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ABSTRACT OF THE DISSERTATION 

EFFECTS OF CATASTROPHIC SEAGRASS LOSS AND PREDATION RISK ON 

THE ECOLOGICAL STRUCTURE AND RESILIENCE OF A MODEL SEAGRASS 

ECOSYSTEM  

by 

Robert James Nowicki 

Florida International University, 2016 

Miami, Florida 

Professor Michael R. Heithaus, Major Professor 

 As climate change continues, climactic extremes are predicted to become more 

frequent and intense, in some cases resulting in dramatic changes to ecosystems.  The 

effects of climate change on ecosystems will be mediated, in part, by biotic interactions 

in those ecosystems.  However, there is still considerable uncertainty about where and 

how such biotic interactions will be important in the context of ecosystem disturbance 

and climactic extremes. 

 Here, I review the role of consumers in seagrass ecosystems and investigate the 

ecological impacts of an extreme climactic event (marine heat wave) and subsequent 

widespread seagrass die-off in Shark Bay, Western Australia.  Specifically, I compare 

seagrass cover, shark catch rates, and encounter rates of air breathing fauna in multiple 

habitat types before and after the seagrass die-off to describe post-disturbance dynamics 

of the seagrass community, shifts in consumer abundances, and changes in risk-sensitive 

habitat use patterns by a variety of mesoconsumers at risk of predation from tiger sharks 

(Galeocerdo cuvier).  Finally, I conducted a 16 month field experiment to assess whether 
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loss of top predators, and predicted shifts in dugong foraging, could destabilize remaining 

seagrass. 

 I found that the previously dominant temperate seagrass Amphibolis antarctica is 

stable, but not increasing.  Conversely, an early-successional tropical seagrass, Halodule 

uninervis, is expanding.  Following the die-off, the densities of several consumer species 

(cormorants, green turtles, sea snakes, and dugongs) declined, while others (Indo-Pacific 

bottlenose dolphins, loggerhead sea turtles, tiger sharks) remained stable.  Stable tiger 

shark abundances following the seagrass die-off suggest that the seascape of fear remains 

intact in this system.  However, several consumers (dolphins, cormorants) began to use 

dangerous but profitable seagrass banks more often following seagrass decline, 

suggesting a relaxation of anti-predator behavior.  Experimental results suggest that a loss 

of tiger sharks would result in a behaviorally mediated trophic cascade (BMTC) in 

degraded seagrass beds, further destabilizing them and potentially resulting in a phase 

shift.  My work shows that climactic extremes can have strong but variable impacts on 

ecosystems mediated in part by species identity, and that maintenance of top predator 

populations may by important to ecological resilience in the face of climate change.      
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 Earth’s ecosystems are constantly being exposed to anthropogenic stressors.  One 

of the most widespread and pervasive changes humanity is making to the global 

biosphere is through climate change (Pachauri 2014).  Traditionally, climate change 

ecology has focused on the role of gradual changes to climate regimes over time.  

However, there is increasing recognition that acute, extreme climactic events can have 

rapid and dramatic impacts on ecosystems (Jentsch et al. 2007).  Recognition of the 

importance of extreme events, along with more traditional disturbance ecology, has 

spurred growing interest in determining what makes ecosystems and populations resilient 

to climactic extremes (and disturbances generally).   

 While resilience theory continues to advance, investigations into ecological 

resilience in situ are logistically difficult, particularly true at large spatial and community 

scales.  In situ studies of resilience are difficult because robust investigations into the 

effects of extreme events need prior standardized baseline sampling at multiple trophic 

levels, as well as an appropriate extreme event to impact the system of interest.  Yet such 

investigations, when possible, provide deep insights into the responses of entire 

communities and ecosystems to climactic extremes, and hold particular value in building 

upon a predictive framework for the effects of such extremes in ecosystems.  Therefore, 

there is considerable value in leveraging climactic extreme events when they occur to 

increase our understanding of ecosystem responses to climate change. 

 The role of biotic interactions in mediating the impacts of climate change is 

becoming increasingly investigated (e.g., Zarnetske et al. 2012).  Included therein are 

species interactions among consumers and between consumers and primary producers.  

Yet there is still much we do not understand about how various consumers respond to 
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climactic disturbances and how they themselves mediate the effects of climate extremes.  

Apex predators in particular may be important mediators of climate change impacts.  

Indeed, recent work has demonstrated that apex predators can alter community and 

ecosystem responses to climate change through consuming prey (e.g., Wilmers and Gets 

2005, Ling et al. 2009).  However, predators alter communities not only through direct 

predation, but also through risk of predation and the interaction of the two (e.g., Schmitz 

et al. 1997, Lima 1998, Dill et al. 2003, Werner and Peacor 2003). Predator “risk” effects, 

by impacting large proportions of prey populations and generating behaviorally mediated 

trophic cascades (Jeffries and Lawton 1984, Heithaus et al. 2008), can even be more 

powerful than direct predation (e.g., Werner and Peacor 2003, Creel and Christianson 

2008).  Predation risk may, therefore, be an important component of ecological resilience 

to climate extremes.  Studies of when and how top predators may influence ecological 

resilience in the face of climate change is particularly important because of extreme 

declines in their populations on land (e.g., Ripple et al. 2014) and in the oceans (e.g., 

Ferretti et al. 2010) 

 Seagrass ecosystems are good candidates for investigations of resilience in the 

face of climate change for several reasons.  Seagrass ecosystems provide a variety of 

critical ecosystem functions, including primary and secondary productivity, sediment 

stabilization, wave attenuation, habitat creation, and carbon storage (e.g., Heck et al. 

2003, Smit et al. 2005, Barbier et al. 2011, Fourqurean et al. 2012).  Despite these 

functions, seagrass ecosystems are among Earth’s most imperiled, with dramatic losses 

(29%) since the late 1800’s that continue to accelerate (Waycott et al. 2009).  There is 

thus considerable urgency and value to maximizing resilience in these ecosystems.  
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Furthermore, many of the regions in which seagrasses are well studied (including the East 

coast of the USA, East and West coast of Australia, and the East coast of Japan) are 

characterized by tropical boundary currents and are predicted to warm several times 

faster than the global average (Verges et al. 2014, Wu et al. 2012).  As such, seagrass 

ecosystems are at the forefront of climate change and may provide a good platform for 

climate change research.  Additionally, seagrass ecosystems are known for positive 

feedbacks which can reinforce phase shifts once they occur, making it critical to 

understand under what conditions these systems will display resilience or phase shifts in 

response to disturbance.  Finally, seagrasses of temperate and tropical origin often have 

different life histories and fulfill different functional roles in their ecosystems.  

Specifically, many temperate seagrasses are large and persistent, with late-successional 

life histories and slow rates of vegetative expansion; conversely, many tropical seagrasses 

are typified by early-successional life histories and rapid rates of vegetative expansion, 

but are often smaller and less structurally complex than their temperate counterparts 

(Larkum et al. 2006).  Therefore, seagrass losses or species shifts to more structurally 

simple, early successional tropical seagrasses may greatly alter the valuable functions that 

characterize seagrass ecosystems (Hyndes et al. 2016).    

 The goal of my dissertation is to investigate the impacts of a climactic extreme 

event and subsequent widespread seagrass die-off on the communities, and the ecosystem 

resilience of Shark Bay, Western Australia.  Furthermore, I seek to ask whether loss of 

Shark Bay’s local apex predators, tiger sharks (Gaelocerdo cuvier), may generate a 

behaviorally mediated trophic cascade (BMTC) that would destabilize damaged seagrass 

beds by increasing grazing pressure on them from dugongs.  Shark Bay is a particularly 



6 

 

valuable system for such a study because it is among the world’s largest seagrass 

ecosystems (Walker et al. 1988), hosts a relatively intact consumer community from 

herbivorous dugongs (Dugong dugon) to tiger sharks, and has been subject of a broad, 

long term ecological research effort since 1997 (Heithaus et al. 2012).  Furthermore, 

extensive work on the role of predation risk generated by seasonally abundant tiger 

sharks has allowed for detailed study of anti-predator behavior by a variety of 

mesoconsumers, allowing for the unique capability to investigate how massive resource 

loss influences the dynamics of predator-prey interactions in a large scale field setting. 

 I begin by reviewing the literature on the role of consumers in seagrass 

ecosystems (Chapter II) with a particular focus on the Australian continent.  Therein I 

investigate the role that herbivores and predators are known to play in seagrass 

ecosystems, concluding with current research gaps and predictions of how climate change 

and top-down control will shape seagrass ecosystems in the future.   

 The extent and magnitude of the initial seagrass decline has been described 

previously (Thomson et al. 2014, Fraser et al. 2014).  For Chapter III, I therefore 

undertook standardized sampling of Shark Bay’s seagrass community following the 

decline to investigate the post-disturbance dynamics of the study area, with a particular 

focus on community shifts and factors likely to impact return time and resilience.  

 Such extensive loss of Amphibolis antarctica, Shark Bay’s historically dominant 

seagrass (Walker et al. 1988), provided a unique opportunity to investigate the effects of 

widespread resource loss on a wide variety of megafauna, including dugongs, Indo-

Pacific bottlenose dolphins, Piedcormorants, green and loggerhead sea turtles, sea snakes, 

and large sharks in Chapter IV.  In addition to quantifying shifts in abundance for these 
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species I also measured whether these mesoconsumers continue to exhibit risk-sensitive 

habitat use in response to seasonal variation in abundances of tiger sharks, which 

provided a unique ability to evaluate theoretical predictions of how resource loss affects 

anti-predator behavior. 

 In Chapter V, I present the results of a field experiment designed to determine 

whether the ecological extinction of tiger sharks from Shark Bay as a result of 

overfishing, and the resulting shifts in dugong habitat use and foraging behavior, could 

eliminate a behaviorally mediated trophic cascade (BMTC) leading to a destabilization of 

the remaining beds of A. antarctica.  Specifically, I test whether changes in risk-sensitive 

foraging behavior by dugongs predicted to occur in the absence of top predators will 

prevent the recovery of A. antarctica beds and instead result in a phase shift to a seagrass 

ecosystem dominated by tropical seagrasses such as Halodule uninervis. The question of 

whether apex predators can influence the ecological resilience of a disturbed ecosystem 

through behavioral control of prey is an important one in the context of climate change 

since marine predator losses are widespread and can have important ecological impacts 

(Ferretti et al. 2010, Heithaus et al. 2008).  In my final chapter, I synthesize and 

summarize my findings and place them in the context of predictive ecology.  I also 

emphasize a more general need to increase the predictive capacity of ecology.  I build on 

existing predictive frameworks and make suggestions as to areas where further work is 

most needed. 

 Overall this work provides a valuable case study into the ecological effects of a 

climactic extreme event in a relatively intact marine ecosystem, and uses large scale 

observational and experimental work to evaluate several theoretical predictions.  Therein, 
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this work contributes to the construction of a predictive framework for the resilience of 

ecosystems to climactic extremes.  
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Abstract 

Seagrass ecosystems were traditionally assumed to be structured by competition as well 

as by “bottom up forces” such as resource availability and disturbance.  However, a 

wealth of new evidence demonstrates that exertion of “top down control” by animals may 

be widespread.  The strength and direction of top down control is context dependent, 

however, and varies with properties of organisms, the community, and the physical 

environment.  Consumers can facilitate, consume, or destroy primary producers, aid or 

inhibit seagrass reproduction, or alter bottom up processes with implications for the 

properties and persistence of seagrass ecosystems.  Studies in Australian ecosystems have 

been critical in helping to elucidate the role of consumers in seagrass ecosystems. 

Specifically, work investigating the roles of megaherbivores and apex predators and the 

pioneering of novel experimental approaches which allow for cage-free manipulations of 

mesograzers have substantially furthered our understanding of top-down control.  At the 

broadest scale, megagrazers are likely to dominate grazing pathways in Australian 

tropical and subtropical seagrass ecosystems, while macrograzers and mesograzers do so 

in temperate seagrass ecosystems.  However, while we have learned much about 

mechanisms through which top-down control can operate and its effects on seagrass 

ecosystems, predicting which grazing pathways dominate at smaller spatial scales, and 

net herbivore effects on seagrasses in specific ecosystems remains challenging due to 

context dependence and the highly complex nature of species interactions.  

Anthropogenic impacts further complicate these relationships.  Australian seagrass 

habitats possess unusual properties, including relatively intact populations of megafauna, 
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remote and pristine locations, and distinctive oceanographic features which allow these 

habitats to provide unique insights of top down control in seagrass ecosystems. 

 

1. The Development of Understanding of Top Down Control on Seagrass 

Community Structure 

One of the central goals of ecology is to understand the forces that structure 

ecosystems.  In pursuing this goal, ecologists have traditionally focused on the roles of 

physical factors such as light, water and nutrient availability in controlling ecosystems 

from the “bottom up.”  This focus on bottom up control was due in part to the ease with 

which physical variables can be manipulated in controlled experiments.  Though 

ecologists and naturalists had written about the importance of consumers and “top down” 

forces in ecosystems throughout the field’s history (e.g., Elton 1927), it wasn’t until a 

seminal paper published by Hairston, Smith, and Slobodkin (1960) that the role of 

consumers was brought into the ecological limelight.  This paper presented what is 

known as the “green world hypothesis,” and asked a simple question: if herbivores are 

only limited by resources, then why do plants in terrestrial ecosystems persist?  One 

reason, the authors posited, is that herbivores are not limited from the “bottom up” by 

plant resources, but from the “top down” by predators- and that this top down control is 

what allows primary producers to survive.  This hypothesis, though remaining far from 

universally accepted (see Ehrlich and Raven 1964, Murdoch 1966, Strong 1992, Polis 

and Strong 1996, Polis 1999 for critiques and alternate hypotheses), set the stage for 

subsequent studies investigating the role of top down control in ecosystems. 
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 Until relatively recently, the importance of top-down control in seagrass 

ecosystems went largely unrecognized.  Indeed, seagrass ecology focused on factors in 

the physical environment that limited seagrass establishment, growth and distribution- 

herbivory and predation were considered relatively unimportant (Kirkman and Reid 

1979, Klumpp et al 1989). This view began to incrementally change, particularly in the 

1980s, when several reviews suggested that the persistence of seagrass ecosystems may 

be due to herbivore control of algal competitors, which are generally faster growing than 

seagrasses (Orth and Montfrans 1984, Montfrans et al. 1984).  The suggestion that top 

down control may be important in limiting algal overtake of seagrass ecosystems has 

since been widely recognized (e.g., Hughes et al. 2004, Heck and Valentine 2007, 

Verhoeven et al. 2012). 

 Though there was increasing realization that top down control could play 

important roles in seagrass-algae dynamics, the paradigm remained that seagrasses 

themselves were only rarely consumed by herbivores and that most seagrass production 

was probably channeled into the detrital cycle (Kirkman and Reid 1979, Thayer et al. 

1984, Klumpp et al 1989).  This idea persisted despite the knowledge that sirenians, sea 

turtles, teleosts and sea urchins that live in seagrass meadows are herbivorous (Klumpp et 

al 1989, Lanyon et al. 1989) and that the effects of grazers on the structure of seagrass 

beds can, in some cases, be readily apparent (Randall 1965). Contributions from 

historical ecology and contemporary experiments performed over several decades, began 

to challenge this paradigm.   

Taking a historical perspective, some ecologists observed that the seagrass 

ecosystems of today are rarely intact or natural ecosystems.  Modern seagrass 
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ecosystems, they argued, are largely released from top-down control because the marine 

megaherbivores that roamed such ecosystems centuries or millennia prior had been 

hunted to functional extinction (Dayton et al. 1995, Domning 2001, Jackson 2001, Heck 

and Valentine 2007).  In a way, this argument echoed that of Hairston et al. (1960)- 

seagrass ecosystems were green because predators (in this case, humans) were highly 

effective at exerting top down control on seagrass herbivores such as sea turtles, 

sirenians, sharks.  Thus, ecologist’s observations of low rates of herbivory in seagrass 

ecosystems could in fact be the result of human activity that set an unnatural “baseline” 

that betrays the truth of the evolutionary and ecological importance of herbivory in these 

systems. 

Other ecologists argued that seagrass herbivory was not only still occurring, but 

that it could still have strong effects in seagrass ecosystems today.  Largely led by the 

work of ecologists working in the Gulf of Mexico and Northwestern Atlantic, a suite of 

observations, experiments, reviews, and meta-analyses has built compelling evidence that 

significant seagrass consumption (and top-down control) continues in contemporary 

seagrass ecosystems (Valentine and Heck 1991, Heck and Valentine 1995, Cebrian and 

Duarte 1998, Rose et al. 1999, Valentine and Heck 1999, Williams and Heck 2001, 

Kirsch et al. 2002, Hughes et al. 2004, Nakaoka 2005, Valentine and Duffy 2006, Heck 

and Valentine 2007).  Even in the relative absence of marine megafauna, multiple 

experiments showed how consumer control can still shape seagrass ecosystems at scales 

from individual plants to the entire community.  Partially as a consequence of these and 

other experiments, the idea that predators play critical roles in controlling herbivory in 

seagrass ecosystems also gained support (Heck et al. 2000, Williams and Heck 2001, 
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Valentine and Duffy 2006)- something first observed to be important to the formation of 

the grazing halos described decades before (Randall 1965). Evidence for top down 

control in seagrass ecosystems (including trophic cascades) continues to accumulate 

today (Hughes et al. 2004, Burkepile and Hay 2006, Heck and Valentine 2006, Heithaus 

et al. 2012, Burkholder et al. 2013, Duffy et al. 2013).   

By the late 1980s, when the first edition of this book was published, it had begun 

to become apparent that seagrass herbivory was more important than previously 

recognized, though most of the focus remained on large bodied consumers like dugongs 

and green turtles (Lanyon et al. 1989).  Now, there is compelling evidence that 

consumers of varied body size and feeding guild can exert top down control through a 

variety of mechanism and trophic pathways, sometimes with strong and counterintuitive 

effects on their ecosystems.  The challenge now is not in determining if top-down control 

exists in seagrass ecosystems, but when it is important relative to other forces, by what 

mechanisms top-down control most commonly operates, and by what pathways it is most 

likely to dominate.  While work to identify mechanisms of top down control has been 

fruitful, predicting when (and through what avenues) top down control dominates in 

seagrass ecosystems has proven difficult and remains a key challenge in seagrass 

ecology. 

 

2. The Nature of Top Down Control and the Prevalence of Context Dependence 

In order to understand when, where, through which pathways and mechanisms, 

and how strong top-down influences are, an understanding of the roles of consumers, 

producers, and their relationships to each other and their environment is necessary. In the 
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most basic sense, the strength and nature of top down control in seagrass ecosystems is a 

function of the properties of herbivores, predators, and the seagrass, community structure, 

and features of the physical environment.  Seagrasses, and the other primary producers 

they interact with, have inherently different life histories, chemical compositions, and 

tolerances to herbivory and environmental conditions.  These properties interact with 

properties of herbivores- their densities, identity, consumption rates, or feeding 

preferences.  Predators in turn influence herbivores or the predators of herbivores- 

altering their density, traits and behavior- which can generate cascading effects to 

seagrasses.  The strength of these interactions is often linked to food web complexity.  

Consumers also interact with seagrass directly through nutrient transport and 

concentration, physical restructuring of habitat, and changes to bottom-up processes.  

Finally, these interactions occur in the context of the physical environment and are 

further complicated by anthropogenic impacts such as nutrient pollution, predator 

removal, and climate change.  Below I consider how each of these taxa, guilds, or factors 

influences the strength and nature of top-down control, providing examples from 

experiments or observational work to support these considerations.  

