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ABSTRACT OF THE THESIS

USE OF luxA SEQUENCES FOR INVESTIGATION ON LUCIFERA SES

KINETICS AND CHARACTERIZATION OF LUMINOUS BACTERIA

by

Rita Di Bonito

Florida International University, 2002

Miami, Florida

Professor John C. Makemson, Major Professor

Known luminous bacteria belong to the genera Vibrio, Photobacterium,

Shewanella, and Photorhabdus. The enzyme luciferase catalyzing the luminous

reaction is composed by the x and p polypeptides and subunit a is responsible for

substrate binding and catalytic activities. Luciferases are classified into "slow " of

Vibrio harveyi and "fast" of Photobacterium sps. on the basis of enzyme kinetics.

Shewanella woodyi has "intermediate" kinetics. This research has tested the

hypothesis of existence of three kinetic classes by sequencing luxA gene (coding for

c subunit) of new strains and comparing these clusters to phenotypic analysis and

sequencing of 16S rRNA. Phenotypic analysis has shown strains distinct from the

known. LuxA amino acids and nucleotides and 16S rRNA sequences have shown 5

major lineages corresponding to known species. A dlade distinct from the known

species was present. Geographic location and fish habitat didn't affect the

distribution of strains.
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INTRODUCTION

Classification of luminous bacteria

The early classification of Beijerink (1889) placed all the luminous bacteria in the

genus Photobacterium. Successive works have shown their heterogeneity and identified

several distinct groups. The seventh edition of the Bergeys's Manual (Breed et al., 1957)

listed all the luminous bacteria under the genera Photobacterium and Vibrio, as originally

proposed by Breed and Lessel (1954). More recent studies have placed the isolates from

marine habitats in the genera Vibrio, Photobacterium, Alteromonas (Reichelt and

Baumann, 1973; Baumann et al., 1980; 1983). The luminous species originally placed in

Alteromonas has been reassigned to Shewanella, which includes the only exclusively

respiratory luminous isolates (MacDonell and Collwell, 1985). A number of new species

of luminous bacteria has been recently added to this group. Luminous bacteria isolated

from freshwater have been identified as Vibrio cholerae (West et al., 1983) and luminous

symbionts of entomopathogenic soil nematodes have been classified as Xenorhabdus

luminescens (Thomas and Poinar, 1979). Xenorhabdus luminescens is the only terrestrial

luminous bacterium and has recently been reassigned to the new genus of Photorabdus

on the basis of DNA sequences (Boemare et al., 1993). All the luminous bacteria are

gram negative, facultatively anaerobic rods; their characteristics and habitats are reported

in Table 1.

The identification of the luminous bacteria was based on a large number of phenotypic

tests described by Reichelt and Baumann (1973); a more simplified system using

substrate metabolism has been also proposed for characterization of isolates of luminous
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Table 1. Species and habitats of known bioluminescent bacteria. All are gram negative
rods (Meighen and Dunlap, 1993; Makemson et al. 1997)

SPECIES HABITAT

Facultatively anaerobic rods

Family Vibrionaceae
Vibrio harveyi Coastal and open seawater, surfaces and intestines

of marine animals. Tropical
V logei Exoskeletron and lesions of crabs, intestine of marine

animals. Psychrotrophic
Photobacterium leiognathi Coastal seawater, Surfaces and intestine of marine

animals, light organs of fish (Leiognathidae,
Apogonidae) and squid (Doryteuthis kensaki)

P. phosphoreum Intestine of marine animals, light organs of fish.
Psychrotrophic

V fischeri Coastal seawater, intestine of marine animals,
light organs of fish (Monocentridae) and squid
(Eupryma scolope)

V cholerae (some strains) Brackish or freshwater
V orientalis Coastal seawater
V splendidus biotype 1 Coastal seawater
V vulnficus (some strains) Coastal seawater

Family Enterobaceriaceae
Photorhabdus luminescens Symbiont of enthomopathogenic soil

nematode (Heterorhabditis spp.)

Obligate respiratory rods

Shewanella hanedai Coastal seawater. Psychrophile
S. woodyi Intermediate water, squid ink. Psychrotrophic
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bacteria (Makemson et al. 1998). Studies based on immunological techniques (Bang et

al., 1981; Baumann et al., 1980) and DNA hybridization (Reichelt et al., 1976, Grimont

et al., 1984), have been used to support the classification of luminous bacteria. The

analysis of sequences of 16S rRNA has been used for phylogenetic studies of the genera

Vibrio, Photobacterium, Shewanella, Photorhabdus and for the identification of new

species, as reported by Kita-Tsukamoto et al., 1993; Ruimy et al., 1994; Gautier et al.,

1995; Makemson et al., 1997; Liu et al., 1997; Fisher- Le Saux et al, 1998. Comparative

studies have been conducted by 16S rRNA PCR/RFLP (restriction fragment lenght

polymorphism), to separate members of the genera Vibrio and Photobacterium (Urakawa

et al., 1997; 1998). The use of species specific hybridation probes for the gene luxA has

been also proposed for the identification of the major luminous groups in the Persian gulf

(Wimpee et al., 1991; Lee and Ruby, 1992; Nealson et al., 1993). Such method,

however, cannot identify V harveyi from closely related species as V splendidus (Lee

and Ruby, 1992; Nealson et al., 1993).

Ecology of luminous bacteria

Luminous bacteria live in seawater as plankton (Nealson, 1978; Ruby and

Nealson, 1978; O'Brien and Sizemore, 1979; Yetinson and Shilo, 1979; Orndorff and

Colwell, 1980; Ruby and Morin, 1979) or in water above sediments (Ramesh, 1989).

Their distribution is dependent on seasonal, environmental and geographical factors

(Ruby and Morin, 1979). Their planktonic presence can simply be related to the overflow

from other niches (Makemson and Hermosa, 1999). Luminous bacteria have been

isolated as saprophytes on the surfaces of dead marine animals (Harvey, 1952) or
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parasites on the exoskeleton of crustaceans (Baross et al., 1978) and in the hemolymph of

invertebrates (Harvey, 1952). They produce extracellular enzymes such as chitinase

(Spencer, 1961; Reichelt and Baumann, 1973) that enable their growth on the surface of

marine animals. Luminous bacteria are present as symbionts in the gut of several fishes

and crustaceans (Ruby and Morin, 1979; Ohwada et al., 1980; Makemson and Hermosa,

1999). The ecological significance of luminous bacteria in the fish gut is still undefined

and their presence could be related to metabolic activities other than luminescence. In

fact, they can utilize N-acetyl glucosamine, product of the chitinase activity (Reichelt and

Baumann, 1973). The presence of luminous bacteria in the fecal material may also have a

significance in the cycling of this material (Andrews et al., 1984). A species-specific

symbiosis is represented by isolates living in specialized organs of some fish. The

bacteria isolated from fish luminous organs are V fiseheri, P. leiognathi and P.

phosphoreum. In fish of the families Ceratidae and Anonmlopidae the presence of

bacteria - like bodies has been detected in luminous organs but the culture outside the

host has not been successful (Haneda and Tsuji,1971; Hansen and Herring, 1977).

