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ABSTRACT OF THE THESIS

CHANNEL AND NOISE VARIANCE ESTIMATION FOR FUTURE 5G

CELLULAR NETWORKS

by

Jorge Iscar Vergara

Florida International University, 2016

Miami, Florida

Professor İsmail Güvenç, Major Professor

Future fifth generation (5G) cellular networks have to cope with the expected ten-

fold increase in mobile data traffic between 2015 and 2021. To achieve this goal, new

technologies are being considered, including massive multiple-input multiple-output

(MIMO) systems and millimeter-wave (mmWave) communications. Massive MIMO

involves the use of large antenna array sizes at the base station, while mmWave

communications employ frequencies between 30 and 300 GHz. In this thesis we study

the impact of these technologies on the performance of channel estimators.

Our results show that the characteristics of the propagation channel at mmWave

frequencies improve the channel estimation performance in comparison with current,

low frequency-based, cellular networks. Furthermore, we demonstrate the existence

of an optimal angular spread of the multipath clusters, which can be used to max-

imize the capacity of mmWave networks. We also propose efficient noise variance

estimators, which can be employed as an input to existing channel estimators.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Mobile communication networks have evolved over the years in order to cope with

the increasing demand of the users for better quality of service (coverage, Internet

data rates, number of users served simultaneously, etc.). Since the first generation

(1G) cellular standards were launched in the early 1980s, a new generation has been

introduced approximately every 10 years, until the current fourth generation (4G)

systems.

Several technologies have been developed and implemented over the past few

decades to achieve the ever increasing users demands. The following are some of

the most important improvements.

1. Analog to digital transition. The second generation (2G) standards brought

digital communications to cellular networks. This technology made feasible the

first cellular data services (text messages), and incremented the number of users

that can be served simultaneously [1].

2. More efficient data transmission schemes. The communication between a user

and the base station (BS) utilizes a part of the electromagnetic spectrum, which

is a limited and regularized resource. Furthermore, it has been shown that the

larger the amount of spectrum is used, the higher the data rates. The limited

amount of this natural resource made imperative to develop more efficient data

transmission schemes to reduce the portion of the spectrum employed by a given

user while keeping, or even increasing, the quality of service.

3. Multiple antenna systems. The use of more than one antenna at both the BS and

user terminal has helped to improve the quality of service as well. Depending

1



on the disposition and number of antennas, this technology can increase the

coverage, data rates, and/or number of users served simultaneously.

Following the ten years interval between cellular standards, the fifth genera-

tion (5G) is expected to be released by 2020. The data in [2] shows that the mobile

data traffic by that year is expected to be ten times that in 2015. In order to cope with

this demand, we could continue exploiting the aforementioned technologies, however

it seems that this approach will not achieve the required quality of service. Regarding

the use of more efficient data transmission schemes, although new technologies are

being investigated [3], this strategy is not expected to play a key role in future 5G

cellular networks [4]. As we mentioned before, the data rates can also be risen by

increasing the amount of electromagnetic spectrum, however the availability of this

resource has become scarce in the range of the spectrum where cellular communi-

cations usually take place (microwaves frequencies) [4]. Finally, as far as multiple

antenna systems are concerned, the number of antennas that can be deployed is lim-

ited due to space constraints since current working frequencies of cellular networks

require relatively large antenna sizes.

The inability to continue exploiting the conventional technologies to cope with

the expected mobile data traffic by 2020 has driven the development of new tech-

nologies. The work in [4] summarizes five of these technologies. This thesis focuses

on two of them: millimeter-wave (mmWave) and massive multiple-input multiple-

output (MIMO). The use of mmWave frequencies for cellular communications, as

opposed to microwaves, offers a vast amount of available spectrum that can be used

to increase the data rates. On the other hand, massive MIMO technology implies the

use of a very large number of antennas at the BS so that the data rates and number

of users served simultaneously may be arbitrarily high. Although we had previously

discarded an increment in the number of antennas due to space constraint, this will

2



not be a restriction with mmWave frequencies since they require smaller antenna

sizes.

The implementation of these two technologies requires research effort on several

wireless communications areas. Specifically, the research of this thesis focuses on

channel estimation techniques. In statistical signal processing, estimation theory

studies different techniques to extract some desirable parameter from a noisy random

signal. As far as the term channel is concerned, this parameter can be thought of as a

signature that unambiguously characterizes a user. As a consequence, the knowledge

of this parameter will allow the BS to send different data to the different users,

as opposed to broadcasting where all users receive the same data. Therefore, the

estimation of this parameter is of crucial importance in cellular networks since the

users connected to a BS receive data independently.

1.2 Contribution of the Thesis

The work done in this thesis has resulted in the following three main contributions:

1. Derived maximum likelihood (ML) and method of moments (MM) noise vari-

ance estimators for massive MIMO systems. The corresponding Cramer-Rao

lower bound (CRLB) is determined as well.

2. Proved the superior performance of minimum mean square error (MMSE) chan-

nel estimators in mmWave networks under pilot contamination, compared to

current microwave cellular deployments.

3. Demonstrated the existence of an optimal, maximum capacity achieving, an-

gular spread (AS) of the multipath clusters in mmWave systems under pilot

contamination.
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1.3 Organization of the Thesis

The prove of the three main contributions listed above is presented in Chapters 2,

3 and 4, respectively. Within each chapter, we first introduce the specific research

problem. Then, after presenting the mathematical background, we introduce our

findings. Finally, closing remarks are provided at the end of the chapter.

1.4 Notation

Throughout this work, vectors and matrices are denoted by bold lowercase and up-

percase letters, respectively. The identity matrix of size M is denoted by IM . Fur-

thermore, 0M and 0M×N represent a M × 1 vector and a M ×N matrix, respectively,

whose elements are all zeros, while ⊗ represents the Kronecker product, (.)∗ the con-

jugate, (.)T the transpose, and (.)H the conjugate transpose (Hermitian operator).

The trace and determinant of a matrix are denoted by tr [.] and det [.], respectively,

and diag (x) represents the diagonal matrix whose diagonal elements are given by

x. The expected value, covariance and variance are represented by E [.], Cov [.], and

Var [.], respectively, while CN , N , U , DU denote the complex Gaussian, Gaussian,

uniform and discrete uniform distributions.

4



CHAPTER 2

NOISE VARIANCE ESTIMATORS FOR MASSIVE MIMO SYSTEMS

2.1 Introduction

Future 5G cellular networks have to cope with the expected ten-fold increase in mobile

data traffic between 2015 and 2021 [2]. In order to achieve this goal, new technologies

are being considered, including massive MIMO systems and mmWave communica-

tions [4]. Massive MIMO involves the use of BSs with large antenna array sizes

compared with the number of users [5]. The valuable result of this technology is that,

under the extreme scenario of an infinite number of antennas at the BS, the capacity

both in the uplink and downlink is only limited by pilot contamination. That is, the

effects of noise, channel estimation error and interference vanish1.

The pilot contamination impairment is depicted in Fig. 2.1. In time-division du-

plexing (TDD) cellular networks, each BS estimates the uplink channel of the users

within its cell using known pilot sequences. In order to avoid intra-cell interference

during the channel estimation stage, orthogonal time-frequency resources are used

among the users. In TDD systems channel reciprocity applies, and therefore the BS

uses these estimates to perform precoding and deliver high data rates to the users in

the downlink [6]. In order to increase the efficiency of the network, aggressive fre-

quency reuse factors are employed and the same time-frequency resources are shared

among the BSs. This results in each BS receiving the pilot sequence not only from

its desired user, but also from one user in every neighboring cell. This is known as

the pilot contamination effect and causes a degradation in the channel estimation

performance, which in turn compromises the resulting capacity [7].

1Here, we refer to channel estimation error and interference not related to pilot contam-
ination itself.
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Cell-1

Desired user
BS

Interfering user

Figure 2.1: The pilot contamination effect in cellular networks. When the same time-
frequency resources are used among cells, the BS estimates the channel of the desired
user incorrectly, learning a combination of the target channel and those from the
interfering users. This results in a degradation of the capacity.

Having the pilot contamination as the only remaining impairment in massive

MIMO systems, exhaustive work has been done to overcome it; see the survey in [8]

and the references therein. Of special interest is the work in [9], which shows that

the pilot contamination effect depends on the mean angle of arrival (AOA) and AS

of the multipath clusters of the desired and interfering users. Specifically, the au-

thors demonstrate that the pilot contamination effect is completely eliminated when

considering and infinite number of antennas at the BS, and the cluster of the desired

user does not overlap with those of the interfering users in the angular domain. In

practical scenarios with limited number of antennas and overlapping condition, the

channel estimation error is seen to increase with the AS of the clusters. Furthermore,

the authors in [9] propose a MMSE channel estimator and a pilot assignment strategy

to improve the channel estimation performance under pilot contamination. The pro-

posed estimator requires the noise variance at the receive antennas, which is assumed

known. However, this assumption may be challenged under certain circumstances

6



(see Section 2.7), and, therefore, it has to be estimated. This is the objective of our

work, the estimation of the noise variance at the receive antennas of massive MIMO

systems, which can then be employed to estimate the channel as in [9].

2.1.1 Related work

The work that comes closest to ours is [10]. In that work, the authors employ a MMSE

noise variance estimator, which depends on the channel estimate. Since the channel

estimate depends, in turn, on the noise variance, an iterative algorithm is needed. In

our work, however, the noise variance is estimated directly from the received samples

and iterative processes are avoided.

In [11], the noise variance estimate also depends on the channel estimate. In order

to avoid iterative algorithms, the authors substitute the MMSE channel estimate by

the least squares (LS) estimate. As we will observe in our simulation results, the

low performance of the LS channel estimator [9] compromises the noise variance

estimation.

In [12], the authors estimate the noise variance using the sample covariance matrix,

which requires the average of several received samples. This results in a delay between

noise variance estimates, which compromises the performance of the estimator in

scenarios where the noise variance is a non-stationary parameter (see Section 2.7).

On the other hand, in our work, the noise variance is estimated continuously from

the last received samples.

Finally, the noise variance estimator proposed in [13] is not suitable for massive

MIMO systems since the output of the estimator may lead to the computation of

the inverse of the channel covariance matrix during the channel estimation stage.

However, the assumption of channel covariance matrix invertibility is challenged in

massive MIMO scenarios due to rank deficiency [9].

7



2.1.2 Our contribution

We include the following contributions in this chapter.

• We propose non-iterative ML estimators of the noise variance in MIMO systems

under three different scenarios: data aided (DA) model (known pilot sequence),

non-data aided (NDA) model (unknown pilot sequence), and mixed DA and

NDA model. Furthermore, for each scenario, two noise models are considered:

the same or different noise variance at the receive antennas. Simulations results

show that these estimators are efficient in certain scenarios since they attain the

CRLB. Although neither the channel nor its estimate are an input parameter

to the estimator, its covariance matrix needs to be known.

• We also propose MM estimators of the noise variance. Although the efficiency of

these estimators is limited to very low signal to noise ratio (SNR) values, their

computational complexity is reduced when compared to the ML estimators.

The channel covariance matrix is also required for the MM estimators.

• We derive the CRLB for the noise variance estimation under the three different

scenarios and noise models. The CRLB for scenarios where the channel is

known has been studied in [14]. As a consequence, our proposed expressions

are a generalization of those derived in [14] to account for scenarios where the

channel is unknown.

The output of the proposed noise variance estimators can then be used to estimate

the channel as in [9]. Although we are investigating massive MIMO scenarios, the

proposed CRLBs and estimators for the noise variance are also valid for current

antenna array sizes.

8



2.1.3 Organization of the chapter

The rest of the chapter is organized as follows. Section 2.2 describes the system

model. In Section 2.3 we derive the CRLB for the noise variance estimation under

the different pilot and noise models. For each of these scenarios, in Section 2.4 we

develop ML and MM estimators for the noise variance. Furthermore, approximations

for the CRLB and ML estimators under specific scenarios are derived in Section 2.5.

Simulation results for the proposed CRLB and noise variance estimators are shown in

Section 2.6. In Section 2.7 we discuss the availability of the channel covariance matrix,

which is used in the noise variance estimators, as well as other alternative strategies

to obtain the noise variance and the advantages of ours. Finally, in Section 2.8 we

provide closing remarks.

2.2 System Model

We consider a cellular system with NL cells, each of them managed by a BS equipped

with M antennas. Furthermore, K single-antenna users populate each cell. We

assume TDD and constant channels during the channel estimation stage in both

the time (block fading) and frequency (flat fading) domains. Besides, we consider

narrowband signals, which satisfies the assumption of flat fading channels. This

scenario is depicted in Fig. 2.2.

During the uplink channel estimation stage, the K users in each cell transmit

a pilot sequence within orthogonal time-frequency resources. In cellular networks

with aggressive frequency reuse factors, the transmission resources are shared among

the NL cells, which results in each BS receiving NL − 1 interfering pilot sequences,

causing the pilot contamination effect. Therefore, the received signal Y at the BS

9
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Figure 2.2: System model. Example for NL = 7 and K = 3. The users represented
by the same color are assigned the same time-frequency resources, which causes the
effect of pilot contamination.

corresponding to one of the K users is given by

Y =

NL∑
l=1

hls
T + N , (2.1)

where hl is the uplink channel from the user in the l-th cell to the BS, s is the pilot

sequence, and N is the noise at the receive antennas. The dimensions of the variables

are as follows: h is a M × 1 vector, s = [s1 · · · sτ ]T is a τ × 1 vector, and Y and N

are M × τ matrices.