 

2.1 The Role of Seagrass in Mediating the Strength of Top-Down Processes  

Plants are not simply the recipients of consumer effects; they also play an 

important role in mediating the ultimate effects consumers have on the primary producer 

community.  As one ecologist wrote, “Plants are not passive agents, waiting to be 

decimated by herbivores” (Polis 1999).  Primary producers, including seagrasses, 

microalgae, and macroalgae, can alter the strength of top down control through their 
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susceptibility and response to herbivory, which may, in turn affect herbivore behavior.  

Seagrasses exposed to herbivory may decline or die-off, exhibit tolerance through 

compensatory or super-compensatory growth, or display resistance by altering their 

physiology or chemistry through methods such as nutrient or carbohydrate re-routing or 

by producing secondary metabolites (Cebrian et al. 1998, Ricklefs and Miller 1999, 

Vergés et al. 2008, Burnell et al. 2013a, Steele and Valentine 2015).   The tolerance of 

primary producers to different kinds of herbivory differs by species- though it can also be 

induced in response to herbivory (e.g., Burnell et al. 2013a, Sanmarti et al. 2014)- and 

this differential tolerance can have implications for seagrass community composition.  

For example, in mixed species seagrass meadows in Lady Bay, South Australia, 

overgrazing of seagrasses by sea urchins disproportionately impact Amphibolis antarctica 

compared to Posidonia spp., because the leaf cluster meristems of A. antarctica are 

exposed at the surface and therefore are more vulnerable to grazing while the meristems 

of Posidonia species are protected beneath the sediment surface (Burnell et al. 2013a).  In 

this sense, differences in morphology mediate the strength of consumer control of these 

mixed-species beds.  

In general, the life history characteristics of pioneer seagrasses like those in the 

genera Halophila, Halodule, Syringodium, allow them to grow and expand quickly, 

giving them generally high grazing tolerance on the level of the meadow, even if their 

standing biomass is often heavily reduced by regular grazing (e.g., Preen 1995, Masini et 

al. 2001).  Climax seagrasses like those in the Australian genera Amphibolis, Posidonia, 

and Zostera grow and expand more slowly, but are also less ephemeral, forming dense, 

thick beds with generally higher stocks of standing biomass.  This “climax” life history, 
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however, results in slower responses to large grazing events that can be generated by 

herbivores like dugongs and urchins (see Preen 1995, Eklöf et al. 2008 for examples).  

Some climax species, like Amphibolis antarctica, do not even generate seeds (Hemminga 

and Duarte 2000), instead requiring live plants to recolonize heavily grazed areas.  As we 

will see, life history characteristics also relate to herbivore feeding preferences.          

While primary producers alter how top-down control operates in seagrass 

ecosystems via their responses to herbivory, they also do so through their properties as a 

resource.  Because seagrasses can act as a different kind of resource (i.e., food, shelter) 

for different consumers, seagrass properties can influence not only herbivore feeding 

rates and food preferences, but also habitat use preferences.  These preferences can have 

measurable impacts on seagrass community structure (Preen 1995, Armitage and 

Fourqurean 2006).  Consumer feeding patterns are influenced by variation in primary 

producer chemical properties (i.e., palatability or food quality), structural properties (i.e., 

complexity, which provides refuge for predators or herbivores), or through community 

composition (associations with other producers that may illicit such preferences in 

herbivores).     

From an herbivory perspective, seagrass chemical composition describes the 

concentration of not only nutrients and soluble carbohydrates which often attract grazing, 

but also fiber and secondary metabolites, which can deter it.  Generalizing the 

relationship between the seagrass chemical composition and herbivore feeding preference 

or feeding rate remains surprisingly difficult.  For example, some studies find a positive 

relationship between nutrient content and herbivore feeding preference or consumption 

rates (ex. McGlathery et al. 1995, Brand-Gardner et al. 1999, Goecker et al. 2005, Prado 
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et al. 2010, Sheppard et al. 2010, Burkholder et al. 2012), while others do not (Cebrian 

and Duarte 1998, Mariani and Alcoverro 1999, Valentine and Heck 2001, Kirsch et al. 

2002, White et al. 2011).  This is partially due to the fact that nutrient concentrations as 

measured in assays may not accurately reflect the actual nutritional content a seagrass 

presents to herbivores since many nutrients can be bound to indigestible plant tissue that 

is never assimilated (Cebrian and Duarte 1998).  However, some of this complexity is 

derived from simultaneous variation in defensive compounds which reduce palatability.  

For example, feeding trials and manipulations using the bucktooth parrotfish Sparisoma 

radians indicate this herbivore prefers macrophytes in inverse relation to their terpene 

content, even when other factors such as species or biteability are accounted for (Targett 

et al. 1986).  Similarly, in Watamu National Marine Park, Kenya, feeding preferences of 

the teleost herbivore Calotomus carolinus are inversely correlated to the carbon fiber 

content of primary producer species (Mariani and Alcoverro 1999, Table 1).  The 

relationship between nutrient ratios, plant defenses, and herbivore feeding preference is 

further obscured by the fact that plant characteristics can fluctuate across space, time, 

species, and individual (e.g., Fourqurean et al 2005, Hays 2005, Tomas et al. 2011, Steele 

and Valentine 2015).  This complicates drawing patterns because multiple chemical 

variables can change concurrently, making attribution of herbivory to a single compound 

or group of compounds difficult.  For example, newer seagrass leaves generally have 

higher nutrient concentrations and fewer structural compounds than older leaves, but may 

also have higher concentrations of phenolic compounds (Hemminga and Duarte et al. 

2000, Agostini et al. 1998, Vergés et al. 2011).  Older leaves also tend to have higher 

epiphyte loads, making them more attractive to grazers targeting epiphytes (Alcoverro et 
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al. 1997, Wressing and Booth 2007, Vergés et al. 2011), and seagrass leaves have higher 

N and P content in winter compared to summer in seasonal environments (Fourqurean et 

al 1997, 2005, 2007).  Finally, different herbivores place varying levels of importance on 

each of these seagrass qualities (Prado and Heck 2011) meaning that understanding 

herbivore feeding preference requires not only comprehensive knowledge of seagrass 

chemical properties, but also insight into which of those properties local herbivores 

consider most.  Despite the complex relationship between chemical properties and 

herbivory, investigations into a generalizable pattern are important as these chemical 

properties can significantly influence herbivory rates (e.g., Steele and Valentine 2015). 

Though the multitude of factors driving herbivore feeding preferences in seagrass 

meadows has made generalizing preferences very difficult, one general pattern has 

emerged.  Feeding assays, gut content analysis, and herbivore exclosure experiments 

indicate that faster growing seagrass species – many of which are of tropical origin - are 

generally consumed more readily than slower growing climax species (Cebrian and 

Duarte 1998, Mariani and Alcoverro 1999, Armitage and Fourqurean 2006, Prado and 

Heck 2011, Burkholder et al. 2012, Table 1).  This pattern holds in Australian seagrass 

ecosystems, where fast-growing seagrasses are more readily consumed than temperate 

species; the latter are more likely to be targeted for their epiphytes rather than their tissue 

(Preen 1995, Burkholder et al. 2012).  Pioneer-type seagrassess tend to be less 

structurally complex and higher quality food than climax seagrasses, often due to higher 

nutritional content, lower mechanical resistance to grazing, or both (i.e., de los Santos et 

al. 2012.).     
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Table 1.  Herbivore seagrass preferences around the world. Studies include feeding 

preference experiments and observational studies.  Observational studies (including diet 

studies and feeding observation studies) were only included if frequency of occurrence of 

food items was accounted for in the environment.  In some cases herbivore preferences 

correlate positively to nutrient or soluble carbohydrate content of seagrass tissues, or 

negatively to fiber content; however, these patterns are not universal.  Seagrasses with 

pioneer life histories are italicized; climax seagrasses are listed in bold. Non-seagrass 

food items are excluded. E:epiphytes removed, T:thin leaf morph, B :broad leaf morph.  

Hw= Halodule wrightii, Tt= Thalassia testudinum, Sf= Syringodium filiforme, Hu= 

Halodule uninervis, Cr=Cymodocea rotundata, Th=Thalassia hemprichii, Hs= Halophila 

spinulosa, Ho= Halophila ovalis, Ca= Cymodocea angustata, Aa= Amphibolis 

antarctica, Pa=Posidonia australis, Si= Syringodium isotefolium, Zc= Zostera muelleri 

(formerly Z. capricorni), Cs= Cymodocea serrulata, Hst= Halophila stipulacea, Tc= 

Thalassodendron ciliatum, Ea= Enhalus acaroides.  

 

 

 

Seagrass physical structure can also influence top down control by generating 

refuge or habitat for herbivores or predators, altering habitat use patterns of fauna and, by 

extension, where and what they consume.  For example, amphipods in beds of Zostera 

marina in San Francisco Bay, USA, associate with structurally complex inflouresences 

over leaves, which may be responsible for increased consumption of inflouresences and 

associated reduced reproductive potential (Reynolds et al. 2012).  Seagrass structural 

complexity can also affect top down control by mediating predator-prey interactions 

among smaller-bodied animals. The ability of seagrasses to alter hunting efficiency and, 
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by extension, the degree of predator control of herbivores, is predicted to have 

implications for mesograzer control of seagrass epiphytes (Duffy et al. 2013).  For 

example, in mesocosm experiments where seagrass habitat complexity was manipulated 

(using flowering vs. simpler non-flowering shoots of Zostera marina), predation rates on 

the gammarid amphipod Ampithoe valida by teleost predators were reduced by half or 

more in the complex treatments, which was in turn associated with twice as much Z. 

marina biomass lost as in the simpler treatments (Carr and Boyer 2014).  However, this 

relationship is not uniform; instead, the relationship between predation risk and habitat 

complexity is mediated by both the hunting mode of the predator and the escape mode of 

the prey (Wirsing et al. 2010). For example, in terrestrial old field ecosystems in New 

England, USA, spider predators that use a sit-and-wait hunting strategy hide in grasses, 

reducing grasshopper use of grasses and increasing their use of nearby herbs (Schmitz 

2008).  As a result, grasshopper herbivores alter the species on which they feed, changing 

patterns of top-down control (Schmitz 2008). 

 Because of the diversity of structural and chemical properties of submerged 

aquatic macrophytes, primary producer community assembly can mediate the effects of 

top down control. Seagrass that are associated with other primary producers can 

experience alterations in the intensity and direction of top-down control as herbivores 

change consumption rates or feeding preference in the context of a more diverse primary 

producer community.  For example, the association between seagrass and seagrass 

epiphytes is one of the most important associations in seagrass ecosystems.  Epiphytes 

can rapidly overgrow seagrasses, reducing light penetration and nutrient availability to 

seagrass tissues. Furthermore, they can reduce seagrass fitness by attracting herbivores to 
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seagrasses and mediating herbivore consumption of seagrass tissue.  For example, when 

given a choice between feeding on Posidonia australis blades with or without epiphytes, 

two species of teleosts (Family Monocanthidae) preferentially targeted the heavily 

epiphytized leaves, resulting in an eightfold increase in percentage of biomass (including 

seagrass) removed by these herbivores (Wressing and Booth 2007).  Similar feeding 

preferences are apparent with the sea urchin Lytechnius variegatus when feeding on 

Thallasia testudinum (Marco-Mendez et al. 2012).  The mediation of grazing effects on 

one macrophyte by another occurs on larger scales as well; in Moreton bay, Queensland, 

destructive excavation grazing by dugongs removes not only targeted tropical seagrasses 

such as Halophila ovalis (which quickly recovers), but also the closely associated Zostera 

muelleri, inhibiting the expansion of this climax seagrass (Preen 1995).  Associations 

between two macrophytes may be also detrimental to a seagrass species if the preferred 

species is overgrazed and herbivores switch grazing to an associated seagrass to 

compensate, as sometimes occurs when mesograzers eliminate their algal food supply 

(Duffy et al. 2001, 2003).   

The structural complexity created by macrophytes can also alter grazing pressure 

on surrounding primary producers if they create refuge for herbivores which are 

unwilling to venture far from the protection of cover, as occurs in the grazing halos of the 

Caribbean (Randall 1965).  This may have positive or negative influences on associated 

seagrasses, depending on what the feeding preference of the grazer is, and may result in 

surprising interactions between macrophytes.  For example, drift macroalgae in beds of 

the eelgrass Zostera marina in the York River, Virginia, USA, may indirectly reduce 

epiphyte loads on nearby eelgrass leaves by providing refuge for mesograzers, suggesting 
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that the presence of competitive macroalgae at low densities may actually facilitate 

eelgrass persistence (Whalen et al. 2013). Seagrasses that are found in association with 

relatively unpalatable or chemically defended neighbors may also withstand lower rates 

of direct grazing by creating microsites of reduced herbivory as has been documented 

with algae (Hay 1986), though I am unaware of similar studies on seagrasses.  The 

potential for this to alter herbivore pressure likely depends heavily on the spatial scales at 

which herbivores perceive food quality and the spatial arrangement of such an 

association.  While undeniably complex, understanding the drivers of herbivore feeding 

preference is absolutely critical to predicting the net effects of consumer control in 

seagrass ecosystems. 

 

2.2 The Role of Herbivores  

Herbivores in seagrass ecosystems generally adhere to one of three trophic roles- 

epiphyte consumers, phytoplankton consumers, and macrophyte consumers.  However, 

herbivores vary widely in their individual capacity to mediate the strength of top-down 

control through these pathways.  Australian seagrass ecosystems feature herbivores that 

range in size by several orders of magnitude, from tiny arthropods and gastropods only a 

few millimeters across to marine mammals three meters in length. 

Seagrass herbivores can be categorized into three categories based on size: 

mesograzers, macrograzers and megagrazers.  Mesograzers are invertebrates, generally 

arthropods and gastropods, under 2.5 cm across (Fig. 1).  Though mesograzer densities 

vary widely with locale, they can be considered cosmopolitan residents of seagrass beds.  

Many mesograzers facilitate seagrass persistence through the mutualistic mesograzer 
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model, though some consume seagrass tissue (Orth and Van Montfrans 1984, Duffy and 

Harvilicz 2001, Reynolds et al. 2012, Rossini et al. 2014). Indeed, many invertebrates 

feed on or bore directly into seagrass tissues or damage them while feeding on associated 

epiphytes (e.g., Nienhuis and Groenendijk 1986; Wassenberg 1990; Zimmerman et al. 

1996; Brearley and Walker 1995; Rueda and Salas 2007; Brearley et al. 2008; Holzer et 

al. 2011; Reynolds et al. 2012; Carr and Boyer et al. 2014; Rossini et al. 2014).  This 

herbivory can be widespread with significant implications for seagrass productivity and 

survival.  For example, in the Zostera marina beds of San Francisco Bay, USA, 

consumption by the non-native amphipod Ampithoe valida can deplete seed stocks of this 

seagrass in a matter of weeks, which may reduce the genetic diversity of perennial beds 

or even jeopardize the persistence of annual seagrass beds which require seeds for their 

yearly recruitment (Reynolds et al. 2012).  Similarly, the isopod Limnoria agrostisa, 

widespread throughout Western Australia, burrows into leaf sheathes of Amphibolis 

griffithi and Posidonia spp., consuming seagrass tissue and damaging or destroying leaf 

clusters (Brearley et al. 2008).  The effects of seagrass consumption by L. agrostisa are 

substantial, with 40-70% of leaves being damaged and approximately 40% of leaf 

clusters destroyed by this species, illustrating that even small grazers can have 

surprisingly large effects.  

Macrograzers include larger herbivores, such as sea urchins, decapod crustaceans, 

teleosts like parrotfish (Family Scaridae) and trumpeters (Genus Pelates), and swans 

(Armitage and Fourqurean 2006, Burkholder et al. 2012, Bessey et al. 2015).  These 

herbivores may target either seagrass tissue or associated epiphytes, though in the case of 

the latter they still usually remove seagrass tissue in the process, making the impact of  
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Figure 1. Examples of the types of grazers found in Australian seagrass ecosystems, their 

feeding tactics, and the resulting impact on seagrass tissue.  Tactics are listed in order of 

increasing per-capita effect on seagrass. Filter feeders are included for completeness, 

though their grazing of phytoplankton only affects seagrasses indirectly.  Photos 

(clockwise from top left): Shark Bay Ecosystem Research Project (SBERP), Duffy et al. 

2014, Rossini et al. 2014, SBERP, SBERP, SBERP, Wikimedia commons, Wikimedia 

commons, Preen 1995, Burkholder et al. 2013, Eklof et al. 2008, Davis et al. 1998, 

Goecker et al. 2005, Rossini et al. 2014, Reynolds et al. 2012, SBERP. 

 

seagrass macrograzers generally negative.  For example, along the coast of the Gulf of 

Mexico, USA, the purple urchin Lytechinus variegates is able to consume the majority of 

aboveground seagrass biomass, sometimes leading to local seagrass extinction (Valentine 

and Heck 1991, Heck and Valentine 1995, Rose et al. 1999).  Similar events have 

occurred in Australian seagrass meadows and urchin barrens in temperate algal systems 

are iconic.  Multiple instances of overgrazing by sea urchins have contributed to losses of 

Posidonia spp.-dominated seagrass meadows on the scale of hectares in Cockburn Sound, 

Western Australia since  1980 (Kendrick et al. 2002).  Similarly, aggregations of the 
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urchin Heliocidaris erythrogramma denuded 45 hectares of Posidonia habitat in Botany 

Bay, Australia, between 1979 and 1984 (Larkum and West 1990).  In the Torres Straits, 

reduced seagrass density is correlated with high sea urchin abundance, likely as a result 

of intense grazing by those urchins (Long and Skews 1996).  Urchins can also overgraze 

Amphibolis antarctica,by targeting leaf meristems (Burnell et al. 2013a).  Finally, 

Australian teleosts like the striped trumpeter Pelates octolineatus can be important 

consumers of seagrass photosynthetic tissue (Bessey and Heithaus 2015). 

Though the ranges for individual species differ, mesograzers and macrograzers of 

some kind can be found in seagrass ecosystems around Australia.  Some Australian 

macrograzers, like the teleosts Pelates octolineatus, Odax acroptilus, and Haletta 

semifasciata, or the urchin Heliocidaris erythrogramma, consume substantial proportions 

of seagrass and epiphytic algae as part of their diet and can, in the case of H. 

erythrogramma, strip entire areas of seagrass above-ground biomass bare (Eklöf et al. 

2008, Macarthur and Hydnes 2007, Bessey et al. 2015).  Both macrograzers and 

mesograzers, however, generally target above-ground leaf tissue and leave below ground 

biomass intact (Fig. 1.)   

Because of their relatively high populations in Australian coastal ecosystems, 

megaherbivores play a more important role in these habitats than they do in well studied 

seagrass ecosystems of Europe and North America (Lanyon et al 1989).  Specifically, 

Australian seagrass ecosystems are home to two species of megaherbivores: green turtles 

(Chelonia mydas) and dugongs (Dugong dugon).   Though both megaherbivores consume 

seagrass tissue, their grazing tactics generally differ.  When consuming seagrass, green 

turtles primarily remove above ground biomass by cropping seagrass leaves, though in 
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some areas of the world they will excavate belowground biomass as well (Christanen et 

al. 2014). Conversely, dugongs commonly excavate seagrass beds, particularly when 

Australian tropical seagrass such as Halophila ovalis and Halodule uninervis are present 

(Anderson 1986, Preen 1995, Masini et al. 2001).  During excavation, dugongs dig into 

the sediment to target seagrass rhizomes, potentially destroying large areas of seagrass 

beds (e.g., Preen 1995, Fig 1).  This grazing tactic, combined with the dugong’s large 

size, relatively high metabolic rate, and obligate seagrass diet, means dugong-seagrass 

interactions can be very strong.  Indeed, in Shark Bay, Western Australia, dugong 

excavation results in the consumption of approximately 50% of primary production in 

beds of the pioneer seagrass Halodule uninervis (Masini et al. 2001).  When such 

seagrasses are unavailable or when risk of predation makes excavation grazing 

unappealing, dugongs will instead crop the above ground biomass of temperate 

seagrasses such as those from the genera Zostera or Amphibolis (Anderson 1986, Preen 

1995, Wirsing et al. 2007 a).  This has important implications for their impacts on 

seagrass community structure and ecosystem dynamics (see below).    