The genes for bacterial luciferases have been isolated from the light organs of

Kriptophanaron alfredi, the unculturable symbiont of flashlight fish (Anomalopidae)

cloned into E. coli and sequenced (Haygood and Cohn, 1986). They seem more related to

the luxA amino acid sequences of V harveyi (Meighen, 1991). Unculturable bacteroid

formations have been observed also in the luminous colonial chordate Pyrosoma

(Nealson and Hastings, 1992). In light organs luminous bacteria live as a pure culture at

high density. The colonization probably takes place by small ducts connecting the light

organs with the outside or with the fish gut (Tebo et al.,1979). Luminous bacteria growth
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rates and luminescence are affected by oxygen concentration (Lloyd et al., 1985) iron

availability (Makemson and Hastings, 1982; Haygood and Nealson, 1985), and

osmolarity (Dunlap 1985; Watanabe and Hastings, 1986). Fish must be able to control

growth rate and luminescence of the symbionts in their light organs (Hastings et al.,

1987).

Luciferase and biochemistry of luminescence

During the luminescent reaction, reduced flavin mononucleotide (FMNH 2) and a

long chain aliphatic aldehyde are oxidized, with the production of FMN, water, the

corresponding fatty acid and light. The reaction is catalyzed by the enzyme luciferase,

which is a mixed function of oxidase and proceeds through a series of intermediates

leading to the formation of C4a hydroxyflavin. Light emission apparently occurs from

this hydroxyflavin, which when dehydrated to FMN emits light (Hastings et al., 1965;

Hastings and Nealson, 1977; Shimomura et al., 1972). During the reaction, molecular

oxygen is cleaved, with incorporation of one atom of oxygen into a fatty acid and the

other atom into water. The double oxidation of the substrates generates about 60 kcal

mol', utilized for the production of blue-green light (Fisher et al., 1996). The reaction

can be summarized by:

FMNH 2 + RCHO + 02 -+FMN + H20 + RCOOH + hv (k max =490 nm)

The energetic cost of the light emission was extimated as 6 ATP molecules for

each photon produced, supposing an efficiency of 100% (Hastings and Nealson, 1977).
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However, estimates of the quantum yield in vivo during the enzymatic reaction has given

values between 0.01 and 1 photon for each cycle (Lee and Seliger, 1972; Makemson and

Gordon, 1989), with ATP consumption estimated between 600 to 6 molecules of ATP for

photon of emitted light. In a fully induced cell, the luminescent reaction produces 101

photons s- cell' and consumes about 20% of the oxygen taken up (Makemson, 1986).

The apparent consumption of energy in bioluminescence has been evaluated as 0.01% or

less of the total energy consumed during growth and seems to be a minor component of

the total energy output in a growing culture (Makemson and Gordon, 1989).

Flavin specificity in the reaction is quite restricted and the reduced FMN is the

preferred substrate. Minor chemical modifications of FMNH 2 significantly decrease the

activity (Meighen and Hastings, 1971). The luminescent reaction requires long chains

aliphatic aldehydes for the production of light emission (Cormier and Strehler, 1953).

Specificity for aldehyde chain length has been observed for luciferases of different

isolates (Meinghen and Dunlap, 1993). Enzyme activity and reaction turnover rate have

shown different relationships with aldehyde chain length (Hastings et al., 1969).

The luciferases have been isolated and purified from several luminous bacteria

and are heterodimers devoid of prostetic groups, metals or non-amino-acid residues

(Hastings and Nelson 1977). They are formed by two non-identical subunits, a and p,

with molecular masses of 41 kDa and 37 kDa respectively. The c, and p polypeptides are

encoded by two adjacent genes, luxA and luxB, situated in the lux operon. On the basis of

their homologies, luxA and luxB seem to be arisen by gene duplication. (Illarinov et al.,

1990; Meighen, 1991).
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The a subunit is responsible for the substrate binding and catalytic activities

(Meinghen et al., 1971; Cline and Hastings, 1972; 1974). Both the a and 1 subunits are

necessary for the catalytic activity (Friedland and Hastings, 1967; Watanabe et al., 1982).

There is a single active center on the heterodimer that resides on the a subunits and binds

one reduced flavin molecule (Fisher et al., 1996).

The amino acid sequences of a and p subunits have been determined for several isolates

of luminous bacteria and the sequence alignment has shown a degree of similarity

between 54% and 88% for the a subunits and between 45% and 77% for the p subunits

(Meighen, 1991). The relatively high conservation of the a amino acid sequences is in

accord with the primary role of this subunit on the kinetic properties of the enzyme. The

alignment of the a and 1 sequences of V harveyi shows 32% of identity, with an

insertion of 29 amino acids in the a subunit, between residue 258 and 259 of the

subunit. This region of the a subunit is sensitive to proteolitic digestion and a single

proteolitic cleavage in the region of residues 274-291 produces the enzyme inactivation

(Fisher et al., 1996).

The bacterial luciferases have been classified into slow and fast, in respect to their

reaction with C 12 and CIO aldehydes (Meighen and Dunlap, 1993) obtained by one-

catalytic-cycle assay (Hastings et al., 1978). A significant difference is observed in the

C 12 decay rates: they are > 0.6 sec' for the fast luciferases and < 0.1 secI for the slow

luciferases. The fast luciferases have also CIO decay rates slightly faster or similar to C12,

while the slow luciferases are characterized by CIO decay rates between 0.2 and 0.4xsec'.

On the basis of luciferase kinetics the known luminous bacteria could be divided into two
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groups characterized by slow luciferases (V harveyi, Ph. luminescens) and fast

luciferases (V fischeri, P. phosphoreum, P. leiognathi) as reported in Table 2. Bacteria

with intermediate luciferase on the basis of the enzyme kinetics have been described and

identified as a new species, Shewanella woodyi (Makemson et al., 1997; Table 2). S.

woodyi luxA gene phylogenetic analysis has shown that the translated amino acids

sequence is distinct from V harveyi and P. phosphoreum (Makemson et al., 1997).