The column vector form of the matrix Y is given by

y = S

NL∑
l=1

hl + n , (2.2)

where y and n are obtained by stacking all columns of Y and N, respectively, into one

column vector, and S = s⊗ IM is the training matrix of size Mτ ×M . We consider

that each of the τ symbols of s has unit power and therefore SHS = τIM . Finally,

both the channels hl and the noise n are considered random variables distributed as

hl ∼ CN (0M ,Rl) and n ∼ CN (0Mτ ,Σ). The noise covariance matrix Σ is a diagonal

matrix and therefore the noise samples are spatially and temporally uncorrelated.

10



From this system model, the MMSE estimate of the channel of the desired user is

given by [9]

ĥ1 = R1

(
Σ + τ

NL∑
l=1

Rl

)−1
SHy , (2.3)

where we consider the estimation of the desired channel in cell 1 without loss of

generality. The objective of our work is the estimation of Σ in (2.3) from the received

signal y for the scenarios where Σ is an unknown parameter.

In order to estimate the noise covariance matrix we simplify the signal model in

(2.2). As a result, the received signal at the BS becomes

y = Sh + n , (2.4)

where h =
∑NL

l=1 hl results from summing all the NL channels hl, such that h ∼

CN (0M ,R). Since the channels are independent, the resulting covariance matrix R

is given by

R =

NL∑
l=1

Rl . (2.5)

2.3 CRLB for Noise Variance Estimation

The CRLB expresses the best achievable variance (lowest error) of any unbiased

estimator. We will use this lower bound to measure the performance of the estimators

proposed in the next section.

Extending the work in [14] to scenarios where the channel is unknown, we derive

the CRLB under different pilot sequence models: DA model (the pilot sequence is

known), NDA model (the pilot sequence is unknown), and mixed DA and NDA model

(the pilot sequence is only partially known). Furthermore, for each of these scenarios,

we consider two different noise models: the noise variance σ2 at the BS antennas is

the same, that is Σ = σ2IMτ , and different, which results in Σ = Iτ ⊗diag (θ), where

θ = [σ2
1 · · · σ2

M ], and σ2
m is the noise variance at the m-th antenna.

11



The pilot symbols that form the sequence s belong to a finite constellation of N

equiprobable and independent unit power symbols (i.e., N -PSK modulation). Addi-

tionally, S, h, and n are considered independent random variables.

2.3.1 CRLB for DA model with equal noise variance

In the DA model the pilot sequence is known and therefore S can be considered a

deterministic variable. As a consequence, the received signal y in (2.4) is distributed

as y ∼ CN
(
µy,Cy

)
, where the mean µy and covariance matrix Cy are given by

µy = E [Sh + n] = SE [h] + E [n] = 0Mτ , (2.6)

Cy = Cov [Sh + n] = Cov [Sh] + Cov [n] = SRSH + σ2IMτ , (2.7)

where the expected value is taken with respect to y.

The CRLB for the estimation of σ2 is defined as [15, ch. 3]

Var
[
σ̂2
]
≥ I

(
σ2
)−1

, (2.8)

where the Fisher information I (σ2) for the case of Gaussian random variables is given

by [15, ch. 15]

I
(
σ2
)

= tr

[(
C−1y

∂Cy

∂σ2

)2
]

+ 2Re

[
∂µH

y

∂σ2
C−1y

∂µy

∂σ2

]
, (2.9)

where Re [x] denotes the real part of x.

Theorem 2.3.1 Consider the DA model with equal noise at the receive antennas.

Then, the CRLB for the estimation of the noise variance is given by

Var
[
σ̂2
]
≥ I

(
σ2
)−1

=
σ4

M (τ − 1) +
M∑
m=1

1(
1 +

τλm
σ2

)2

, (2.10)

where λm are the eigenvalues of R.
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Proof. See Appendix A.1.

The CRLB for the noise variance estimation above considers a random and un-

known channel. As a consequence, this is a generalization of the expression derived

in [14], which considers a known channel. We can, then, obtain that same expression

by removing the channel uncertainty from (2.10). This is done by setting all the ele-

ments of the channel covariance matrix R to zero, that is, R = 0M×M , which results

in λm = 0,∀m. Therefore, when the channel is known, the CRLB reduces to [14, eq.

(18)]

Var
[
σ̂2
]
≥ σ4

Mτ
. (2.11)

We will analyze how the different variables in (2.10) affect the CRLB when dis-

cussing the simulation results in Section 2.6.

2.3.2 CRLB for NDA model with equal noise variance

The pilot sequence is always known at the receiver in typical wireless systems. In

this work, an unknown pilot sequence entails scenarios where the noise variance is

estimated from the user data, which is unknown. As we will observe in the simulation

results, the estimation error increases in this scenario. On the other hand, this ap-

proach is not meant to be used alone, but in conjunction with a known pilot sequence.

In this mixed strategy, to estimate the noise variance we will employ the received sig-

nal from the known pilot sequence, which is used to estimate the channel as in (2.3)

as well, in conjunction with the received signal from the unknown user data. This

approach, which is analyzed in the next subsection, offers a better performance than

that of the DA model, as we will observe in the simulation results.

For clarification, we introduce the variable κ to represent the number of unknown

symbols, while τ will still be representing the number of known pilot symbols. As a

consequence, in this subsection, we only consider the variable κ.

13



When the received signal comes from an unknown pilot sequence, the training

matrix S is no longer a deterministic variable, and therefore the probability density

function (PDF) of the received signal p (y) is not Gaussian. As a consequence, the

expression for the Fisher information in (2.9) cannot be used to compute the CRLB,

and we have to rely on the general expression, which is given by

I
(
σ2
)

= −E

[
∂2 ln p (y;σ2)

∂ (σ2)2

]
. (2.12)

Theorem 2.3.2 Consider the NDA model with equal noise at the receive antennas.

Then, the second derivative of ln p (y;σ2) with respect to σ2 is defined as

∂2 ln p (y;σ2)

∂ (σ2)2
=
Mκ

σ4
−

M∑
m=1

(λmκ)3

σ4
+

3 (λmκ)2

σ2
+ 2λmκ

(σ2 + λmκ)3

− 2
yHy

σ6
+

∂2 ln

(∑
s1

· · ·
∑
sκ

T

)
∂ (σ2)2

,

(2.13)

where

∂2 ln

(∑
s1

· · ·
∑
sκ

T

)
∂ (σ2)2

=

(∑
s1

· · ·
∑
sκ

(TD)

)′
∑
s1

· · ·
∑
sκ

T
−

(∑
s1

· · ·
∑
sκ

(TD)

)2

(∑
s1

· · ·
∑
sκ

T

)2 , (2.14)

with

(∑
s1

· · ·
∑
sκ

(TD)

)′
=

∂

(∑
s1

· · ·
∑
sκ

(TD)

)
∂ σ2

=
∑
s1

· · ·
∑
sκ

(
TD2 + TD′

)
.

(2.15)

In (2.14) and (2.15), T , D and D′ are given by (A.19), (A.22) and (A.23), respec-

tively.

Proof. See Appendix A.2.

The Fisher information in (2.12), and hence the CRLB in (2.8), can be obtained

by evaluating the expected value of the result in (2.13) with respect to y. Due to
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the result in (2.14), the expected value cannot be obtained analytically as in the DA

model, and other techniques have to be explored. In this work, we will rely on Monte

Carlo simulations to obtain the CRLB. Other techniques such as the Gauss-Hermite

quadrature are investigated in [14].

2.3.3 CRLB for mixed model with equal noise variance

As we advanced in the previous subsection, we can improve the performance in the

estimation of the noise variance by considering not only the received signal from

the known pilot sequence, but also the signal from the unknown user data. Let us

redefine the signal model in (2.4) to account for this mixed DA and NDA model. If

we consider τ known and κ unknown symbols, the pilot sequence s is now defined as

s = [s1 · · · sτ sτ+1 · · · sτ+κ]T . As a consequence, the new dimension of the received

signal y, and hence of n, is M (τ + κ)× 1. Furthermore, S is now a M (τ + κ)×M

matrix such that SHS = (τ + κ) IM .

In order to obtain the CRLB for the estimation of the noise variance σ2 we proceed

as in the NDA model. The objective is to find the Fisher information in (2.12) to

calculate the CRLB as in (2.8).

Theorem 2.3.3 Consider the mixed DA and NDA model with equal noise at the

receive antennas. Then, the second derivative of ln p (y;σ2) with respect to σ2 is

defined as

∂2 ln p (y;σ2)

∂ (σ2)2
=
M (τ + κ)

σ4
−

M∑
m=1

(
λm (τ + κ)

)3
σ4

+
3
(
λm (τ + κ)

)2
σ2

+ 2λm (τ + κ)(
σ2 + λm (τ + κ)

)3
− 2

yHy

σ6
+

∂2 ln

(∑
sτ+1

· · ·
∑
sτ+κ

T

)
∂ (σ2)2

,

(2.16)
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where

∂2 ln

(∑
sτ+1

· · ·
∑
sτ+κ

T

)
∂ (σ2)2

=

(∑
sτ+1

· · ·
∑
sτ+κ

(TD)

)′
∑
sτ+1

· · ·
∑
sτ+κ

T
−

(∑
sτ+1

· · ·
∑
sτ+κ

(TD)

)2

(∑
sτ+1

· · ·
∑
sτ+κ

T

)2 ,

(2.17)

with (∑
sτ+1

· · ·
∑
sτ+κ

(TD)

)′
=
∑
sτ+1

· · ·
∑
sτ+κ

(
TD2 + TD′

)
. (2.18)

In (2.17) and (2.18), T , D and D′ are given by (A.28), (A.29) and (A.30), respec-

tively.

Proof. See Appendix A.3.

As in the NDA model, the analytical evaluation of the expected value of the

second derivative of ln p (y;σ2) in (2.16) is not possible. Therefore, we use Monte

Carlo simulations to compute it and obtain the CRLB.

2.3.4 CRLB for DA model with different noise variance

In the following subsections we consider that the noise variance is different at the

M antennas. Therefore, our goal is the estimation of σ2
m, the noise variance at the

m-th receive antenna. We consider that the M noise variances are uncorrelated

and therefore each of them can only be estimated from the τ received samples at

its corresponding antenna. This was not the case when the noise variance was the

same across all the antennas, and hence the estimation could be calculated from Mτ

samples.

This new scenario requires a modified signal model. From the original signal model

in (2.1), the received signal at the m-th antenna is

ym =

NL∑
l=1

hm,ls + nm = hms + nm , (2.19)
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where hm and nm are the total channel and noise samples, respectively, at the m-th

antenna. The variables ym, s, and nm are τ ×1 vectors. Furthermore, hm and nm are

distributed as hm ∼ CN (0,Rmm) and nm ∼ CN (0τ , σ
2
mIτ ), respectively, with Rmm

being the mm-th element of the covariance matrix R. Finally, as in the previous

scenario, hm, s, and nm are considered independent random variables.

In the DA model the pilot sequence s is a deterministic variable. Therefore, the

received signal ym is distributed as ym ∼ CN
(
µym

,Cym

)
where the mean µym

and

the covariance matrix Cym are expressed as

µym
= E [hms + nm] = E [hm] s + E [nm] = 0τ , (2.20)

Cym = E
[(

ym − µym

) (
ym − µym

)H]
= E

[
ymyHm

]
= RmmssH + σ2

mIτ , (2.21)

where the expected value is taken with respect to ym.

Theorem 2.3.4 Consider the DA model with different noise at the receive antennas.

Then, the CRLB for the estimation of the noise variance is given by

Var
[
σ̂2
m

]
≥ σ4

m

τ − 1 +
1(

1 +
Rmmτ

σ2
m

)2

.

(2.22)

Proof. See Appendix A.4.

Let us compare the expression for the CRLB in (2.22) with that in (2.10), which

correspond to the scenario where the noise variance is the same at all the receive

antennas. We observe that the expression in (2.10) becomes (2.22) when considering

that the number of antennas is one, that is, M = 1, and replacing λm by Rmm. This

result was expected since now we are estimating the noise variance from the samples

received at one, instead of M , antennas.
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2.3.5 CRLB for NDA model with different noise variance

When the pilot symbols are unknown, the received signal ym is no longer a complex

Gaussian random variable and we need to rely on the formula in (2.12) to compute

the Fisher information of σ2
m.

Theorem 2.3.5 Consider the NDA model with different noise at the receive an-

tennas. Then, the second derivative of ln p (ym;σ2
m) with respect to σ2

m is defined

as

∂2 ln p (ym;σ2
m)

∂ (σ2
m)2

= −

(Rmmκ)3

σ4
m

+
3 (Rmmκ)2

σ2
m

+ 2Rmmκ

(σ2
m + Rmmκ)3

+
κ

σ4
m

− 2yHmym
σ6
m

+

∂2 ln

(∑
s1

· · ·
∑
sκ

T

)
∂ (σ2

m)2
,

(2.23)

where

∂2 ln

(∑
s1

· · ·
∑
sκ

T

)
∂ (σ2

m)2
=

(∑
s1

· · ·
∑
sκ

(TD)

)′
∑
s1

· · ·
∑
sκ

T
−

(∑
s1

· · ·
∑
sκ

(TD)

)2

(∑
s1

· · ·
∑
sκ

T

)2 , (2.24)

with (∑
s1

· · ·
∑
sκ

(TD)

)′
=
∑
s1

· · ·
∑
sκ

(
TD2 + TD′

)
. (2.25)

In (2.24) and (2.25), T , D and D′ are given by (A.39), (A.42) and (A.43), respec-

tively.

Proof. See Appendix A.5.

The Fisher information, and hence the CRLB on the estimation of σ2
m, can be

obtained by evaluating the expected value of the second derivative in (2.23). An

analytical evaluation is again not possible due to the expression in (2.24). As an

alternative, we employ Monte Carlo simulations.
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2.3.6 CRLB for mixed model with different noise variance

We can improve the estimation of σ2
m by combining the DA and NDA pilot models.

In order to obtain the CRLB we proceed as in the first noise model, that is, equal

noise variance at the receive antennas.

