP cations through the phospholipid membrane.  
(Adapted from Murphy et al.22) 
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[1.3.1.1] MitoQ 

MitoQ is a derivative of mitochondrial ubiquinone linked to a TPP moiety. Within 

the mitochondria, MitoQ is accumulated in the inner membrane serving as a 2-electron 

acceptor from complex 1 or 231,32. Subsequently, the quinone is reduced to ubiquinol, 

which transfers the electrons to complex 3.  Both forms (ubiquinone/ubiquinol) posses 

antioxidant properties. Ubiquinol in particular is able to donate a hydrogen atom from one 

of its hydroxyl groups to a lipid peroxyl radical thus preventing lipid peroxidation inside 

the mitochondrial membrane31,33,34,35. MitoQ was found to accumulate in the mitochondria 

and most importantly prevented further radical toxicity from peroxide by converting H2O2 

to H2O and O2
31.  

The work of Murphy and Smith have also revealed important information about the 

structural characteristics of an effective mitochondriotropic antioxidant. They analyzed 

several derivatives of MitoQ varying the number of carbons in their linker chains36. It was 

found that the carbon chain length affected the efficacy of the MitoQ antioxidants. The 

MitoQ compounds having short carbon chains were less effective antioxidants22,21,36. This 

carbon chain limitation may be explained by the restricted access of the short chain 

compounds in reaching the hydrophobic core of the membrane22.  

The modified mitochondrial ubiquinone, MitoQ, was studied in cultured fibroblasts 

from Friedreich Ataxia (FRDA) patients. The pathology of FRDA is characterized by an 

autosomal disease described by increased ROS and a defective mitochondrial protein, 

Frataxin10,37,38. The study by Juslin et al.38 revealed that MitoQ prevented apoptosis caused 

by oxidative damage38.  Along the same lines, Adlam et al39. studied the effects of MitoQ 
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in mouse models of mitochondrial oxidative damage and found decreased heart 

dysfunction and mitochondrial damage after ischemia reperfusion40,41. These studies 

suggest that MitoQ may decrease free radicals, reduce oxidative damage and prevent 

mitochondrial dysfunction31,39.  

[1.3.1.2] MitoVitE 

MitoVitE consists of the alpha-tocopherol moiety covalently attached to a TPP 

moiety7,22. Murphy and coworkers examined MitoVitE in cultured fibroblasts from patients 

with FRDA. The antioxidant was able to reach accumulation ratios of 5000-6000 units 

inside the mitochondrial membrane with a concentration of 1-20µM31,42. However, 

MitoVitE was found to be cytotoxic at 50µM31.  

The investigators also found that MitoVitE was 350 times more potent than the 

water-soluble vitamin E, trolox. MitoVitE showed superior potency (800-fold more) than 

idebenone (synthetic analog of coenzyme Q10) in protecting against GSH depletion. 

Another important finding showed that MitoVitE prevented oxidative damage by reducing 

H2O2 caspase activity5,38. Caspases are a special class of proteases with important roles in 

apoptosis among other metabolic processes43.  

[1.3.2] SS peptides  

SS peptides are small positively charged peptides called Szeto-Schiller (SS) 

peptides. These peptides consist of alternating aromatic residues and basic amino 

acids5,44,45. In vitro experiments showed scavenging properties of tyrosine (Tyr) and 

dimethyltyrosine (Dmt) analogs. These aromatic-cationic peptides were able to inhibit lipid 

peroxidation by scavenging ROS such as H2O2, HO˙ and ONOOˉ.5,46.  
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In contrast with MitoQ and MitoVitE, these peptides do not depend on the 

mitochondrial membrane potential to accumulate inside the inner regions of the 

mitochondria, even though at physiological pH they hold a 3+ net charge5,6,47. When 

mitochondria were depolarized using FCCP, (carbonyl cyanide 4-(trifluoromethoxy) 

phenylhydrazone), the percent uptake of these peptides was reduced only by ~10% to 

15%5,44. Additional studies showed SS-02 (Dmt-D-Arg-Phe-Lys-NH2) and SS-31 (D-arg-

Dmt-Lys-Phe-NH2) achieved a steady state of 30 minutes, indicating a fast cellular 

uptake5,47,48. The aforementioned evidence suggests that these positively charged peptides 

do not rely on membrane potential mechanisms. The reasons behind their ability to be 

selectively uptaken by the mitochondria are still unclear3. 

By targeting the inner membrane, SS-31 was found to have protective activity 

against ischemia reperfusion injury5,44,49. The peptide SS-31 showed remarkable activity in 

scavenging intracellular ROS, which was reflected by its ability to inhibit mitochondrial 

swelling caused by calcium-induced mechanisms that mimic ischemia5,50.  

[1.3.3] Nitrones  

 Nitrones are N-oxides of imines. They have similar chemistry with that of carbonyl 

compounds. The alpha carbon, also called nitronyl the carbon is susceptible to nucleophilic 

attack because of its electropositive nature (Figure 4). Nitrones can serve as synthetic 

intermediates and as spin trapping agents for the detection, quantification and, in some 

cases, identification of free radicals. Nitrones can aid in the detection of free radicals by 

forming aminoxyl-based paramagnetic adducts (Figure 5). These adducts need to be stable 
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enough in order to be detected using electron paramagnetic resonance spectroscopy 

(EPR)51,52.  

R1 H

O

R1 H

N
OR2 +
-

D

G��

Aldehyde Aldonitrone

R1 R

O

R1 R

N
OR2 +

D

G��

Ketone Ketonitrone  

Figure 4. Electropositive carbons present on carbonyl compounds and nitrones 

R1 Y

N
OR2

H

Y

R1 H

N
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-

 

Figure 5. Generation of aminoxyl spin adduct 

The EPR identification method works by measuring the magnetic moment of an 

unpaired electron after absorption of microwave radiation. By using the aforementioned 

method, the electron spin resonance (ESR) spectrum of the formed spin adduct will provide 

a signal due to its paramagnetic nature. The identification of the free radical may or may 

not be possible depending on the hyperfine splitting constant and g value, which are 

characteristic of the type of free radical trapped52.  