Proteins that alter the wavelength of the emitted light have been isolated in some

strains. Photobacterium spp. has lumazine, that in presence of luciferase shifts the peak

of luminescence to about 480 nm (blue shift) and stimulates the level of luminescence

(Gast and Lee, 1978; Small et al. 1980). Another protein responsible for the emission of

yellow light Q®540 nm) has been isolated in Y-1, a strain of Vibriofischeri (Ruby and

Nealson, 1977; Daubrer et al., 1987). The synthesis of aldehydes utilized as substrate in

the luminescent reaction is catalyzed by a multienzyme fatty-acid reductase complex

containing three proteins: a reductase, a transferase and a synthetase. They are three

polypeptides encoded by the genes luxC, luxD and luxE, present in the lux operon of all

the luminous bacteria (Mancini et al., 1988; Meighen, 1991).

Lux genes organization

Lux genes have been cloned and sequenced in a number of luminescent isolates

including V fischeri, V harveyi, P. phosphoreum, P. leiognathi and Ph. luminescens

(Cohn et al., 1983; Engebrecht et al., 1984; Boylan et al., 1989; Miyamoto et al.,

1986, Meighen, 1988; Miyamoto et al., 1988a, b; Szittner and Meighen, 1990).

In all the cases the genes coding for luciferase subunits and fatty acid reductase
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Table 2. Luciferase kinetics of the known species

CLASS DECAY RATE (sec -)

(Species)
Aldehyde

C10  C12

FAST > 0.6 >0.6
(P. phosphoreum)
(V fiseheri)
(P. leiognathi)

SLOW 0.2-0.4 < 0.1
(V harveyi)
(Ph. luminescens)

INTERMEDIATE 0.2-0.4 0.2-0.4
(Shewanella woodyi)
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complex are in the some order in the operon: luxCDABE. Other genes, adjacent or not,

have been identified in specific strains and have different organization. An additional

gene, luxF, is present in most Photobacterium species located between luxB and luxE

(Mancini et al., 1988; Illarionov et al., 1988). LuxF is absent in all the Vibrio and

Photorhabdus lux operons (Meinghen, 1991). The luxF gene codes for a nonfluorescent

protein (NFP) whose function is unknown. LuxF protein has an identity of 22.4 and

33.3% respectively with the cx and p subunits (Fisher et al., 1996). The gene luxF has

probably generated by duplication of luxA or luxB and its function could be linked to

some specific ecological niches of Photobacterium (Meighen, 1991). LuxG has been

identified in the lux operon, downstream luxE of the Vibrio and Photobacterium isolates.

This gene is induced during the development of luminescence, but its functions are still

unknown (Soly et al., 1988; Martin et al., 1989 Swarzmann et al., 1990a, 1990b).

Downstream luxG, in V harveyi, the gene luxH has been identified but a correlation

between his expression and the luminescent activity has not been found (Martin et

al., 1989).

Regulation of the bioluminescent reaction

In luminous bacteria the expression of bioluminescence is strictly dependent on

the cell density. This fascinating phenomenon has been called autoinduction and can be

considered a form of intracellular communication (Kaiser and Losik, 1993).

Autoinduction, described also as "quorum sensing", was originally observed in V fischeri

and V harveyi (Nelson et al., 1970; Eberhard, 1972). In batch cultures of these bacteria,

light production and expression of luminescence genes is low in the early phases of
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growth but increases significantly only during the late exponential-early stationary

phases. This density-dependent regulation of the lwx operon is related to the production

and excretion of diffusible factors called autoinducers, that accumulate in the media.

Autoinducers must accumulate to a sufficient concentration for luciferase induction

which is dependent upon a critical density of bacteria in the environment (Kaplan and

Greenberg, 1985). Autoinducers of V fischeri and V harveyi did not cross-react,

showing species specificity. (Nealson et al., 1970; Eberhard, 1972). The V fischeri

autoinducer was first to be purified and identified as a N-(3-oxohexanoyl)-L-homoserine

lactone (Eberhard et al, 1981). Two genes for autoinduction (luxI and luxR) have been

identified in V fischeri, where they are linked to /uxCDABEG (Engebrecht and

Silverman, 1984; Devine et al., 1988). LuxI is located at the promoter proximal end of

the lux operon, adjacent to the luxC and is responsible of the synthesis of the autoinducer.

The second gene, luxR, is adjacent to /uxI but is transcribed in the opposite, left direction.

LuxR encodes a protein that activates transcription of the luxI-G operon only in presence

of autoinducer. At low cell densities the luxI-G operon is transcribed at basal levels but at

high cell densities, the autoinducer can reach a concentration sufficient to bind luxR and

activate the transcription of the lux operon to its maximum level. A second autoinducer,

identified as N- octanoyl-homoserine-lactone has been identified in V fischeri (Gilson et

al., 1995).

Studies in V harveyi have shown the presence of two autoinducers. Autoinducer

I (Al-1) has been identified as N-(3-Hydroxybutanoyl)-L-homoserine lactone and its

synthesis depends on the activities of the products encoded by the luxL and luxM genes.

AI-1 is detected by luxN, a sensor protein that functions as a two component hybrid
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kinase (Bassler et al., 1993). The second inducer of V harveyi has not been identified yet

and is called A1-2. The response to A1-2 depends on luxP, a periplasmatic ribose binding

protein and LuxQ, a two component hybrid kinase similar to luxN (Bassler et al., 1993,

1994a). AI-2 probably binds to luxP and the complex AI-2-luxP interacts with luxQ.

Mutant analysis have shown that both induction systems act in parallel but can function

indipendently from each other. The signaling from both sensor systems converge to the

regulatory protein luxO, repressor of the lux CDABEGH operon (Bassler et al., 1994b).

LuxO function as repressor of the lux operon when phosphorylated at Asp47. The

function of an additional phosphorelay protein luxU, positioned downstream of the luxN,

luxP pathways and upstream of luxO has been identified (Freeman and Bassler 1999). In

the model proposed by Freeman and Bassler (1999), the sensor kinases luxN and luxQ are

phosphorylated at low inducer concentration. In this condition, a phosphotransfer

cascade occurs to His58 of luxU, wich results in phosphorylation of Asp47 of luxO, and

repression of the lux operon. The high inducer concentration produces a cascade reaction

that results in dephosphorylation of luxO and derepression of lux CDABEGH

transcription.

Several chemical and biochemical factors affect the expression of luminescence

and are probably related to the response to environmental factors, but their relation with

the density -dependent regulation systems is not known. The expression of luminescence

in V harveyi and V fischeri is inhibited by glucose (Nealson et al., 1972, Nealson and

Hastings, 1979), by iron (Makemson and Hastings, 1982) and requires cAMP and cAMP

receptor protein (Nealson et al., 1972; Dunlap and Greenberg, 1985). The induction of

luminescence in V harveyi is also stimulated by the addition of arginine (Nealson et al,
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1970). Thus, regulatory systems respond to environmental factors in addition to the

response from autoinductors.