Theorem 2.3.6 Consider the mixed DA and NDA model with different noise at the

receive antennas. Then, the second derivative of ln p (ym;σ2
m) with respect to σ2

m is

defined as

∂2 ln p (ym;σ2
m)

∂ (σ2
m)2

= −

(
Rmm (τ + κ)

)3
σ4
m

+
3
(
Rmm (τ + κ)

)2
σ2
m

+ 2Rmm (τ + κ)(
σ2
m + Rmm (τ + κ)

)3
− 2yHmym

σ6
m

+

∂2 ln

(∑
sτ+1

· · ·
∑
sτ+κ

T

)
∂ (σ2

m)2
+

(τ + κ)

σ4
m

,

(2.26)

where

∂2 ln

(∑
sτ+1

· · ·
∑
sτ+κ

T

)
∂ (σ2

m)2
=

(∑
sτ+1

· · ·
∑
sτ+κ

(TD)

)′
∑
sτ+1

· · ·
∑
sτ+κ

T
−

(∑
sτ+1

· · ·
∑
sτ+κ

(TD)

)2

(∑
sτ+1

· · ·
∑
sτ+κ

T

)2 ,

(2.27)

with (∑
sτ+1

· · ·
∑
sτ+κ

(TD)

)′
=
∑
sτ+1

· · ·
∑
sτ+κ

(
TD2 + TD′

)
. (2.28)

In (2.27) and (2.28), T , D and D′ are given by (A.45), (A.46) and (A.47), respec-

tively.

Proof. See Appendix A.6.

Monte Carlo simulations are used to obtain the expected value of (2.26). This

value is then used to evaluate the Fisher information, and hence the CRLB on the

estimation of σ2
m.
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2.4 Noise Variance Estimators

In the previous section we derived the CRLB for the estimation of the noise variance

under different pilot and noise models. The objective in the section is to find the

corresponding estimator.

The different strategies available to obtain an estimator for a given parameter are

summarized in [15, ch. 14]. Among those strategies, the ones that are suitable for

our signal models in (2.4) and (2.19) are: CRLB evaluation, Rao-Blackwell-Lehmann-

Scheffe (RBLS) theorem, ML estimator, and MM estimator. The first approach re-

sults in the minimum variance unbiased estimator (MVUE), that is, in an estimator

that offers the lowest error, for any value of the noise variance, among all unbiased

estimators. Furthermore, it is an efficient estimator since it attains the CRLB. How-

ever, this strategy cannot be pursued in our context, for any of the pilot and noise

models, since the PDF of the received signal does not satisfy the following expression:

∂ ln p (y;σ2)

∂ σ2
= I

(
σ2
) (
g (y)− σ2

)
, (2.29)

where g (y) would be the efficient estimator.

The second approach, the RBLS theorem, results in the MVUE as well. Neverthe-

less, we cannot employ this strategy either in this work since the PDF of the received

signal cannot be expressed as

p
(
y;σ2

)
= g

(
T (y) , σ2

)
h (y) , (2.30)

where g is a function only of T (y) and σ2, and h a function that depends only on

the received samples y. On the other hand, T (y) is a sufficient statistic.

Hence, since the first two strategies cannot be used, we investigate the ML and

MM estimators. The ML estimator is efficient for large data records and certain

conditions on the PDF. Our simulation results show that the number of samples
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needed for the estimator to be efficient is actually very low. On the other hand, the

MM estimator is, in general, not optimal. However, our results indicate that it is

efficient for very low SNR values.

2.4.1 Estimators for DA model with equal noise variance

Let us recall the expression for the received signal when the M antennas have the

same noise variance:

y = Sh + n . (2.31)

As a consequence, the received signal is distributed as y ∼ CN
(
µy,Cy

)
, where

the mean µy and covariance matrix Cy are given by (2.6) and (2.7), respectively.

Besides, the inverse and determinant of Cy are as in (A.6) and (A.16), respectively

(in (A.16), κ is replaced by τ). Therefore, we have

p
(
y;σ2

)
=

exp

[
−yH

(
IMτ

σ2
− SSH

σ2τ
+

SWBWHSH

τ

)
y

]
πMτ (σ2)Mτ

M∏
m=1

(
1 +

λmτ

σ2

) . (2.32)

ML estimator

The ML estimate of the noise variance is given by the value of σ2 that maximizes

the PDF in (2.32). Since maximizing p (y;σ2) is the same as maximizing the natural

logarithm of p (y;σ2), we have

σ̂2 = arg max
σ2

ln p
(
y;σ2

)
, (2.33)

where

ln p
(
y;σ2

)
= −yHy

σ2
+

yHSSHy

σ2τ
−

M∑
m=1

|um|2

τ (σ2 + τλm)

−Mτ ln (π)−Mτ ln
(
σ2
)
−

M∑
m=1

ln

(
1 +

λmτ

σ2

)
.

(2.34)
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The expression above cannot be maximized analytically and therefore a closed

form expression for σ̂2 does not exist. Hence, we need to rely on numerical techniques

to obtain the estimate. In this work we study the Newton-Raphson method, which

iteratively estimates the noise variance as2

σ̂2
k+1 = σ̂2

k −

∂ ln p (y;σ2)

∂σ2

∂2 ln p (y;σ2)

∂ (σ2)2

∣∣∣∣∣∣∣∣∣
σ2=σ̂2

k

, (2.35)

where the first and second derivatives are given by

∂ ln p (y;σ2)

∂σ2
=− Mτ

σ2
+

M∑
m=1

(λmτ)2

σ2
+ λmτ +

|um|2

τ
(σ2 + λmτ)2

+
yHy

σ4
− yHSSHy

τσ4
, (2.36)

∂2 ln p (y;σ2)

∂ (σ2)2
=
Mτ

σ4
− 2yHy

σ6
+

2yHSSHy

τσ6

−
M∑
m=1

(λmτ)3

σ4
+

3 (λmτ)2

σ2
+ 2λmτ +

2|um|2

τ
(σ2 + λmτ)3

.

(2.37)

In general, the convergence in the Newton-Raphson method is not guaranteed.

However, our simulation results show that for the DA model with equal noise variance

this method converges and always output an estimate for the noise variance.

MM estimator

The ML technique requires an iterative process to estimate the noise variance. Al-

though it results in an efficient estimator, there may be applications where its time

consuming characteristic makes it unfeasible. This motivates the development of the

MM estimator, which will offer a closed form expression, and hence the reduction of

the computation time. The drawback of the MM estimator is that it is only efficient

for very low SNR environments.

2Our contributions of this work claimed that we were proposing non-iterative ML es-
timators. However, in that context, an iterative approach referred to the jointly iterative
estimation of the channel and noise variance.
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Theorem 2.4.1 Consider the DA model with equal noise at the receive antennas.

Then, the MM estimator of the noise variance is given by

σ̂2 =
yHy

Mτ
− tr [R]

M
. (2.38)

Proof. See Appendix A.7.

In (2.38), the first summand computes the mean total power per received sample,

while the second summand accounts for the mean channel power. Hence, the noise

power is estimated by subtracting the mean channel power from the mean total power.

This agrees with the signal model in (2.31) and recalling that the pilot symbols have

unit power.

A similar noise variance estimator was derived in [13, eq. (15)] by solving a convex

optimization problem. In that work, the final estimate is given by max(0, σ̂2), where

σ̂2 is as in (2.38), and, therefore, it may result in σ̂2 = 0. However, a noise variance

estimate of zero would require the computation of the inverse of the covariance matrix

R in (2.3) during the posterior channel estimation stage. From [9], this operation may

be challenged when the number of receive antennas is large due to rank deficiency. As

a consequence, the noise variance estimator in [13] is not suitable for massive MIMO

scenarios.

2.4.2 Estimators for NDA model with equal noise variance

In the NDA model the received signal is given by (2.31), the same expression that we

used for the DA model. However, since the pilot sequence is now unknown, the PDF

of y is expressed as in (A.17). Let us recall that for the NDA model, we are replacing

τ by κ to denote the length of the pilot sequence, that is, the number of unknown

symbols.
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ML estimator

As in the DA model, we cannot obtain an analytical expression for the ML estimate

and we have to explore numerical techniques. Our simulation results showed that the

Newton-Raphson method used for the DA model fails to converge in the NDA model

and therefore other techniques were investigated. As in [14], we will finally implement

the expectation-maximization (EM) method.

The idea behind the EM technique is as follows. Let us define x as the complete

data set formed by the incomplete data y and the unknown training matrix S. Then,

instead of maximizing ln p (y;σ2), we want to maximize ln p (x;σ2). Since the data

set x is not available, we instead try to maximize its conditional expected value given

the received signal y. This maximization results in an estimate of the noise variance.

However, we do not use this result as the final estimate, but instead we employ it

to improve the computation of the conditional expected value. This will, hopefully,

result in a better estimate of the noise variance. This iterative process is repeated

until convergence.

Theorem 2.4.2 Consider the NDA model with equal noise at the receive antennas.

Then, the ML estimator of the noise variance is computed by means of the EM

method, where Ek, the expression to be maximized during the k-th iteration, is given

by

Ek = −yHy

σ2
+

yHE
[
SSH

]
y

σ2κ
−

M∑
m=1

E [|um|2]
κ (σ2 + κλm)

−Mκln (π)−Mκln
(
σ2
)
−

M∑
m=1

ln

(
1 +

λmκ

σ2

)
,

(2.39)

with

E [x] =

∑
s1

· · ·
∑
sκ

x p
(
y|S; σ̂2

k

)
∑
s1

· · ·
∑
sκ

p
(
y|S; σ̂2

k

) , (2.40)
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where p
(
y|S; σ̂2

k

)
is as in (2.32) with τ and σ2 replaced by κ and σ̂2

k, respectively.

In order to maximize Ek we use the Newton-Raphson technique with the first and

second derivatives given by (2.36) and (2.37), respectively, and replacing τ by κ, and

SSH and |um|2 by their corresponding expected values computed with (2.40).

Proof. See Appendix A.8.

We observe that the ML estimate of the noise variance for the NDA model is computed

with a double iterative process: within the k-th iteration of the EM method, σ̂2
k is

obtained by means of the Newton-Raphson technique.

MM estimator

Following the same steps as for the DA model and considering that S, h and n are

independent random variables, the MM estimator for the NDA model is also given

by (2.38), that is

σ̂2 =
yHy

Mκ
− tr [R]

M
. (2.41)

2.4.3 Estimators for mixed model with equal noise variance

The PDF of the received signal for the mixed DA and NDA model is derived in (A.27).

Let us recall that with this model we are estimating the noise variance σ2 from τ

known and κ unknown pilot symbols. In practice, the known symbols correspond

to the pilot sequence used to estimate the channel as in (2.3), while the unknown

symbols refer to the user data.

ML estimator

The ML estimate of the noise variance for this model is obtained by the same dou-

ble iterative process described in the NDA model, that is, Newton-Raphson method

25



within the EM algorithm. Following the same steps described for the NDA model,

we obtain that Ek, the function to be maximized, is given by (2.39) with κ replaced

by τ + κ:

Ek =− yHy

σ2
+

yHE
[
SSH

]
y

σ2 (τ + κ)
−M (τ + κ) ln (π)−

M∑
m=1

E [|um|2]
(τ + κ) (σ2 + (τ + κ)λm)

−M (τ + κ) ln
(
σ2
)
−

M∑
m=1

ln

(
1 +

λm (τ + κ)

σ2

)
,

(2.42)

where the expected value is taken with respect to sτ+1, . . . , sτ+κ|y evaluated in σ̂2
k.

Therefore, the expected values above can be obtained as

E [x] =

∑
sτ+1

· · ·
∑
sτ+κ

x p
(
y|sτ+1, . . . , sτ+κ; σ̂2

k

)
∑
sτ+1

· · ·
∑
sτ+κ

p
(
y|sτ+1, . . . , sτ+κ; σ̂2

k

) , (2.43)

where p
(
y|sτ+1, . . . , sτ+κ; σ̂2

k

)
is as in (2.32) with τ and σ2 replaced by τ + κ and

σ̂2
k, respectively.

In order to maximize (2.42) and obtain the k-th estimate of the noise variance,

we use the Newton-Raphson technique with the first and second derivatives given by

(2.36) and (2.37), respectively, and replacing τ by τ + κ, and SSH and |um|2 by their

corresponding expected values computed with (2.43).

MM estimator

The MM estimator for this model is derived following the same procedure as for the

DA model, and considering that sτ+1, . . . , sτ+κ, h and n are independent random

variables. Hence, we have

σ̂2 =
yHy

M (τ + κ)
− tr [R]

M
. (2.44)
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2.4.4 Estimators for DA model with different noise variance

When the noise variance is different at the M antennas, we need to perform M

independent estimations. Each of these estimations will be obtained from the received

signal at the corresponding m-th antenna, which is given by (2.19):

ym = hms + nm . (2.45)

As we mentioned when deriving the CRLB for this scenario, the received signal is

distributed as ym ∼ CN
(
µym

,Cym

)
, where the mean µym

and covariance matrix

Cym are given by (2.20) and (2.21), respectively. Furthermore, the determinant and

inverse of Cym were obtained in (A.37) and (A.32), respectively (in (A.37), κ is

replaced by τ). As a consequence, the PDF of ym may be written as

p
(
ym;σ2

m

)
=

exp

−yHm

 Iτ
σ2
m

− ssH

σ4
m

Rmm

+ σ2
mτ

ym


πτ (σ2

m)τ
(

1 +
Rmmτ

σ2
m

) . (2.46)

ML estimator

The natural logarithm of the PDF in (2.46) can be expressed as

ln p
(
ym;σ2

m

)
= −τ ln (π)− τ ln

(
σ2
m

)
− ln

(
1 +

Rmmτ

σ2
m

)
− yHmym

σ2
m

+
yHmssHym
σ2
mτ

− yHmssHym
τ (σ2

m + Rmmτ)
.