Nitrones have gained a lot of attention in the last decade for their role in altering 

cellular redox status through radical scavenging. Nitrones’ scavenging activity involves 

trapping reactive short-lived free radicals via an addition reaction to create a more stable 
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radical product, most commonly referred to as a spin adduct (Figure 6). The addition of a 

free radical to a nitrone results in the formation of a nitroxide. Nitroxides are stable entities 

because of the resonance stabilization of the unpaired electron between the nitrogen and 

the oxygen52,53. 

CH
N+

-O

CH
N

O

R

PBN Nitroxide spin adduct

+  R

 

Figure 6. Spin adduct formation from PBN nitrone 

As a result, the pharmacological activity of nitrones has been studied by several 

groups stemming from the work of Novelli et al. Investigators demonstrated the ability of 

PBN (alpha-phenyl-tert-butyl nitrone) to prevent death in murine models subject to LPS 

(lipopolysaccharide) induced shock. Thus, nitrones are good candidates to ameliorate or 

prevent progression of disorders involving oxidative stress due to their antioxidant nature. 

Mitochondriotropic nitrones will be discussed in the following sections.  

[1.4] Previous Work on Nitrones  

Application of nitrones as pharmacological agents have motivated research groups 

to synthesize compounds that could be utilized for the treatment of diseases associated with 

oxidative stress.   

Alpha-phenyl-tert-butyl nitrone, PBN, is probably the most studied nitrone up to 

date because of  its ability to confer neuro- protection in animal models of stroke54. Thus, 

several congeners such as NXY-059 and S-PBN have been synthesized (Figure 7). Despite 
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the success of these phenyl nitrone derivatives in capturing ROS, they are highly 

hydrophilic which limit their ability to cross membranes such as the blood brain barrier. In 

fact, it is surmised that this was one of the reasons leading to the failure of NXY-059 in 

phase IIIb of human clinical trials16,55.  

N
O

N
O

SO3Na

N
O

SO3Na

NaO3S  

Figure 7. Nitrones: PBN, NXY-059, S-PBN 

Cyclic nitrones have also been synthesized. The nitrone DMPO, 5,5-dimethyl-1-

pyroline N oxide, has demonstrated cardio-protective activity against ischemic reperfusion 

injury52,56. Another major cyclic variant is DEPMPO, which has also been extensively 

studied for detection and sequestration of superoxide and hydroxyl radicals produced by 

systems in vitro and in vivo52 (Figure 8).  
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O
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O
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Figure 8. Cyclic nitrones 

[1.4.1] Mitochondriotropic Nitrones  

The laboratories of Hardy, Xu, Kalyanaraman and Murphy have synthesized 

nitrone compounds with the TPP cation moiety (Figure 9) 51. These nitrones were 

synthesized with the aim of targeting the inner regions of the mitochondria. Previous 
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studies have demonstrated that mitochondria-targeted antioxidants confer greater 

protection against oxidative damage than untargeted antioxidants7,57. However, one 

important limitation of these kinds of compounds is their uptake within the mitochondrial 

membrane5,7.  

Ph3P
O

N N
O

PPh3

N
O N

H
PPh3

But

O

O PO(OEt)2

OO

O
Br

+
+

+
-

-
- + Br - Br -

+-

 

Figure 9. Structures of MitoPBN, MitoBMPO, MitoDEPMPO 

 Another mitochondriotropic nitrone is that prepared from a nitrone-carnitine 

conjugate, known as CarnDOD-7C (Figure 10). This nitrone is hypothesized to enter the 

mitochondria by two different mechanisms: first, it is a lipophilic cation and can 

accumulate in the inner membrane regions in the same manner as TPP cations; second, it 

could be transferred actively by carnitine acyltransferase51.  
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Figure 10. CarnDOD-7C nitrone 

The aforementioned compounds are just a few of the many nitrones that have been 

synthesized.  
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[1.4.2] Azulenyl Nitrones  

Becker et al. first developed a new class of nitrones, named azulenyl nitrones, such 

as AZN58. Derivatives of AZN such as W-AZN and STAZN were found to have oxidation 

potenials of 0.63 and 0.33 V respectively58-60(Figure 11). 

OEtH

N+O-
O

HH

N+O-
N+

H

N+O-

-O

N+

H

-O

AZN W-AZN STAZN  

Figure 11. Azulenyl nitrones 

The lower oxidation potential of these compounds make them promising 

therapeutic candidates in free radial-mediated pathological conditions. Nitrones possessing 

lower oxidation potential is of paramount importance because STAZN, for instance, 

demonstrated antioxidant properties at the level of α-tocopherol, which is an excellent 

antioxidant protecting cells from oxidative damage61,62. In addition, pharmacological 

studies of STAZN showed that it is 300 times more potent than NYX-059 at inhibiting free 

radical induced peroxidation in animal models of cerebral ischemia55,62. The nitrone was 

also able to cross the blood brain barrier as well as having a long circulating half-life in 

mouse models55. Thus, all these pharmacological activities indicate that STAZN and their 

derivatives have a promising future as potential neuroprotective agents.  
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Becker’s group has also synthesized a new generation of compounds called pseudoazulenyl 

nitrones (Figure 12).  

N

N

S

N

O

O

 

Figure 12. Pseudoazulenyl nitrone 

These molecules possess a five-membered ring fused to a six-membered ring 

bearing an electronegative heteroatom. In contrast to azulenyl nitrones, these compounds 

can potentially be more efficacious in scavenging ROS since the presence of heteroatoms 

such as O, N or S might enhance their antioxidant potency because of a decrease in 

oxidation potentials of these spin traps59,62,63.  

Equally important, researchers in Becker’s lab have also been able to synthesize 

novel silylated azulenyl nitrone compounds that could serve as chromotropic detection 

probes for superoxide radical anion64. 

[1.4.3] Steroidal Nitrones 

 Steroidal nitrones are another promising class of antioxidants for the treatment and 

prevention of cerebral ischemia, Parkinson’s disease, amyotropic lateral sclerosis and 

Alzheimer’s disease. The steroid backbone of these nitrones can potentially facilitate their 

crossing into biological membranes.  In addition, steroids have also been recognized for 
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their ability to reduce inflammation, which is characteristic of many neurological diseases 

65.  