HYPOTHESIS

The hypothesis is that there exist three kinetic classes of luciferases: "slow",

"fast" and "intermediate". This study will test the hypothesis by sequencing the luxA

gene of new isolates from Oman and Florida. These luxA sequences and their translated

amino acid sequence products will be compared to known sequences present in

Genebank.

Further phenotypic analysis will be conducted by analysis of substrate utilization

patterns (BIOLOG plates), and a phylogenetic study will analyze sequences of the new

isolates's 16S rRNA gene to compare the results to the trees obtained from luxA

nucleotides and amino acids.

MATERIAL AND METHODS

Bacterial Media and Strains

The natural isolates were cultured at room temperature in Glycerol Marine Broth

(GMB, Makemson and Hermosa, 1999) or Glycerol Marine Agar (GMA) composed of

0.5% Bacto-Peptone, 0.1%o Yeast Extract, 0.02%-Glycerol phosphate, 0.3% Glycerol, in

75% artificial seawater (ASW) and a final pH of 7.5. The 1X composition of artificial
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seawater was: 0.517 mol/1 NaCl, 0.025mo1/1 MgSO 4, 0.025 mol/1 MgCl 2 and 0.01 mol/1

KCl. ASW was prepared in a 5X stock and diluted to the media to reach the

concentration of 0.75 X. For GMA, 1.5% of Bacto-Agar was added before sterilization.

The isolates from Florida were collected from fish caught and immediately

refrigerated for a period of 1 - 3 days. The intestines were removed aseptically and the

content was placed in a sterile petri dish. A loopfull of this material was streaked on the

surface of a GMA plate and incubated at room temperature in the dark. After 24 hours,

the presence of luminous colonies was detected. The luminous colonies were re-streaked

2 or 3 times in order to obtain a pure culture of the isolates. All the isolates were

mantained in GMA and checked for purity and luminescence. The list of the isolates is

shown in Table 3.

Phenotypic characterization of the isolates

Phenotypic characterization was conducted by using BIOLOG GN plates

(BIOLOG, Hayward, CA) that are based on 95 tests of substrate utilization. The strains

were grown overnight on GMA plates and checked for purity. Cells were removed with a

sterile swab and suspended in 25 ml of 75% sterile ASW. Optical density of the

suspension was measured by a Spectronic 20 at 660 nm and adjusted at absorbance of

0.25. The cell suspension was used to inoculate a BIOLOG GN plate, using 125 p1 /well.

The plates were incubated at 25®C and the reaction observed at 24 and 48 hours. The

14



Table 3. List of the isolates characterized in this research

ISOLATES FISH SPECIES HABITAT (*) LOCATION

ID3, ID2, 2D, 3D2, 3D3, Coryphaena hippurus P South Florida
(Dolphin)

SCI Mycteropercaphenax P South Florida
(Scamp)

2YSC, 2YSD, 2YSG, 3YSB, YSI Ocyrus chrysurus P South Florida
(yellowtail snapper)

KI Menticirrhus saxatilis P South Florida
(King fish)

Agr2 Epinephelus sp. P South Florida
(Grouper)

Flcarpio 1 Floridichthis carpio D Florida Bay
(Gold spotted killfish)

LPAR3 Lucaniaparva D Florida Bay
(rain water killfish)

MSB Lut anus analis) D Florida Bay
(mutton snapper)

Pin2 Lagodon rhomboides D Florida Bay
(juvenile pinfish)

Tod 1, TodB Opsanus beta D Florida Bay
(gulf todfish)

IM3, IMK3, IMK4, IMK5, Rastrelliger kanagurta P Oman
indian makarel

YSC 1 Selaroides leptolepis P Oman
(Yellow stripe scad)

Gsani, GmD5, Gm3A Mulloidichthus flavolineatus D Oman
(yellow stripe goatfish)

MSC3, MSC5, Raj3, RAJ3 Decapierus macarellus P Oman
(Makerel scad)

L03 Leiognathus fasciatus P Oman
(ponyfish)

Sarl, Sar2, Sardi 3 Sardinella longiceps P Oman
(Oil sardine)

SUP 1 Tidal pool, beach Oman

SH4 Coastal seawater, sink hole Oman

(*) Habitat of fish: P= pelagic, D=demersal
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positive reactions after 48 hours were recorded and the data added to a STATISTICA

(Stat Soft. Tulsa, OK) database. Cluster analysis was conducted by the Ward's Method

using euclidean distances in STATISTICA.

The strains were grown overnight in GMA in petri dishes. The cells were gently

scraped from the surface of the plate and placed in a 1 ml of 0.05M phosphate buffer, pH

7.0. The suspension was sonicated with a micro-tip sonicator for 3 x 15 seconds to

release the enzyme and kept on ice to prevent the over heating.

Luciferase assay was conducted on the luciferase present in cell extracts, by

measuring the luminescence intensity and its decay rate in presence of decanal or

dodecanal aldeydes as substrates, according to the standard method described by

Hastings (1978).

In a scintillation vial containing 1 ml of phosphate buffer pH 7.0 and 0.02%

bovine serum albumin were added 3 pd of C10 aldeyde (5mM in ethanol) and 10 pl of the

enzyme suspension. Then the vial was placed into the photometer housing and 1 ml of

0.05mM FMNH 2 were rapidily injected. The luminous intensity over the time was

recorded. These tests were repeated using C12 aldeyde and the graphs obtained were

used for the calculation of decay rates.

DNA extraction

For the DNA extraction the strains were cultured in Glycerol Marine Broth on a

shaker at 25*C. After 24 hours, 1 ml of culture was aseptically removed, placed in a 1.5

ml eppendorf tube and centrifuged at 14,000 rpm for 15 min. The supernatant was

discarded and the cell from the pellet were suspended in 200 pl of the extraction buffer
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obtained from Promega (Madison, WI). DNA was extracted using the Wizard TMDNA

purification kit, (Promega, WI) and resuspended in 200 pl of Tris-EDTA pH 8.0 (100

mM Tris-Cl, 1mM EDTA).

RNase treatment was performed by incubating the DNA at 37*C for 1 hour with

1 pd of RNase A (1Omg/ml solution) obtained from SIGMA, St Louis, MO. The DNA

samples were kept at 4*C until use.

DNA presence was evaluated by electrophoresis of 2 pl of DNA in 1% of

agarose Fisher at 70V for 2 hours. DNA in the gel was stained with ethidium bromide,

visualized with UV and photographed. DNA concentration was evaluated by fluorometry,

using the DyNA Quant 200 (Hoefer, Amersham, Piscataway, NJ).