(2.47)

The estimate of the noise variance is given by the value of σ2
m that maximizes the

expression above. Although this expression is simpler than its version for the model

with equal noise variance in (2.34), we still cannot find a closed form expression for

the ML estimator. Hence, the estimate is computed by means of the Newton-Raphson
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method in (2.35), where the first and second derivatives are given by

∂ ln p (ym;σ2
m)

∂σ2
m

=
yHmym
σ4
m

− yHmssHym
τσ4

m

+
yHmssHym

τ (σ2
m + Rmmτ)2

− τ

σ2
m

+

(Rmmτ)2

σ2
m

+ Rmmτ

(σ2
m + Rmmτ)2

,

(2.48)

∂2 ln p (ym;σ2
m)

∂ (σ2
m)2

= −2yHmym
σ6
m

+
2yHmssHym

τσ6
m

− 2yHmssHym
τ (σ2

m + Rmmτ)3

+
τ

σ4
m

−

(Rmmτ)3

σ4
m

+
3 (Rmmτ)2

σ2
m

+ 2Rmmτ

(σ2
m + Rmmτ)3

.

(2.49)

Let us compare the expressions of the first and second derivatives for the cases of

equal and different noise variance. We observe that the expressions for the model of

equal noise variance, given by (2.36) and (2.37), reduce to the expressions obtained

above for the case of different noise variance, when M = 1 and λm = Rmm. Therefore,

as expected, the ML estimator for the model with different noise variance is a special

case of the estimator derived for the model with equal noise variance, when considering

only one antenna.

MM estimator

For applications where the time consuming characteristic of the ML estimator is not

acceptable, we propose a MM estimator, which results in a closed form expression for

the noise variance estimate.

Theorem 2.4.3 Consider the DA model with different noise at the receive antennas.

Then, the MM estimator of the noise variance is given by

σ̂2
m =

yHmym
τ
−Rmm . (2.50)

Proof. See Appendix A.9.

As we observed with the ML estimator, the MM estimator above is a special case of

the MM estimator derived for the model with equal noise variance in (2.38).
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2.4.5 Estimators for NDA model with different noise vari-

ance

For the NDA model with different noise variance, the PDF of the received signal at

the m-th antenna is given by (A.38).

ML estimator

As in the model with equal noise variance, the ML estimator of σ2
m cannot be ob-

tained either in closed form expression or with the Newton-Raphson iterative method.

Therefore, we investigate again the EM algorithm.

Theorem 2.4.4 Consider the NDA model with different noise at the receive anten-

nas. Then, the ML estimator of the noise variance at the m-th antenna is computed

by means of the EM method, where Ek, the expression to be maximized during the

k-th iteration, is given by

Ek =− κln (π)− κln
(
σ2
m

)
− ln

(
1 +

Rmmκ

σ2
m

)
− yHmym

σ2
m

+
yHmE

[
ssH
]
ym

σ2
mκ

−
yHmE

[
ssH
]
ym

κ (σ2
m + Rmmκ)

,

(2.51)

with

E
[
ssH
]

=

∑
s1

· · ·
∑
sκ

ssHp
(
ym|s; σ̂2

mk

)
∑
s1

· · ·
∑
sκ

p
(
ym|s; σ̂2

mk

) , (2.52)

where p
(
ym|s; σ̂2

mk

)
is as in (2.46) with τ and σ2

m replaced by κ and σ̂2
mk, respectively.

The maximization of Ek is carried out by the Newton-Raphson method with the first

and second derivatives given by (2.48) and (2.49), respectively, and replacing τ by κ,

and ssH by its expected value computed with (2.52).

Proof. See Appendix A.10.
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MM estimator

Considering that s, hm and nm are independent random variables, the MM estimator

is given as in (2.50), with τ replaced by κ:

σ̂2
m =

yHmym
κ
−Rmm . (2.53)

2.4.6 Estimators for mixed model with different noise vari-

ance

When the pilot sequence includes τ known and κ unknown symbols, the PDF of the

received signal at the m-th antenna is given by (A.44).

ML estimator

The EM algorithm is also employed in this model to obtain the ML estimate of the

noise variance. Following the same procedure as in the NDA model, we obtain

Ek =− (τ + κ) ln (π)− (τ + κ) ln
(
σ2
m

)
− ln

(
1 +

Rmm (τ + κ)

σ2
m

)
− yHmym

σ2
m

+
yHmE

[
ssH
]
ym

σ2
m (τ + κ)

−
yHmE

[
ssH
]
ym

(τ + κ)
(
σ2
m + Rmm (τ + κ)

) , (2.54)

where the expected value is taken with respect to sτ+1, . . . , sτ+κ|ym evaluated in σ̂2
mk.

Therefore, we have

E
[
ssH
]

=

∑
sτ+1

· · ·
∑
sτ+κ

ssHp
(
ym|sτ+1, . . . , sτ+κ; σ̂2

mk

)
∑
sτ+1

· · ·
∑
sτ+κ

p
(
ym|sτ+1, . . . , sτ+κ; σ̂2

mk

) , (2.55)

where p
(
ym|sτ+1, . . . , sτ+κ; σ̂2

mk

)
is as in (2.46) with τ and σ2

m replaced by τ +κ and

σ̂2
mk, respectively.

The estimate of the noise variance during the k-th iteration of the EM algorithm

is computed by maximizing (2.54) by means of the Newton-Raphson method. To
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this purpose, the first and second derivatives of Ek are given by (2.48) and (2.49),

respectively, and replacing τ by τ + κ, and ssH by its expected value in (2.55).

MM estimator

Considering that sτ+1, . . . , sτ+κ, hm and nm are independent random variables, the

MM estimator is given as in (2.50), with τ replaced by τ + κ:

σ̂2
m =

yHmym
τ + κ

−Rmm . (2.56)

2.5 Limitations and Alternative Expressions for the CRLB

and ML Estimator

For the NDA and mixed pilot models, the numerical computation of the CRLB and

ML estimator is not feasible for certain scenarios. Specifically, for the NDA and equal

noise variance model, when the term yHSSHy grows above a limit, the computation

of T in (A.19) and the exponential term of p (y;σ2) in (2.32) is not possible. This

occurs because the resulting number exceeds the maximum value allowed by the IEEE

Standard 754 for double precision. Although these numbers are intermediate results

and will then be divided by a number of similar magnitude, they compromise the

computation of the CRLB and ML estimators.

This limitation affects the scenarios where yHSSHy result in a large number,

which entails situations with large number of receive antennas (massive MIMO), pilot

sequence length, and/or SNR. In order to solve this problem we propose an alternative

expression for the CRLB and ML estimator, which is valid for the scenarios where this

limitation applies. We proceed as in [14]3. The computation of the CRLB requires

3The alternative expression for the ML estimator proposed in [14] for high SNR scenarios
may be used in substitution of the EM algorithm. However, in our work (unknown channel),
the alternative form is mandatory.
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the second derivative in (2.14). For large values of yHSSHy, the summatories in si

can be replaced by the summand corresponding to the maximum yHSSHy. As a

result, the second derivative in (2.14) simplifies to

∂2 ln

(∑
s1

· · ·
∑
sκ

T

)
∂ (σ2)2

= D′max ,
(2.57)

where D′max is computed with the pilot matrix S that maximizes yHSSHy .

A similar approach can be used to derive the alternative expression for the ML

estimate. In this case, the expected value in (2.40) can be rewritten as

E [x] = xmax , (2.58)

where xmax is computed with the pilot matrix S that maximizes yHSSHy . In order

to compute Ek in (A.61) we need E
[
SSH

]
and E [|um|2], which, from (2.58), are given

by SSH and |um|2, respectively, and using the value of S that maximizes yHSSHy.

These expressions do not depend on σ̂2
k and, therefore, the alternative expression for

the ML estimator only necessitates one iteration within the EM algorithm.

The alternative expressions for the other pilot and noise models can be derived

accordingly.

2.6 Simulation Results

In this section we evaluate the performance of the proposed noise variance estimators.

For this purpose, we use the normalized squared error as performance metric, which

is defined as [9]

err =

NL∑
l=1

∥∥∥θ̂l − θl

∥∥∥2
F

NL∑
l=1

‖θl‖2F

, (2.59)
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where θ̂l =
[
σ̂2
1,l · · · σ̂2

M,l

]
and θl =

[
σ2
1,l · · · σ2

M,l

]
, with the index l referring to

the l-th cell4. From (2.59), we can then compute the normalized mean squared error

(MSE) through Monte Carlo simulations. Within each Monte Carlo iteration, a new

realization of all the involved random variables (i.e., s, h, n, and hence y) is generated.

In order to ease the regeneration of our results, we next describe the simulation

scenarios. As depicted in Fig. 2.2, we consider hexagonal cells, and within each of

them, the users are distributed uniformly on the cell edge. On the other hand, during

the channel estimation stage, the channel between the user in the l-th cell and the

target BS is defined as in [9]:

hl =
1√
NP

NP∑
p=1

a (φp,l)αp,l , (2.60)

where NP is the number of paths that define the channel, a (φp) denotes the steering

vector associated to the AOA φp of the p-th path, and αp represents the p-th path

attenuation. In order to keep the assumption of a flat fading channel, we consider

that the NP paths arrive at the BS within the symbol period of the received signal.

Since we are considering narrowband signals, this consideration is assumable. The

steering vector may be obtained as

a (φp) =
[
1 e−j2π

D
λ
cos(φp) · · · e−j2π

D
λ
(M−1)cos(φp)

]T
, (2.61)

where D is the antenna spacing at the BS and λ the wavelength. Furthermore, the

AOAs are independent Gaussian random variables distributed as φp ∼ N
(
φ̄, σ2

AOA

)
,

where φ̄ represents the angular position of the user. Finally, the attenuation of the

p-th path αp is also a random variable, which does not depend on the path index,

and is distributed as αp ∼ CN (0, β), where β is the distance-based path loss given

4Note that for the equal noise variance model we have σ21,l = · · · = σ2M,l = σ2l and,

therefore, θ̂l =
[
σ̂2l · · · σ̂2l

]
.
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by

β =
ε

dγ
, (2.62)

in which ε is a constant computed to meet the SNR requirement, d is the distance

between the user and the target BS, and γ represents the path-loss exponent.

For the equal noise variance model, we set the true value of the noise variance

to 1, that is, σ2 = 1. On the other hand, for the different noise variance model, the

noise levels at the M antennas are independent uniform random variables distributed

as σ2
m ∼ U [0.5, 1.5]. Besides, regarding both the EM and Newton-Raphson methods,

convergence is considered to be achieved when the difference between two consecutive

outputs is less than 0.001.

For all simulation scenarios we consider binary PSK (BPSK) modulation (N = 2).

The reason for this is the considerable amount of simulation time required for higher

modulation orders due to the multiple summatories in si. Furthermore, in order to

increase the number of effective Monte Carlo iterations, we consider the same noise

variance at all the NL BSs.

In Table 2.1 we summarize the parameters that are common to all the simulation

scenarios, along with their corresponding values. For a better understanding of these

parameters, we refer the reader to Fig. 2.2. The values of the remaining parameters

are shown along the figures’ captions.

2.6.1 Equal noise variance model

We start the performance analysis of the proposed estimators for the case of equal

noise variance at the receive antennas. In Fig. 2.3 we plot the CRLB and the

associated ML estimators for the three pilot models (i.e., DA, NDA, and mixed DA

and NDA). The performance is measured in terms of MSE against the SNR. The

number of pilot symbols for the DA and NDA models is 5 in both cases, while for
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Table 2.1: General Simulation Parameters
Number of cells, NL 2

Cell radius, rc 1 km

Distance from BS to cell edge, dc 800 m

Number of users, K 1

Carrier frequency 2 GHz

Number of paths, NP 50

AOA standard deviation, σAOA 10 degrees

Path-loss exponent, γ 3

Antenna spacing, D λ/2
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Figure 2.3: Noise variance estimation MSE versus SNR. Specific simulation parame-
ters: M = 2, τ = 5 and κ = 5 (for the mixed model κ = 2).

the mixed model we consider 7 symbols, from which 5 are known and 2 unknown.

Finally, for the NDA and mixed models, we show both the original and alternative

forms. Regarding the curves for the CRLB, we observe that the original expressions

for the NDA and mixed models do not offer any result for SNR values higher than 5 dB

due to the limitation mentioned in Section 2.5. For those values we have to consider

the alternative form which seems to fit the original expression’s trend accurately. On

the other hand, as expected, we notice that for low SNR values the alternative forms
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do not approximate the original expressions correctly. If we compare the CRLB for

the three pilot models, we confirm that the mixed model offers the best performance

due to the extra 2 unknown symbols in comparison to the DA model. On the other

hand, as anticipated, for the same number of symbols, the DA model outperforms the

NDA model. However, for very low and high SNR values, this difference banishes,

which implies that, for those SNR values, the knowledge of the pilot symbols does not

improve the noise variance estimation. Finally, we notice that, for the three models,

the CRLB increases, on average, with the SNR, which implies that the higher the

signal power, the more difficult to estimate the noise variance. For the DA model,

this conclusion can also be extracted, analytically, from (2.10).

As far as the ML estimators are concerned, several conclusions may be extracted:

• For the DA model, the ML estimator is efficient for all SNR values.

• For the NDA model, the ML estimator in the original form is efficient for very

low and high SNR values. On the other hand, we observe that the ML estimator

for the mixed model is efficient for all the SNR range, as in the DA model.

However, we expect that it loses efficiency as the number of unknown symbols

increases, approaching the performance observed in the NDA model. Finally,

we notice that the estimator outputs results for all the SNR values, unlike

the CRLB expression, which implies that the latter is more susceptible to the

limitation in Section 2.5.