Contelles et al. recently reported the results of studies performed with steroidal 

nitrones (Figure 13). Cholesteronitrone, F2, demonstrated significant increase in neuronal 

viability during reperfusion compared with steroidal nitrone F3. In addition, studies done 

on animal models treated with F2 showed a significant decrease in the apoptotic death in 

the CA1 region of the hippocampus65. Therefore, these findings can aid in the development 

of hybrid molecules by combining the steroid and nitrone motifs, which can potentially 

lead to effective therapeutic agents to treat conditions associated with oxidative damage. 

N
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Figure 13. Cholesteronitrones: F2 and F3 

[2] RESEARCH OBJECTIVE 

The aim of the present research is to synthesize a novel hydroxylamine of potential 

utility in the preparation of mitochondriotropic nitrones.  The hydroxylamine, N-(3- 1H-

imidazol-l-yl)propyl)-3-(hydroxyamino)-2,2,3-trimethylbutamide (14) is depicted on 

figure 14. The molecule is intended to serve as an intermediate for the synthesis of 

mitochondriotropic pseudoazulenyl nitrones. A novel mitochondria targeted nitrone can 
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result from the condensation of this hydroxylamine with the aldehyde moiety of a 

pseudoazulenyl molecule (Scheme 13 in future directions section).  

NN N
H

N
H

O

OH
 

Figure 14. Hydroxylamine (14) 

The hydroxylamine was carefully designed to endow it with the structural 

characteristics necessary to allow tethered nitrones to accumulate inside the mitochondria 

as well as to enable their permeation across the blood brain barrier. Among those structural 

considerations include: the presence of the imidazolium functionality, which provides the 

cationic feature needed to accumulate inside the inner regions of the mitochondria. The 

nitrogen in substituted congeners is expected to be protonated at physiological pH. 

Another important characteristic is the hydrocarbon backbone which contributes to 

an increased hydrophobic area, which is essential to permeate biological membranes 

including the brain. Last but not least, the presence of the amide functionality may play an 

interesting role for the tethered nitrone. It is hypothesized that amides (or ester linker 

groups) can potentially stabilize superoxide adducts through hydrogen bond 

interactions52,66. Since superoxide radical is responsible for initiating the majority of free 

radical reactions involving oxidative stress, this added feature of amides is particularly 

special. 

Several synthetic pathways were examined in order to make a key nitro amide 

precursor, N-(3-(1H-imidazol-1-yl)propyl)-2,2,3-trimethyl-3-nitrobutaminde (7) 
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necessary to attain the final hydroxylamine. The studies described in this research 

encompass the final synthesis of the nitro amide intermediate as well as the application of 

reduction methodologies using samarium diiodide, ammonium chloride and zinc. To 

continue this work, further reduction methods must be explored and applied to this novel 

intermediate to make the desired hydroxylamine.  

N N N
H

NO2

O

 

Figure 15. Nitro amide precursor (7) 

[3] RESULTS AND DISCUSSION 

[3.1] Direct amidation of compound (3) with hexylamine 

 The nitro ester intermediate, ethyl 2,2,3-trimethyl-3-nitrobutanoate (3) was 

synthesized according to the reported method67.  The ester derivative (3) was prepared from 

nitration of starting material, bromoisobutyrate (1) via nucleophilic substitution to form 

ethyl alpha-nitroisobutyrate (2) which was reacted with the sodium salt of 2-nitropropane 

to form compound (3) in 81% yield as shown in scheme 1.  
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Scheme 1 Attempted synthesis of nitro amide (5) 

This model reaction was used to examine the feasibility of making amides through 

an acylation between the ester of interest (3) with an unhindered amine such as hexylamine 

(4). Two different experiments were performed. First, the amine (4) was used in excess and 

heated together with ester (3) at 110º C for 2 days. The second experimental method 

involved the use of excess hexylamine with ester (3) but this time higher temperature 

conditions were explored with a longer reaction time. The amine and ester were heated 

together at 154º C for 5 days.  The experiments failed to give the expected product (5). One 

possible explanation of these failed reactions is that alkyl esters such as compound (3) 

cannot be considered activated species. On the contrary, alkyl esters most of the time are 

stable under usual coupling conditions. In this case our ester of interest is also very hindered 

with the presence of four methyl groups in the vicinity of the carbonyl carbon, which can 

also prevent the formation of the expected amide. As reported in the literature, alkyl esters 

sporadically form amides with amines under forcing conditions such as high 

temperatures68.  



21 
 

[3.2] Catalyzed amidation of compound (3) with imidazole-amine (6) 

 As discussed in the previous section, direct amidation of ester (3) was not possible 

using the reaction conditions specified above. Thus, another amidation attempt was made 

but this time using a Lewis acid catalyst, MgCl2, with the amine of interest, 1-(3-

aminopropyl) imidazole, (6) (Scheme 2). It was surmised that by using a Lewis acid such 

as MgCl2, the ester could potentially be activated by coordination of the carbonyl oxygen 

atom to the Lewis acid. 0.5 equivalents of MgCl2 were mixed with compound (3) and THF 

at room temperature. To this mixture, the imidazole- amine (6) dissolved in THF was added 

and left to react for 4 days. This protocol was adapted from the work described by Zhenrong 

et al69.  Unfortunately, this amidation procedure failed to give the desired product (7). 

Evidence from the literature depicts successful amidation of esters by employing amine 

anions derived from a strong base or acid such as Grignard or alkylaluminium reagents, 

which does not apply to the amine used in this procedure69.  

 MgCl2 (0.5 eq)

(3)

N N NH2

(6)

+
THF/RT
4 Days

N N N
H

NO2

O

(7)

O

O
O2N

 

Scheme 2. Attempted synthesis of nitro amide (7) precursor using MgCl2 

[3.3] Amidation of compound (8) with imidazole-amine (6) 

 After failure to synthesize compound (7) via amidation of esters, other attempts 

were made using α-bromoisobutyryl bromide (8) as the starting material. The first synthetic 

pathway toward making the nitro amide intermediate (7) using this acyl bromide was to 

make the corresponding bromo amide, N-(3-1H-imidazol-1-yl)-2-bromo-2-
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methylpropanamide (9) from the imidazole-amine (6) shown in scheme 3.  This bromo 

amide intermediate was employed to examine other potential synthetic pathways that could 

lead to the formation of compound (7) and ultimately the intended hydroxylamine.  