PCR amplification and sequencing of luxA gene

In order to amplify the gene luxA, new primers have been designed and used in

conjunction with the primers already available. Sequences of the genes luxD and luxB,

flanking lux A of V harveyi, P. leiognathi P. phosphoreum, V fischeri, Ph. luminescens

have been obtained from Genebank and aligned. The forward primer luxd and the reverse

primers LuxBcon, LuxBdeg were designed on the zones of uniqueness by using the

program OSP (Miller and Green, 1991). LuxBcon is a consensus primer, and LuxBdeg

is a degenerate primer. The forward primers 127f, 275f and the reverse primer 1007r are

degenerate primers (Van Ert, pers. comm.) derived from primers designed on conserved

regions of luxA (Wimpee, 1991). The sequences of the primers used are reported in

Table 4. PCR amplification of luxA were performed in 0.5 ml tubes in a final reaction
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Table 4. List and sequences of the primers

Primer sequence 5' to 3' Location and direction Reference

Luxd GTCTYTCWGCTCGWRTYGCYTATGA luxD, forward This thesis

LuxBcon AGGAAGAATAATCCAAATTCAT luxB reverse This thesis

LuxBdeg AGDAARAATAAYCCDAAAWTTCAT luxB reverse This thesis

127f GAICAITTIACIGAGTTTGG luxA forward Van Ert,
pers. comm.

275f TIYTIGATCAAITGTCIAAAGGICG luxA forward Van Ert,
pers. comm.

1007r ATTTCITCTTCAGIICCATTIGCTTCAAAICC luxA reverse Van Ert,
pers. comn.

8f AGAGTTTGATCMTGGCTCAG 16S rRNA forward Weisburg,
et al. 1991

1492r TACGGYTACCTTGTTACGACTT 16S rRNA reverse Weisburg,
et al. 1991

530f GTGCCAGCMGCCGCGG 16S rRNA forward Lane et al.
1985

926f AAACTYAAAKGAATTGACGG 16S rRNA forward Lane et al.
1985

519r GWATTACCGCGGCKGCTG 16S rRNA reverse Lane et aL
1985

907r CCGTCAATTCMTTTRAGTTT 16S rRNA reverse Lane et al.
1985
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volume of 50 p containing 60 pMoles of each primer, 200 pM of each dNTP, 1 Unit of

Taq polymerase (Promega) and 5 p of the 1X buffer recomended (Promega). The

template was used at the concentrations of 5, 7.5, 10 and 15 ng for reaction and a drop of

mineral oil was added to prevent the evaporation. The amplification reactions were

performed to 30 cycles by using Biometra UNO thermal cycler with the program: 94 0C

for 60 sec. (denaturation), 50 0C for 60 sec. (annealing), 72 *C for 120 sec (extention),

and a final extention period of 8 minutes at 72 *C. The annealing temperatures of 37 0C or

40*C were used in some cases instead of 50*C. The primers used were: Luxd, 127f and

275f (forward) and 1007r, LuxBcon, LuxBdeg (reverse). Reaction mixtures containing

template DNA from non luminous isolates (. coli) and sterile distilled water were added

as negative control. After amplification, the mineral oil was carefully removed and 10 tl

of each final reaction mixture was examined by electrophoresis through 1% agarose gel.

PCR products in gels were stained with ethidium bromide, visualized by UV

transillumination and photographed. Amplified DNA was purified by using the kit

GeneCleanIII TM. The reaction mixture was incubated with 5 p1 of glass milk beds for 15

min and centrifugated at 14.000 rpm for 5 mn. The supernatant was removed and the

glassmilk containing DNA was washed 3 times with the Acid Wash Solution provided

by the kit. Then, DNA was eluted from the pellet by three extractions with 5 pl of 1/10

TB buffer. After evaluation of DNA concentration by fluorometry, samples were frozen

at -20®C until the sequencing. Sequencing of both strands of the amplified fragments

was performed by using the automated sequencer ABI Prism 377 (Applied Biosystems,

Foster City, CA) following the instructions of the manufacturer. For the sequencing
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reaction, 40 ng of template DNA was incubated with 1.6 pmoles of the specific primer

and 4 pl of the ABI PRISM BigDyeT Sequencing Terminator Kit, containing the

AmpliTaq DNA polymerase, the deoxynucleoside triphosphates, di-deoxy-Rhodamine

dye terminators, MgCl 2 and reaction buffer. Purified water was added for a final volume

of 10 pl. The amplification was conducted in a thermal cycler with 25 cycles of the

following program: 96 *C for 10 sec. (denaturation), 50 C for 5 sec. (annealing), 60 *C

for 4 i 30 sec. (extension), rapid ramp to 4 'C. The amplification products were

purified from non incorporated fluorescent dyes by precipitation in 30 pl of ice cold

100% ethanol and 5 pl of 7.5 M ammonium acetate for 1 hour at -20*C. After

centrifugation of the samples for 30 min at 14,000 rpm, the pellet was washed 2 times

with 70% ethanol and dryed in a vacuum centrifuge. The samples were resuspended in

5pl a loading buffer (deionized formamide and 25 mM EDTA-blue dextran at a ratio of

5:1) and denaturated at 95*C for 5 minutes. After that, they were loaded in the

sequencing gel (5% acryl: bis acrylamide gel 29:1 (Amresco, Solon, OH) mounted in the

electrophoresis chamber. The gel was covered with TBE buffer (22.5 mM Tris-borate,

0.5 mM EDTA) and electrophoresis conducted with the module: Run 2X (1680 volts for

7 hours, 1200 laser-scans/hour). The signals of the scans were automatically recorded,

converted into electropherograms and sequences with the Sequence Analysis software

provided by the sequencer.
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PCR amplification and sequencing of the gene 16s rRNA

The PCR amplification of the gene 16S rRNA was obtained by using the primers

8f and 1492r, described by Weisburg (1991) and the protocol already described. Both

strands of the amplified fragments were sequenced by using the primers 8f, 1492r, 530f,

907r 902f, 518r, (Table 4, Lane et al. 1985, Weisburg et al., 1991) according to the

method already described.

Analysis of the sequences

The editing and the assemblage of the sequences were performed with the

Autoassembler (Applied Biosystems) and a consensus sequence was obtained from each

fragment sequenced. Sequences of luxA obtained were translated into amino acid

sequences by using the program Sequence Navigator (Applied Biosystems). Alignment

of the amino acid sequences was done with ClustalX (Higgins, EMBL, Heidelberg,

Germany). Sequences of DNA from 16S rRNA gene were also aligned with ClustalX.