• We observe that the alternative expression for the ML estimator, in both the

NDA and mixed models, has the same performance as the original form for

very low and high SNR values. For the rest of the range, we observe that the

alternative ML estimator outperforms the CRLB. This, a priori contradiction,

is justified when commenting on Fig. 2.5.
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Figure 2.4: Noise variance estimation MSE versus SNR (low SNR range). Specific
simulation parameters: M = 2, τ = 5 and κ = 5 (for the mixed model κ = 2). Note
that the performance of the MM estimators for the DA and NDA models is the same.
This occurs because those estimators do not depend on the pilot symbols, but only
on the number of available samples, which is the same in both cases.

Fig. 2.4 studies the performance of the MM estimators. We use the same scenario

as in Fig. 2.3 but the investigation is limited to very low to medium SNR values. We

observe that, for the three pilot models, the MM estimators behave efficiently and

the same as the ML estimators for very low SNR values, while their performance is

compromised as the SNR increases. The equivalent performance of the MM and ML

estimators comes from the fact that both estimators simplify to the energy detector

for low SNR values. For example, for the DA model, this can be proved by considering

that σ2 � λm and σ2 � tr [R] /M in (2.36) and (A.54), respectively, for the ML and

MM estimators. In both cases the noise variance estimator is given by

σ̂2 =
yHy

Mτ
, (2.63)

which is the energy detector.

In Fig. 2.5 we show the performance of the ML estimators for different numbers

of antennas at the BS, along with their corresponding CRLB. Regarding the CRLB
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curves, we first observe that, for the three pilot models, the estimation accuracy

increases with M due to the greater number of available samples to estimate the

noise variance. On other hand, we also notice that the gap between the curves for

the DA and NDA models decreases with M . This indicates that knowing the pilot

symbols does not benefit the noise variance estimation performance for large numbers

of receive antennas. This was observed as well in Fig. 2.3, but in that case for very

low and high SNR values. Finally, Fig. 2.5 shows that the alternative expression

for the CRLB approximates the original form accurately for high M values. The

explanation for this is that a higher M contributes to increase the term yHSSHy

discussed in Section 2.5.

As far as the ML estimator in the original form is concerned, we observe that for

the NDA model it gains efficiency as M increases. On the other hand, we notice that

the alternative ML estimators improve the performance of the original forms, even

further than the CRLB. The reason for this is that the CRLB sets a lower bound

for any unbiased estimator, and the ML estimators in the alternative forms turned

out to be biased, which means that, on average, the estimators do not attain the true

value. In Fig. 2.6 we justify this explanation by showing the bias (average deviation

from the true value in %, µ). Indeed, we observe that the greater the bias, the larger

the gap between the alternative ML estimator and the CRLB.

The performance of the proposed ML estimators in massive MIMO scenarios is

studied in Fig. 2.7, which shows the noise variance estimation MSE for different large

numbers of receive antennas. Since, from Fig. 2.5, the estimation performance is the

same in the DA and NDA pilot models for a large M , we only show the results for the

DA model. From the figure, we observe that the original form of the ML estimator

for the mixed model does not work for large antenna arrays due to the limitation in

Section 2.5. Hence, for massive MIMO scenarios, the alternative expression is needed.
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Figure 2.5: Noise variance estimation MSE versus number of receive antennas. Spe-
cific simulation parameters: SNR = 0 dB, τ = 5 and κ = 5 (for the mixed model
κ = 2).
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Figure 2.6: Biasness of the alternative ML estimator. The biasness of the alternative
ML estimator results in a lower MSE than the CRLB. However, on average, this
estimator does not attain the true value of the noise variance. We employ the same
scenario as in Fig. 2.5.

For comparison, we also show the performance of the estimators proposed in [11] and

[12, eq. (10)]. The LS estimator in [12] depends on Cy, the sample covariance matrix,

which is assumed unknown in our work. Hence, for a fair comparison, we substitute it
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Figure 2.7: Noise variance estimation MSE in massive MIMO scenarios. Specific
simulation parameters: SNR = 0 dB, τ = 5 and κ = 2. For massive MIMO scenarios,
the alternative expression of the ML estimator is needed due to the computational
limitations of the original form.

by its instant value, that is, C̃y = yyH . We observe that our ML estimator offers the

best estimation performance, achieving efficiency for both the DA and mixed models.

Finally, in Fig. 2.8 we study how the noise variance estimation impacts the chan-

nel estimation performance. For this purpose, we generate several iterations of the

channel in (2.60) and estimate it with the MMSE estimator in (2.3), with the noise

covariance matrix Σ substituted by Σ̂ = diag
([
σ̂2 · · · σ̂2

])
. Then, the normalized

channel squared error is computed as

err = 10 log10


NL∑
l=1

∥∥∥ĥl − hl

∥∥∥2
F

NL∑
l=1

‖hl‖2F

 , (2.64)

from which the corresponding MSE is obtained. Fig. 2.8 shows the channel estimation

MSE versus the SNR for three different assumptions on the noise covariance matrix

Σ: the noise power is perfectly known, and it is estimated with the ML and MM
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Figure 2.8: Channel estimation MSE versus SNR. Specific simulation parameters:
M = 20, τ = 5 and κ = 2.

estimators (mixed pilot model). Since we are considering a massive MIMO scenario

(M = 20), we employ the alternative expression for the ML estimator.

We observe that the performance of the proposed noise variance ML estimator

helps to accomplish a channel estimation accuracy very similar to that of the scenario

where the noise power is perfectly known. On the other hand, we notice that the MM

estimator performs well for very low SNR values, while compromises the accuracy

of the channel estimator as the SNR increases. This was expected from the results

observed in Fig. 2.4.

2.6.2 Different noise variance model

When the noise variance is different at the receive antennas, the estimation can only

be performed from the samples received at the corresponding antenna. The result of

this is that the estimation error does not decrease with the number of antennas, as

we observe in Fig 2.9. The behavior of the CRLB and noise variance estimators for

41



2 3 4 5
Number of receive antennas, M

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

N
o
is
e
v
a
ri
a
n
ce

es
ti
m
a
ti
o
n
M
S
E
[d
B
]

Equal σ2: ML Alt.-Mixed

Equal σ2: CRLB Alt.-Mixed

Diff. σ2: ML-Mixed

Diff. σ2: CRLB Alt.-Mixed

Diff. σ2: CRLB-Mixed

Figure 2.9: Noise variance estimation MSE with different noise at the receive an-
tennas. When the noise variance is different at the receive antennas, the estimation
performance does not improve with larger antenna arrays. Specific simulation param-
eters: SNR = 0 dB, τ = 10 and κ = 4.

different SNR values is the same than that for the equal noise variance model, and

hence the reader is referred to Figs. 2.3 and 2.4.

2.7 Discussions

The noise power at the receiver is due to several factors such as thermal noise, re-

ceiver nonlinearity, imperfect front end filters, quantization noise, etc [16]. While the

contribution of some of these factors may not change over time, there are others that

make the noise variance a non-stationary variable. In order to obtain this parameter,

an alternative strategy to statistical estimation, like the one here proposed, is to di-

rectly measure the noise power through a calibration process. The advantage of our

proposal over the calibration approach is that it is robust against the non-stationarity

of the noise power, since its estimate is updated continuously.
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The proposed expressions for the CRLB as well as the noise variance estimators

depend on the channel covariance matrix R, which is supposed known. However, in

practice, it has to be estimated, and will be used not only during the noise variance

estimation stage, but also to compute the channel estimate as in (2.3). Since R =

E
[
hhH

]
, the ideal channel covariance matrix estimator would be given by

R̂ =
1

Ns

Ns∑
i=1

hih
H
i , (2.65)

where Ns denotes the number of channel measurements employed to estimate R.

Furthermore, the channel can be measured either in time [17], [18] or frequency [19].

However, this strategy cannot be used in our work since the channel is unknown.

This problem can be solved by substituting hi in (2.65) by a “preliminary” channel

estimate. For this purpose, we could use the MMSE channel estimator in (2.3), but

it depends on R, and therefore we have to rely on less powerful methods such as a

the LS estimator [11]. As proposed in [9], we may imagine future networks where the

channel covariance matrix is learned through a specific training stage.

2.8 Conclusions

In this chapter we have developed ML and MM estimators for the noise variance at

the receive antennas of the BS. These estimates can then be used as an input to the

MMSE channel estimator. Furthermore, we derive the corresponding CRLB.

Our simulations results show that the ML noise variance estimator is optimal

for massive MIMO scenarios since it gains efficiency as the number of receive anten-

nas increases. On the other hand, the MM estimator is only efficient for very low

SNR values. However, it is given as a closed form expression, which makes it suit-

able for applications where the computational requirement of the ML estimators are

prohibitive.
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CHAPTER 3

CHANNEL ESTIMATION PERFORMANCE IN MMWAVE SYSTEMS

3.1 Introduction

In Chapter 2 we introduced the pilot contamination impairment in cellular networks.

In order to reduce its effects on the communications performance, an MMSE chan-

nel estimator was proposed in [9], which considers the noise variance at the receive

antennas as a known parameter. However, in practical scenarios, this parameter has

to be estimated. Our contribution was the derivation of ML and MM noise variance

estimators, which can then be integrated to the channel estimator in [9].

In [9], the authors demonstrate that the pilot contamination effect is completely

eliminated when considering and infinite number of antennas at the BS, and the

cluster of the desired user does not overlap with those of the interfering users in the

angular domain. From this result, the authors propose a pilot assignment strategy by

which the pilots are assigned to the users in such manner that the non-overlapping

condition is fulfilled.

In this chapter we study how the channel estimation performance is affected by the

pilot contamination impairment in future 5G mmWave cellular networks. Our results

indicate that, compared to current low frequency-based deployments, mmWave cellu-

lar networks offer a better channel estimation performance due to the characteristics

of its propagation model.
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3.2 System and Propagation Models

We use the same system model described in Section 2.2, that is, a cellular system with

NL cells, each of them managed by a BS equipped with M antennas. Furthermore,

K single-antenna users populate each cell.

We are interested in the performance of the channel estimator in (2.3) under

mmWave scenarios. To this end, we use the downlink propagation model for mmWave

bands recently presented in [20]. In order to adapt the cited model to the channel esti-

mation stage described in Section 2.2, we assume that the uplink-downlink reciprocity

property can be applied, which is a common practice in current cellular deployments

[21].

The nomenclature employed in [20] differs from that we used in Chapter 2. In

the mmWave model in [20], a channel is characterized by NS spatial lobes, which

correspond to the multipath clusters in Chapter 2, and NC time clusters. As a conse-

quence, the NP paths that define the channel as in (2.60) are grouped in both the time

domain (time clusters) as well as in the angular domain (spatial lobes). Furthermore,

this model allows more than one time cluster arriving within the same spatial lobe.

Once the differences between the two models have been clarified, we next summarize

how to obtain the necessary parameters to generate the channels as in (2.60).

1. Mean AOA of the spatial lobes: The mean angle of each arriving spatial lobe

at the BS is uniformly distributed over [0, 2π] in such a manner that they do

not overlap each other. The mean angles are denoted by φ̄i, for i = 1, . . . , NS.

2. Number of paths in each time cluster and their AOA: There are NT paths

within each time cluster. The AOA of each path is randomly distributed as

N (φ̄i,∆
2), where i ∼ DU(1, NS). Then, the NP = NCNT total paths are uni-

formly distributed among the arriving spatial lobes.
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3. Path Loss: The mean path loss for a distance d is PL[dB] = 20 log10 (4π/λ) +

10γ log10 (4πd/λ). Hence, the distance-based path loss is given by1

β =
ε

10PL[dB]/10
, (3.1)

in which ε is a constant computed to meet the uplink SNR requirement.

To reproduce the low frequency scenario we use the 3GPP model in [21] (microcell

environment), which is also fully described by the previous parameters. This propa-

gation model considers a sector antenna at the BS and therefore the mean AOA of

the spatial lobes is uniformly distributed, with respect to the line of sight (LOS) di-

rection, over
[
−40

◦
, 40

◦]
. Since we consider isotropic antennas in our work, the mean

angles are finally distributed as uniform random variables over [0, 2π]. Therefore,

as far as this parameter is concerned, the only difference between these propagation

models is that in the low frequency scenario the spatial lobes can overlap each other.

Furthermore, only one time cluster is allowed per spatial lobe (NC = NS).

To accurately represent complex cellular scenarios, the K users per cell are uni-

formly distributed over [0, 2π] around their corresponding BS. However, note that

the mean AOA of the spatial lobes does not depend on the position of the user in

mmWave deployments.

3.3 Channel Estimation in mmWave Scenarios

Here, we compare the performance of the pilot assignment strategy proposed in [9]

at low frequencies (1.9 GHz) and mmWave bands (28 GHz and 73 GHz), using the

channel models discussed in Section 3.2. Specific simulation parameters for both

1The actual distance-based path loss would be PL[dB], however, following others works
as [9], we use the expression in (3.1), which includes the transmit power needed to achieve
a given uplink SNR.
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Table 3.1: Simulation Parameters
Frequency Scenario

Parameter 1.9 GHz 28 GHz 73 GHz

NS 6 2 2

NP = NCNT 120 64 64

∆[◦] 5 9 7

γ − 3.4 3.3

10 20 30 40 50
Number of BS antennas

-13

-12

-11

-10

-9

C
h
an

n
el

E
st
im

at
io
n
M
S
E

[d
B
] 1.9 GHz

28 GHz
73 GHz

Figure 3.1: Channel estimation MSE in mmWave systems. Simulation parameters: 7
cells, SNR = 20 dB, D = λ/2 and K = 10.

models are summarized in Table 3.1. While NS, NC and NT are fixed in the 3GPP

model, in the mmWave model those values are random variables with specific means.