 

Scheme 3. Synthesis of compound (9) 

 The synthesis of N-(3-1H-imidazol-1-yl)-2-bromo-2-methylpropanamide (9) took 

placed smoothly and cleanly. The product was made in one step, using excess amine (6) 

with the aim of capturing the HBr formed in situ as well as having enough substrate to react 

with the acyl bromide. Both the amine (6) and the acyl bromide (8) were left to react for 

24 hours at room temperature. After extraction of the reaction mixture with 

dichloromethane and water, the organic extract revealed the presence of a white solid in 

89% yield.  The NMR spectrum confirmed the presence of N-(3-1H-imidazol-1-yl)-2-

bromo-2-methylpropanamide (9). 

 As a result of the successful synthesis of compound (9), a new synthetic route was 

designed in order to make N-(3-(1H-imidazol-1-yl)propyl)-2,2,3-trimethyl-3-

nitrobutaminde (7) (Scheme 4). It was presumed that this one step approach could 

potentially afford the desired nitro amide (7) via substitution of bromine on compound (9) 

with the organic anion of the sodium salt of 2-nitropropane. The same mechanistic 

methodology was employed in the synthesis of nitro ester (3) shown in scheme 1.   
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Scheme 4. Attempted synthesis of nitro amide precursor through compound (9) 

 [3.3.1] Synthesis of analog amide: Compound (10) 

 To continue the attempt of synthesizing (7) employing the bromo amide (9) a new 

alternative route was examined. Scheme 5 shows the 4-step reaction procedure which 

involves the formation of another novel intermediate, N-(3-(1H-imidazol-1-yl)propyl)-2-

methyl-2-nitropropanamide (10). Since direct alkylation of (9) was not possible using the 

sodium salt of 2-nitropropane, it was surmised that nitration of the bromo amide first and 

then addition of the organic salt could tentatively form the nitro amide (7). 
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Scheme 5. Proposed synthetic approach for nitro amide precursor using compound (10) 
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 The nitration protocol was adapted from the work of Kornblum et al.70 with only 

few changes made. The reaction time used for this experiment was 72 hours instead of 2.5 

hours and the extraction solvents were water and dichloromethane, unlike the solvents 

utilized in Kornblum’s study70.  The purification of (10) presented a significant challenge 

because of the physiochemical properties of the compounds in the reaction mixture. For 

example, unreacted bromo amide (9) as well as the newly formed nitro amide analog (10) 

were relatively polar and share solubilities in many solvents such as chloroform, 

dichloromethane and water to some extent. It is not surprising for these compounds to have 

common solubilities because of their structural similarities. In addition, removal of 

dimethylformamide (DMF) was very troublesome since it has a high boiling point and is 

slightly soluble in dichloromethane. Thus, in order to reduce DMF’s content in the 

extracted dichloromethane layers, several extractions were made to reduce partitioning of 

this solvent in the dichloromethane extracts. Because the nitro amide analog (10) was 

synthesized as a precursor not the final product and its purification required further 

investigation, the impure amide (10) was further utilized to continue the synthetic approach 

shown in scheme 5.  

 The alkylation of (10) using the sodium salt of 2-nitropropane was carried out 

following the protocol described in the patent of  Romanet’s et al.67. The NMR studies did 

not show the presence of N-(3-(1H-imidazol-1-yl)propyl)-2,2,3-trimethyl-3-

nitrobutaminde (7). The formed product was not identified.  
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[3.4] Hydrolysis of compound (3) 

 On the basis of the results obtained in the previous reactions, it was concluded that 

synthesizing the nitro amide precursor (7) would require utilization of reactive species such 

as acyl halides. Because synthesis of acyl halides can be accomplished through the use of 

carboxylic acids, the next step in the investigation involved the hydrolysis of ethyl 2,2,3-

trimethyl-3-nitrobutanoate (3).  

 [3.4.1] Acid Hydrolysis 

 The first attempt to hydrolyze the ester intermediate (3) involved the use of acidic 

conditions. Excess water and 2N hydrochloric acid (HCl) were added to compound (3) and 

the reaction mixture was heated to gentle boiling for 24 hours. The temperature of the oil 

bath was kept at 130 ºC in order to allow escape of the azeotrope mixture of water and 

ethanol (bp 78.2º C) while keeping the volume constant by the addition of water as the 

reaction proceeded. The byproducts of this reaction include the carboxylic acid, 2,2,3-

trimethyl-3-nitrobutanoic acid (11), and ethanol as depicted in scheme 6. 

(3)

2N HCl / H2O

24 hrs
OH

O

+ EtOH

(11) 1.5%

O2NO

O
O2N

 

Scheme 6. Acid hydrolysis of compound (3)  

 After the reaction took place, extraction with diethyl ether was performed in order 

to remove any unreacted ester. Evaporation of the organic layer revealed a small amount 

of unreacted ester. As expected from the chemical structure of (11) and its polar nature, the 
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acid was found to be slightly soluble in water. The aqueous extracts were placed in high 

vacuum conditions in order to remove water and ethanol left from the reaction. 

 Despite the simplicity of this hydrolysis procedure and the purity of the formed 

product, the yield obtained was very low (1.5%). One tentative explanation of this poor 

outcome lies in the fact that acid hydrolysis of esters is a reversible process. From a 

mechanistic perspective, the ethanol formed with the carboxylic acid can reverse the 

reaction making the initial ester (3). Even though the set-up for this hydrolysis was 

carefully carried out to prevent condensation of ethanol back into the reaction flask, the 

conditions did not seem sufficient to drive the reaction towards the formation of the 

carboxylic acid (11). In addition, this low yield can be a sign of decarboxylation of the acid 

making the hydrolysis of ethyl 2,2,3-trimethyl-3-nitrobutanoate (3) via acidic conditions 

not a practical approach.  