Phylogenetic analysis was conducted by using PAUP (Sinauer Associates, MA).

RESULTS

Phenotypic characterization

A phenotypic characterization of the isolates Imk3, Ink4, Ink5, YSCI, HSC2,

HSC3, GmD5, Gm3A, IM3, from Oman and 3D2, KI, Agr2, Pin2, Tod1, TodB,

Flcarpio1, MSB, 2YSC, 2YSD, 2YSG, SCI, YSI, ID3, 3D3, 3YSB, 2D3, 1D2 from
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Florida has been performed by using the BIOLOG GN plates. The results have been

added to the data previously obtained by Makemson and Hermosa (1999) from the

analysis of the known luminous species, some related species and a group of new isolates

from Oman, that represent the database for the present work. The cluster analysis of

luminous isolates previously reported by Makemson and Hermosa (1999) shows the

presence of two major groups, corresponding respectively to groups possessing "slow"

and "fast or intermediate" luciferases, with several sub-clusters of isolates in each group.

Oman luminous bacteria formed six clusters distinct from the known species. Cluster

analysis obtained by adding the strains of this study to the database is reported in Figure

1. IMK3, IMK4, YSCI form a distinct cluster in the group of "slow" luciferases, which

includes two other groups distinct from the known species, including respectively MSC5,

Pin2 and HSC2, HSC3, SUP 1, Flcarpio1 and RAJ3. The clustersof YSI, 1D3, 3D3 is

also distinct from the known species and included in the groups of "fast and

intermediate" luciferases. All the other isolates were in clusters with the known species.

PCR amplification of the luxA gene

In order to amplify the luxA gene from the new isolates, three new primers have

been designed c. the basis of the alignment of DNA sequences from luxD, luxA and luxB

of the species V harveyi, P. phosphoreum and V fischeri, obtained from Genebank. The

new primers (Luxd, LuxBcon, LuxBdeg) and the primers 127f, 275f, 1007r have been

used for the PCR amplification of /uxA from DNA of V harveyi, V fischeri, P.

leiognathi, P. phosphoreum, S. woodyi and some of the new isolates. In a preliminary

experiment, different concentrations of DNA and annealing temperatures were tested.

22



oi 0

aa

c 0

" 

-

23o



PCR amplification has been conducted with the primers 275f/1007r and the

annealing temperature of 50 0C, using the DNA of V harveyi, V fischeri, P. leiognathi

and P. phosphoreum at the concentrations of 5ng and 10 ng/50ml of reaction mixture. At

the concentration of 10 ng, the characteristic amplification product was obtained for V

harveyi, V fischeri, P. leiognathi, while using 5 ng, only the V harveyi and P. leiognathi

showed the characteristic band in the gel, but with less intensity. Table 5 shows results of

PCR amplification of DNA from V harveyi, V Jischeri, P. leiognathi, P. phosphoreum,

S. woodyi and some of the new isolates with the primers 127f/1007r and 275f/1007 and

Luxd/1007r at different annealing temperatures. At 50*C, primers 127f/1007r gave

amplification product for 5 of the 17 isolates analyzed. Lowering the annealing

temperature at 37*C produced amplification product for six of seven negatives tested. At

this temperatu re, however, several bands of different size from the expected (not specific

amplification products) were present in the gel. Primers 275/1007r gave a product for 14

of the 19 strains at the annealing temperature of 50 *C. The annealing temperature of

37*C increased the number of positive samples and amplification was obtained for

P. phosphoreum and S. woodyi. Primers Luxd/1007r gave amplification product for 11 of

the 19 isolates tested at 50 0C annealing temperature and no significant improvement was

observe for this primer set by decreasing the annealing temperature. In fact, at 40 0C

there is amplification product for IMK3 but absence of amplification for GmD5 and

IMK5. No product was obtained for P. phosphoreum, S. woodyi, Gsanl, MSC3, Sarl,

Sar2, Sard13. Negative PCR samples were used as template for a second PCR

amplifications with the primers Luxd/1007r but no results were obtained. The primer
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Table 5. Results of PCR amplification of luxA gene from DNA of luminous
bacteria using different primers and annealing temperatures.

STRAINS PRIMERS (*)

127f/1007r 275f/1007r Luxdf/1007r
(888bp) (740bp) (1600bp)

37*C 50 C 37 C 50 0C 400C 500C

V harveyi + - + + + +

Vfischeri + - + + + +

P. leiognathi + + + + nd +
P. posphoreum + - + -

S.woodyi MS32 + + + -

Imk3 + - nd + + -

Msc3 + - nd + - -

ImK4 + nd nd + + +
Gsanl - - - -

GmD5 + - nd + - +

Lo3 nd +- nd + + +
Im3 +- nd nd + + +
Sarl +- - nd +- -

Sar2 nd - nd - -
Sarl3 nd - nd - -

Imk5 nd + nd + - +
Msc5 nd + nd + + +
Raj3 nd - nd + + +

SH4 nd - nd + + +

(*) size of the amplification product +- positive, with low product
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275f was used in conjunction with the reverse primers LuxBcon and LuxBdeg for

amplification of DNA from V harveyi, V fischeri, P. leiognathi, and P. phosphoreum at

the annealing temperature of 37 C. A band of about 840 bp, corresponding to the

expected product, was present only with the reverse primer LuxBcon for V fischeri.

Lower annealing temperature increased the number of positive samples by allowing the

annealing when the primers didn't perfectly match the DNA template, but produced

reduced yield of the expected product or several bands of non specific amplification. The

amplification products obtained at 37 or 40 *C were separated on Nusieve agarose gel

and the DNA of the specific band was cut out and purified before sequencing. The DNA

obtained had a low concentration (about 8 - 10 ng/ml) and did not gave good results

when used for sequencing. The annealing temperature of 50*C improved the results for

all the positive samples, by eliminating the not specific bands and increasing the

concentration of specific amplified product as shown in Figure 2. Amplified DNA

obtained at 50*C had a concentration ranging from 20 to 60 ng/ml and did not require

purification from not specific products before sequencing. Primers 275f/1007r gave

amplification product at 50*C for the higher number of isolates in the preliminary

experiments and were then used for all the isolates of this study.