In our work, we fix the value of each of those parameters to the nearest integer to its

mean so that the same simulation procedure can be used in both cases.

Fig. 3.1 shows the channel estimation error for the three frequency bands in

a 50 m radius cell network where all the users are located at a distance of 40 m

from the BS. On the one hand, we can observe a better estimation accuracy for the

mmWave scenario. This is due to the lower number of arriving spatial lobes at the

BS which helps to achieve the non-overlapping condition. This behavior is illustrated
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Cell-1

Cell-2UE-1

UE-2Scatters from UE-2
Scatters from UE-1

(a) Low frequency scenario.

Cell-1

Cell-2UE-1

UE-2

(b) MmWave scenario.

Figure 3.2: Comparison of propagation models in mmWave and current systems. The
lower number of arriving spatial lobes at mmWave bands helps to accomplish the non-
overlapping condition, and hence a lower pilot contamination. For simplification only
4 spatial lobes are considered in (a).

in Fig. 3.2. On the other hand, we notice that at 73 GHz the performance is better

than at 28 GHz. This is explained by the greater standard deviation in the 28 GHz

scenario, which compromises the non-overlapping condition and results in larger pilot

contamination.

3.4 Discussions

Our results in the previous section show that the pilot assignment strategy proposed

in [9] performs better in the mmWave bands when considering the same SNR at

1.9 GHz, 28 GHz, and 73 GHz. Due to the greater path loss at higher frequencies,

this assumption would imply using more transmission power at the user terminal in

the mmWave scenario making the results in Fig. 3.1 unfair. However, as mentioned

in [22], the higher path loss attenuation can be compensated by the inherent use of

beamforming in mmWave massive MIMO scenarios.
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3.5 Conclusions

This chapter compares the performance of the joint channel estimation and pilot as-

signment strategy proposed in [9], under low frequency and mmWave massive MIMO

scenarios for 5G networks. Our results show that the channel estimation error is

reduced in the mmWave bands due to the lower number of arriving spatial lobes at

the BS compared to the estimation error under low frequency scenarios.
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CHAPTER 4

OPTIMAL ANGULAR SPREAD IN MMWAVE SYSTEMS

4.1 Introduction

In this chapter we continue the study of the pilot contamination impairment in

mmWave cellular networks. Specifically, we evaluate how the AS of the multipath

clusters impacts the capacity. Our results show that there exists an optimal AS that

maximizes the ergodic achievable rate, and it will depend on the design parameters of

the cellular network. From [20], the AS in mmWave systems depends on the frequency,

and therefore, for a given cellular system, we can choose the working frequency that

maximizes the capacity. To the best of our knowledge, it has not been reported any

similar analysis. The works closest to ours are [23] and [24], where the authors study

the impact of the AS on the capacity in single-user MIMO scenarios. Since the pilot

contamination is not present when considering only one user, the capacity constantly

increases with the AS without reaching a maximum.

4.2 System Model

We use the same system model described in Section 2.2, that is, a cellular system with

NL cells, each of them managed by a BS equipped with M antennas. Furthermore, K

single-antenna users populate each cell. Let us recall that, from this system model,

the MMSE estimate of the channel of the desired user is given by (2.3)

ĥ1 = R1

(
σ2IMτ + τ

NL∑
l=1

Rl

)−1
SHy , (4.1)

where we consider the estimation of the desired channel in cell 1 without loss of

generality.
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From [7, Theorem 1], the downlink ergodic capacity of user m in cell j is given by

Cjm = log2 (1 + γjm) , (4.2)

where the signal to interference plus noise ratio (SINR) γjm can be obtained as

γjm =
Sjm

N + I
(1)
jm + I

(2)
jm

, (4.3)

with

N = 1/ρ , (4.4)

Sjm = λj
∣∣E [hHjjmwjm

]∣∣2 , (4.5)

I
(1)
jm = λjVar

[
hHjjmwjm

]
, (4.6)

I
(2)
jm =

∑
(l,k) 6=(j,m)

λlE
[∣∣hHljmwlk

∣∣2] . (4.7)

In (4.4), ρ denotes the downlink signal to noise ratio (SNR), while in (4.5)-(4.7),

hljm represents the channel between the user m in cell j and the l-th BS, Wl =

[wl1 · · · wlK ] is the precoding matrix, and λl is defined as

λl =
1

E
[
1
K

tr
[
WlW

H
l

]] . (4.8)

The choice of the precoder will determine the performance of the network. Two rel-

evant linear precoders are the eigenbeamforming and regularized zero-forcing (RZF).

We will consider the latter since it is seen to achieve a superior performance [25].

Then, assuming the RZF precoder, the matrix Wl is given by

Wl =

(
ĤllĤ

H

ll +
M

ρ
IM

)−1
Ĥll , (4.9)

where Ĥll =
[
ĥll1 · · · ĥllK

]
can be obtained by estimating the K desired channels

in all NL cells as in (4.1).
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Cell-1

Cell-2

AS

BS

Desired user

Interfering user

𝑑c

𝑟c AS

Figure 4.1: Simplified cellular network. The pilot contamination effect grows with
the overlapping of the multipath clusters of the users.

4.3 Impact of the Angular Spread on the Capacity

In this section, we present our main contribution: the existence of an optimal AS of the

AOAs, which maximizes the downlink capacity in the presence of pilot contamination.

In order to ease the justification of this finding, in this section we assume a simplified

cellular network as in Fig. 4.1, where the pilot contamination effect can be easily

observed. In the next section, we will consider a practical, more complex cellular

scenario. We consider 2 cells, each of them populated by one user, which are located

at a distance dc from their corresponding BS. Furthermore, the user in cell 1 (user 1) is

positioned at 0◦ with respect to its BS, while the user in cell 2 (user 2) is located at an

angle θ. We are interested in the ergodic capacity of user 1 under pilot contamination,

that is, when user 2 is assigned the same time-frequency resource during the channel

estimation stage. We assume a single multipath cluster scenario, where the AOA

of the multipath components follows a uniform distribution, with the mean AOA φ̄

given by the line of sight of the user. Finally, the distance-based path loss is given by

β = ε/dγ, in which ε is a constant computed to meet the uplink SNR requirement,
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Table 4.1: Common Parameters for the Simplified Cellular Network

Cell radius, rc 50 m

Distance from BS to cell edge, dc 40 m

Carrier frequency 2 GHz

Number of paths, NP 50

Path-loss exponent, γ 3

Antenna spacing, D λ/2

Uplink SNR 0 dB

Pilot sequence length, τ 1

Downlink SNR, ρ 0 dB

d is the distance between the user and the target BS, and γ represents the path-loss

exponent.

In Table 4.1, we summarize the parameters which are common to all network

configurations that we will study in this section, unless otherwise specified. The

value of the specific parameters are shown along the figures’ captions.

Fig. 4.2 shows the capacity of user 1 as defined in (4.2) (C11). In order to show

more clearly how the AS impacts the capacity through the pilot contamination effect,

we consider here an infinite uplink SNR (σ2 = 0). Therefore, any error in channel

estimation will be due to the pilot contamination impairment. Our results show that

the capacity reaches a maximum value at AS = 16◦.

This behavior can be explained from the different components of the expression for

the capacity in (4.2), namely S11 (signal power), I
(1)
11 and I

(2)
11 (interference powers)

and N (noise power), which are given by (4.5), (4.6) and (4.7), respectively. In

Fig. 4.2, we also show how these variables are affected by the AS (the noise power

N is not depicted since it does not depend on the AS)1. We observe that I
(2)
11 , the

interference from the BS in cell 2 (BS 2), starts increasing at around AS = 16◦, which

1To appreciate the behavior of S11, I
(1)
11 and I

(2)
11 more clearly, we scale S11 by a factor

of 5.
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AS = 16◦

Figure 4.2: Ergodic capacity versus the AS (infinite uplink SNR). The capacity
reaches a maximum value due to the behavior of the signal and interference pow-
ers with respect to the AS: the capacity first increases due to the raise in signal power
and decrease in interference I

(1)
11 . Then, it decreases as a consequence of the raise in

interference I
(2)
11 . For this example, the BS is equipped with M = 50 antennas and

θ = 200◦.

matches the AS that maximizes the capacity. This is explained as follows: during the

uplink channel estimation stage, the arriving clusters at BS 2 from both users start

overlapping at AS = 16◦, which causes the BS to estimate the channel from user 2

incorrectly, learning the channel from user 1 as well. As a consequence, BS 2 will

transmit undesired data to user 1 in the downlink, which is seen as interference. The

overlapping point of the clusters can be obtained geometrically from Fig. 4.1. We

observe in Fig. 4.2 that I
(2)
11 actually starts increasing before the overlapping point.

This is due to the limited number of antennas (M) considered at the BSs. As derived

in [9], the pilot contamination completely vanishes only as M →∞.

On the other hand, we observe that the signal power S11 starts decreasing at

around AS = 20◦. In this case, this is due to the channel estimation error in the

BS of cell 1 (BS 1). Now, the overlapping of the clusters causes this BS to learn

not only the channel from user 1, the desired channel, but also that from user 2. As
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Figure 4.3: Ergodic capacity versus the AS (finite uplink SNR). When noise is consid-
ered during the uplink channel estimation stage, the signal power constantly decreases
with the AS. Therefore, the raise in capacity is only due to the decrease in interference
I
(1)
11 .

a consequence, BS 1 divides the transmission power between the two users in the

downlink, which is seen as a loss in the received signal power by user 1. Finally, we

observe that the remaining interference I
(1)
11 constantly decreases with the AS. From

the behavior of S11, I
(1)
11 and I

(2)
11 , the dependence of the capacity with respect to the

AS can be explained as follows: the capacity first increases due to both the increase in

signal power and decrease in interference I
(1)
11 . Then, the capacity reaches a maximum

value and starts decreasing due to the raise in interference I
(2)
11 . We observe that the

decrease in signal power at AS = 20◦ does not cause any further significant reduction

in the capacity. This occurs because the change in signal power is relatively low

compared to that of the interference I
(2)
11 .

In Fig. 4.3, we recreate the scenario in Fig. 4.2 but taking into consideration

the effects of noise, that is, we assume a finite uplink SNR as in Table 4.1. The

main difference between the two scenarios is the behavior of the signal power with

respect to the AS. In the previous figure we observed that it started decreasing at the
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point where the arriving clusters at BS 1 from both users overlapped. However, when

the noise is taken into consideration, the signal power constantly decreases with the

AS. Therefore, the uplink channel estimation error due to the noise causes BS 1 to

transmit downlink data in undesired directions, reducing the received signal power

by user 1. Furthermore, the higher the AS, the stronger the impact of the noise on

the signal power.

So far, we have computed the capacity in (4.2) by means of Monte Carlo (MC)

simulations since it involves the evaluation of expected values. For the rest of the

paper, in order to avoid this time-consuming approach, we will compute the capacity

with the closed form approximation derived in [25, Eq. (26)]. We did not employ this

approach in the previous analysis since the approximations of the individual compo-

nents S11, I
(1)
11 and I

(2)
11 do not show the impact of the AS on the pilot contamination as

clearly as the MC method. However, as shown in Fig. 4.4, the approximation of the

capacity is very accurate. In Fig. 4.4, we recreate the same scenario but for different

positions θ of user 2. We observe that as user 2 approaches user 1 (increasing θ), the

maximum capacity is achieved at lower values of AS. The explanation for this is that

the overlapping of the clusters occurs faster as the users get closer, which accelerates

the appearance of the pilot contamination effect.

4.4 Optimal Angular Spread in mmWave Systems

In this section we show that the results obtained previously also apply to more com-

plex scenarios, such as future mmWave cellular networks. To this end, we use the

downlink propagation model for mmWave bands recently presented in [20] and em-

ployed in the Chapter 3.

In Table 4.2 we summarize the parameters that are common to all network con-

figurations that we will study in this section. The value of the specific parameters are
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Figure 4.4: Ergodic capacity versus the AS for different user’s positions. The proxim-
ity of the two users accelerates the appearance of the pilot contamination effect, which
results in a lower optimal value for the AS. For this example, the BS is equipped with
M = 50 antennas.

Table 4.2: Common Parameters for the mmWave Cellular Network
Cell radius, rc 50 m

Distance from BS to cell edge, dc 40 m

Carrier frequency 73 GHz

Number of spatial lobes, NS 2

Number of time clusters, NC 4

Number of paths per time cluster, NT 16

Path-loss exponent, γ 3.3

Antenna spacing, D λ/2

Uplink SNR 0 dB

Pilot sequence length, τ 1

Downlink SNR, ρ 0 dB

shown in the figures. To accurately represent complex cellular scenarios, the position

θ of the K users per cell is uniformly distributed over [0, 2π]. Finally, a minimum of

100 network realizations have been performed for each configuration to account for

the randomness of the mean AOA of the spatial lobes.

57



0 5 10 15 20
AS [degree]

0.9

0.95

1

1.05

N
o
rm

a
li
ze
d
er
g
o
d
ic

ca
p
a
ci
ty

[b
it
s/
se
c/
H
z]

M = 10

M = 50

M = 100

M = 10

AS = 10◦

M = 50

AS = 8◦M = 100

AS = 7◦

Figure 4.5: Capacity versus the AS in mmWave systems for different M values. The
effects of pilot contamination in mmWave cellular networks cause the existence of an
optimal AS of the spatial lobes, which depends on the number of antennas at the BS.

In Fig. 4.5 we consider two cells, each populated by one user. We are interested in

the ergodic capacity of the user in cell 1 for different values of the AS. Furthermore,

different values for the number of antennas M are considered. We observe that there

exists an optimal value of the AS that maximizes the capacity. Furthermore, this

value will depend on the number of antennas at the BS. In order to visualize the

dependence of the optimal AS with the number of antennas more clearly, we show

the normalized capacity, which is obtained by dividing the original capacity by its

maximum value. Note that the capacity would be higher for increasing numbers of

antennas at the BS.