 [3.4.2] Basic Hydrolysis 

 The basic hydrolysis of (3) was accomplished according to the reported method in 

the Romanet’s patent67. The reaction consisted of two main steps. First the nitro ester

was mixed with methanol, sodium hydroxide, water and tetrabutylammonium sulfate. The 

mixture was heated at reflux for 3 days. The second step involved the acidification of the 

carboxylate salt, sodium 2,2,3-trimethyl-3-nitrobutanoate  (12), with concentrated 

hydrochloric acid to form (11). The reaction scheme of this basic hydrolysis is depicted in 

scheme 7. 
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Scheme 7. Basic hydrolysis of compound (3) 

 Several procedures were performed using similar protocols. The first attempted 

basic hydrolysis followed the same work-up steps as shown in the patent of Romanet67. 

However, the product was obtained in very low yield (~ 5%).  It was observed that during 

the acidification process, decarboxylation of the acid was occurring. Even though the 

temperature of the aqueous carboxylate mixture as well as the hydrochloric acid was kept 

at 0ºC and added dropwise, constant formation of bubbles was noticeable. In addition, the 

nitro-acid white precipitate started to disappear completely from the acidic solution.  At 

first, it was presumed that the nitro acid (11) was being dissolved as more acid was added 

to the carboxylate mixture. Nevertheless, previous solubility tests on the nitro acid (11) 

revealed that its solubility in water under acidic pH at room temperature was very low 

(17mg/ml).  As a result, a myriad of work-up procedural modifications were examined in 

order to optimize the yields of this reaction.  

 The most effective work-up modification consisted of complete isolation and 

purification of the carboxylate salt through diethyl ether washings and vacuum filtration. 

The organic salt (12) was completely dried and further dissolved in the minimum amount 

of water prior to acidification. Similar to the method reported, the carboxylate aqueous 

solution and the hydrochloric acid were kept cold in order to avoid decarboxylation. This 

small modification of protocol resulted in a significant increase in yield from 5% to 10%. 
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From the observations made during the acidification process, the formation of bubbles was 

reduced which might be an indicator that using the minimum amount of water in this step 

can diminish decarboxylation of the newly formed acid.  

[3.5] DCC coupling of compound (11) with imidazolamine (6) 

 After successful hydrolysis of ethyl 2,2,3-trimethyl-3-nitrobutanoate (3), it was 

decided to attempt the synthesis of precursor (7) using N,N-dicyclohexyl carboiimide 

(DCC) with the nitro acid (11). The protocol was adapted from the work of Natsumi et al70. 

The synthetic approach is shown in scheme 8. 

N N N
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NO2
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(7)

OH

O
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N N NH2
(6)

DCC/DMF
RT/One week(11)  

Scheme 8. Synthetic scheme of DCC catalyzed amidation of compound (11) 

 The mixture was reacted for one week at room temperature and the extraction was 

made with dichloromethane and water. NMR studies done on the dichloromethane extract 

failed to confirm the presence of the expected product (7). The product obtained could not 

be identified.  

[3.6] Conversion of compound (12) to acyl chloride 

 As a result of the laborious task of hydrolyzing ester (3) and constant 

decarboxylation of the acid by both, basic and acidic methods, it was decided to move 

forward with the synthesis of (7) through the use of the corresponding acyl chloride, 2,2,3-

trimethyl-3-nitrobutanoyl chloride (13) from sodium 2,2,3-trimethyl-3-nitrobutanoate 
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(12). The protocol was adapted from the patent of Romanet67 and the work of Syuji et al71. 

The general approach is depicted in scheme 9. 
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Scheme 9. General approach for acyl chloride formation using carboxylate (12) 

 The first attempt using (12) involved the use of sulfuryl chloride (SO2Cl2) (Scheme 

10).  The carboxylate compound (12) was mixed with dichloromethane and SO2Cl2.  The 

reaction mixture was left to react for 3 hours in a cooling bath. Subsequently, the liquid 

obtained, presumably the formed acyl chloride, was decanted from the reaction mixture, 

which contained a white solid (likely to be Na2SO4). The isolated liquid was concentrated 

and dissolved in acetonitrile. Then, the liquid was added dropwise to a cold mixture of 

amine (6) acetonitrile and triethylamine. The reaction was stirred overnight and further 

partitioned in water and ethyl acetate. The NMR obtained from organic extracts failed to 

confirm the presence of nitro amide (7).  
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Scheme 10. Attempted synthesis of nitro amide (7) using sulfuryl chloride 

Another attempt with similar protocol as described above was performed but this 

time the reagent was oxalyl chloride and it was added in excess (Scheme 11). NMR 

analyses also did not show the expected product (7). Moisture from the environment to 

both the newly formed acyl chloride (13) and or the sodium 2,2,3-trimethyl-3-

nitrobutanoate (12) could have been possible factors contributing to the failure of these 

reactions. In addition, the use of cooling conditions for the reaction mixture, although 

unlikely, could have also influenced the outcome of these reactions. 
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Scheme 11. Attempted synthesis of nitro amide (7) using oxalyl chloride 
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[3.7] Synthesis of compound (7) 

 After all failed attempts to make the acyl chloride from sodium 2,2,3-trimethyl-3-

nitrobutanoate (12), it was decided to continue the synthesis of N-(3-(1H-imidazol-1-

yl)propyl)-2,2,3-trimethyl-3-nitrobutanamide (7) through direct conversion of 2,2,3-

trimethyl-3-nitrobutanoic acid (11) into 2,2,3-trimethyl-3-nitrobutanoyl chloride (13). The 

experimental procedure was adapted from Romanet’s patent67. The complete synthetic 

approach is shown in scheme 12. 
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Scheme 12. Synthesis of compound (7) 

 The nitro acid (11) was mixed with dichloromethane with a few drops of 

dimethylforamide and treated with oxalyl chloride. The mixture was left to react for 3 hours 

at room temperature and concentrated. Subsequently, the acyl chloride dissolved in 

acetonitrile was added dropwise to the amine mixture of acetonitrile and triethylamine. The 
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reaction was stirred and allowed to react for 1 day. The reaction mixture was concentrated 

and partitioned in ethyl acetate and water. The ethyl acetate extracts gave the expected 

compound, N-(3-(1H-imidazol-1-yl)propyl)-2,2,3-trimethyl-3-nitrobutanamide (7) with 

26% yield.  