Finally, suspension feeders play important, if underappreciated, roles in the top 

down control of seagrass ecosystems.  Consisting of a variety of taxa including sponges, 

bivalves, gastropods, crustaceans, and ascidians, this herbivore group does not actually 

consume seagrass.  Suspension feeders are, however, important herbivores in seagrass 

ecosystems for a similar reason to facultative mesograzers- they control primary 

producers (specifically phytoplankton) that compete with seagrasses for light (Peterson 

and Heck 2001, Newell 2004).  The effect of phytoplankton removal on seagrasses is 

hard to quantify and disentangle from the more general benefit suspension feeders have 
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on water clarity since suspension feeders also remove suspended sediment and particulate 

organic matter.  However, the benefit this herbivore group has on seagrasses can be 

surprisingly strong due to the high light requirement of seagrasses as a group (Dennison 

et al. 1993).  For example, mathematical models estimate that uniform densities of the 

Eastern Oyster Crassostrea virginica as low as 25 g dry weight m-2 reduces suspended 

sediment concentrations by almost an order of magnitude (Newell and Koch 2004).  In 

areas where phytoplankton loads are high, suspension feeders probably play important, if 

indirect, roles as seagrass facilitators.   

Because the net effects of herbivores in seagrass ecosystems is heavily influenced 

by which grazing pathways dominate in that system, it is important to understand where 

specific pathways are most likely to dominate, and by extension, the geographic ranges of 

important herbivores.  Mesograzer control of epiphytes is thought to be widespread and 

may overshadow the ecological effect of direct seagrass consumption in many places (see 

Hughes et al. 2004 and Valentine and Duffy 2006).  However, the dominance of the 

mesograzer pathway relative to other grazing pathways is likely to be limited to 

temperate seagrass habitats within Australia.  This is due to the presence of megagrazers 

in tropical and subtropical Australian seagrass ecosystems, as well as the generally 

pioneer seagrass species that typify tropical Australian waters, the ephemeral nature of 

which limits the effect of epiphyte colonization.   Even within temperate seagrass 

ecosystems, whether the net effect of herbivores is facultative or destructive towards 

seagrasses depends on the relative dominance of macrograzers and destructive 

mesograzers against facultative mesograzers and filter feeders.  Indeed, most teleost and 

urchin macrograzers on which investigations into top down control have been done have 
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subtropical to temperate distributions (Fig. 2).  Subtropical areas where ranges between 

megagrazers and macrograzers interact may exhibit additional complexity because of the 

co-occurrence of these different guilds.  This range separation means that in tropical 

Australian systems, megagrazers should generally have a stronger potential to dominate 

top-down control than macrograzers or mesograzers, while in temperate habitats clear 

dominance of herbivore pathways are probably more elusive.  All of these herbivore 

groups overlap in subtropical habitats, however, further complicating predictions about 

which pathways will dominate the effects of top down control in these habitats.  For 

example, multiple herbivore exclosure studies in Shark Bay suggest that megagrazer and 

macrograzer pathways may each dominate in different habitats of the same ecosystem 

(Burkholder et al. 2013, Bessey et al. 2016). 

2.3 The Role of Predators 

Predators exert top-down control in seagrass ecosystems not only by regulating 

the populations of their prey, but also by altering the intensity, target, and spatiotemporal 

patterns of herbivory (Heithaus et al. 2008).  When this control impacts trophic levels 

below that of their prey, a trophic cascade occurs (Paine 1980).  The potential role of 

predators in shaping patterns of top-down control by seagrass herbivores has been 

recognized for decades. As has been mentioned before, for example, Randall (1965) 

suggested that grazing halos around Caribbean patch reefs were due to reef-associated 

fishes that targeted seagrass but were unwilling to venture far from the safety of their 

refuges.  Since then, meta-analysis has indicated that trophic cascades tend to be 

strongest in benthic marine ecosystems (Shurin et al. 2002, Borer et al. 2005). 
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Figure 2.  Known distributions of representative Australian seagrass megagrazers and 

macrograzers.  Ranges of macrograzers, however, may reflect geographically restricted 

research effort rather than true geographic range separations between macrograzers and 

megagrazers.  Map sources by row, left to right: IUCN, IUCN, Encyclopedia of Life, 

Aquamaps.org, Marinespecies.org.    

 

Traditionally, trophic cascades were thought to operate exclusively through lethal 

predator effects in which increases in predator abundance reduce mesoconsumer density 

through predation and, as a result, also reduce pressure on associated resource species 

(Lima 1998).  Predators, however, elicit myriad changes in prey behavior including fear-

induced habitat shifts, reduction in foraging rates, or changes in diet (e.g., Randall 1965, 

Lima 1998, Brown et al. 1999, Peacor and Werner 2001, Heithaus and Dill 2002, 2006, 

Brown and Kotler 2004) and traits including morphology and physiology (e.g., Creel 

2007). These “risk effects” of predators can initiate or enhance trophic cascades through 

trait-mediated indirect interactions (i.e., TMIIs, Werner and Peacor 2003, Dill et al. 2003, 

Schmitz et al. 2004, Preisser et al. 2005).  
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One type of TMII, a behaviorally mediated indirect species interaction (BMII; 

sometimes referred to as a behavior-mediated trophic cascade; BMTC), occurs when 

changes in a property of one species (the “initiator”) cause a behavioral shift in a 

“transmitter” species, which in turn induces a change in a property of a third species (the 

“receiver”) (Schmitz et al. 1997, Dill et al. 2003). BMII have received considerable 

attention recently in terrestrial, freshwater, and intertidal marine systems and appear to be 

capable of affecting populations and communities at magnitudes equal to, or greater than, 

those of lethal effects of predators (e.g., Werner and Peacor 2003, Schmitz et al. 2004, 

Preisser et al. 2005).  The power of such non-consumptive predator effects stems from 

their ability to affect many prey simultaneously, and sometimes through the ability of 

prey to exhibit compensatory population growth in response to mortality from 

consumption by predators.  Additionally, in some situations BMII can reverse the sign of 

indirect interactions between top predators and basal resources in food chains with an odd 

number of trophic levels relative to those predicted by lethal effects of predators alone 

(Dill et al. 2003, Heithaus and Dill 2006, Wirsing et al 2007c). Importantly, even if 

predators rarely consume or have minimal effects on the equilibrium population sizes of 

mesoconsumers, they may still trigger trophic cascades through non-lethal mechanisms 

by altering where and at what rate mesoconsumers exploit resource species (Werner and 

Peacor 2003, Schmitz et al. 2004, Preisser et al. 2005, Heithaus et al. 2008).  Finally, the 

effects of direct predation and risk effects interact with one another to enhance overall 

predator effects and this interaction may account for the majority of predator impacts 

(Werner and Peacor 2003, Heithaus et al. 2012). 
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Most trophic cascades recorded in Australian marine ecosystems have been from 

temperate and tropical algae reefs (Pinnegar et al. 2000), not seagrass ecosystems.  

However, this may be due not to a lack of trophic cascades in seagrass ecosystems so 

much as to a gap in research effort.  Indeed, long term studies in Shark Bay, Western 

Australia, have identified multiple trophic cascades (and BMIIs) in a subtropical seagrass 

ecosystem.  Shark Bay’s apex predator, the tiger shark (Galeocerdo cuvier) induces 

habitat shifts at multiple spatial scales in both herbivores and mesopredators.  

Specifically, dolphins (Tursiops aduncus), dugongs, and cormorants (Phalacrocorax 

varius) all shift from foraging primarily in productive shallow seagrass habitats when 

sharks are scarce to foraging mainly in less productive, but safer, deep habitats when 

shark densities are high (Heithaus and Dill 2002, Heithaus 2005, Wirsing et al. 2007b). 

Dolphins and dugongs that continue to forage over shallow habitats when sharks are 

present largely abandon the highly dangerous interior portions of shallow banks that they 

used when sharks were scarce, in order to have easy escape options near bank edges 

(Heithaus and Dill 2006, Wirsing et al. 2007c, Fig. 3). Similarly, green turtles in good 

body condition forage almost exclusively along bank edges, where seagrass quality is 

lower, when sharks are present but move toward interior microhabitats, with higher 

seagrass quality, when tiger sharks are scarce (Heithaus et al. 2007). Furthermore, tiger 

sharks alter dugong foraging tactics, limiting destructive excavation grazing that has been 

recorded to destroy hectares of seagrass elsewhere (Wirsing et al. 2007a, Preen 1995).  

Cormorants, the escape success of which is independent of benthic terrain, seek to 

minimize predator encounters and increase use of seagrass meadow interiors when sharks 

are abundant (Fig. 3).  None of these spatiotemporal shifts can be explained by variation 



35 

 

in food availability, water temperature, or other factors.  In the case of megaherbivores, 

these predator effects cascade down to the seagrass bed, altering which seagrasses 

dominate on bank edges (Bukholder et al. 2013, Fig. 3).  These species-specific responses 

to predation risk illustrate the complex and sometimes counterintuitive nature of predator 

prey interactions in seagrass ecosystems, and the need to consider properties of predators, 

prey, and landscape in predicting the effects of antipredator behavior.   

These studies exemplify the potentially dramatic effects predators can have in 

seagrass ecosystems through regulating the behavior of their prey, yet the dominant 

predators and herbivores in Australian seagrass ecosystems differ across the continent.  

While large-bodied sharks are undoubtedly the largest apex predators commonly found in 

most seagrass ecosystems, dolphins are also important and widespread upper trophic 

level predators. Several species of dolphins are found in coastal seagrass ecosystems of 

Australia – Indo-Pacific bottlenose dolphins (Tursiops sp.) and humpback dolphins 

(Sousa sahulensis ) being common.  Both species are piscivores, and because of high 

mammalian metabolic rates likely consume a large number of teleosts that may be 

important in the dynamics of seagrass ecosystems. In the subtropical Shark Bay seagrass 

ecosystem, Tursiops cf. aduncus preys upon striped trumpeters (Pelates octolineatus) 

(Heithaus and Dill 2002), the dominant teleost grazers (Heithaus 2004, Burkholder et al. 

2012).  Given the high population densities of dolphins in Shark Bay (Preen et al. 1997, 

Heithaus and Dill 2002) it is possible that dolphins could indirectly influence seagrass 

ecosystems through modifying the population sizes or spatiotemporal patterns of foraging 

by P. octolineatus.   Unfortunately, little work has focused on the potential for dolphins 

to impact the dynamics of fish populations within seagrass ecosystems or how those 
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impacts may cascade to structure seagrass communities.  Similarly, pinnipeds such as 

Australian sea lions (Neophoca cinerea) and fur seals (Arctocephalus spp.), may have 

been important predators in temperate Australian seagrass ecosystems, but their 

population sizes are much reduced from historical levels and the potential role of 

pinnipeds in structuring Australian seagrass ecosystems has not been explored.  While 

both pinniped species tend to forage in offshore habitats, using coastal habitats for transit 

and rest, some individual Australian sea lions do forage consistently in coastal seagrass 

habitats (Lowther et al. 2011) and could exert top-down impacts on fishes of seagrass 

beds.  This possibility remains largely unexplored, and studies of the potential top-down 

roles of predatory marine mammals in Australian seagrass ecosystems remains an 

interesting and potentially significant avenue of inquiry.  

Unsurprisingly, many teleosts and smaller elasmobranchs may play important 

roles in Australian seagrass ecosystems.  Indeed, small sharks (<2m total length), rays, 

and teleosts can be locally abundant in Australian seagrass communities (e.g., White and 

Potter 2004, Simpfendorfer and Milward 1993).  While some of these predators are 

actually omnivorous, consuming primary producers in addition to animal matter (e.x. P. 

octolineatus, Belicka et al 2012, Burkholder et al. 2012, Bessey and Heithaus 2015), 

other mesoconsumers feed on a diversity of prey including infauna, cephalopods, 

crustaceans, and worms, which may initiate trophic cascades.  For example, stingrays 

may initiate three-step trophic cascades under which consumption of filter-feeding 

bivalves results in increased phytoplankton load, reducing light penetration to seagrass 

tissues.  Indeed, there is strong evidence for the capability of batoids to exert top down 

control over bivalves when these predators are locally abundant (e.g., Peterson et al. 
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2001, Myers et al. 2007), though to our knowledge empirical work on the indirect effects 

of batoids on seagrass are lacking.   Similarly, marine birds have the potential to exert 

top-down control through direct predation and risk effects (i.e., Bessey and Heithaus 

2013).  Like predatory marine mammals, marine birds such as cormorants have high 

metabolic rates and can exist at high densities in seagrass ecosystems (e.x. in Shark Bay, 

Heithaus 2005, Bessey et al. 2016).  Furthermore, the proportion of teleosts in the diets of 

cormorants in Australia can reach 90% or more (del Hoyo et al. 1992, Blaber and 

Wassenberg 1989, Humphries et al. 1992), and daily consumption rates can be 15% of 

body mass or more (Humphries et al. 1992).  Interestingly, the role of these 

mesopredators in generating top-down control (specifically trophic cascades) remains 

largely unexplored in Australian seagrass ecosystems. 

 

Figure 3. (a): Change in habitat use of dugongs (open triangles), Indo-Pacific bottlenose 

dolphins (open squares), and Piedcormorants (closed diamonds) associated with changes 

in abundance of large sharks in Shark Bay, Western Australia.  Open diamonds represent 

the food supply of cormorants.  The dashed line represents expected proportion of habitat 

use if fauna are ideally distributed in relation to their food supply; values above the line 

represent over-use of seagrass edge habitats, where the chance of tiger shark encounters 

is highest.  (b): Megagrazer exclosure experiments in seagrass edges, which confirm that 

risk-sensitive habitat use patterns of megaherbivores translate to increased top-down 

control of seagrass edge habitats.  Reproduced from Heithaus et al. 2009 and Burkholder 

et al. 2013. 
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Trophic cascades have been recorded or proposed in seagrass ecosystems at 

multiple scales and trophic levels worldwide, from control of seagrass associated 

invertebrates by predatory teleosts (Heck and Valentine 1995, Heck et al. 2000, Lewis 

and Anderson 2012, Carr and Boyer 2014) to behavioral control of megaherbivores and 

secondary predators by tiger sharks (Heithaus et al. 2012, Burkholder et al. 2013).  As 

with herbivores, however, predators do not have equal capacity to exert top-down control 

or trophic cascades in seagrass ecosystems.  Because herbivores influence seagrass 

communities through two main avenues (direct consumption of seagrass biomass and 

consumption of seagrass competitors), predators ultimately exert top-down control 

through these two pathways.  In areas where megagrazers are dominant, large sharks are 

the only apex predators likely to have significant capability to structure seagrass 

ecosystems through top-down control.  Conversely, if smaller teleost herbivores mediate 

a direct seagrass consumption pathway, intermediate predators such as dolphins, 

pinnipeds, cormorants and small sharks may all influence the potential for a cascade to 

occur.  Finally, because so many members of the epiphyte-consuming mesograzers are 

small-bodied invertebrates, myriad intermediate predators may exert top-down control.  

Though studies evaluating predator control of megagrazers are exceedingly rare, the 

prominence of megaherbivores in tropical and subtropical Australian seagrass ecosystems 

means that large-bodied sharks may be, or may have been, disproportionately important 

to structuring these ecosystems.  For example, the loss of large sharks is hypothesized to 

be important in allowing the release of sea turtles in several seagrass ecosystems that has 

resulted in considerable declines in seagrass biomass (e.g., Heithaus et al. 2014) and 

potential ecosystem collapse (Christianen et al. 2015).  Conversely, endothermic 
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intermediate predators like dolphins and pinnipeds may be more important to structuring 

temperate seagrass ecosystems.     

 

2.4 The Role of Food Web Structure  

To understand the role of top down control, particularly trophic cascades, it is 

helpful to be able to predict when and where such cascades are most likely to occur.  

Ecological theory predicts that food web structure, specifically food web length and 

complexity, will have important effects on the strength and nature of such top down 

control.  In very simple food webs, the number of links between apex predators and 

primary producers has implications for whether herbivore control on primary producers is 

strong or weak.  Chains with an odd number of linkages should yield weak herbivore 

control on primary producers and a facultative relationship between apex predators and 

primary producers through a trophic cascade. Conversely, chains with an even number of 

levels should yield strong herbivore control of primary producers and an inhibitive effect 

of apex predators on primary producers as those larger predators regulate intermediate 

predators, which in turn control herbivores.  Assuming that populations are density 

dependent and limited by food or predation, simple food webs are most sensitive to food 

chain length because trophic cascades remain strong, having little opportunity to 

attenuate and diffuse through multiple food web pathways (Strong 1992).  Accordingly, 

ecosystems with simple trophic structure are more likely to suffer from reversals in the 

“direction” of trophic cascade effects and concomitant changes in the strength of 

herbivore control on plants if the initiator species (a predator) is removed.   
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While food chain length influences the net direction of the effect apex predators 

and herbivores will have on primary producers, food web complexity can often influence 

how strong those effects can be.  This is because the strength of trophic cascades is 

dependent on the strength of species-species interactions- and the simple construction of 

food chains leads them to be more likely to have strong species interactions than complex 

food webs.  In simple linear food webs (i.e., food chains), the interaction strengths 

between predators, herbivores, and resource species is necessarily strong, because 

consumptive relationships are “unified” (sensu Strong 1992) into single species-species 

interactions (Fig. 4).  Complex food webs, however, have multiple trophic or interaction 

pathways from apex predators to primary producers, and these pathways may not have 

the same number of links.  This can diffuse predator effects through many avenues, 

resulting in fewer of the strong species-species interactions that are typical of linear food 

webs and attenuating the overall indirect effects of a predator on primary producers (Fig. 

4).  While species diversity increases food web complexity, generalists and omnivores 

also do so by consuming organisms from multiple trophic levels, creating additional 

pathways through which predator control can operate.  For example, if herbivores are 

generalists, their negative effects on primary producers may be attenuated through their 

indiscriminate consumption of resource species, reducing the strength of competitive 

interactions among seagrasses or between seagrass and epiphytic or benthic algae.  

Though increased food web complexity likely reduces the probability of strong 

species-species interactions (and by extension, strong trophic cascades), they can still 

occur.  But what makes a strong interaction between species?  In general, strong 

interactors are species that are “efficient” (Strong 1992); they may consume more prey 
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per capita, or have strong non-consumptive effects.  Most seagrass food webs display 

some trophic complexity and tend to have multiple trophic channels from apex predators 

to primary producers- but they can also be dominated by channels with strong 

interactions that remain undiffused, increasing the likelihood of trophic cascades.  This is 

exemplified in tropical seagrass ecosystems dominated by megagrazers like adult and 

large juvenile green turtles and dugongs that are almost exclusively at risk from tiger 

sharks (e.g., Heithaus et al. 2008b, Heithaus 2013; Wirsing et al. 2007a,b,c). The loss of 

this top predator could not be compensated for by increased predation rates or predation 

risk from another predator.  Megagrazers, in turn, tend to have strong per-capita effects 

on seagrasses and are thus strong interactors with these primary producers (i.e., Fig 3, 4).   