Analysis of luxA sequences

A portion of the luxA has been obtained by PCR with the primers 127f/1007r

from S. woodyi MS32 and with the primers 275f/1 007r from the isolates YSC 1, IMK3,

MSB, SH4, L03, MSC5, IMK4, Gm3A, SUP1, 2YSG, RAJ3, Pin2, Todi, IMK5, SCI,
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Figure 2
PCR amplification of luminous strains wth the primers Luxd/1007r at the annealing
temperatures of 40 0C (A) and 50 *C (B).
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GMD5, 3D2, KI. Both strands of the amplified product have been sequenced and the

DNA sequences obtained have been assembled, translated into amino acid sequences and

aligned. The sequences from luxA of luminous bacteria (Table 6A) have been added to

the alignment generated. The phylogenetic analysis of the aligned sequences, was

conducted with the heuristic method in PAUP. In order to verify the consistency of the

clades obtained, a bootstrap analysis was conducted. Figure 3A shows one of the 6 most

parsimonious unrooted trees obtained from amino acids sequences. The sequence of V

harveyi (slow luciferase) formed a lineage distinct from the known species, including the

new strains YSC1, IMK3, IMK4, Gm3A, Supi and RAJ3 from Oman, and MSB,

Lucpar3, Pin2 and Tod1, from Florida (lineage 1). This lineage is supported by a

bootstrap value of 100%. The values of luciferase kinetics obtained for some of these

isolates are reported in Table 7 and show the presence of "slow" luciferases. The

sequences of the " fast " luciferases of P. leiognathi and P. phosphoreum were in two

diferent lineages with the sequences of some of the new isolates (lineages 2 and 3).

Strains GmD5 3D2, Lucpar3 and KI, were in the lineage 2 of P. leiognathi, supported

by a bootstrap value of 89%. This lineage was supported by a bootstrap of 54 % from

the isolate IMK5. P. phosphoreum formed a clade with the Florida strain SCI (lineage 3)

supported b; a value of bootstrap of 100%. The "intermediate" luciferase S. woodyi

MS32, was in a lineage distinct from all the other strains (lineage 4). Phylogenetic

analysis has been conducted by using the alignment of the luxA nucleotide sequences of

the same isolates and Fig 3B shows one of the 45 most parsimonious trees, along with

branch lengths and bootstrap values. This tree confirmed the lineages 1-4 obtained from

the analysis of the the amino acid sequences, with lineage 4 of S. woodyi including also
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Table 6. List of DNA and amino acids sequences obtained from Geneban

A ®LuxA (nucleotides and amino acids) and 16s rRNA genes

Species Abbreviation

Vibrio harveyi Vh
V fischeri Vf
V cholerae Vcho
Photobacterium phosphoreum Pp
P. leiognathi P1
Photorhabdus luminescens Plum
Shewanella hanedai Sh
Kriptophanaron alfredi-symbiont Kal

B- 16S rRNA gene

Species Abbreviation

Escherichia coli Eco
P. angustum Pang
S. woodyi MS32 Sw
S. putrefaciens Sput
V splendidus Vsplend
V carchariae Vcarch
V anguillarum Vanguil
V parhaemolyticus Vparah
V vulnificus Vvulnific
V orientalis Vorient
V logei Vlo
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Table 7. Luciferases kinetics of the new strains

STRAIN DECAY RATE (sec -1)

Aldehyde
C10  C12

* S. woodyi MS32 0.263 0.293
* L03 0.300 0.020
* S14 0.338 0.053
* Supi 0.272 0.056
o MSC3 0.300 0.060
o MSC5 0.380 0.037
SImk3 0.230 0.030
* Imk4 0.140 0.015
* Raj3 0.270 0.070
* Pin2 0.230 0.069

* Makemson, pers. comm.

O This study
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Figure 3A
One of the 6 most parsimonious tree obtained from luxA amino acids sequences of new
luminous bacteria and S. woodyi. Parsimony analysis with heuristic search has been
conducted by using the program PAUP. Branch lengths are above branches, values of
bootstrap are in circles. Sequences from Genebank: Vh (Vibrio harveyi), Vcho (V
cholerae), Vf (V. fischeri), Sh (Shewanella hanedai), Pp (Photobacterium
phosphoreum), Pleiogn (P. leiognathi), Kal (Kriptophanaron alfredi-symbiont), Plumin
(Photorhabdus luminescens).
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Figure 3B
One of the 45 most parsimonious trees obtained from luxA nucleotides sequences of new
luminous bacteria and S. woodyi. Parsimony analysis with heuristic search has been
conducted by using the program PAU. Branch lenghts are above branches, values of
bootstrap are in circles. Sequences from Genebank: V (Vibrio harveyi), Vcho (V.
cholerae),Vf (Vfischeri), Sh (Shewanella hanedai), Pp (Photobacterium
phosphorem), Pleiogn (P. leiognathi), Kal (Kriptophanaron alfredi-symbiont), Plumin
(Photorhabdus luminescens).
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the strain S. hanedai. The species K aifredi- symbiont, and V cholerae were in the

same lineage (lineage 5).

PCR amplification and sequencing of the gene 16S rRNA

The 16S rRNA gene was amplified by PCR using the primers 8f/1492r from

DNA of all the isolates and products of 1500bp, corresponding to the entire gene, were

sequenced. These sequences have been assembled, and aligned with the 16S rRNA

sequences of the species listed in Table 6B. Phylogenetic analysis has been conducted by

parsimony using a heuristic search. Figure 4 shows one of the 36 most parsimonious

unrooted trees. In order to verify the robustness of the tree, bootstrap test has been

performed and the values are reported in the figure. This tree shows that lineages 1-5

conincide with the luxA sequences. The sequences of V harveyi ("slow" luciferase), P.

phosphoreum and P. leiognathi ('fast") formed three independent lineages (1-3)

including some of the new strains, supported by bootstrap values of 95%, 86% and 83%

respectively. The strain S. woodyi MS32 possessing "intermediate" luciferase formed

lineage 4, including S. hanedai and supported by a bootstrap of 96%. But, the 16S

rRNA tree places some of the new isolates at different positions respect to luxA

sequence trees. Gm3A and 2YSG, present in the lineage 1 (with V harveyi) in the luxA

trees, seem more related to lineages 2 and 3 containing P. phosphoreum and P.

leiognathi (bootstrap value of 95%) and IMK3 branched in a dade with S. woodyi and S

hanedai (bootstrap 100%). The 16S rRNA tree also shows the presence of a new lineage

(clade 6: PIN2, Raj3, Todl, 3D2, SCI, Lucpar3, Agr2) distinct from the known species

and supported by a bootstrap of 100%. Some of these strains were grouped with the
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Figure 4
One of the 36 most parsimnonious trees fromn 165 rRNA sequences of new luminous
bacteria. Parsimony analysis with heuristic search has been conducted by using the
program PAUP. Branch lengths are above brapches, values of bootstrap are in circles.
Sequences from Genebank: Vh ( Vibrio harveyi), Vcho (V cholerae), Vf (V fischeri)X
Sli (Shewanella hanedaz), Sw (S& woodyi), P p (Photobacterium phosphoreum), Pleiogn
(P. lejognai), Kal (Kriptophanaron aifredi-symbiont), Plumin (Photorhabdus
luminescensY.
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known species in the tree generated from luxA amino acids and nucleotides sequences.