 In order to optimize the yield of the reaction, several reactions conditions were 

examined. One of the attempted trials, consisted of adding excess oxalyl chloride to the 

amine mixture since it could be removed by vacuum stripping. It was surmised that 

insufficient amount of oxalyl chloride could greatly influence the percent yield of the 

formed product. As expected, by adding excess oxalyl chloride, the percent yield was 

increased by almost 12%. In this instance, the formed nitro amide (7) was obtained in 38% 

yield. 

[3.8] Reduction of compound (7) 

  After successful synthesis of the nitro amide precursor (7), two different reduction 

methodologies: samarium diiodide (SmI2) or zinc with ammonium chloride were explored 

in order to attain the desired hydroxylamine (14). The two methods will be discussed in the 

following sessions: 

[3.8.1] Reduction with samarium diiodide 

 Following the reported method of Kende et al.72, a solution of 19.53 mg (0.07 mmol) 

of nitro amide (7) with a 2:1 mixture of THF/MeOH (0.42 ml) was added to a freshly 

prepared mixture of 112 mg of SmI2 (0.28 mmol) with 2 ml of THF. The reaction mixture 

was stirred and left to react for different periods of time. The reaction was subsequently 

poured into a 10% solution of Na2S2O3 (2 ml) and extracted several times with EtOAc.  
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 Using the same molar equivalents of SmI2 described above and room temperature 

conditions, different reaction times were examined. The reductions were carried out for: 3 

and 5 minutes, 1, 8 and 24 hours. Despite the longer exposure of nitro-amide (7) to SmI2, 

C-13 NMR studies performed on these experiments did not show the presence of a new 

carbon bearing a hydroxylamino functionality, which was expected to appear around 60 

ppm. All carbon-13 spectra of these experiments including the spectrum of the 24-hour 

reaction experiment displayed the carbon bearing the nitro group at approximately 93 ppm. 

Also, no signs of decomposition appeared on these experiments. Even though, the desired 

hydroxylamine (14) could not be obtained using the aforementioned protocol, it is 

suggested that further studies with samarium diiodide should be explored. Literature 

precedents report good yields of hydroxylamines using this method. It is surmised that 

perhaps employing temperatures higher than 25º C and/or exploring several reaction times 

will result in the efficient formation of the desired hydroxylamine.   

[3.8.2] Reduction with ammonium chloride and zinc powder 

 Another reduction method utilized with the aim to obtain hydroxylamine (14) 

involved the use of zinc powder and ammonium chloride as reducing agents. The protocol 

was adapted from the work of Mitsuru et al.73 Although 12 mg of a white solid was 

ultimately obtained via this procedure, C-13 NMR spectroscopy revealed that the 

imidazole ring was destroyed and the product could not be identified.  

 [4] FUTURE DIRECTIONS 

 To continue this work, further reduction methods need to be examined with nitro 

amide (7). It is recommended to use samarium diiodide employing temperatures higher 
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than 25º C and/or exploring several reaction times in order to attain the desired 

hydroxylamine (14). Other protocols to convert nitro compounds to hydroxylamines shoud 

be examined such as those contained in the Ph.D thesis of Sacher in his synthetic studies 

toward lycopladine H under the supervision of professor Steven Weinreb at Pennsylvania 

State University74.1  

 Once this reduction step has been successfully accomplished, the hydroxylamine 

(14) will be coupled with pseudoazulenyl nitrone (15) via a condensation reaction. It is 

surmised that by combining both molecules together, we can create a new class of 

pseudoazulenyl mitochondriotropic nitrones (Scheme 13). 

 By tethering the electron-rich nitrone (15) to the imidazole backbone, it is presumed 

that the final compound (17) will not only portray excellent antioxidant activity but also 

will be able to accumulate inside the inner regions of the mitochondria. Previous studies 

on azulenyl nitrones and their derivatives have shown superb antioxidant activity62,75. It is 

hypothesized that nitrone (15), as a congener of this class of nitrones, can potentially 

display the same or even lower oxidation potentials than STAZN due to the presence of 

this particular pseudoazulene core. Such pseudoazulenes exhibited lower oxidation 

potentials than those of the corresponding azulenoid counterparts61. 

                                                 
1 “Progress Toward a Total Synthesis of the Lycopodium Alkaloid Lycopladine H” Ph.D. Thesis Joshua R. 
Sacher 2012 Pennsylvania State University. 
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Scheme 13. Proposed synthetic strategy for compound (17)  

 Another alternative approach to proceed with this investigation, will be the direct 

coupling of nitro amide (7) with the aldehyde moiety of nitrone (15) through the use of 

elemental zinc in ethanolic solution76. Although this synthetic methodology was performed 
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on nitroarenes, it is a reasonable approach since the conversion of nitroalkanes to 

hydroxylamine can also be accomplished via the use of elemental zinc (Scheme 14)  

N N N
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NO2
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+
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O
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O

O
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(16)
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Scheme 14. Proposed synthetic strategy through direct coupling of compound (7) 

 Thus, nitro amide (7) can still be utilized for further synthetic studies that can 

potentially lead us to the development of a new class of pseudoazulenyl mitochondriotropic 

nitrones.  

[5] CONCLUSION 

 Pharmacological studies have revealed important biological activity of nitrones; 

although the mechanism is still unclear, their inherent properties as antioxidants make them 

attractive candidates for therapeutic utilization in conditions associated with oxidative 

stress such as neurodegeneration, cancer and cardiovascular diseases52. Because many of 
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these conditions involve overproduction of reactive oxygen species (ROS) and imbalances 

in cellular redox systems, a new generation of nitrones targeting the main site of ROS 

production, the mitochondria, have been studied.  