When this short, three-link chain is the dominant trophic pathway, seagrass ecosystems 

are prone to strong trophic cascades- and by extension, highly vulnerable to predator 

removal.  While this pathway has been lost from many tropical and subtropical seagrass 

ecosystems due to overharvest of megagrazers, it is likely to still dominate throughout 

much of tropical and subtropical Australia where megagrazer populations remain intact.  

Consequently, the loss of apex predators like large sharks in these ecosystems may have 

disproportionate effects on the primary producers of Australian seagrass ecosystems (e.g., 

Burkholder et al. 2013, Heithaus et al. 2014).  

 

3. Effects of Consumers on Seagrass Communities 

Consumers can structure seagrass communities through consumption or 

facilitation of primary producers, alteration of community composition, or through 

influencing bottom-up processes.  These forms of top-down control, by altering the 
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properties of seagrass habitats, can drive seagrass ecosystem processes, functions and 

services at local, regional, and global scales.  

 

3.1 Ability of Consumers to Facilitate Seagrasses 

Seagrasses provide substrate for epiphytes, which compete with them for resources such 

as light.  High nutrients often increase epiphyte and phytoplankton loads with negative 

impacts for seagrasses; indeed, eutrophication is one of humanity’s most pervasive 

stressors to seagrass ecosystems (Waycott et al. 2009).  By consuming epiphytes and 

plankton, mesograzers and suspension feeders have the capacity to attenuate the negative 

effects of eutrophication in seagrass ecosystems (Peterson and Heck 2001, Valentine and 

Duffy 2006).  The role of facultative mesograzers has been particularly well supported 

with empirical data- historically in the laboratory and mesocosms, but increasingly in the 

field. Early caging work in Western Australian Posidonia sinuosa beds showed that 

gastropods reduce epiphyte biomass by almost 50%, while amphipods have minimal 

effects on epiphyte biomass (Jernakoff and Nielsen 1997).  Novel cage-free approaches, 

using slow-release pesticides, have made manipulating invertebrate densities in benthic 

marine ecosystems easier without introducing caging artifacts (Poore et al. 2009). These 

experiments, several of which have been conducted in Australian seagrass ecosystems, 

confirm the importance of invertebrate mesograzers to epiphyte control.  For example, 

exclusion of amphipod mesograzers from seagrass meadows in Cockburn sound, Western 

Australia, resulted in significant increases in epiphyte biomass in some seagrass species, 

though this did not translate to increases in seagrass biomass over the experiment 

duration (7 weeks) (Cook et al. 2011).  Similar cage-less experiments in the Posidonia 
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angustifolia beds of Lady Bay, South Australia that manipulated mesograzer densities 

and nutrient levels showed that such grazers are able to compensate for increased nutrient 

additions by increasing their per-capita consumption of seagrass epiphytes (McSkimming 

et al. 2015), mirroring findings elsewhere (i.e., Chesapeake Bay, USA, Reynolds et al. 

2014).  Indeed, in general, mesograzer presence reduces epiphyte loads approximately as 

much as nutrient enrichment in the water column increases them: effect sizes are often  

 
Figure 4.  Conceptual food webs illustrating the main direct and indirect pathways 

through which top-down control operates in seagrass ecosystems.  An intact seagrass 

community (A) showing direct effects only; (B) a web dominated by the megagrazer 

pathway; (C) a web dominated by more diffuse mesopredators and smaller seagrass 

herbivores; (D) a pathway dominated by facultative herbivores like filter feeders, 

epiphytivores, and algavores.  Colors indicate positive (green) or negative (orange) 

effects of one group on another with arrows denoting direction of effect.  Solid and 

dashed lines indicate direct and indirect effects respectively; greyed out boxes and lines 

indicate minor consumers and pathways.   
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similar in magnitude but opposite in effect (Hughes et al. 2004, Heck and Valentine 

2006).   

Mesograzers, and to a lesser degree filter feeders, have received the most attention 

for their ability to mitigate nutrient enrichment effects, but other consumers are able to do 

so as well.  Larger herbivores, even if they do not target epiphytes, can also be strong 

controllers of epiphyte biomass in the face of eutrophication (Heck et al. 2000, Goecker 

et al. 2005, Brodeur et al. 2015, Reynolds et al. 2014).  For example, clipping 

experiments mimicking green turtle grazing in beds of Halodule uninervis off of the 

Derawan Island, Indonesia, almost doubled seagrass production in the face of increased 

nutrient loads, and may be an important mechanism for exporting excess nutrients from 

the system, thereby limiting epiphyte overgrowth (Christianen et al. 2012).  This top-

down facilitation may act as a critical source of resilience for seagrass communities- 

particularly those near urban centers. Some have even suggested that eutrophication 

impacts are so large in modern seagrass ecosystems because consumer populations have 

been largely compromised (Burkepile and Hay 2006, Heck and Valentine 2007).  Indeed, 

factorial experiments in Chesapeake Bay, USA indicated that nutrient additions had 

minor effects on seagrass productivity when in the presence of grazers, but that grazer 

exclusion resulted in a sixfold increase in epiphyte biomass and a 65% decrease in 

seagrass biomass (Reynolds et al. 2014).  Perhaps most importantly, these two factors 

interacted significantly; in the presence of grazers, nutrient additions increased seagrass 

biomass, while in the absence of grazers, additions reduced biomass (Reynolds et al. 

2014).  As a result, maintenance of grazer populations has been suggested as a possible 

tool to combat the negative effects of eutrophication (e.g., Hughes et al. 2004, Reynolds 
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et al. 2014).  This suggests that successful seagrass restoration in eutrophic ecosystems 

will require a combined effort to reduce nutrient loads and maintain healthy populations 

of epiphyte herbivores (Reynolds et al. 2014).  Such facilitation, however, probably has 

limits (Ghendini et al. 2015); for example, in rocky shore communities of the northwest 

Atlantic Ocean and Baltic Sea, increased nutrient loads reduce the ability of herbivores to 

control filamentous algae (Worm and Lotze 2006).  Further work is needed to determine 

when mesograzers are able to control eutrophication derived epiphyte overgrowth, and 

under what conditions such control results in measureable benefits to seagrass (Cook et 

al. 2011), as the effects of epiphyte reduction may attenuate at the seagrass-epiphyte 

interface, and because mesograzers can also have substantial negative effects on seagrass 

production (e.g., Lewis and Anderson 2012).  Lastly, grazers may also facilitate 

particular seagrass species by removing non-epiphyte competitors such as macroalgae or 

other seagrasses (see section 3.3, below).      

In addition to stimulating seagrass production by inducing compensatory 

responses to low levels of direct herbivory and through removing competitive epiphytes, 

consumers can exert top down control by facilitating seagrass reproduction or seed 

dispersal.  Though many organisms are destructive seed predators of seagrass 

ecosystems, highly mobile seed consumers can also facilitate dispersal and sexual 

reproduction (Sumoski and Orth 2012).  Herbivores may even act as pollinators, as is 

thought to occur with crustacean and polychaete mesograzers in Thalassia testudinum 

beds (van Tussenbroek et al. 2012).  Finally, through active seed dispersal, consumers 

have the ability to increase genetic connectivity between seagrass communities or 
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promote colonization up currents- something that can be difficult to achieve with passive 

dispersal alone.        

  

3.2 Ability of Consumers to Damage Seagrasses 

While top down control can facilitate seagrasses, work over the past few decade 

has highlighted the detrimental potential of direct seagrass herbivory.  Seagrasses 

generally display a nonlinear response to grazing; low and moderate grazing can 

stimulate growth and production up to a threshold, while some seagrasses simply resist or 

tolerate low grazing intensity; however, intense grazing can cross this threshold and 

jeopardize seagrass persistence (Valentine et al. 1997, Cebrian et al. 1998, Vergés et al. 

2008).  Concentrated grazing pressure which inhibits seagrass ecosystem function is 

known as overgrazing (sensu Eklöf et al. 2008).  Overgrazing is most common when 

herbivore densities peak or where herbivore feeding tactics are particularly destructive.  

These events, though generally rare and usually temporally restricted, can generate strong 

and lasting detrimental effects on seagrass ecosystems- in extreme cases, even resulting 

in a complete ecosystem change (see examples in Eklöf et al. 2008).  All three main 

herbivore groups that consume seagrasses (mesograzers, macrograzers, and megagrazers) 

are capable of overgrazing them (e.g., Nakaoka 2002, 2005, Holzer et al. 2011, Lewis 

and Anderson 2012, Preen 1995, Eklöf et al. 2008).   

 In addition to consuming seagrass photosynthetic tissue, herbivores can also 

impact seagrass communities by reducing seagrass reproductive success.  Mesograzers 

and macrograzers feed on seagrass reproductive tissues such as inflouresences, seeds, and 

fruits, either directly off of the plant or from the sediment surface (e.g., Wassenberg 
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1990, Holbrook et al. 2000, Orth and Kendrick 2006, Vergés et al. 2007, Reynolds et al. 

2012).  Some species like Thallasia testudinum and Halodule wrightii appear to be pollen 

limited- so herbivores may be important in limiting reproduction in these species if 

consumption rates of male flowers are high (van Tussenbroek and Muhlia-Montero 

2013).  In some cases, consumptions of flowers, fruits and seeds can result in large 

reductions in seed populations and thus reproduction via seeds.  For example, tanaied 

crustaceans consume 14-27% of the seeds of Zostera marina and Z. caulescens in 

Japanese seagrass beds (Nakaoka 2002), while crustacean seed predators in southern 

California, USA, consume infloresences and up to half of Phyllospadix torreyi seeds 

(Holbrook et al. 2000).  Similarly, in seagrass beds off of Rottnest Island, Western 

Australia, crustacean seed predators can remove more than half of tethered Posidonia 

australis seeds in a single day (Orth and Kendrick 2006).  

 Finally, negative top-down control of seagrasses can occur through non-

consumptive means.  By using seagrass as shelter, some animals cause damage to 

seagrass shoots with surprising frequency (e.g., van Tussenbroek and Brearley, 1998; 

Brearley, Kendrick andWalker, 2008).  For example, in a Mexcian Carribbean lagoon, 

the isopod Limnoria simulate burrows into the leaf sheathes of Thallasia testudinum, 

where it reproduces; average infestation rates can approach 50% and cut leaf growth by 

30% when infestation rates on an individual ramet are high (van Tussenbroek and 

Brearley 1998).  Instead of burrowing into seagrasses, other invertebrate consumers use 

seagrass as substrate, inhibiting light penetration to seagrass tissues and reducing growth 

(e.g., Long and Grosholz 2015).  Through excavation of sediment and disturbance of 

seagrass rhizomes, stingrays can damage, destroy, or inhibit the expansion of seagrass 
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beds while foraging for bivalves (e.g., Orth 1975).  These examples illustrate the 

diversity of non-consumptive avenues through which top down control can inhibit the 

growth, expansion or persistence of seagrass ecosystems.  However, further work is 

needed to evaluate the capability for such forces to structure seagrass communities 

relative to consumptive effects, which are better studied.   

 

3.3 Effects of consumers on seagrass community composition 

In general, the impacts of top down control on seagrasses are not uniform in 

communities with multiple seagrass species and may result in shifts in community 

composition and standing biomass.  Such impacts are most pronounced in diverse 

seagrass communities of the subtropics. As previously mentioned, herds of dugongs in 

subtropical Moreton Bay, Queensland, focus their feeding on mixed species seagrass 

beds, primarily excavating the nutrient rich tropical seagrass Halophila ovalis but 

incidentally removing the climax species Zostera muelleri.  Dugongs facilitate H. ovalis 

beds, which are able to recover quickly from grazing.  Conversely, grazing prevents the 

expansion of Z. muelleri, which is disturbance-intolerant. Indeed, dugong exclusion over 

six months resulted in a five-fold increase in the shoot density Z. muelleri and a six-fold 

decrease in the pioneer species H. ovalis, while simulated dugong grazing increased shoot 

densities of H. ovalis at a rate five times faster than for Z. muelleri.  Such feeding 

behavior can keep seagrass ecosystems in early successional, pioneer states dominated by 

fast growing, disturbance tolerant species (Preen 1995, Aragones and Marsh 2000).   

Green turtles can also shift the species composition of seagrass communities. In 

India’s Lakshadweep Archipelago, grazing by high densities of green turtles exceeded 
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production of the dominant seagrass species Thalassia hemprichii and Cymodocea 

rotundata, and resulted in reduced shoot elongation rates and a community shift from the 

preferred climax seagrass Thalassia hemprichii to a pioneer species Cymodocea 

rotundata (Kelkar et al. 2013a).  Similarly, a 600-day megagrazer exclusion experiment 

in seagrass habitats in Shark Bay, Western Australia, resulted in an eightfold decrease in 

shoot density of the pioneer seagrass Halodule uninervis and a concurrent doubling in 

shoot density of the larger seagrass Cymodocea angustata (Burkholder et al. 2013). These 

cages excluded megagrazers only, reaffirming the strong effects these consumers can 

have on seagrass community composition and reinforcing their probable general 

importance to top down control of Australian tropical and subtropical seagrass 

ecosystems.  Teleost grazers can also drive shifts in seagrass community composition; 

reef fish in south Florida (USA) preferentially consume the pioneer species Halodule 

wrightii, facilitating the dominance of the climax seagrass Thalassia testudinum 

(Armitage and Fourqurean 2006).  In each of these cases, knowledge of seagrass life 

history traits, consumer feeding preferences, and grazing tactics are critical to 

determining which seagrass species dominate.  Since pioneer seagrasses cannot generally 

match the ecosystem functions of climax species, these shifts in community composition 

can translate to important changes in the functions of seagrass beds.      

 

3.4 Effects of Consumers on Ecosystem Function 

As ecosystem engineers, seagrasses serve myriad ecological functions.  

Seagrasses influence processes such as nutrient cycling, sediment stabilization, and 

carbon storage (Orth et al. 2006, Fourqurean et al., 2012 and McLeod et al., 2011). 

http://www.sciencedirect.com/science/article/pii/S0022098115000040#bb0110
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Seagrasses also act as important habitat and nurseries for fauna (Heck et al. 2003).  Many 

of these functions are much more pronounced in climax seagrasses than smaller, 

ephemeral species.  The effects of top-down control on ecosystem function is dependent 

on the type and intensity of seagrass herbivory that occurs.  For example, moderate levels 

of grazing by sea urchins grazing can stimulate nutrient recycling, while higher levels of 

grazing can remove seagrass beds almost entirely (e.g., Eklöf et al. 2008).  In seagrass 

ecosystems in the Gulf of Mexico, sea urchins (Lytechinus variegatus) alter the above-

ground biomass, shoot architecture, and seagrass density so much through their grazing 

that they appear to reduce the refuge capabilities of the seagrass beds and facilitate their 

own predators (Heck and Valentine 1995).  Similarly, overgrazing by unusually high 

densities of L. variegatus in Florida Bay, USA resulted in losses of >80% of seagrass 

biomass over more than 80 hectares, altering sediment structure and promoting 

resuspension of fine sediments (Rose et al. 1999).  Such functional alterations can 

increase light attenuation, reduce the resilience of seagrass beds and promote shifts to 

alternate, seagrass depauperate states (Orth et al. 2006, Van der Heide et al. 2007, 2011).  

The associated loss of function from overgrazing can not only affect seagrass habitats, 

but also nearby habitats which depend on the ecosystem services seagrass ecosystems 

provide.  In fact, loss of seagrass ecosystem function has implications on local to global 

scales.  For example, seagrass loss can affect local faunal communities within and 

beneath seagrass beds (Heck et al. 2003, Rose et al. 1999, Thompson et al. 2014, 

Nowicki unpublished data), but also alters the amount of carbon sequestered in seagrass 

tissues and stored in sediments, influencing the role of seagrass ecosystems in the global 

carbon cycle (Fourqurean et al. 2012).  Even apex predators can influence seagrass 
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ecosystem function, through the trophic cascades they generate.  Indeed, seagrass loss 

through overgrazing and extreme bioturbation have been linked (at least partially) to 

predator removal in these ecosystems, with implications for carbon sequestration and 

other functions (Heithaus et al. 2014, Atwood et al. 2015). 

 

3.5 Effects of Consumers on Bottom up Processes 

The previous example shows how top-down control can alter seagrass ecosystem 

function indirectly by altering bottom-up processes like sediment stabilization.  However, 

consumers can also alter bottom-up processes directly- a form of top-down control rarely 

emphasized.  Seagrass-associated fauna can do this by acting as nutrient subsidies, 

altering environmental variables, or changing chemical properties of seagrass 

ecosystems. For example, avian predators that hunt far from seagrass beds but rest above 

or adjacent to them can generate nutrient subsidies by transporting nutrient rich guano 

and concentrating into these habitats, stimulating seagrass productivity and changing 

seagrass community composition (Powell et al. 1991, Fourqurean et al. 1995).  Similarly, 

the defecation and excretion of fish that seek shelter on coral reefs also provide a nutrient 

subsidy to nearby seagrass meadows (Dewsbury and Fourqurean 2010, Allgeier et al 

2013). On a larger scale, sea lions (Neophoca cinerea) and fur seals (Arctocephalus spp.) 

native to temperate Australian waters deposit nutrients near their haul out sites through 

excretion.  In Seal Bay Conservation Park, Kangaroo Island, South Australia, such 

defecation by the resident population of ~1100 sea lions contributes approximately 3800 

kg of nitrogen to the surrounding ecosystem annually (Lavery et al. 2014.)  This 

represents a considerable allochthonous source of nutrients which links pelagic 
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productivity to coastal ecosystems, and is likely to be important to the structuring of 

seagrass ecosystems near pinniped colonies.  Sharks may also play a role as nutrient 

transporters not only by coupling seagrass ecosystems with offshore pelagic ecosystems, 

but also by linking distant coastal ecosystems.  For example, tiger sharks (Galeocerdo 

cuvier) in Australia regularly move hundreds to thousands of kilometers, spending time 

in both coastal and pelagic zones (Heithaus et al. 2007, Holmes et al. 2014, Ferreira et al. 

2015).  It should be noted that consumers can, of course, also transport nutrients out of 

seagrass ecosystems and that the effects of top-down alterations to nutrient cycling 

ultimately depends on the underlying nutrient characteristics of the surrounding 

environment.  For example, large nutrient subsidies from a local seal colony are likely to 

exacerbate the effects of nutrient pollution from nearby anthropogenic sources, while 

consumer driven nutrient export in oligotrophic seagrass ecosystems may intensify 

nutrient limitation in these habitats, and vice versa.   

Consumers can increase nutrient availability to seagrass ecosystems even if they 

themselves are immobile.  For example, sponges can also alter bottom-up processes by 

processing nutrients in the water column, increasing their bio-availability to seagrasses 

(Archer et al. 2015).  Similarly, bivalves concentrate nutrients in seagrass beds by 

consuming pelagic plankton and excreting their waste under the canopy (Peterson and 

Heck 2001).  In addition to concentrating nutrients in seagrass beds, bivalves alter 

bottom-up processes in seagrass beds by altering the chemical and physical environment.  

Sulfur-oxidizing bivalve-bacteria symbionts are associated with most seagrass species 

and have been shown to increase seagrass biomass production in the face of sulfide 

additions (van der Heide et al. 2012).  This mutualism is important, because marine 
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sediments are generally anoxic and seagrasses expend large amounts of energy to pump 

oxygen gained from photosynthesis into below-ground tissues to create an “oxic 

microshield,” which protect below-ground tissues from chemically reduced toxins 

(Borum et al. 2006).  This need for protective oxygen drives the high light requirements 

of seagrasses and makes them highly sensitive to disturbance- particularly to reductions 

in water quality (Borum et al. 2012).  Interestingly, a trophic cascade influencing this 

process have been recorded whereby preferential consumption of the filter feeding 

bivalve Dosinia isocardia by the Red Knot (Calidris canutus) reduces competition for 

particulate organic matter (POM) with a second bivalve Loripes lucinalis. L. lucinalis 

derives energy from both filter feeding and through chemosynthetic bacterial symbionts.  