Fig. 4.6 studies the capacity versus the AS for different number of users per cell

K and number of cells NL. We observe that with increasing numbers of both users

per cell and cells, the optimal AS decreases. The explanation for this is that the

effective AS increases with both K and NL, which accelerates the appearance of the

pilot contamination effects. As in Fig. 4.5, we show the normalized ergodic capacity.
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Figure 4.6: Capacity versus the AS in mmWave systems for different NL and K
values. Besides the number of antennas at the BS, the optimal AS also depends on
the number of cells NL and users per cell K. For this example, the BS is equipped
with M = 50 antennas.

Note that the capacity would be lower for increasing numbers of cells and users per

cell.

In this section we have shown that the optimal AS that maximizes the capacity in

mmWave cellular networks depends on the specific configuration of the network, such

as the number of antennas at the BS, number of users per cell, and total number of

cells. Since, from [20], the AS depends on the working frequency, we can employ the

frequency that maximizes the given configuration of the network. The work in [20]

has reported studies for 28 and 73 GHz, with AS of 9◦ and 7◦, respectively. In order

to take advantage of our results, it would be necessary to study other frequencies as

well.
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4.5 Conclusions

In this chapter we have shown the existence of an optimal AS of the multipath clusters,

which maximizes the capacity under pilot contamination. This result has been first

demonstrated for a simplified cellular scenario, and then for a more complex, mmWave

cellular network. Furthermore, for the latter scenario, the optimal value of the AS

depends on the specific configuration of the network, such as the number of antennas

installed at the BS, and the number of cells and users per cell.

Recent studies on mmWave propagation models have shown that the AS depends

on the frequency. Therefore, we can use that result and the one here proposed to select

the working frequency that maximizes the capacity of a given network configuration.
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APPENDIX A

PROVES OF THEOREMS IN CHAPTER 2

A.1 Proof of Theorem 2.3.1:

By plugging (2.6) and (2.7) into (2.9), the Fisher information can be expressed as a

function of Cy as

I
(
σ2
)

= tr
[(

C−1y

)2]
. (A.1)

The inverse of the covariance matrix Cy can be expressed in a simpler way by

means of the Woodbury matrix identity1. As a result, we have

C−1y =
(
SRSH + σ2IMτ

)−1
=

1

σ2
IMτ −

1

σ4
SASH , (A.2)

where the matrix A is defined as

A =

(
R−1 +

1

σ2
SHS

)−1
=
(
R−1 +

τ

σ2
IM

)−1
. (A.3)

We notice that A depends on the inverse of R, whose computation may be chal-

lenged when the number of antennas is large due to rank deficiency [9]. However,

as we will observe, the final expression of the CRLB does not depend on this oper-

ation. Since R is a covariance matrix, it is positive semi-definite and therefore its

eigen-decomposition is given by

R = WΛWH . (A.4)

The matrices W and Λ contain the eigenvectors and eigenvalues of R, respectively,

such that WWH = IM and Λ = diag ([λ1 · · · λM ]), with λm being the eigenvalues of

R. By plugging (A.4) into (A.3) and applying the Woodbury matrix identity again,

1(X+UZV)−1 = X−1 −X−1U
(
Z−1 +VX−1U

)−1
VX−1 for some matrices X, U, Z,

and V.
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the matrix A becomes

A =
((

WΛWH
)−1

+
τ

σ2
IM

)−1
=
σ2

τ
IM −

σ4

τ
WBWH , (A.5)

where B = diag
([

(σ2 + λ1τ)
−1 · · · (σ2 + λMτ)

−1
])

.

The inverse of the covariance matrix can finally be obtained by combining (A.2)

and (A.5). Then, we have

C−1y =
1

σ2
IMτ −

1

σ2τ
SSH +

1

τ
SWBWHSH . (A.6)

In order to compute the Fisher information we need to calculate
(
C−1y

)2
, which is

given by (
C−1y

)2
=

1

σ4
IMτ −

1

σ4τ
SSH +

1

τ
SWB2WHSH . (A.7)

We can now compute the Fisher information by plugging (A.7) into (A.1). Then,

we have

I
(
σ2
)

= tr

[
1

σ4
IMτ −

1

σ4τ
SSH +

1

τ
SWB2WHSH

]
. (A.8)

The expression above can be solved using the cyclic property of the trace2. As a

result, we have

I
(
σ2
)

=
1

σ4
tr [IMτ ]−

1

σ4
tr [IM ] + tr

[
B2
]

=
Mτ

σ4
− M

σ4
+

1

σ4

M∑
m=1

1(
1 +

τλm
σ2

)2 .

(A.9)

The CRLB can be obtained by plugging (A.9) into (2.8), which proves Theorem

2.3.1. �

A.2 Proof of Theorem 2.3.2:

The first step is to obtain p (y;σ2). For this purpose, we define the joint PDF of the

received signal y and training matrix S, that is, p (y,S;σ2). Now, p (y;σ2) can be

2tr [XUZV] = tr [UZVX] = tr [ZVXU] = tr [VXUZ] for some matrices X, U, Z, and
V.
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obtained as the marginal PDF of p (y,S;σ2):

p
(
y;σ2

)
=
∑
s1

· · ·
∑
sκ

p
(
y,S;σ2

)
, (A.10)

where si are the κ symbols that form the pilot sequence, and the κ summations are

over all the N equiprobable symbols of the constellation. The joint PDF can also be

expressed as

p
(
y,S;σ2

)
= p

(
y|S;σ2

)
p (S) = p

(
y|S;σ2

) 1

Nκ
. (A.11)

By plugging (A.11) into (A.10), the PDF of y is finally given by

p
(
y;σ2

)
=

1

Nκ

∑
s1

· · ·
∑
sκ

p
(
y|S;σ2

)
. (A.12)

In (A.12), the conditional PDF of y given S is expressed as

p
(
y|S;σ2

)
=

exp
[
−
(
y− µy

)H
C−1y

(
y− µy

)]
πMκdet [Cy]

. (A.13)

By taking into considerations the result in (2.6), the expression above can be rewritten

as

p
(
y|S;σ2

)
=

exp
[
−yHC−1y y

]
πMκdet [Cy]

, (A.14)

where C−1y is as in (A.6), with τ replaced by κ. The determinant of Cy can be solved

using the matrix determinant lemma3. Then, we have

det [Cy] = det
[
SRSH + σ2IMκ

]
= det

[
R−1 +

κ

σ2
IM

]
det [R] det

[
σ2IMκ

]
.

(A.15)

We can then apply the matrix determinant lemma to (A.15) again, in addition to

the fact that R = WΛWH . Hence,

det [Cy] = det

[
Λ +

σ2

κ
IM

]
det
[ κ
σ2

IM

]
det
[
σ2IMκ

]
=
(
σ2
)Mκ

M∏
m=1

(
1 +

λmκ

σ2

)
.

(A.16)

3det
[
X+UZVH

]
= det

[
Z−1 +VHX−1U

]
det [Z] det [X] for some matrices X, U, Z,

and V.
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The determinant of Cy above can be plugged into (A.14) and this, in turn, into

(A.12). As a result, the PDF of the received signal y may be rewritten as

p
(
y;σ2

)
=

exp

[
−yHy

σ2

]
NκπMκ (σ2)Mκ

M∏
m=1

(
1 +

λmκ

σ2

)
×
∑
s1

· · ·
∑
sκ

exp

[
yHSSHy

σ2κ
− yHSWBWHSHy

κ

]
.

(A.17)

The next step to proof Theorem 2.3.2 is the evaluation of the natural logarithm

of p (y;σ2) in (A.17):

ln p
(
y;σ2

)
= −κln (N)−Mκln (π)−Mκln

(
σ2
)

−
M∑
m=1

ln

(
1 +

λmκ

σ2

)
− yHy

σ2
+ ln

(∑
s1

· · ·
∑
sκ

T

)
,

(A.18)

where T is defined as

T = exp

[
yHSSHy

σ2κ
− yHSWBWHSHy

κ

]
. (A.19)

Finally, the first derivative of ln p (y;σ2) with respect to σ2 is given by

∂ ln p (y;σ2)

∂ σ2
=− Mκ

σ2
+

M∑
m=1

(λmκ)2

σ2
+ λmκ

(σ2 + λmκ)2
+

yHy

σ4
+

∂ ln

(∑
s1

· · ·
∑
sκ

T

)
∂ σ2

,

(A.20)

where

∂ ln

(∑
s1

· · ·
∑
sκ

T

)
∂ σ2

=

∑
s1

· · ·
∑
sκ

(TD)∑
s1

· · ·
∑
sκ

T
. (A.21)

In (A.21), D represents the first derivative of the exponent of T with respect to

σ2 and is given by

D =

∂

(
yHSSHy

σ2κ
− yHSWBWHSHy

κ

)
∂ σ2

=
M∑
m=1

|um|2

κ (σ2 + λmκ)2
− yHSSHy

κ

1

σ4
,

(A.22)
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with um being the m-th element of the vector u = yHSW. Furthermore, the first

derivative of D with respect to σ2 is expressed as

D′ =
∂ D

∂ σ2
=

M∑
m=1

−2|um|2

κ (σ2 + λmκ)3
+

2yHSSHy

κ

1

σ6
. (A.23)

The second derivative of ln p (y;σ2) with respect to σ2 can then be obtained from

(A.20), which proves Theorem 2.3.2. �

A.3 Proof of Theorem 2.3.3:

To obtain the PDF of y, p (y;σ2), we define the joint PDF of y and the unknown

symbols sτ+1, . . . , sτ+κ, that is, p (y, sτ+1, . . . , sτ+κ;σ
2). As a result, the PDF of y is

p
(
y;σ2

)
=
∑
sτ+1

· · ·
∑
sτ+κ

p
(
y, sτ+1, . . . , sτ+κ;σ

2
)
, (A.24)

where the joint PDF can also be expressed as

p
(
y, sτ+1, . . . , sτ+κ;σ

2
)

=p
(
y|sτ+1, . . . , sτ+κ;σ

2
)
p (sτ+1, . . . , sτ+κ) =

p
(
y|sτ+1, . . . , sτ+κ;σ

2
) 1

Nκ
.

(A.25)

Then, by combining (A.24) with (A.25), the PDF of y may be rewritten as

p
(
y;σ2

)
=

1

Nκ

∑
sτ+1

· · ·
∑
sτ+κ

p
(
y|sτ+1, . . . , sτ+κ;σ

2
)
, (A.26)

where the conditional PDF of y given the unknown symbols is given as in the NDA

model by (A.14), but with κ replaced by τ + κ in (A.14) and (A.16), and τ replaced

by τ + κ in (A.6). This assertion is possible since the only difference between the

conditional PDF in the NDA and mixed models is the total number of symbols that

form the sequence s: κ and τ + κ, respectively. As a consequence, the PDF of the
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received signal in (A.26) may be rewritten as

p
(
y;σ2

)
= exp

[
−yHy

σ2

] ∑
sτ+1

· · ·
∑
sτ+κ

exp

[
yHSSHy

σ2 (τ + κ)
− yHSWBWHSHy

(τ + κ)

]
NκπM(τ+κ) (σ2)M(τ+κ)

M∏
m=1

(
1 +

λm (τ + κ)

σ2

) .

(A.27)

Once we have the PDF of y we can proceed as in the NDA model (Appendix A.2)

to obtain the first derivative of ln p (y;σ2) with respect to σ2. Since the necessary

steps have already been described we present the final results for T , D and D′:

T = exp

[
yHSSHy

σ2 (τ + κ)
− yHSWBWHSHy

(τ + κ)

]
, (A.28)

D =
M∑
m=1

|um|2(
τ + κ

)(
σ2 + λm (τ + κ)

)2 − yHSSHy

(τ + κ)

1

σ4
, (A.29)

D′ =
M∑
m=1

−2|um|2(
τ + κ

)(
σ2 + λm (τ + κ)

)3 +
2yHSSHy

(τ + κ)

1

σ6
. (A.30)

The second derivative of ln p (y;σ2) with respect to σ2 can then be obtained from

(A.27) by computing the first derivative as in Appendix A.2. This proves Theorem

2.3.3. �

A.4 Proof of Theorem 2.3.4:

The first step is to obtain the Fisher information as in (2.9). Then, we have

I
(
σ2
m

)
= tr

[(
C−1ym

)2]
. (A.31)

The inverse of the covariance matrix above can be evaluated with the Woodbury

matrix identity. As a result, we have

C−1ym
=

1

σ2
m

Iτ −
ssH

σ4
m

Rmm

+ σ2
mτ

.
(A.32)
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Therefore,

(
C−1ym

)2
=

1

σ4
m

Iτ −

(
2σ2

m

Rmm

+ τ

)
ssH(

σ4
m

Rmm

+ σ2
mτ

)2 . (A.33)

By combining (A.33) and (A.31), and applying the cyclic property of the trace,

the Fisher information of σ2
m becomes

I
(
σ2
m

)
=

1

σ4
m

(
τ − 1 +

(
1 +

Rmmτ

σ2
m

)−2)
. (A.34)

The CRLB can be obtained by plugging (A.34) into (2.8), which proves Theorem

2.3.4. �

A.5 Proof of Theorem 2.3.5:

We proceed as in the previous noise model. Let us define the joint PDF of received

signal ym and the unknown pilot sequence s, that is, p (ym, s;σ2
m). Hence,

p
(
ym;σ2

m

)
=
∑
s1

· · ·
∑
sκ

p
(
ym, s;σ2

m

)
=
∑
s1

· · ·
∑
sκ

p
(
ym|s;σ2

m

)
p (s)

=
1

Nκ

∑
s1

· · ·
∑
sκ

p
(
ym|s;σ2

m

)
,

(A.35)

where the conditional PDF of ym given s is defined as

p
(
ym|s;σ2

m

)
=

exp
[
−
(
ym − µym

)H
C−1ym

(
ym − µym

)]
πκdet

[
Cym

] , (A.36)

where the mean µym
and the inverse of the signal covariance matrix are given by (2.20)

and (A.32), respectively, with τ replaced by κ. On the other hand, the determinant

of Cym can be solved with the matrix determinant lemma:

det
[
RmmssH + σ2

mIκ
]

=
(
σ2
m

)κ(
1 +

Rmmκ

σ2
m

)
. (A.37)
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As a result, the PDF of ym in (A.35) may be rewritten as

p
(
ym;σ2

m

)
=

exp

[
−yHmym

σ2
m

]∑
s1

· · ·
∑
sκ

T

Nκπκ (σ2
m)κ

(
1 +

Rmmκ

σ2
m

) , (A.38)

where the variable T is given by

T = exp

 yHmssHym
σ4
m

Rmm

+ σ2
mκ

 . (A.39)

The next step is the evaluation of the natural logarithm of p (ym;σ2
m) in (A.38):

ln p
(
ym;σ2

m

)
= −κln (N)− κln (π)− κln

(
σ2
m

)
− ln

(
1 +

Rmmκ

σ2
m

)
− yHmym

σ2
m

+ ln

(∑
s1

· · ·
∑
sκ

T

)
.