 Numerous synthetic methodologies were explored with the aim of synthesizing a 

novel hydroxylamine (14) with potential utility in the preparation of mitochodriotropic 

nitrones. In this quest, a novel nitro amide precursor (7) was successfully synthesized.  This 

derivative, although not yet possessing the hydroxyl-amino functionality, warrants further 

reductive studies to convert it to the desired hydroxylamine, and then to the putative 

mitochondriotropic pseudoazulenyl nitrones.  

 Thus, future work on this intermediate will be pursued. Besides trying other 

reduction methodologies, it is also suggested to study this precursor for the direct one-pot 

reductive synthesis of new mitocondriotropic nitrones. Recent literature containes a  report 

of a unique synthetic methodology describing the synthesis of alpha-aryl-N-nitrones by 

direct coupling of aryl aldehydes with nitro arenes through the use of elemental zinc in 

ethanolic solution76. With this in mind, it is highly recommended to examine this approach 

though direct coupling of (7) with the aldehyde moiety of a parent pseudoazulenyl nitrone 

(15) in order to create a new class of pseudoazulenyl mitochondriotropic nitrones. 

[6] EXPERIMENTAL SECTION  

[6.1] General Methods 

 All reagents were obtained from Sigma Aldrich. Solvents were purchased from 

various commercial suppliers such as Sigma Aldrich, Fisher Scientific, and Pharmco-

aaper. Moisture sensitive reactions were carried out using argon gas to sweep the system 
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and solutions were added to the reaction mixtures using a hypothermic syringe through a 

rubber stopple.  Reactions were monitored by TLC using pre-coated silica gel aluminum 

plates with a fluorescent indicator. Visualization of plates was done with a UV lamp 

(wavelength= 254 nm). All organic extracts were dried with anhydrous MgSO4 and 

removal of solvents was done under vacuum with a rotary evaporator.  

 One-dimensional 1H NMR and 13C NMR spectra were obtained using a Bruker 

Avance at a frequency of 400 MHz at 298 K. Chemical shifts were recorded in parts per 

million (ppm). High-resolution mass spectrometry spectra were obtained using an 

ultrOTOF instrument.  

[6.2] Synthesis of ethyl alpha-nitro isobutyrate (2) 

 According to the method reported on Kornblum et al.70 Ethyl bromoisobutyrate 

(0.993 g, 5.09 mmol), was added to a mixture of 10.18 ml dimethylformamide (DMF) and 

sodium nitrite (0.743 g, 10.77 mmol). The reaction was stirred at room temperature and 

left to react for 3 d. The reaction mixture was subsequently partitioned using diethyl ether 

and water. The organic layer was extracted with cold distilled water (4 x 30 ml) and the 

aqueous layer was extracted with cold diethyl ether (4 x 30 ml). The combined diethyl ether 

extracts were dried with anhydrous magnesium sulfate and vacuum filtrated. The 

magnesium sulfate was washed (3 x 20 ml) of diethyl ether and the filtrate was added to 

the combined organic extracts. The ether extracts were concentrated to yield 0.782 g (95%) 

of a yellow oil-like appearance nitro ester compound (2). 

1H NMR (400 MHz, CDCl3): G 4.19 (q, J=7.1 Hz, 2H), 1.73 (s, 6H), 1.20 (t, J=7.1 Hz, 

3H). 13C NMR (400 MHz, CDCl3): G 167.71, 89.39, 62.76, 23.85, 13.70.  
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[6.3] Synthesis of ethyl 2,2,3-trimethyl-3-nitrobutanoate (3) 

 Following the protocol reported on the patent Romanet’s et al and Kerber67,77.  The 

sodium salt of 2-nitropropane was initially prepared by adding 1 equivalent of sodium 

methoxide solution in methanol with 1 equivalent of 2-nitropropane at room temperature 

with constant stirring.  

 The sodium methoxide solution was prepared by careful addition of 2.3 g (0.10 mol) 

of metallic sodium (Na) to 70 ml of methanol anhydrous. After the solution became clear 

9 g (0.10 mol) of 2-nitropropane was added and then the solution was stripped at room 

temperature until it became viscous. To precipitate the salt of nitropropane 700 ml of 

diethyl ether was added. The slurry was rapidly filtered and the white precipitate was 

washed with 200 ml diethyl ether. The newly formed salt (7.16 g, 63.88 mmol) was 

transferred to a round bottom flask and subjected to vacuum for 2 d. To preserve the 

integrity of the salt it was covered and kept sealed at all times.   

 Once the salt of nitropropane was completely dried 2.2 g (19.63 mmol) was placed 

in a dry flask with a rubber stopper and a stirrer. The salt was swept with argon for 30 min 

and then 57.3 ml of dimethylsufoxide (DMSO) was added through the stopper with a 

syringe. The system was swept with argon for another 30 min with the addition of 1.9 g 

(11.8 mmol) of ethyl alpha-nitro isobutyrate (2). The reaction mixture was stirred for 5 d 

at room temperature in the presence of a fluorescent lamp. The reaction was extracted with 

water and diethyl ether. The organic layer was dried with MgSO4 and concentrated to yield 

the expected ester (3), 1.94 g (81%) with a yellow oil-like appearance and mango smell.  

1H NMR (400 MHz, CDCl3): G 4.12 (q, J=7.1 Hz, 2H), 1.63 (s, 6H), 1.26 (s, 6H),   
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1.23 (t, J=7.1 Hz, 3H). 13C NMR (400 MHz, CDCl3): G 174, 92.65, 61.47, 48.74, 23.37, 

21.98, 14.03. 

[6.4] Acid hydrolysis ethyl 2,2,3-trimethyl-3-nitrobutanoate (3) 

 Ethyl 2,2,3-trimethyl-3-nitrobutanoate (3) 1.00 g (4.92 mmol) was added to 50 ml 

of HCl 2N and heated to gentle boiling for 24 h. The initial volume of the reaction mixture 

was measured in order to replace the evaporated water while keeping the total volume of 

water constant. The ethanol-water azeotrope mixture was allowed to escape in order to 

drive the reaction forward to obtain the carboxylic acid (11). After 24 h the reaction mixture 

was partitioned with water and diethyl ether.  7.2 mg of unreacted ester (3) was found on 

the diethyl ether layer. The aqueous layer was subjected to high vacuum (4 mm Hg) to 

remove the residual solvent. After complete evaporation of the aqueous layer 12 mg (1.5%) 

of a white solid was obtained.  