Predation on D. isocardia may reduce competition for POM and allow L. lucinalis to de-

emphasize chemosynthetic pathways of energy production, which may result in higher 

concentrations of toxic porewater sulfide (Van Gils et al. 2012).  As can be seen, top-

down control through the manipulation of bottom-up processes can be important in 

structuring the chemical, nutrient, and physical environment in which seagrasses live, 

with implications for the persistence of seagrass ecosystems.   

 

4. Top Down Control and Human Impacts  

 Humans are altering ecosystems worldwide, and seagrass ecosystems are no 

exception.  All told, there are five major threats to marine biodiversity, all of which occur 

in seagrass ecosystems: overexploitation, physical habitat modification, sediment and 

nutrient pollution, invasive species, and climate change (Norse 1993, Waycott et al. 

2009).  Herbivores can either attenuate or amplify the effects of anthropogenic 
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disturbance, and indirect effects that predators generate can further complicate these 

relationships.  Yet it remains critical to understand how top down control both affects and 

is affected by human alterations to seagrass ecosystems.  I focus here on four of the most 

pervasive threats to seagrass ecosystems and how they are likely to interact with patterns 

of top-down control: nutrient pollution, overfishing of marine consumers, invasive 

species, and climate change.   

 

4.1 Nutrient Pollution and Top Down Control 

While top-down control can attenuate the effects of eutrophication on seagrass 

ecosystems, nutrient pollution can also influence the strength of top-down control by 

altering energy distribution in the food web, herbivore feeding patterns, and predator prey 

dynamics.  Eutrophication can increase the strength of top down control either by 

increasing the actual amount of herbivores or herbivory in seagrass ecosystems, or by 

reducing the tolerance of seagrasses to such herbivory.  For example, as phytoplankton 

and epiphyte loads increase in response to eutrophication, consumer food supply grows- 

increasing secondary production in seagrass meadows and energy availability to higher 

trophic levels.  This can lead to increased top down control by herbivores (e.g., Moksnes 

et al. 2008), which is particularly likely when mesograzers dominate, because their 

generally short life histories allow for rapid population responses to increased primary 

production and a potential outpacing of predator control.  Because mesograzers and filter 

feeders generally have a facultative relationship with seagrasses and are capable of 

consuming large amounts of phytoplankton or epiphytic biomass (e.g., Whalen et al. 

2013), this increase in top down control is likely largely facultative.  However, in systems 
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where mutualistic mesograzers are rare and most herbivory occurs through larger grazers, 

eutrophication may still strengthen top down control of these systems even when changes 

to herbivore population and grazing intensity are minimal.  This is because the increased 

epiphyte loads that generally accompany nutrient pollution increase stress to seagrasses 

and may reduce their tolerance to direct herbivory.  Additionally, increases in secondary 

production may strengthen non-consumptive predator effects in systems with risk-averse 

prey and result in less herbivore pressure, as prey in a high energy state are more likely to 

respond to predation risk (Heithaus et al. 2007).  Finally, eutrophication can alter top 

down control by altering nutrient content or palatability of seagrass and epiphytes.  This 

in turn can influence where, what, and how much herbivores consume. 

 

4.2 Overexploitation of consumers 

The most visible effect humanity has on top down control in seagrass ecosystems 

is actually through removing “the top” of seagrass food webs.  Over the past few hundred 

years, both predators and herbivores have been lost from many coastal ecosystems 

(Jackson 2001, McCauley et al. 2015).  These depletions, which usually target large-

bodied consumers like green turtles, sirenians, and large sharks, can eventually lead to 

depletion of smaller, lower trophic level consumers as old stocks collapse and new target 

species are harvested (ie. Pauly et al. 1998).  Both depletion of herbivores and predators 

have important implications for the structure and function of seagrass ecosystems.   

Green turtles (Chelonia mydas) and dugongs (Dugong dugon) have both been subjected 

to substantial anthropogenic impacts throughout much of their ranges and population 

sizes are unlikely to approach what they were historically.  Industrialized overfishing has 
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also resulted in global population collapse of apex marine predators like large teleosts 

and sharks, which are disproportionately vulnerable to fishing (Jackson et al. 2001, 

Myers and Worm 2003, Ferretti et al. 2010).  This is of particular concern because of the 

potential for irreversible losses of apex predator species, as has occurred in earth’s 

terrestrial biomes.  The loss of predators large and small alters food web dynamics and 

can affect herbivore guilds from large bodied megagrazers (Heithaus et al. 2008b, 

Heithaus et al. 2014) to amphipod mesograzers (Moksnes et al. 2008) and may alter not 

only patterns of predation but also reduce important risk effects (e.g., Madin et al. 2015).  

Shifts in the food web, including species diversity, can also generate or influence trophic 

cascades that change the strength and direction of top-down control of coastal ecosystems 

(Jackson 2001, Duffy 2005), leading to overgrazing, increased bioturbation, or plant loss 

with implications for ecosystem functioning (Atwood et al. 2015).  For example, some 

argue that the ability of mesograzers to facilitate seagrass persistence by consuming 

harmful epiphytes may been weakened through the loss of apex marine predators, as 

mesopredators are released from predation and exert further pressure on epiphyte 

consumers (Williams and Heck 2001), though a trophic cascade may not occur if the 

mesopredators themselves are omnivores (Heck et al. 2000).  Current predator removal 

studies generally focus on the effects of one or two species interactions, though predator 

removal often has cascading effects through multiple pathways simultaneously (Fig. 5).   

The worldwide plight of shark populations has received considerable attention 

recently, with population declines estimated to exceed 80-90% in numerous locations 

(e.g., Baum et al. 2003, Myers et al. 2007, Dulvy et al. 2014, Worm et al. 2013).   

Although less appreciated, many populations of rays also are threatened (Dulvy et al. 
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2014), and the potential for rays to generate trophic cascades down the filter feeder 

pathway remains untested.  These declines in elasmobranch populations have the 

potential to modify seagrass ecosystems through multiple mechanisms.  Surprisingly, 

despite the ubiquity of marine apex predator declines and the potential for important 

consequences to these declines, few studies of the effects of such declines in seagrass 

ecosystems exist (however see Heithaus et al. 2012 and references therein).  

 

Figure 5. Interaction web highlighting potential connections between large shark 

removal and lower trophic levels based on current quantitave research.  Dark and light 

arrows indicate direct predation and risk effects, respectively; dotted lines indicate 

indirect effects.  Interactions which have been observed in Australian seagrass 

ecosystems are shaded blue.  Note the effects teleosts and invertebrates on seagrasses, as 

well as estimates of indirect effects in Australian systems, are lacking.  Modified from 

Ferretti et al. 2010.  

 

4.3 Invasive Species 

Seagrasses themselves can be invasive species, though records of this occurring 

are rare.  Successful introductions are exemplified by the recent expansions of two small-
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bodied, fast-growing seagrasses: Zostera japonica along the eastern Pacific Ocean (Mach 

et al 2014) and Halophila stipulacea in the Caribbean Sea (Willette et al 2014). Both of 

these species have weed-like life history characteristics, including high rates of sexual 

reproduction and seed set and rapid growth rates that predispose them to be successful 

invaders. While the documentation of invasive populations of seagrasses into the eastern 

Pacific and Caribbean is recent, it may be that humans have been spreading palatable, 

weedy seagrasses around the globe for centuries. Phillips and Menez (1988) have 

suggested that the weedy, fast-growing species Halophila decipiens, widely distributed in 

harbours across the tropical parts of the Atlantic, Pacific and Indian Oceans as well as 

some extra-topical locales such as Sydney Harbour, could have been spread by shipping 

activity.  Similarly, Halophila stipulacea, originally native to the Red Sea and western 

Indian Ocean, is proposed to have spread to the Mediterranean sea over a century ago 

with the opening of the Suez canal before spreading to the Caribbean (Lipkin 1975, 

Willette et al. 2014).  As fast-growing seagrasses are preferred as food over more slow-

growing ones, and since the species that natural occur in the regions being colonized by 

these invaders have slower growth, top-down control by seagrass herbivores may prove 

to be important in regulating the biomass of these invaders.  

Most invasive species in seagrass ecosystems are not seagrass, but algae and 

fauna (Williams 2007).  These invasive species usually generate negative effects in the 

seagrass ecosystems to which they are introduced (Williams 2007).   For example, in San 

Francisco Bay, USA, the invasive amphipod Amphithoe valida consumes Zostrea. 

marina tissues directly in its invaded range (Northeastern Pacific), but rarely consumes Z. 

marina in its native range (the north-west Atlantic) (Reynolds et al. 2012).  Additionally, 
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teleost predators in A. valida’s invaded range are less effective at controlling its 

population than predators in its natural range (Carr and Boyer 2014). This highlights not 

only the importance of understanding herbivore feeding preferences, but also the 

difficulty in using the ecology of invasive species in their native ranges to predict their 

effects in their invaded ranges.   

Invasive species are likely to become more common in seagrass ecosystems with 

time, as widespread changes in species distributions occur through both traditional human 

means (i.e., intentional introduction and hitch-hiking on human transport) and through 

climate change induced range shifts.  These range shifts will be largely poleward and 

may occur gradually (over decades) or rapidly (over months) (Parmesan and Yohe 2003,  

Fodrie et al. 2009, Last et al. 2011, Poloczanska et al. 2013, Wernberg et al. 2013, 

Wernberg et al. 2011, Smale and Wernberg 2013, Vergés et al. 2014).  Such shifts have 

the potential to completely re-arrange communities as species migrate at differing rates.  

The resulting decoupling of some species-species interactions and the formation of novel 

ones (Walther et al. 2002, Cheung et al. 2009, Kordas et al. 2011) has the potential to 

alter the strength of top down control in seagrass ecosystems and to destabilize those 

ecosystems (Vergés et al. 2014).  For example, the herbivorous sea urchin 

Centrostephanus rodgersii has shifted poleward along Australia’s southeastern coast by 

more than 600km in four decades, resulting in its establishment in Tasmanian waters and 

a concomitant increase in the prevalence of urchin barrens there; exclosure experiments 

suggest that C. rodgersii is responsible for such barrens, and that community diversity at 

these sites is reduced by ~70% compared to intact kelp beds (Ling 2008).  In the 

subtropical seagrass habitats of the northern Gulf of Mexico, the tropical herbivorous 
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teleost Nicholsina usta has increased in abundance almost 25 fold, and is predicted to 

reduce seagrass cover as warming continues (Heck et al. 2014). Novel associations 

between herbivores and predators may also alter the direction of effect of top down 

control.  Despite the global scale at which this community mixing is predicted to occur, 

we have a poor understand of how new species introductions influence seagrass 

ecosystems, with the effects of most invasive species unassessed (Williams 2007).   

The potential for novel species assemblages to completely restructure benthic 

marine communities is probably not uniform.   Seagrasses in temperate ecosystems are 

likely more vulnerable than those in tropical and subtropical ecosystems to reorganization 

of the consumer community.  This is because of the higher niche diversity of the tropics, 

which increases the potential for consumers to exploit previously unoccuPiedniches in 

temperate systems (Bennett et al. 2015).  Furthermore, tropical seagrass ecosystems will 

experience fewer introductions via range shifts, since temperature induced range shifts 

are generally poleward.  Conversely, temperate seagrass ecosystems may show 

recalcitrance to range expansions of tropical seagrasses.  Indeed, higher latitudes would 

reduce available light to tropical species, resulting in both reduced growth rates and 

potentially increased nutrient content and palatability (Fourqurean et al. 2015).  In this 

sense, range shifts may increase the strength of top down control in temperate seagrass 

habitats, but via different mechanisms for temperate and tropical seagrasses.  Australian 

seagrass ecosystems will be particularly vulnerable to disruptive distribution shifts as 

Australia is the only continent to have poleward-flowing boundary currents on both 

coasts, and because its southern coastline occupies only a narrow latitudinal band- 

meaning changes in ocean temperatures will have very widespread effects on temperate 
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Australian ecosystems (Wernberg et al. 2011b).  This poises Australian seagrass 

ecosystems on the front lines of climate change and provides both a conservation 

challenge and an opportunity to study how climate change driven species invasions will 

alter seagrass ecosystems worldwide.    

 

4.4 Climate Change 

Climate change is probably the single largest avenue through which humans are 

altering the marine environment.  Most effects of climate change are ultimately due to 

physical forcing of the environment.  However, there is increasing evidence that the 

ecological effects of climate change will be mediated by biotic interactions (Zarnetske et 

al. 2012).  Beyond altering species distributions, climate change will affect the strength of 

top down control by altering the metabolism, production and consumption rates of 

organisms, changing stoichiometric ratios of producers, and amplifying climactic 

extremes, which may reduce the resilience of seagrass ecosystems to herbivory or other 

means of top-down control.  Understanding how these complex interactions will shape 

seagrass communities is paramount to the management and conservation of these 

ecosystems in the era of climate change.                                    

As temperature increases, so do the rates of biological processes of ectotherms 

such as metabolism and consumption (Hillebrand et al. 2009, O’Connor 2009).  This 

ability of temperature to influence metabolic processes and structure ecosystems is the 

emphasis of the Metabolic Theory of Ecology, or MTE (Brown et al. 2004).  Because 

changes in temperature have the potential to profoundly alter consumption rates, 

production rates, and the effects consumers have on their ecosystems, MTE has received 
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an explosive surge in attention in the past decade.  Since the overwhelming majority of 

species in seagrass ecosystems are poikilotherms, such changes in temperature can affect 

entire communities, though different species are likely to react differently.  This is 

because the relationship between metabolic rate and temperature follows a unimodal 

pattern that peaks at a species-specific thermal optimum, after which physiological stress 

weakens the relationship, eventually reducing an organism’s fitness (Lemoine and 

Burkepile 2012).  Indeed, a central question in MTE is that of metabolic mismatches: 

what happens when the metabolisms of different organisms scale differently as 

temperatures rise?    Such differential metabolic scaling can have significant ecological 

consequences for seagrass ecosystems.  

The effects of temperature increases on the strength of top-down control will 

depend largely on how the metabolisms of producers, herbivores, and predators change in 

relation to one another.  For example, if herbivore consumption rates increase faster than 

primary producer production rates, then top-down control on plant communities is likely 

to strengthen.  Conversely, increases in predator consumption rates or hunting efficiency 

may increase top-down control on herbivores, releasing resource species from 

consumption.  Furthermore, rates of primary productivity may outstrip the ability of 

consumers to regulate it, resulting in a weakening of top-down control.  Finally, if 

temperatures surpass the thermal optimum of a species, fitness may suffer, reducing the 

interaction strength of a consumer with its prey.   

Though the topic of differential metabolic scaling in relation to climate change 

remains fairly young, multiple examples detailing the effects of simulated or real 

warming on the strength of top-down control in seagrass ecosystems exist.  For example, 
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experimental warming of mesocosms containing amphipod grazers and benthic brown 

algae Sargassum filipendula showed that a 4oC temperature increase resulted in stronger, 

more negative per-capita interaction strength between the amphipods and algae, 

indicating stronger consumer control (O’Connor 2009).  Similarly, in mesocosms in the 

Galapagos Islands, green sea urchins (Lytechinus semituberculatus) exposed to multi-day 

warming (28◦C) doubled their oxygen consumption increased their consumption of the 

green algae Ulva sp. by almost 50% compared to urchins kept at cooler temperatures 

(14◦C) (Carr and Bruno 2013).  In South Australia, when the sea urchin Amblypneustes 

pallidus was placed in microcosms mimicking 5◦C of ocean warming and an increase in 

CO2 concentrations expected to occur by 2100, urchins increased consumption rates of 

the Australian endemic seagrass Amphibolis antarctica by ~20% (Burnell et al. 2013b).  

In a predator prey study, experimental warming of a terrestrial old field ecosystem 

resulted in reduced spatial overlap of spider predators and grasshopper nymph prey, 

which in turn reduced predator control of herbivores (Barton 2010).  In these studies, 

increases in top-down control were driven primarily by shifts in per-capita effects rather 

than in consumer densities.  This emphasizes the capability of climate change, through 

physical forcing, to alter the effects of individual consumers on a global scale with 

potentially significant changes to the strength of top down control at the most basic 

physiological level.    

Climate change may also weaken the potential strength of top-down control by 

increasing primary productivity.  In some cases, this productivity increase can even 

outpace increased consumption rates of herbivores.  For example, experiments in South 

Australian rocky coastal ecosystems showed that under moderate warming (to 20◦C), the 
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marine gastropod Turbo undulates can maintain consumption rates that outpace turf algae 

production; under conditions predicted by 2100 (24◦C), however, turf algae production 

outpaced consumption (Mertens et al. 2015).  This phenomenon is particularly likely to 

occur when dominant consumers surpass their thermal optimum and undergo 

temperature-related physiological stress, reducing their “efficiency” (e.g., Lemoine and 

Burkepile 2012, Strong 1992), or when grazer control of primary producers is already 

weak (O’Connor et al. 2009, Elköf et al. 2012).  While compensatory herbivore 

population growth may dampen runaway productivity effects as consumer populations 

adjust to reflect the increased food supply, even a temporary loss of consumer control 

could lead to algal overgrowth of seagrass and increase the likelihood of a regime shift to 

a seagrass depauperate state, as we will see shortly. Understanding how herbivory, 

production, predation, and other biological interactions will scale with increases in 

temperature is critical since seagrass ecosystems are dominated by ectotherms whose 

metabolism is inherently coupled to ambient temperatures.    

While temperature will alter top-down control of consumers, increased CO2 

concentrations are predicted to increase seagrass production, since seagrasses are often 

light and CO2- limited (Borum et al. 2015).  However, increased production is often 

paired with reduced proportions of nitrogen and phosphorous in seagrass tissues, 

reducing their quality as a food source.  For example, six-month CO2 enrichment 

experiments in South Florida, USA, designed to replicate atmospheric CO2 

concentrations in 2100, increased non-structural carbohydrate content of Thalassia 

testudinum rhizomes by 29% but also reduced nitrogen and phosphorous content of 

leaves by 11% and 21%, respectively (Campbell and Fourqurean 2013).  Differences in 
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stoichiometry may increase herbivore consumption rates to compensate for this lower 

food quality, or may cause herbivores to avoid lower quality plants and switch to plants 

of higher food quality (Cruz-Rivera and Hay 2001, Valentine and Heck 2001, Russell and 

Connel 2007, Hillebrand et al. 2009, Tomas et al. 2011).  Changes in temperature and 

ocean chemistry may also alter plant defensive compounds and secondary metabolites.  

Since consumer preference is driven by a combination of factors which includes plant 

defensive compounds (e.g., Steele and Valentine 2015), determining whether (and if so, 

how) CO2 concentrations affect plant defenses will also be a key part in understanding 

the shifting role of herbivores in top-down control.  Multi-species CO2 enrichment 

experiments should also be undertaken to determine the potential for CO2 enrichment to 

majorly alter nutrient concentration hierarchies.  These experiments should be paired with 

simultaneous food choice experiments exploring the potential for this to change 

consumer preferences or herbivory rates.  These investigations would be particularly 

fruitful for Australia’s subtropical ecosystems where species and life history diversity of 

seagrass is highest. 