(A.40)

Therefore, the first derivative of ln p (ym;σ2
m) with respect to σ2

m is given by

∂ ln p (ym;σ2
m)

∂ σ2
m

=− κ

σ2
m

+

(Rmmκ)2

σ2
m

+ Rmmκ

(σ2
m + Rmmκ)2

+
yHmym
σ4
m

+

∂ ln

(∑
s1

· · ·
∑
sκ

T

)
∂ σ2

m

.

(A.41)

The second derivative can then be obtained from (A.41) as in (2.23), with D and

D′ given by

D =
yHmssHym

κ (σ2
m + Rmmκ)2

− yHmssHym
κσ4

m

, (A.42)

D′ = − 2yHmssHym
κ (σ2

m + Rmmκ)3
+

2yHmssHym
κσ6

m

. (A.43)

This proves Theorem 2.3.5. �
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A.6 Proof of Theorem 2.3.6:

Let us consider τ known and κ unknown symbols. Then, by proceeding as in Appendix

A.3, the PDF of the received signal ym is given by

p
(
ym;σ2

m

)
=

exp

[
−yHmym

σ2
m

] ∑
sτ+1

· · ·
∑
sτ+κ

T

Nκπ(τ+κ) (σ2
m)(τ+κ)

(
1 +

Rmm (τ + κ)

σ2
m

) , (A.44)

where the variable T is given by

T = exp

 yHmssHym
σ4
m

Rmm

+ σ2
m (τ + κ)

 . (A.45)

Once we have the PDF of the received signal, the second derivative of lnp (ym;σ2
m)

with respect to σ2
m can be obtained from (A.44) as in Appendix A.5, with D and D′

given by

D =
yHmssHym

(τ + κ)
(
σ2
m + Rmm (τ + κ)

)2 − yHmssHym
(τ + κ)σ4

m

, (A.46)

D′ = − 2yHmssHym

(τ + κ)
(
σ2
m + Rmm (τ + κ)

)3 +
2yHmssHym
(τ + κ)σ6

m

. (A.47)

This proves Theorem 2.3.6. �

A.7 Proof of Theorem 2.4.1:

The MM works by evaluating the moments of the received signal y. The objective

is to find a moment that depends on the unknown parameter, in this case the noise

variance. Here we show that this requirement is satisfied by the second moment,

which is defined as

µ2 = E
[
yHy

]
, (A.48)
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where the expected value is taken with respect to the received signal y. Plugging

(2.31) into (A.48), we have

µ2 =E
[
hHSHSh

]
+ E

[
hHSHn

]
+ E

[
nHSh

]
+ E

[
nHn

]
. (A.49)

As for the derivation of the CRLB, we consider that the channel h and noise n

are independent random variables. On the other hand, since in the DA model the

pilot sequence is known, the training matrix S is a deterministic variable. Hence,

E
[
hHSHn

]
= E

[
hH
]
SHE [n] = 0 , (A.50)

E
[
nHSh

]
= E

[
nH
]
SE [h] = 0 . (A.51)

The other two summands in (A.49) can be obtained as

E
[
hHSHSh

]
= τE

[
hHh

]
= τ

M∑
m=1

E [h∗mhm] = τ
M∑
m=1

Rmm = τtr [R] , (A.52)

E
[
nHn

]
=

Mτ∑
i=1

E [n∗ini] =
Mτ∑
i=1

σ2 = Mτσ2 , (A.53)

where hm and ni define the m-th and i-th element of h and n, respectively.

Hence, by plugging (A.50)-(A.53) into (A.49), the second moment of y becomes

µ2 = τtr [R] +Mτσ2 . (A.54)

Therefore,

σ2 =
µ2

Mτ
− tr [R]

M
. (A.55)

The MM estimate of the noise variance is obtained by substituting in (A.55) the

second moment of y by the given value of yHy, that is, µ2 = yHy. This results in

(2.38), which proves Theorem 2.4.1. �
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A.8 Proof of Theorem 2.4.2:

In order to obtain the estimator, we proceed as in [26]. In the k-th iteration, the

conditional expected value of ln p (x;σ2) given the received signal y is

Ek =

∫
x

ln p
(
x;σ2

)
p
(
x|y; σ̂2

k

)
dx

=

∫
y

(∑
s1

· · ·
∑
sκ

ln p
(
x;σ2

)
p
(
x|y; σ̂2

k

))
dy ,

(A.56)

where

ln p
(
x;σ2

)
= ln p

(
y,S;σ2

)
= ln

(
p
(
y|S;σ2

)
p (S)

)
, (A.57)

p
(
x|y; σ̂2

k

)
= p

(
y,S|y; σ̂2

k

)
= p

(
S|y; σ̂2

k

)
. (A.58)

Since the received signal y is known, the integral with respect to y in (A.56) can

be removed. Considering this and the results in (A.57) and (A.58), Ek in (A.56)

becomes

Ek =
∑
s1

· · ·
∑
sκ

ln
(
p
(
y|S;σ2

)
p (S)

)
p
(
S|y; σ̂2

k

)
. (A.59)

Furthermore, since Ek is going to be maximized with respect to σ2 and the term

p (S) does not depend on it, the expression above can be simplified to

Ek =
∑
s1

· · ·
∑
sκ

ln p
(
y|S;σ2

)
p
(
S|y; σ̂2

k

)
. (A.60)

We notice that the result above is, in fact, the expected value of lnp (y|S;σ2) with

respect to S|y evaluated in σ̂2
k. The expression for ln p (y|S;σ2) is given in (2.34)

with τ replaced by κ. As a consequence, Ek in (A.60) becomes

Ek = −yHy

σ2
+

yHE
[
SSH

]
y

σ2κ
−

M∑
m=1

E [|um|2]
κ (σ2 + κλm)

−Mκln (π)−Mκln
(
σ2
)
−

M∑
m=1

ln

(
1 +

λmκ

σ2

)
,

(A.61)

where the expected value is taken with respect to S|y evaluated in σ̂2
k. This proves

equation (2.39) in Theorem 2.4.2.
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The last step to determine Ek is the evaluation of the expected values in (A.61).

For same random variable x, the expected value of x with respect to S|y evaluated

in σ̂2
k is given by

E [x] =
∑
s1

· · ·
∑
sκ

x p
(
S|y; σ̂2

k

)
. (A.62)

Applying the Bayes’ theorem, the expression above may be rewritten as

E [x] =
∑
s1

· · ·
∑
sκ

x
p
(
y|S; σ̂2

k

)
p (S)

p
(
y; σ̂2

k

)
=

1

Nκp
(
y; σ̂2

k

)∑
s1

· · ·
∑
sκ

x p
(
y|S; σ̂2

k

)
,

(A.63)

where p
(
y|S; σ̂2

k

)
is as in (2.32) with τ and σ2 replaced by κ and σ̂2

k, respectively.

Besides, p
(
y; σ̂2

k

)
is computed as the marginal distribution of the joint PDF of y

and S:

p
(
y; σ̂2

k

)
=
∑
s1

· · ·
∑
sκ

p
(
y,S; σ̂2

k

)
=

1

Nκ

∑
s1

· · ·
∑
sκ

p
(
y|S; σ̂2

k

)
. (A.64)

Hence, after plugging (A.64) into (A.63), E [x] simplifies to (2.40), which proves

Theorem 2.4.2. �

A.9 Proof of Theorem 2.4.3:

We proceed as in the model with equal noise variance. The second moment of ym is

given by

µ2 = E
[
yHmym

]
=E

[
sHh∗mhms

]
+ E

[
sHh∗mnm

]
+ E

[
nHmhms

]
+ E

[
nHmnm

]
,

(A.65)

where the expectation is taken with respect to the received signal ym. Considering

that hm and nm are independent random variables, the summands in (A.65) are given

by

E
[
sHh∗mhms

]
= sHE [h∗mhm] s = sHRmms = τRmm , (A.66)
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E
[
sHh∗mnm

]
= sHE [h∗m] E [nm] = 0 , (A.67)

E
[
nHmhms

]
= E

[
nHm
]

E [hm] s = 0 , (A.68)

E
[
nHmnm

]
=

τ∑
i=1

E
[
n∗m,inm,i

]
=

τ∑
i=1

σ2
m = τσ2

m . (A.69)

By plugging (A.66)-(A.69) into (A.65), the second moment is finally given by

µ2 = τRmm + τσ2
m . (A.70)

Hence, we have

σ2
m =

µ2

τ
−Rmm . (A.71)

The MM estimator of σ2
m is given by (A.71) with the second moment replaced by

the given value of yHmym. This results in (2.50), which proves Theorem 2.4.3. �

A.10 Proof of Theorem 2.4.4:

Let us define xm as the complete data set, which includes the incomplete data ym

and the unknown pilot sequence s. As a consequence, Ek is given by

Ek = E
[
ln p

(
xm;σ2

m

)]
, (A.72)

where the expected value is taken with respect to xm|ym evaluated in σ̂2
mk. Therefore,

Ek may be rewritten as

Ek =

∫
xm

ln p
(
xm;σ2

m

)
p
(
xm|ym; σ̂2

mk

)
dxm

=

∫
ym

(∑
s1

· · ·
∑
sκ

ln p
(
xm;σ2

m

)
p
(
xm|ym; σ̂2

mk

))
dym ,

(A.73)

where

ln p
(
xm;σ2

m

)
= ln p

(
ym, s;σ2

m

)
= ln

(
p
(
ym|s;σ2

m

)
p (s)

)
, (A.74)

p
(
xm|ym; σ̂2

mk

)
= p

(
ym, s|ym; σ̂2

mk

)
= p

(
s|ym; σ̂2

mk

)
. (A.75)
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Since the received signal ym is known, the integral in (A.73) may be removed. By

taking this into account, and the expressions in (A.74) an (A.75), Ek becomes

Ek =
∑
s1

· · ·
∑
sκ

ln
(
p
(
ym|s;σ2

m

)
p (s)

)
p
(
s|ym; σ̂2

mk

)
. (A.76)

Furthermore, since p (s) does not depend on σ2
m, Ek simplifies to

Ek =
∑
s1

· · ·
∑
sκ

ln p
(
ym|s;σ2

m

)
p
(
s|ym; σ̂2

mk

)
. (A.77)

As we observed in the model for equal noise variance, Ek is, in fact, the expected

value of ln p (ym|s;σ2
m) with respect to s|ym evaluated in σ̂2

mk. The expression for

ln p (ym|s;σ2
m) is given by (2.47) with τ replaced by κ. Therefore, we have

Ek =− κln (π)− κln
(
σ2
m

)
− ln

(
1 +

Rmmκ

σ2
m

)
− yHmym

σ2
m

+
yHmE

[
ssH
]
ym

σ2
mκ

−
yHmE

[
ssH
]
ym

κ (σ2
m + Rmmκ)

,

(A.78)

which proves equation (2.51) in Theorem 2.4.4. In (A.78), the expected value of ssH ,

taken with respect to s|ym evaluated in σ̂2
mk, is given by

E
[
ssH
]

=
∑
s1

· · ·
∑
sκ

ssHp
(
s|ym; σ̂2

mk

)
, (A.79)

which, after applying the Bayes’ theorem, becomes

E
[
ssH
]

=
1

Nκp
(
ym; σ̂2

mk

)∑
s1

· · ·
∑
sκ

ssHp
(
ym|s; σ̂2

mk

)
, (A.80)

where p
(
ym|s; σ̂2

mk

)
is as in (2.46) with τ and σ2

m replaced by κ and σ̂2
mk, respectively.

In (A.80), p
(
ym; σ̂2

mk

)
may be rewritten as

p
(
ym; σ̂2

mk

)
=
∑
s1

· · ·
∑
sκ

p
(
ym, s; σ̂2

mk

)
=

1

Nκ

∑
s1

· · ·
∑
sκ

p
(
ym|s; σ̂2

mk

)
.

(A.81)

Hence, after plugging (A.81) into (A.80), E
[
ssH
]

simplifies to (2.52), which proves

Theorem 2.4.4. �

78


	Florida International University
	FIU Digital Commons
	11-10-2016

	Channel and Noise Variance Estimation for Future 5G Cellular Networks
	Jorge Iscar Vergara
	Recommended Citation


	Channel and Noise Variance Estimation for Future 5G Cellular Networks