Pin2, Raj3, Todi were in the V harveyi clade, 3D2 and Lucpar3 were in the P.

leiognathi lade and SCI in the P. phosphoreum clade. The 16s rRNA sequences from

10 species taxonomically related to luminous bacteria and included in the phenotypic

analysis, have been obtained from Genebank and added to the alignrent already

generated (Table 6B). The sequences obtained from the new strains IM3 and Sar2, from

Oman, were also included. In the phenotypic analysis, Sar2 is in a cluster with Sari and

couldn't not be amplified with any of the luxA primers of this study. Phylogenetic

analysis shown in Fig 5 is one of the 100 most parsimonious trees obtained. In this tree,

V parahaemolyticus and V carchariae were associated with the V harveyi dlade. The

clade contining V cholerae and K alfredi - symbiont included also V anguillarum, V

vulnificus, V splendidus, V orientalis while Ph. luminescens was associated with F coli.

A clade containing S. hanedai and S. woodyi included also S. putrefaciens. P. angustum

clustered with Gm3A and the new strain IM3 with P. leiognathi (lineage 2). A distinct

clade (bootstrap value of 100%) was not related to any other species in Genebank. This

clade included at least 2 subgroups: Agr2, Pin2, Lucpar3 (bootstrap 84%) and Sar2,

3D2, and SCI (bootstrap 81 %).

Sarl, Sard 13 and Flcarpio1 were not included in the 16S rRNA tree shown in

Fig 4 and 5 because only a sequence of about 800 bp was obtained. Sarl and Sari3 did

not give amplification with any of the lux primers. In order to characterize these isolates

a new alignment has been produced by using a fragment of the same size for all the

isolates of Fig 4. In this alignment, the isolates Bacillus subtilis and B. pumilus were

added as an outgroup. Fig 6 shows a rooted consensus tree obtained by heuristic search
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36



P

e VPangun

I k4

Vi h

SUPVsplend

.9.

Figure 6

Rooted consensus trees obtained fom 16S rRNA gene sequences. Parsimony analysis

with heuristic search has been conducted by using the program PAUP. Numbers above
branches are the values of bootstrap. Sequences from Genebak:h (Vibrio harvei),

Vc o (.. cholerae),V (V fscheri) h(Shewanella anedai), Sw(. woodyi), P

(Photobacterim phosphoreum), Pleiog (P. leiognathi), Kal (Krptophanaron a fredi-

symiont), Plumin (Photorhabdus luminescens), Eco (E.coli), Vearch (V carchariae),

Vanguit (V anguilla r), Vvulnific (. vunfcus), Vspled (Vsplendidus), Vorient (F

orientalis), put (S. putrefaciens), to (V logei), Pang (P. angustu ), Bsub (Bacillus
subtilis), Bum (B.pum ilus).
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using parsimony. In this tree, the lineageses 1-6 present in Fig 4 were conserved. All the

known isolates characterized by "fast" luciferases formed distinct lineages separated from

lineage 1 (V harveyi) and the clade 6 was also present. The isolates Sar2 and Flcarpio1

were in clade 6 distinct from the known isolates and Sard13 was in P. phosphoreum

lineage.

DISCUSSION

In the phenotypic analysis, the new strains clustered with known species, and

some of them formed distinct clusters. The presence in fish guts of isolates distinct from

the known luminous bacteria was in accord with the data reported by Makemson and

Hermosa, 1999. The geographic origin and habitat of the fish didn't affect clusters

obtained.

Primers 275f/1007r gave amplification of luxA with all the new strains, except

Sar2, Sarl3 and Gsnl as well as the known species P. phosphoreum. This absence of

amplification product can be explained with variability in the DNA sequences, that don't

match the primers used.

The alignment of luxA amino acids sequences of known species shown by

Meighen (1991) presents two groups corresponding to the "slow" kinetics of V harveyi

and the "fast" of V fischeri, P. phosphoreum and P. leiognathi. In the analysis of this

study, the "slow" luciferase of V harveyi formed a lineage with some of the new strains,

distinct from any other know species. The"fast" luciferases V fischeri, P. phosphoreum
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and P. leiognathi didn't form an homogeneous group but three different lineages along

with some of the new isolates also. The sequence of the "intermediate" S. woodyi formed

a lineage distinct from the known species and the new strains. Geographic location and

fish habitat didn't affect clustering in the trees generated from luxA sequences. Strains

from pelagic and demersal fish of both locations clustered with the "slow" kinetics of V

harveyi and the "fast" of P. phosphoreum or P. leiognathi, with lineage 1 of V harveyi

containing most of the strains.

The trees generated from 16S rRNA sequences (Figures 4, 5, 6) presented the

major lineages corresponding to the known species as shown in LuxA. The 16s rRNA

tree has shown that dlade 6 (Agr2, Pin2, Raj3, Todl, 3D2, SCI, Lucpar3, Flcarpiol) is

distinct from all the known luminous and not luminous species included in this study.

The strains of this latter lade distinct from the known were isolated from pelagic and

demersal fish of Florida, except Raj3, which came from coastal water in Oman. This

dlade could include new taxa. Geographic location and fish habitat didn't affect

composition of clades in the trees from 16s rRNA sequences, as shown from dlade 6,

containing strains isolated from demersal and pelagic fish from both locations.

CONCLUSIONS

The phenotypic analysis showed that luminous bacteria isolated from fish guts of

Oman and Florida clustered with all the known species but some strains were distinct

from knowns.

39



A portion of luxA gene was amplified from S. woodyi with "intermediate"

kinetics, and from 19 new strains with the primers 127f/1007r and 275f/1007r.

The phylogenetic trees from nucleotides sequences and derived amino acids

sequences of luxA showed that:

- The "slow" luciferases of V harveyi and the "fast" of P. phosphoreum, P.

leiognathi, V fischeri formed four distinct lineages.

- The "intermediate" S. woodyi was a lineage distinct from the "fast" and "slow"

luciferases.

- The new strains clustered into 3 major clades corresponding respectively to V

harveyi, P. phosphoreum and P. leiognathi.

The phylogenetic analysis from the 16S rRNA sequences showed that:

- LuxA lineages shown in the luxA analyses were replicated in 165 rRNA lineages.

- Some new isolates formed a clade distinct from known luminous and non-luminous

species.

Geographic location and fish habitat didn't affect the distribution of strains in the

phenotypic and phylogenetic analyses.
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