In addition to range shifts, extreme climactic events can alter seagrass 

communities and potentially increase the ability of top-down control to generate 

alternate, seagrass-depauperate ecosystem states.  Seagrasses ecosystems are vulnerable 

to regime shifts, whereby the ecosystem tolerates disturbances to a point before rapidly 

shifting to an alternate ecosystem state that is often resistant to change.  Indeed, 

environmental stress can increase the vulnerability of seagrass to grazing (e.g., Elköf et 

al. 2010), potentially resulting in top-down control exacerbating the effects of 

disturbances after they occur.  Regime shifts, initiated by climactic disturbance and 
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reinforced by herbivore control, have already been recorded in Australian marine 

ecosystems.  On temperate algae reefs in Port Gregory, Western Australia, the loss of the 

algae canopy associated with a marine heat wave (Pearce and Feng 2013) was reinforced 

by algivorous teleosts, largely tropical in origin (Bennet et al. 2015).  This resulted in 

shift from an ecosystem state dominated by complex canopy forming algae to one of 

structurally simple turf algae, which was reinforced by constant herbivory on any 

remaining kelp (Bennet et al. 2015).  Shark Bay’s seagrass beds, which were subjected to 

the same marine heat wave (Thompson et al. 2014, Fraser et al. 2014), may be buffered 

from similar effects as healthy populations of tiger sharks generate antipredator responses 

in dugongs, minimizing herbivore control of disturbed seagrass beds (Nowicki et al. 

unpublished data).  Australian seagrass ecosystems are particularly susceptible to these 

interactive effects of climate disturbance and herbivory because both East and West 

coasts are home to tropical boundary currents that force tropical waters poleward- and 

while our oceans are expected to warm globally, these “hotspots” are projected to do so 

2-3 times faster than average (Wu et al. 2012, Vergés et al. 2014).  Furthermore, these 

currents are capable of generating rapid and extreme warming events (e.g., Pearce and 

Feng 2013) such as the aforementioned marine heat wave that struck Western Australia 

in 2011 and caused widespread ecological changes throughout the coast (Wernberg et al. 

2013, Smale and Wernberg 2013, Thompson et al. 2014, Fraser et al. 2014).  These 

examples indicate the potential for climactic disturbance and other anthropogenic 

stressors to interact to alter the role of top-down control in benthic marine ecosystems 

and highlight the need for a  better understanding of how climate change will interact 

with anthropogenic stressors at regional and local scales (Wernberg et al. 2011).     
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As our understanding of individual species relationships under climate change 

becomes clear, it will be necessary to put them in the context of larger, community scale 

interaction webs if we are ever to elucidate how top down control will change in our 

warming oceans.  Furthermore, we need to consider the potential for temperature induced 

metabolism shifts to interact with other ecosystem properties to attenuate or magnify the 

strength of top-down control, especially since few seagrass ecosystems are subject to 

isolated anthropogenic impacts.  For example, nutrient enrichment of producers can result 

in increased satiation and decreased per capita grazing sea urchins (Valentine and Heck 

2001), suggesting that nutrient enrichment may attenuate some effects of temperature 

induced increases in consumption rates (Burnell et al. 2013b).        

 

5. Conclusions and Future Directions 

5.1 Progress in the past quarter century 

 Twenty five years ago, top down control of seagrass ecosystems was given 

limited attention focusing on the role of grazing by sea turtles and dugongs, and to a 

lesser degree, teleosts.  This emphasis illustrates an important and relatively unique 

aspect of Australian seagrass ecosystems: many still have ecologically functional 

populations of megaherbivores and apex predators, particularly in the tropics and 

subtropics.  However, in the past several decades, our view of top-down control in 

seagrass ecosystems has changed dramatically.  Thanks to advances in theory as well as 

an increasing number of laboratory, mesocosm, and field experiments around the world 

over the past quarter century, there has been a shift from descriptive studies (Duarte 

1999) to a more process oriented approach in seagrass ecology.  This shift has led to a 
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much better understanding of how mesograzers, predators, and food web structure 

interact with each other and with bottom-up factors to structure seagrass ecosystems.  We 

also better understand how human impacts, particularly eutrophication (Hughes et al. 

2004) and apex predator removal (Heithaus et al. 2008, Burkholder et al. 2013) are likely 

to influence seagrass ecosystems.  New promising field approaches developed in 

Australian seagrass habitats, such as cage-less mesograzer exclusions (Poore et al. 2009) 

and long term multi-trophic level ecosystem research projects (sensu Heithaus et al. 

2012), have already provided critical insight into top-down control of these seagrass 

ecosystems and will enable further refinement of our understanding of top down control 

of seagrass habitats worldwide. 

 

5.2 Gaps that Still Remain 

Despite the progress made in characterizing top down control in seagrass 

ecosystems over the last quarter century, many gaps still remain.  In particular, the 

complexity with which top-down control operates in seagrass ecosystems creates new 

challenges to generalizing top-down control (Valentine and Duffy 2006).  I begin with a 

call to expand the use of manipulative field experiments in Australian seagrass habitats.  

This approach is among the most effective in determining how individual or groups of 

species influence seagrass ecosystems, and when paired with mechanistic studies can 

provide powerful insight into how top down control operates in these ecosystems.  This is 

particularly true for the dominant and widespread endemic seagrasses in the genera 

Posidonia and Amphibolis.  Though they are becoming more common, exclosure and 

enclosure experiments remain under-used in testing theory related to top down control, 
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and these experiments remain rare in Australian seagrass habitats when compared to 

other geographic regions and types of benthic marine ecosystems.  For example, out of 

over 600 herbivore exclusion experiments analyzed by Poore et al. (2012), only 28 

studies occurred in seagrass beds, with only 4 of those occurring in Australia (though 

there have since been others, see Figure 6). All of these studies have occurred in 

temperate or subtropical seagrass ecosystems. This is probably largely due to the huge 

logistical challenges associated with completing marine research in these sparsely 

populated areas.  Nonetheless, I believe tropical Australian seagrass ecosystems are 

understudied and warrant further attention, particularly as seagrass diversity in tropical 

Australia is high, and our understanding of herbivory in multi-species seagrass beds is 

still relatively lacking (Lee et al. 2015).  Indeed, northern Australia is home to a diverse 

and expansive tropical seagrass community as well as large populations of macro- and 

megaherbivores,  suggesting herbivory may be an important structuring force in tropical 

Australian seagrass beds (e.g., Marsh and Lawler 2000, Marsh et al. 2002, Roelofs et al. 

2005, Andre et al. 2005, Sheppard et al. 2008).  This is supported by limited evidence 

from aerial surveys, which indicate that seagrass beds in parts of the Northern Territory 

and northern Queensland are often heavily scarred from dugong grazing (Roelofs et al. 

2005).   

As has been emphasized throughout this chapter, understanding herbivore feeding 

preferences is critical to predicting the nature of top-down control in seagrass 

ecosystems.  A large body of research has investigated relationships between food 

quality, plant defenses, seagrass structure, and the effects of associated producers, yet 

these experiments necessarily simplify the number of variables tested because of  
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Figure 6. Sites of herbivore exclosure field experiments in Australian seagrass 

ecosystems (Total= 10 studies, some of which include multiple experiments).  Yellow 

studies achieved herbivore exclusion through in-situ chemical pesticide deployments; 

other studies used physical cages.  Note a complete lack of exclosure studies in tropical 

Australian ecosystems.  Red studies: Jernakoff and Nielsen 1997, Keuskamp 2004, 

Ebrahim et al. 2014; orange: Garthwin et al. 2014; yellow: Cook et al. 2011, 

McSkimming et al. 2015; green: Preen 1995, Masini 2001, Burkholder et al. 2013; teal: 

Bessey et al. 2016.  Ebrahim et al. 2014 performed multiple experiments using both cages 

and pesticides that varied in level of exclusion, from megaherbivore exclusion only to 

total herbivore exclusion.   

 

experimental constraints.  We still lack a generalizable mechanistic understanding of how 

seagrass properties as a whole influence food preferences or consumption rates by 

herbivores.  Instead, we are limited to rough generalizations (such as the previously 

discussed dichotomy in herbivore feeding preference), which are based on larger patterns 

from food preference experiments.  The relationship between seagrass properties and 

herbivore feeding behavior is confounded by seagrass properties including palatability 
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(high nutrient, soluble carbohydrate, and lipid content), undesirable traits (defensive 

phenolic compounds, low nutrient content, and high fiber content), and seagrass 

structure, which can vary among and within species as well as through space and time.  

This relationship is further obscured by the variable efficacy of phenolic defenses on 

different herbivores and the differential perceived value of each of these seagrass 

properties by different herbivores (e.g., Goecker et al. 2005, Prado and Heck 2011).  

Because of this it is still difficult to generalize how herbivory influences seagrass 

community response to anthropogenic stressors like eutrophication and CO2
 enrichment, 

or how pressures on herbivores (such as predation risk) may alter patterns of top-down 

control.  Given the ubiquity of these stressors and the knowledge that they can interact 

(e.g., Burnell et al. 2013b), pursuit of a predictive model of how this may occur warrants 

serious attention.  Meta-analyses would be useful to determine how patterns of seagrass 

nutrient concentration, phenolic compounds, carbohydrate content and other 

characteristics relate to seagrass consumption rates of different herbivores.   

Over the past two decades it has become increasingly apparent that grouping 

consumers into ecological guilds based on taxonomy or size over-simplifies the diversity 

of their ecological functions (Duffy et al. 2001, 2003, Valentine and Duffy 2006). This is 

most true for mesograzers.  For example, selective herbivore exclusion experiments in 

Moreton Bay, Queensland, showed that exclusion of small amphipod mesograzers 

resulted in a more than doubling of epiphyte biomass while exclusion of larger 

invertebrate mesograzers resulted in increases in seagrass shoot height, density, and cover 

(Ebrahim et al. 2014). A similar experiment showed that some mesograzers control 

epiphyte loads while others do not (Jernakoff and Nielsen 1997).  Clearly, these 
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organisms have distinct functional roles in top down control yet are generally grouped 

simply as “mesograzers.”  This has been recognized as an oversimplification as 

ecosystem level impacts are the result of complimentary effects from a diverse range of 

grazers- not from a single homogenous effect by a uniform herbivore guild (Duffy et al. 

2001, 2003, Hughes et al. 2004, Burkepile and Hay 2008, Holzer et al. 2011, Rossini et 

al. 2014).  Yet gaps remain in our understanding of the complimentary roles of sympatric 

herbivores or the relative strength with which they can exert top-down control (but see 

Holzer et al. 2011)- often limiting our ability to estimate the net effects of groups of 

herbivores or herbivores as a whole on seagrass communities. This is an important 

omission- particularly in regards to differences in interaction strength between major 

grazer groups and seagrass-because megagrazers, macrograzers and mesograzers are 

often managed very differently (if at all).  Additionally, the effects different grazer 

groups can generate in seagrass ecosystems can be surprising; for example, herbivores 

can generate opposite responses in seagrass communities even when they consume the 

same species of seagrass.  Dugongs can facilitate the same seagrass species they target 

when grazing through destructive and indiscriminant feeding tactics which also remove 

competitively dominant climax seagrass (Preen 1995).  Invertebrate and teleost 

herbivores, however, are more selective and instead usually suppress the species they 

target.        

Finally, our understanding of how top-down control of seagrass ecosystems will 

change in the context of human stressors like overfishing and climate change is still in its 

infancy.  Indeed, while there is an increasing focus on how trophic interactions will 

change as climate change variables continue, few of these studies are in marine 
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ecosystems (Rosenblatt and Schmitz 2014).  Furthermore, most of these studies fail to 

capture the complexity climate change will bring to trophic interactions- often only 

manipulating two trophic levels and one climate change variable at a time (Rosenblatt 

and Schmitz 2014).  Understanding how climate change, overfishing and other human 

impacts will alter top down control of seagrass ecosystems will require increasing both 

the complexity of existing experiments to better understand interactions, and rigorous 

syntheses of existing experiments to discover general patterns between these factors. 

 

5.3 Maximizing Research Potential in Australian Seagrass Habitats 

One problem of studying top-down control in coastal ecosystems (including 

seagrass ecosystems) is that today’s seagrass communities have often been fundamentally 

altered from the conditions under which the ecosystems evolved (Heck and Valentine 

2007, Jackson 2001, Dayton et al. 1995).  As a result, studies (particularly of predators) 

in today’s seagrass ecosystems probably don’t accurately capture the historical 

importance of top down control.  Indeed, while we have a solid understanding of the 

mechanisms through which trophic cascades can operate, determining the net effects of 

predator loss on seagrass ecosystems remains difficult because trophic cascades can 

operate through multiple consumer pathways concurrently (Fig. 4) and the relative 

strength of these pathways remains largely unknown.  Many of Australia’s seagrass 

ecosystems, particularly those in the tropical northern and western coasts, remain far 

from large population centers and provide unique opportunities to study top-down control 

in relatively pristine seagrass ecosystems.  Yet, few of these studies exist.  By pursuing 

the effects of megafauna and apex predators in seagrass ecosystems, focusing on 
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relatively pristine seagrass ecosystems where biodiversity and trophic relationships 

remain relatively intact, and establishing long-term monitoring projects along the eastern 

and western coasts where tropical boundary currents will generate “sentinel” ecosystems, 

in which to study climate change, researchers can leverage the natural capital of 

Australia’s seagrass habitats in ways few other regions can.  A better understanding of 

how predators and megaherbivores structure seagrass ecosystems will become 

increasingly relevant as populations of megaherbivores like green turtles are restored in 

regions where they were formally abundant (Heithaus et al. 2014).     

The ultimate goal of understanding top down control in seagrass ecosystems is to 

create a testable framework through which we can make generalizations and predict how 

top down control will impact those ecosystems.  For such a framework to be useful it will 

have to incorporate theoretical advances as well as a huge compliment of field, 

laboratory, and observational work to test, validate, and refine it.  It will also have to 

incorporate the role of physical factors (such as temperature and nutrient regimes), 

species traits (such as species identity and food preferences) and trophic structure 

(competitive, facilitative, and predator prey relationships) and larger community 

properties (such as biological and functional diversity).  Finally, it will involve 

understanding the processes that drive the patterns we observe.  This is an enormous 

challenge, but one that will be necessary if we are to effectively generalize patterns we 

observe in a select few seagrass ecosystems to the many that will need to be managed in 

the future.   
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6. Final Thoughts 

A wide body of work over the past few decades has shown that top-down control 

can be an important (and even dominant) structuring force in seagrass ecosystems.  

However, the complexity of these interacting ecosystems continues to make broad 

generalizations about top-down control difficult. Many Australian seagrass ecosystems 

have unique qualities, driven by seagrass or megafaunal assemblages not widely found 

elsewhere.  General ecological theory, derived from studied worldwide, will continue to 

provide hypothesis to test the role of top-down control in seagrass- but an understanding 

of top-down control in Australian seagrass ecosystems will ultimately have to come from 

work inside Australia.  We have learned much since the original realization of the 

importance of top-down control in seagrass ecosystems.  The challenge now is to 

understand when top-down control is important in seagrass ecosystems, what factors 

control its strength and effects on the seagrass community, where feedbacks or 

interactions between factors are likely to occur, and what impacts anthropogenic 

alterations to the local and global environment will have on top-down control.  Further 

research into these areas will aid pursuit of the end goal of a general integrative 

framework of top-down control in seagrass ecosystems.       
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Abstract 

Extreme temperature events are predicted to become more frequent and intense as climate 

change continues, with important implications for ecosystems.  Accordingly, there has 

been growing interest in what drives resilience to climatic disturbances.  When a stressor 

overwhelms the resistance of an ecosystem, its recovery trajectory is susceptible to 

external influence with implications for ecosystem function and persistence.  

Understanding recovery trajectories of seagrass is particularly important because of their 

roles as foundation species in their ecosystems, the rapid loss of seagrass globally, and 

variation in life history strategies that impact resilience. Seagrass cover was monitored 

for three years following a large, heatwave-associated mortality event in the remote 

ecosystem of Shark Bay, Australia.  Though the ecosystem’s historically dominant 

foundational seagrass, Amphibolis antarctica, is capable of rapid recovery from 

disturbances, no evidence of recovery was observed, likely because of the failure of 

mechanisms which have driven rapid recovery in other systems (persistence of rhizome 

beds, sexual reproduction among neighboring beds).  Instead, a tropical opportunistic 

seagrass, Halodule uninervis, expanded throughout the system following the heat wave.  

These changes in the structure of the Shark Bay seagrass ecosystem– from high to low 

biomass and structural complexity– are likely to have important implications for 

ecosystem services and community dynamics, and indicates this ecosystem is highly 

vulnerable to future disturbances.  More generally, my work suggests that seagrass 

ecosystems typified by a mix of early and late successional species may be particularly 

likely to exhibit a mismatch between recovery of cover per se and recovery of function 

following disturbance.   
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Introduction  

Although research into the ecological effects of climate change has largely 

focused on how organisms and ecosystems will respond to changes in average 

environmental conditions, there has been an increasing recognition of the ability of 

extreme climatic events – such as heat waves and droughts – to rapidly alter ecosystems.  

Climate change is predicted to alter aspects of extreme events, including the frequency 

and duration of heat waves, heavy precipitation events and droughts, strength of tropical 

ocean currents, and even the frequency of extremes in the ENSO cycle (IPCC 2014, Wu 

et al. 2012, Cai et al. 2014, 2015).  Such events can induce species range shifts, species 

die-offs, or changes in community composition, phenology, or primary productivity (e.g., 

Honnay et al. 2002, Ciais et al. 2005, Inouye 2008, Mantgem et al. 2009, Augspurger 

2013).  The effects that extreme events can have on ecological processes has implications 

for ecosystem functioning, and in some cases can trigger regime shifts to persistent, 

fundamentally different ecosystem states (e.g., Bennett et al. 2015).  However, there is 

considerable uncertainty as to the conditions under which ecological disturbances trigger 

such shifts.  To predict the occurrence of such shifts, it is first necessary to understand 

what influences resilience to disturbances. 

Resilience is defined as the magnitude of disturbance an ecosystem can withstand 

without shifting into an alternate state (sensu Holling 1973), and can be broken down into 

two mechanisms: resistance to disturbance and recovery from disturbance (i.e., return 

time) (Unsworth et al. 2015).  Resistance (sensu Carpenter et al. 2001) is the amount of 

external forcing required to generate a disturbance in an ecosystem, while return time is 
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the time it takes for a system to recover from a disturbance (May 1973), the inverse of 

which is sometimes referred to as stability (e.g., Dai et al. 2015).  Ecosystems that 

recover rapidly from one disturbance exhibit high stability and are more likely to be able 

to resist subsequent disturbances than ecosystems that recovery slowly (Plus et al. 2003). 

It is therefore critical to understand not only how ecosystems respond to extreme events 

(resistance), but how they recover from them, particularly as disturbances become more 

frequent and the risk of exposure to sequential disturbances increases (IPCC 2014, Smale 

and Wernberg 2013).   

Despite their importance as foundations of coastal ecosystems, seagrass habitats 

are declining at alarming rates, largely because of impacts from local stressors such as 

sedimentation and eutrophication (e.g., Short and Wyllie-Echeverria 1996, Waycott et al. 

2009).  Yet, even remote seagrass ecosystems far removed from local human influence 

can be vulnerable to large disturbance events such as marine heat waves (e.g., Fraser et 

al. 2014, Thomson et al. 2015).  Such large events, which cannot be managed at local 

scales, illustrate the danger climate change and altered thermal regimes pose to marine 

ecosystems, something already well appreciated by coral reef ecologists (e.g., Glynn 

1993, Pandolfi 2015). While the potential for extreme climate events to generate 

widespread ecosystem shifts is becoming increasingly recognized, many gaps still remain 

in understanding how ecosystems will respond to and recover from such events (Jentsch 

et al. 2007, Thomson et al. 2015).   