1H NMR (400 MHz, D2O): G 1.68 (s, 6H), 1.23 (s, 6H). 13C NMR (400 MHz, MeOD): G 

177.67, 93.89, 62.10, 23.82, 22.56.  

[6.5] Basic hydrolysis ethyl 2,2,3-trimethyl-3-nitrobutanoate (3) 

 Ethyl 2,2,3-trimethyl-3-nitrobutanoate (3) 5.87 g (28.88 mmol) was added to a 

solution containing 44 ml of methanol (MeOH), 5.9 g (73.75 mmol) of 50% by weight of 

sodium hydroxide, 14.7 ml of water and 0.58 g of 50% solution of tetrabutylammonium 

sulfate.   The reaction mixture was heated at reflux for 3 d. After the reaction time had 

elapsed, the reaction mixture turned orange and the presence of a white solid surrounding 

the walls of the reaction flask was observed. The solid was filtered and washed with diethyl 

ether to remove any unreacted ester. The solid obtained after dying was 2.50 g. Then, the 
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filtrate was concentrated to remove methanol and then partitioned with diethyl ether and 

water. 1.60 g of unreacted ester (3) was recovered from the organic extracts. The aqueous 

layer was evaporated to dryness under high vacuum conditions and 40ºC. The residual 

carboxylate salt found in the aqueous extract was 1.54 g, which was added to the 2.50 g of 

carboxylate salt previously filtered.  

 After the combined solids were added to give a total of 4.04 g of dried carboxylate 

salt (12), 10 ml of iced water was added. The amount of water added was minimal, strictly 

to cover the entire surface of the solid. Then, 6.16 mls of concentrated 12N HCl were added 

carefully dropwise to the carboxylate iced solution. The temperature of the carboxylate salt 

solution was continuously monitored in order to avoid a rise in temperature. The bubbles 

produced upon addition of the acid were clear indicators of acid decarboxylation. 0.380 g 

(10.34%) of nitro acid was obtained in the form of a white precipitate.  

1H NMR (400 MHz, D2O): G 1.68 (s, 6H), 1.23 (s, 6H). 13C NMR (400 MHz, MeOD): G 

177.67, 93.89, 62.10, 23.82, 22.56.  

[6.6] Synthesis of N-(3-1H-imidazol-1-yl)-2-bromo-2-methylpropanamide (9) 

 To a stirring mixture of 2.59 g (19.97 mmol) of 1-(3-aminopropyl)imidazole (6) and 

24 ml of dichloromethane swept with argon, cold 2.29 g (9.98 mmol) of α-bromoisobutyryl 

bromide  was added dropwise. The mixture was kept in an ice bath for 1 h. Subsequently, 

the mixture was left to react for 24 h at room temperature. The reaction mixture was washed 

with water (4 x 60 ml). Then, the combined aqueous extract was washed (2 x 50 ml) 

dichloromethane. The organic layer was dried with MgSO4, filtered and evaporated to yield 

2.44 g (89%) of white solid.  
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1H NMR (400 MHz, CDCl3): G 7.51 (s, 1H), 6.97 (m, 3 H), 3.98 (t, J=6.9 Hz, 2H), 3.27 (q, 

J=6.3 Hz, 2H), 2.03 (m, 2 H), 1.93 (s, 1H) 13C NMR (400 MHz, CDCl3): G 172.76, 137.36, 

129.93, 119.10, 62.84, 44.72, 37.79, 32.70, 31.13. HRMS (EI) m/z calcd for C10H16BrN3O 

274.16, found 274.05.  

[6.7] Synthesis of N-(3-(1H-imidazol-1-yl)propyl)-2,2,3-trimethyl-3-nitrobutanamide (7) 

 Following the reported method on Romanet et al.67 0.380 g (2.17 mmol) of 

carboxylic acid (11), 4 ml of dichloromethane, 1 drop of dimethylformamide and 1.5 ml 

(17.72 mmol) of oxalyl chloride were mixed together and stirred for 3 h at room 

temperature. After 3 h, the reaction mixture was concentrated under vacuum with a rotary 

evaporator. Then 8 ml of acetonitrile were added to the concentrated acid chloride (13) 

mixture. Subsequently, the acid chloride was added dropwise to a previously made amine 

solution of 0.272 g (2.17 mmol) 1-(3-aminopropyl)imidazole, 0.219 g (2.17 mmol) of 

triethylamine and 1 ml of acetonitrile. The reaction was stirred at room temperature for 1 

d. Then, the reaction mixture was concentrated and partitioned with water and ethyl acetate. 

The aqueous layer was washed with ethyl acetate (4 x 10 ml). The organic layer was 

partitioned with water (4 x 10 ml), dried with MgSO4 and concentrated to give 0.230 g 

(37.6%) of the expected nitro amide (7) as a white solid. 

1H NMR (400 MHz, CDCl3): G 7.48 (s, 1H), 7.0 (m, 2H), 6.08 (s, 1H), 3.99 (t, J=6.9 Hz, 

2H), 3.22 (q, J=6.2 Hz, 2H), 1.99 (m, 2 H), 1.67 (s, 6H), 1.28 (s, 6H) 13C NMR (400 MHz, 

CDCl3): G 173.64, 137.10, 129.56, 118.88, 93.58, 48.19, 44.71, 37.25, 30.87, 23.23, 22.06 

HRMS (EI) m/z calcd for C13H22N4O3 282.17, found (M+H)+ 283.17. 
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NMR Spectra ii: ethyl 2,2,3-trimethyl-3-nitrobutanoate 
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NMR Spectra viii: ethyl alpha-nitro isobutyrate 

ethyl alpha-nitro isobutyrate  
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NMR Spectra ix: ethyl alpha-nitro isobutyrate 

 

ethyl alpha-nitro isobutyrate 
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HRMS Report 1: N-(3-(1H-imidazol-1-yl)propyl)-2,2,3-trimethyl-3-nitrobutanamide 
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HRMS Report 2: N-(3-1H-imidazol-1-yl)-2-bromo-2-methylpropanamide 
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