Return time of damaged seagrass beds can range from months to centuries (e.g., 

Walker and McComb 1992, Plus et al. 2003, Orth et al. 2006, Short et al. 2014).  One 
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factor that can heavily influence these return times is seagrass life history strategy.  

Seagrass species possess a wide variety of life history traits and inhabit a continuum of 

successional capabilities, but can often be categorized as late or early successional 

species (sensu Bazzaz 1979).  Late successional seagrasses, such as those in the genera 

Amphibolis, Posidonia, Thalassia, and Zostera, tend to have relatively large and 

perennial canopies, often with large stores of carbohydrates in their buried rhizome 

tissue.  These energy stores can confer increased resistance to stressors, and the capability 

to rapidly refoliate and regenerate shoots from surviving rhizomes if a stressor overcomes 

their initial resistance (e.g., Peterson et al. 2002, Fraser et al. 2014).  However, if 

rhizomal regeneration is not possible (because of, for example, insufficient rhizome 

biomass or the extremity of a disturbance), rapid (<10 yr) return of these seagrasses to pre 

die-off abundance seems to be heavily dependent on the presence of a seed bank (Preen 

et al. 1995, Plus et al. 2003, Campbell and McKenzie 2004) or reproductive events from 

nearby beds (e.g., Orth et al. 2006, Larkum et al. 2006, Tanner 2015).  Long return times 

are likely if reproductive events or refoliation from existing rhizomes do not occur 

because many larger, “late successional” seagrasses are characterized by relatively slow 

rhizome elongation rates (Walker et al. 2006), limiting the ability of vegetative expansion 

to lead recovery when seagrass loss is widespread.  Importantly, many late successional 

seagrasses lack a dormant seed bank, and some genera, like Amphibolis, are viviparous 

and lack seeds altogether (Larkum et al. 2006).  This eliminates one mechanism of 

disturbance resistance outright and highlights how crucial the key mechanisms of 

regeneration from below-ground biomass and recruitment from nearby living beds are in 

rapid return time and resilience of some late successional seagrasses.    
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Unlike late successional species, early successional (sensu Bazzaz 1979) 

seagrasses have adapted to disturbance by reliance on rapid disturbance recovery and 

expansion as opposed to resistance to disturbance itself (Unsworth et al. 2015).  These 

species, such as those in the genera Halophila and Halodule, generally have small energy 

stores in rhizome tissue, instead relying on fast rhizome elongation rates and dormant 

seed banks to rapidly recruit and expand after disturbances (Walker et al. 2006).  Early 

successional species also form relatively sparse and short beds with much lower 

structural complexity and standing biomass than those composed of late successional 

seagrasses.  The plant traits associated with early and late successional species not only 

influence the recovery trajectories of mixed seagrass beds, but the functions associated 

with these beds as they change.  As a result, changes in seagrass community assembly 

following disturbance have implications both for the resilience of the system to future 

disturbances and for ecosystem function.     

 While seagrass life history plays an important role in determining return times of 

seagrasses and resilience of seagrass ecosystem to disturbance, factors like the extent of 

initial disturbance and local biophysical and biological features can also influence 

recovery speeds (i.e., return time) and changes in the seagrass community throughout 

recovery (i.e., recovery trajectories) of seagrass ecosystems (Unsworth et al. 2015).  

Furthermore, density-dependent Allee effects can generate feedbacks in disturbed 

seagrass ecosystems that alter the biological or biophysical features of the ecosystem, 

further complicating recovery predictions.  For example, widespread seagrass loss can 

reduce particle trapping, increase turbidity, promote nutrient efflux-driven phytoplankton 

blooms, and limit sexual reproduction, promoting the maintenance of a seagrass-
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depauperate state (Fourqurean and Robblee 1999, Van der Heide et al. 2007, Carr et al. 

2010, van Tussenbroek et al. 2016).  Fast return times of functionally critical species can 

minimize the impacts of such density-dependent feedbacks in seagrass ecosystems and 

thus maximize the possibility of persistence while minimizing impacts to the wider 

seagrass associated community.   

The purpose of the present study was to assess the post-disturbance dynamics of 

the relatively pristine subtropical seagrass ecosystem of Shark Bay, Western Australia, 

following a widespread marine heat wave that occurred in 2011 and triggered subsequent 

catastrophic seagrass loss.  Specifically, my goals were to assess changes in cover and 

occurrence of benthic macrophytes (seagrasses and benthic macroalgae) over medium 

time scales (three years), to better understand the return times and future disturbance 

resilience for functionally important seagrass species, and to explore potential 

implications of the observed post-disturbance state on ecosystem function and seagrass 

associated fauna. 

Methods 

Study system 

The study was performed in the Eastern Gulf of Shark Bay (25°45’ S, 113°44’E), 

Western Australia.  Shark Bay is a shallow (<15m), 13,000 km2 semi-enclosed 

subtropical embayment situated approximately 800km north of Perth.  The study area, 

immediately north of Monkey Mia, consists of a series of near-shore shallow (<4 m) 

seagrass banks separated by deep (6-12m), seagrass-depauperate channels (Heithaus 

2001, Fig. 1).   The bay historically contained over 4000 km2 of seagrass (Walker et al. 
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1988), making it one of the largest remaining seagrass ecosystems on earth.  Shark Bay’s 

expansive seagrass beds directly or indirectly support a wide variety of megafauna 

including dugongs (Dugong dugon), green sea turtles (Chelonia mydas), and tiger sharks 

(Galeocerdo cuvier), a key feature of its status as a UNESCO World Heritage Area.  

Despite its large size, Shark Bay is almost completely undeveloped with a small human 

population and relatively few local and regional anthropogenic stressors (Heithaus 2001).   

Shark Bay hosts twelve species of seagrasses; eight of tropical and four of 

temperate evolutionary origin (Walker et al. 1988).  Of these, only two species form 

large, continuous beds: the temperate species Amphibolis antarctica and Posidonia 

australis. Shark Bay’s seagrass assemblage has been historically dominated by A. 

antarctica, which accounted for approximately 85% of seagrass cover and often formed 

dense, monospecific stands of 90-100% cover (Walker et al. 1988, Burkholder et al. 

2013a, fig. 1, 3a.). Because of the height and density of A. antarctica beds (200-500 

shoots/m, up to 2m tall), this seagrass is a structurally complex ecosystem engineer 

(sensu Jones et al. 1994)  that creates extensive benthic habitat, stabilizes sediment, and 

contributes significant primary production in this ecosystem (Walker 1985, Walker and 

McComb 1988). 

As a subtropical seagrass ecosystem, Shark Bay marks the northern boundary for 

the temperate A. antarctica and Posidonia spp. (Walker et al. 1988).  As a result, the 

seagrass ecosystem is at particular risk from both acute and chronic high temperature 

stress.  One such acute event occurred off the coast of Western Australia in the Austral 

summer of 2011, when ocean temperatures rose 2-4°C above average for a two-month 
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period (Wernberg et al. 2013).  The 2011 marine heat wave was associated with almost 

record strength La Niña conditions and unusually strong poleward flow of the Leeuwin 

current, resulting in increased delivery of tropical water down the Western Australia 

coast; typically, monthly temperature anomalies within the Leuuwin Current region are 

less than ± 1.5oC during El Niño and La Niña years (Pearce and Feng 2013).  Widespread 

changes in algae, fish and coral communities throughout Western Australia were 

associated with this heat wave (Pearce et al. 2011, Wernberg et al. 2013, Smale and 

Wernberg 2013, Pearce and Feng 2013).  In Shark Bay, Following this heat wave, A. 

antarctica in Shark Bay experienced widespread declines in cover that exceeded 90% in 

many areas (Thomson et al. 2015, Fraser et al. 2014, Fig 1c,d, Fig 3b). A heat wave of 

this magnitude has not been recorded previously or since in Western Australian waters 

(Pearce and Fend 2013), and seagrass die-off of this magnitude has not been reported in 

Shark Bay before (Fig. 2). 

Sample collection and analysis 

 In 2007, 475 monitoring locations were established throughout Shark Bay as part 

of a larger benthic survey (see Burkholder et al. 2013a for details).  A subset of these 

sites were revisited after the 2011 heat wave to assess seagrass die-offs (Thomson et al. 

2015) and medium-term seagrass status and recovery (this paper).  Of the 475 original 

sites visited in 2007-2009, 63 were in a long-term study area (Heithaus et al. 2012) and 

were revisited four times between 2012-2014 to assess recovery and changes in the 

seagrass community.  Sites occurred on three banks, which were blocked by microhabitat 

(deep channels generally 6-12m depth, shallow bank interiors >2.5m depth,  
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Figure 1. Location of study area within Australia (A) and the Eastern gulf of Shark Bay 

(B). Study area pre die-off (Mar. 2010, C) and post die-off (Oct. 2014, D) with estimates 

of seagrass loss (based on satellite imagery) for each focal bank.  Seagrass sampling sites 

(circles), seagrass banks (gray outlines), water clarity transects (white lines), Monkey 

Mia (star), and the temperature monitoring station (diamond) are also visible.   Images 

obtained from Google Earth. 
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Figure 2. Long-term data illustrating the intensity of the 2011 heat wave and subsequent 

seagrass die-off.  (a) Monthly (average) temperature data, collected every morning at a 

site immediately west of the study area. (b) Aerial imagery showing the magnitude of 

change in seagrass cover over decadal time-scales compared to change after the heat 

wave.  Anecdotal accounts from local fishermen suggest no seagrass die-off of this 

magnitude has occurred in the study area in living memory (R. Nowicki pers. comm). 

 

and bank edges 2.5-4.5m depth (Heithaus and Dill 2006).  Site placement was 

randomized within each microhabitat for a total of seven sites in each microhabitat of 

three banks/channels.  The twenty-one sites in deep channel habitats remained seagrass-

depauperate in all surveys and were thus excluded from analysis, leaving 42 sites 

analyzed.  Depth of retained sites ranged from 0.6 m to 7.3 m (µ= 2.8 m, s= 1.1m).  At 

each site, a 60cm x 60cm quadrat was dropped from the research vessel and percent cover 

of seagrass (to species) was visually estimated by a diver using either snorkel or SCUBA.  

In 2013 and 2014, benthic macroalgae (all species pooled) were also quantified.  The 

quadrat was then flipped end over end three times parallel to the heading of the boat, 

whereupon another quadrat measurement was taken; this process was repeated for a third 
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quadrat and cover estimates were combined to generate a mean cover estimate at each 

site.   

Sites were visited five times in 2007 (March, May, July, October, December), 

four times in 2008 (April, May, July, November), and once in 2009 (January) for a total 

of 10 pre die-off visits. These ten visits, six during the warm season (mid August-mid 

May) and four during the cold season (mid May- mid August), were pooled into a single 

“pre die-off” value for each site.  Sites were visited four times after the die-off; October 

2012 (warm), May 2013 (cold), October 2013 (warm), and August 2014 (cold).  

Posidonia coriacea was rarely encountered and was pooled with the more common 

Posidonia australis, following established collection protocols (Burkholder et al. 2013a).  

Data were only analyzed for A. antarctica, Halodule uninervis, and benthic macroalgae; 

other species were rarely encountered (Table 1).  For each species analyzed, percent 

occurrence (i.e., percent of sites where that species were present), mean cover when 

present (i.e., mean percent cover only including sites where that species was present), and 

mean cover overall (i.e., mean percent cover including all 42 sites) were recorded (Table 

1).  When considered together, these three metrics provide insight into not only the 

magnitude, but also the way in which seagrass cover changes.  For example, loss of 

overall cover because of bed thinning results in reductions of mean cover when present, 

but little or no change in occurrence; conversely, patchy seagrass loss is characterized by 

little change in mean cover when present, but substantial reduction in occurrence.  

 In addition to seagrass surveys, changes in the biophysical environment (water 

temperature and clarity) were measured.  Water temperature was collected daily at a 
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long-term monitoring station situated in 4m of water, 3km NW of Monkey Mia (Fig. 1c), 

from September 1995 to September 2014.  Daily estimates were converted to monthly 

averages (Fig. 2a).  Water clarity was measured within the study area indirectly using 

transect surveys for air-breathing fauna that were established in deep habitats (n=6) or 

shallow seagrass banks (n=5) in 1997.  Approximately four times monthly, transects were 

sampled to quantify densities of air breathing organisms; every time an animal was 

sighted, depth was recorded and bottom composition was observed from the surface (see 

Heithaus et al. 2012 for methodological details).  Cover data were converted to a 

binomial variable (1= bottom visible, 0=bottom not visible) for analysis.  Because 

transect surveys only occurred under calm conditions (Beaufort scale ≤ 3), wind 

conditions are unlikely to drive the observed patterns of bottom visibility.  Because of 

variability in the way null results were recorded prior to 2008, only data from 2008-2014 

were included for visibility analysis.  Transects run between November and January were 

also excluded because of generally low sampling effort during these months, and 

transects run during 2011 were excluded to allow for clear separation of time periods. 

Statistical analyses 

All statistical analyses were performed in R v.3.2 (R core team 2015).  Cover data 

were only analyzed for A. antarctica, Halodule uninervis, and benthic macroalgae 

because other species were rarely encountered (Table 1).  Quade’s tests were performed 

on mean cover data for all 42 sites for each visit (2007-2009 pooled, one visit in 2012, 

two in 2013, one in 2014) to assess significant differences in cover over time for both A. 

antarctica and benthic macroalgae.  In each case, after the main test, post-hoc pairwise  
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Table 1. Percent occurrence (i.e., percent of visits where that species were present), mean 

cover when present (i.e., mean percent cover only including sites where that species was 

present), and mean cover overall (i.e., mean percent cover including all 42 sites) of 

seagrass and macroalgae in this study.  Values are presented with standard error when 

applicable.  Data include bank and bank edge sites only (n=42 sites); data from the two 

visits in 2013 are pooled.  

 

 

comparisons were performed using pairwise Quade tests with a t-distribution and a Holm 

correction for multiple comparisons (Holm 1979) in the PMCMR package (Pohlert 

2014).  Because H. uninervis was rare in most years, cover estimates were zero-inflated 

and cover comparisons such as those performed for A. antarctica and benthic macroalgae 

were not possible between all visits.  Therefore, H. uninervis presence was converted to a 

binomial variable and was modelled using a generalized linear mixed model (GLMM) to 

detect changes in the probability of encountering H. uninervis (presence/absence) at sites 

in the study area from 2012 to 2014.  As such, the H. uninervis model was run as a 

logistic regression using the “glmmPQL” function in the MASS package (Venables and 

Ripley 2002).  The H. uninervis model included season (warm, cool) and visit number (1-

2007-

2009
2012 2013 2014

2007-

2009
2012 2013 2014

2007-

2009
2012 2013 2014

Amphibolis 

antarctica
83% 64% 62% 55% 90±1% 5±1% 6±1% 4±1% 76±2% 3±1% 4±1% 2±1%

Posidonia spp. 10% 7% 7% 5% 40±6% 5±5% 13±7% 8±3% 3±1% <1% 1±1% <1%

Halodule 

uninervis
12% 2% 12% 29% 3±1% 1% 8±6% 9±3% <1% <1% 1±1% 2±1%

Halophila 

ovalis
2% 2% 2% 0% 3±1% 1% 1±1% - <1% <1% <1% -

Halopila 

spinulosa
2% 0% 0% 2% 24±9% - - <1% <1% - - <1%

Cymodocea 

angustata
7% 10% 7% 5% 8±1% 4±2% 6±2% 2±1% <1% <1% <1% <1%

Benthic 

macroalgae
NA 71% 48% 62% NA 14±3% 10±3% 3±1% NA 10±2 5±2% 2±1%

Species

% occurrence mean cover (when present) mean cover (all sites)
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4) as discrete fixed effects. Sampling site was included as a random effect to account for 

repeated visits.    

Water visibility analysis 

As in the H.uninervis model, bottom visibility was converted to a binomial 

variable (1=visible, 0=not visible) and modelled using a logistic regression with the 

glmmPQL function.  Because deep transects were too deep to regularly see the bottom in 

either time period (see results), only data from shallow transects were included in the 

model.  Fixed effects in the visibility model were depth, time period, and their 

interaction; transect identity was included as a random effect in the model to account for 

repeated visits to each transect.  For all models and tests, effects were considered 

significant at the p=0.05 level.  If a significant interaction was present, main effects were 

not interpreted directly (Sokal and Rohlf 1995).   

Results  

 Seven species of seagrass were encountered in surveys of shallow and edge sites 

from 2012 to 2014 (Table 1).  Amphibolis antarctica was the only seagrass commonly 

encountered after the die-off, but at much reduced cover than before the heat wave (Table 

1, Fig 4a); indeed, while occurrence decreased from 83% pre die-off to ~60% post die-

off, declines in cover were largely driven by dramatic thinning of remaining seagrasses, 

as evidenced by large reductions in “cover when present” (Table 1, Fig. 3a,b, Fig 4a).  

Though low, A. antarctica cover varied significantly among the four post die-off visits 

(F3,123 = 2.95, p = 0.035, Fig 4a).  The decline was driven by differences between the 

second visit in April 2013 and the final (fourth) visit in August 2014 (t123 = -2.696, 
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adjusted p = 0.024, Quade multiple comparison test); visits in October 2012, October 

2013 and August 2014 were not significantly different from one another  Widespread 

blackening and mortality of A. antarctica rhizomes was observed in 2013 (Fig. 3b, c), 

eventually resulting in the breakup of beds and transition to bare sand in many habitats by 

2014 (Fig. 1d, 3d).  

 
Figure 3. States of A. antarctica beds before and after seagrass die-off. A. antarctica bed 

before the heat wave and die-off (a).  A formerly dense canopy (b) and rhizome mats, 

now disintegrating (c), photographed in 2013.  Water column (d) and benthos (e, left 

side) during a phytoplankton bloom observed in 2014.  Mixed seagrass community of 

temperate A. antarctica and tropical Halodule uninervis (f, black arrow) that has become 

increasingly common since 2011.  Images: SBERP. 
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Figure 4.  Change in mean 

occurrence, mean cover when present, 

and total mean cover for the three 

dominant macrophytes in Shark Bay 

following the heat wave- (a) 

Amphibolis antarctica, (b) Halodule 

uninervis, and (c) benthic macroalgae.  

Pre die-off values (left of dotted line) 

are provided when available for 

comparison.  Data from the two visits 

in 2013 are pooled for consistency 

with table 1.  Note different scale of 

Y axes in different graphs.  Error bars 

= s.e.  
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The only seagrass species that showed significant evidence of expansion after the 

die-off was Halodule uninervis. The logistic regression model indicated an increased 

probability of encountering H. uninervis with time (t124 = 6.94, p < 0.0001) but not by 

cold or warm season (t124 = 0.28, p = 0.78). The occurrence of H. uninervis increased 

from 2% of visits in 2012 to 29% of visits by 2014; additionally, there were increases in 

the percent cover of H. uninervis at sites where it was present (Table 1, Figs 3f, 4b).  

Other seagrass species (Posidonia spp., Halophila ovalis, Halophila spinulosa, and 

Cymodocea angustata) were rarely encountered (Table 1).  

Macroalgae cover 

Though macroalgae cover was not quantified before 2012, several lines of 

evidence indicate it was at most a minor contributor to submerged aquatic vegetation 

(SAV) cover in the past.  Firstly, A. antarctica dominates cover surveys from 2007-2009, 

leaving little room for substantial coverage by other SAV.  Secondly, analysis of A. 

antarctica habitats by animal borne video cameras attached to green turtles before the 

heat wave (1999-2003) indicate that benthic macroalgae were historically a very minor 

cover component in the study system— becoming common only after the seagrass die-off 

(Thomson et al. 2014).  Finally, benthic macroalgae was rarely encountered by divers as 

a substantial component of SAV in the study area prior to the heat wave (D. Burkholder 

and J. Thomson, pers. obs).  Macroalgae was common but sparse after the die-off, as 

occurrence was high but cover when present was low (Table 1, Fig 4c).  Mean overall 

cover of benthic macroalgae declined over time (F2,82 = 17.17, p < 0.0001); percent cover 

in 2012 (10%) was significantly higher than in 2013 (5.2%, t82 = -3.692, adjusted p = 
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0.0002) or 2014 (1.7%, t82 = -5.253, p < 0.0001, respectively, Table 1).  Algal cover did 

not differ between 2013 and 2014 (Table 1, Fig 4c). 

Biophysical factors 

Monthly average temperatures indicate that the extreme heat wave of 2011 has 

not been repeated (Fig. 2a).  Water clarity, however, has decreased since 2011; the 

probability of being able to see bottom on shallow transects was significantly influenced 

by the interaction of depth and time period (t3738=2.41, p=0.016, Table 2).  The 

percentage of spot surveys on shallow transects in which bottom was observable declined 

from 97.6% pre die-off (1463 of 1499 surveys) to 68.4% post die-off (1540 of 2251 

visits), while the percentage of surveys in which bottom as observed in deep habitats 

remained very low in both time periods (2.0 and 1.3%, Table 3).  On average, the depth at 

which there is a 50% probability of seeing the bottom was reduced by approximately 

3.2m (Fig. 5).   

In addition to chronic reductions in water clarity following the seagrass die-off, a 

widespread and intense phytoplankton bloom was observed in both gulfs of Shark Bay 

from February to April 2014, potentially facilitated by sustained high February water 

temperatures of 28oC (2.3oC above the February average and the second warmest 

February after 2011 in at least 20 years, Fig 2a) and the mass release of nutrients from 

abundant decaying seagrass tissue (Dave Holley, Department of Parks and Wildlife WA, 

pers. comm).  The bloom was associated with a substantial increase in light attenuation 

for several weeks (e.g., Fig 3b v.s. Fig 3d, Department of Parks and Wildlife, pers. 

comm), as well as a uniform coating of plankton on the benthos (Fig. 3e). 
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Table 2.  Logistic model results on the impact of depth, time period, and their interaction 

on probability of being able to tell bottom cover on shallow seagrass banks.  Transect 

identity was included as a random effect to account for repeated visits on each transect.   

Factor coefficient std.err DF t value P 

time period 2.00 0.52 3738 3.81 <0.001 

Depth -1.35 0.08 3738 17.77 <0.0001 

time period : depth 0.38 0.16 3738 2.41 0.016 

 

Table 3.  Number of spot surveys conducted and number of surveys in which bottom was 

visible from the surface for deep and shallow habitats before and after the seagrass die-

off.   

 

Discussion 

My results indicate that over medium time scales (~3 years) following an extreme 

climactic event, significant recovery of the previously dominant temperate seagrass 

Amphibolis antarctica has not occurred in Shark Bay.  Similarly, though macroalgae can 

exhibit rapid growth rates and outcompete seagrasses (McGlathery 2001), benthic 

macroalgae cover declined significantly between 2012 and 2014, indicating a shift from 

seagrass to macroalgae dominance is unlikely in the study system.  Instead, despite an 

initial decline likely resulting from smothering by dead A. antarctica (Thomson et al. 

2015), the tropical early successional seagrass Halodule uninervis has expanded 

following the marine heat wave.  The observed expansion of H. uninervis is generally 

consistent with its life history charactaristics, which includes rapid rates of rhizome 

expansion and a dormant seed bank, something which A. antarctica lacks (Larkum et al.  

time period habitat 
bottom surveys 

(n) 

bottom 

sightings (n) 

Probability of 

sighting bottom 

2008- 2010 
shallow 1499 1463 0.976 

deep 1024 20 0.02 

2012- 2014 
shallow 2251 1540 0.684 

deep 1199 16 0.013 
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Figure 5. Logistic regression illustrating significantly reduced water clarity (p=0.016) 

after the seagrass die-off.  Points and regressions intentionally jittered on Y axis. 

 

2006, Orth et al. 2007).  Indeed, patterns of H. uninervis expansion described here follow 

patterns seen in other mixed-Halodule spp. systems subject to disturbance, such as H. 

uninervis in Malaysia (Short et al. 2014) and Halodule wrightii in seagrass beds in 

Florida Bay usually dominated by Thalassia testudinum or Syringodium filiforme 

(Robblee et al. 1991, Fouqurean and Robblee 1999, Peterson et al. 2002).  The lack of 

recovery of A. antarctica, a late-successional species, reflects the post-disturbance 

behavior of some (but not all) seagrass ecosystems dominated by late-successional 

seagrasses (see below).  A significant and sustained reduction in water clarity in the years 
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following the seagrass-die off is consistent with a loss of sediment stabilization, an 

ecosystem function characteristic of intact seagrass beds (Carr et al. 2010, Van der Heide 

et al. 2011).  Additionally, the occurrence of a widespread phytoplankton bloom in 2014 

is consistent with blooms observed elsewhere following widespread seagrass declines 

(e.g., Fourqurean and Robblee 1999).  Such changes to the biophysical environment, 

along with seagrass species features (e.g., life-history characteristics) and biological 

features (e.g., connectivity, community trophic structure, Unsworth et al. 2015) have the 

potential to restrict or inhibit a return to an A. antarctica dominated ecosystem and 

impact the resilience of this system.  The observed shift in the seagrass community has 

ecological implications not only for biophysical features, but also for seagrass-associated 

fauna.      

Rapid recovery of Amphibolis spp. in other systems 

Though the traits common in late successional seagrasses generally do not favor 

rapid vegetative expansion or robust reproductive resilience to widespread seagrass loss, 

rapid recovery of Amphibolis spp. is possible if either of the resilience mechanisms 

mentioned previously (regeneration from rhizomes or recruitment from nearby beds) are 

successful.  For example, Amphibolis antarctica near the Wooramel delta in Shark Bay 

(east of this study site) began to refoliate two years after the die-off, but at significant 

cost to belowground energy stores (Fraser et al. 2014, Thomson et al. 2015).  On Success 

Bank, Western Australia, the congener Amphibolis griffithi is recorded as expanding 

rapidly (17.6 ha year-1) partially because of reproduction and gap infilling from nearby 

beds (Walker et al. 2006).  Similarly, in South Australia, a restoration project which 
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provided anchoring points in close proximity (< 80m) to mature A. antarctica beds 

resulted in the establishment of new beds with similar structural characteristics to mature 

beds within three years (Tanner 2015). Importantly, until below-ground biomass stocks 

are replenished by photosynthesis from above-ground tissues, merely measuring above-

ground biomass of recovering beds may overestimate ecological resilience to future 

disturbance because the below-ground biomass responsible for resilience is reduced, 

either because it was spent on rapid recovery or because new recruits have not yet 

established substantial below-ground stores.   

Potential mechanisms of rapid recovery 

Though the resilience strategies of A. antarctica allow for rapid recovery of 

above-ground biomass in some cases (e.g., Walker et al. 2006, Fraser et al. 2014), no 

such recovery occurred in this study. Pairwise comparisons indicate that A. antarctica 

cover was slightly (3.3%) but significantly higher in April 2013 (second visit) than it was 

in 2014 (fourth visit), potentially signifying an attempt to use below-ground energy stores 

to re-foliate, as was observed on the Wooramel Delta  (Fraser et al. 2014).  However, the 

capability of A. antarctica meadows within the study system to recover in this manner is 

limited, because the widespread observed death of A. antarcticas’s rhizome layer in this 

study (Fig. 3b,c, see also Thomson et al. 2015) has resulted in large areas of bare sand 

with no below-ground biomass from which to regenerate.  The loss of rhizomes also 

resulted in loss of suitable substratum for macroalgae, likely acting as a strong driver of 

the continued decline in macroalgae cover.  Unlike Success Bank,  the magnitude of the 

initial die-off destroyed or damaged entire seagrass banks (Fig. 1d, 2b), increasing the 
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distance between surviving shoots and potentially inhibiting reproductive capacity 

through mechanisms such as pollen limitation (e.g., van Tussenbroek et al. 2016).  

Though formal surveying of A. antarctica propagules, seedlings and reproductive 

structures were outside scope of this work, signs of sexual reproduction were not 

observed between 2012-2015 (pers. obs).  Importantly, unlike other biophysical feedback 

loops (i.e., turbidity) which may become less severe if environmental conditions improve, 

reproductive Allee affects will remain unless plant density itself is restored (van 

Tussenbroek et al. 2016).  Such density dependence may strengthen continued divergence 

in post-disturbance cover of A. antarctica and Halodule uninervis, as the seed bank of the 

latter allows for the establishment of widespread new beds, facilitating future 

reproductive success. 

Because the resilience mechanisms that would allow for rapid recovery of A. 

antarctica have failed, vegetative expansion from remaining shoots may now be the most 

likely mechanism of recovery.  Like many late successional seagrasses, A. antarctica has 

slow rhizome elongation rates (20 cm yr-1)— one fifth that of H. uninervis (Marba and 

Duarte et al. 1998).  As a result, the return time of A. antarctica will likely be 

considerable, increasing the likelihood that future climate extreme events will occur in 

this system before recovery is complete.  Additionally, weak recovery rates may allow 

biophysical and biological features of the environment (sensu Unsworth et al. 2015) to 

play critical roles in determining whether a meaningful recovery of A. antarctica will 

occur in this system at all.   
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Biophysical factors influencing recovery 

In addition to seagrass traits, biophysical features of the environment, such as 

water clarity and climate stability may be particularly critical to mediating the recovery 

trajectory of seagrasses in Shark Bay.  While common anthropogenic alterations to 

biophysical features, such as eutrophication, are largely absent in Shark Bay, density 

dependent biophysical processes, plankton blooms, and future heat waves may all be 

important to shaping recovery trajectories for this system.  Seagrasses have high light 

requirements (Walker and McComb 1992, Dennison et al. 1993) and are well known for 

their density-dependent capability to trap sediment and increase water clarity.  These 

processes generate positive feedbacks that facilitate seagrass expansion at high seagrass 

densities, but as seagrass is lost, turbidity increases and light limitation can inhibit the 

recovery of damaged beds (Van der Heide et al. 2007, Carr et al. 2010).  In Shark Bay, 

areas with reduced water clarity appeared to suffer greater declines in response to the 

initial disturbance (Thomson et al. 2015, Fraser et al. 2014), and water clarity in the study 

system was significantly reduced in the years following the seagrass die-off (Tables 2,3, 

Fig 5)— suggesting that water clarity reductions may be a strong inhibitor to seagrass 

recovery in this system.  In addition to resulting in a loss of sediment stabilization 

potential, seagrass losses can also result in nutrient export to the water column, triggering 

phytoplankton blooms that reduce water clarity. For example, plankton blooms resulting 

from an extreme climactic event and subsequent seagrass die-off in Florida Bay impacted 

the local light environment for close to a decade following the initial event, and may have 

contributed to subsequent seagrass die-offs (Robblee et al 1991, Fourqurean and Robblee 

1999).  The significant reduction in water clarity following the seagrass die-off and 
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observed widespread phytoplankton bloom in Shark Bay (despite minimal nutrient 

runoff) demonstrates the importance of biophysical features of post-disturbance seagrass 

ecosystems, even when local anthropogenic impacts to water clarity are minimal.   

The role of future climate events is also likely to play an increasingly important 

role in recovery trajectories of disturbed seagrass ecosystems as extreme El Niño and La 

Niña events become more frequent (Cai et al. 2014, 2015).  However, vulnerability to 

extreme warm events is not spatially homogenous: regions characterized by tropical 

boundary currents (such as Western Australia) are projected to warm two to three times 

faster than the oceanic average (Wu et al. 2012, Vergés et al. 2014).  Furthermore, areas 

where dominant seagrasses are near their temperature thresholds- such as Shark Bay, 

which sits in a climate transition zone between temperate and tropical regimes- are more 

likely to be inhibited by future acute and chronic warming (Unsworth et al. 2015). Such 

subtropical regions may be particularly vulnerable to community shifts towards 

dominance by fast-growing tropical seagrasses because they host a mixed assemblage of 

temperate late successional and tropical early successional species.  Understanding the 

resilience of late successional seagrasses to climate extremes via resistance, return time, 

and the mechanisms responsible for each will be critical to determining where and when 

these foundation species will persist.   

Biological factors influencing recovery 

Alteration of biological features such as top-down control can also be an 

important driver of return time following disturbance (Unsworth et al. 2015).  While 

historically underappreciated, top-down control by herbivores (and indirectly by their 
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predators) can structure seagrass ecosystems through both facultative and destructive 

pathways (Chapter II).  Previous work in Shark Bay has shown that top-down control by 

herbivores and their predators influences seagrass communities (Burkholder et al. 

2013)— though whether the influence of top down control will change is unclear.  

Generally, the importance of top down control may be high in recovering seagrass 

ecosystems as herbivores struggle to meet metabolic demands and newly disturbed 

seagrasses invest in regrowth and regeneration (e.g., Fraser et al. 2014).  The ultimate 

effect of such herbivory on seagrass return time, however, will depend an interaction 

between biological features of herbivores (herbivore density, feeding preferences, and 

feeding tactics) and those of seagrass (nutrient content, grazing tolerance, grazing 

recovery speed).  For example, while tropical early successional seagrasses are often 

more palatable to (and preferred by) herbivores than late-successional species 

(Burkholder et al. 2012, Preen 1995, Armitage and Fouqurean 2006, Bourque and 

Fourqurean 2013, Chapter II), the former can also recover quickly from grazing (e.g., 

Preen 1995).  In Shark Bay, food preference experiments indicate that H. uninervis is 

grazed at higher rates and more often than either A. antarctica or P. australis (both late 

successional seagrasses, Burkholder et al. 2012).  However, an increase in prevalence of 

mixed beds of preferred tropical seagrasses and recovering temperate seagrasses may still 

impact the recovery of A. antarctica, especially if herbivores employ indiscriminate 

destructive feeding strategies like grazing fronts by sea urchins or excavation foraging by 

dugongs (e.g., Peterson et al. 2002, Preen 1995).  

In addition to being altered by consumers, return times of A. antarctica could also 

be altered by H. uninervis itself.  It is possible that expansion of H. uninervis may 
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provide some ecosystem functions that could facilitate the regrowth of A. antarctica, such 

as sediment stabilization, (Fonesca 1985) or providing of substrate for attachment for the 

barbs of A. antarctica seedlings (Turner 1983).  However, the small size of H. uninervis 

shoots suggests the potential magnitude of such facilitation is likely to be minor. 

Ecological implications of extended return time    

Complete loss of foundation species has clear implications for ecosystem 

recovery and community functions.  However, multi-species foundation species 

assemblages can generate more nuanced responses via disturbance-induced changes in 

assemblage composition.  These shifts, which may be driven proximally by differences in 

return time or environmental tolerance and ultimately by life history traits and ecosystem 

features, can result in changes to ecosystem function even when seagrass abundance per 

se has recovered.  For Shark Bay, the expansion of H. uninervis, even if continued, does 

not indicate a functional recovery.  A. antarctica exceeds the size, standing stock, and 

productivity of H. uninervis by one to several orders of magnitude (Walker 1985, Walker 

et al. 1988).  As such, H. uninervis is unlikely to be able to provide the same magnitude 

of ecosystem function as the much larger A. antarctica, such as the generation of large, 

structurally complex habitat (Borowitzka et al. 2006) or large amounts of primary 

production (Walker et al. 1985) provision of food through facilitation of epiphytes 

(Borowitzka et al. 2006), sediment accumulation (Fonseca and Fisher 1986), or carbon 

storage (Fourqurean et al. 2012).   

While some functional losses (such as loss of primary production) may be 

relatively straightforward to calculate, the ecological implications for consumers can be 
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particularly complex and difficult to predict.  For example, seagrass loss will almost 

certainly reduce food supplies for species that directly feed on seagrass or its epiphyte 

community, but may result in a temporary prey pulse for predators that consume animals 

that use seagrass as refuge.  Similarly, resource loss can result in either expansion or 

restriction of species’ trophic niche (Jones and Post 2016), which may lead to trophic 

restructuring and changes in pathways of top-down control.  In Shark Bay, expansions of 

H. uninervis and losses of A. antarctica and associated epiphytes will likely lead to 

important shifts in the resource base of the food web.  Feeding preference experiments in 

Shark Bay suggest that, when available, tropical seagrasses like H. uninervis are 

preferred to A. antarctica as a food source (Burkholder et al. 2012), suggesting they are 

higher quality forage. Similarly, macroalgae appears to be an important component of the 

diet of green turtles (Chelonia mydas) and the dominant seagrass associated teleost, the 

western striped trumpeter (Pelates octolineatus) (Burkholder et al. 2011, Bessey and 

Heithaus 2015).  Exploitation of these resources may be keeping standing biomass low, 

even if production is high.     

In addition to changes in the trophic structure, shifts in community composition 

may also alter patterns of residency, movement, or behavior as animals deal with a 

changing seascape of food availability, food quality, refuge, and predation risk.  While 

investigations into the effects of seagrass die-offs on specific seagrass associated fauna 

are not uncommon, relatively little is known about whether or how such declines alter 

species interactions and community structure in general- an important gap given the 

magnitude of global seagrass loss and the importance of species interactions to 

structuring ecosystems. 
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The work presented here, combined with the slow rhizome elongation rates 

(Marba and Duarte 1998), loss of sediment stabilization potential, and thermal 

vulnerability (Walker and Cambridge 1995) of A. antartcica, suggests that Shark Bay’s 

mixed seagrass community is changing to reflect a shift to tropical seagrass, and that a 

return to a state dominated by A. antarctica is likely to be lengthy if it occurs at all.  

During this time, A. antarctica is likely to be vulnerable to subsequent disturbance from 

future climactic extremes, changes in biophysical features, and alteration of biological 

features such as top-down control.  More generally, this work suggests that predicting the 

recovery trajectory of seagrass ecosystems based only on initial magnitude of decline 

may be difficult, especially in mixed-species beds where life history strategies and 

mechanisms of recovery differ.  Knowledge of the life history of the species of interest 

(particularly likely mechanisms of recovery) and repeated post-disturbance monitoring is 

necessary to assess whether such recovery mechanisms are successful in facilitating 

recovery.  Integration of studies such as this into a general framework for resilience will 

be vital to predicting how vulnerable marine communities (and the functions they 

provide) will change in the context of climate change.   
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Abstract 

 There is growing recognition that the effects of climate change disturbances on 

ecosystems will be mediated, in part, by biotic interactions in those ecosystems rather 

than the sum of individual species responses to changes in abiotic conditions.  Apex 

predators are likely candidates to be “biotic multipliers of climate change” in part 

because of their ability to widely generate top down control through both consumptive 

and non-consumptive pathways.  This, along with global rates of predator loss, has led to 

an increasing effort to understand what structures top-down control in ecosystems.  While 

the effects of predator losses on top-down control receive much attention, other factors 

also mediate the strength of predator consumptive and non-consumptive effects, such as 

prey body condition.  As a result, abiotic stressors that reduce prey body condition 

directly or indirectly may play a critical role in mediating top-down control in ecosystems 

by increasing risk-taking of energetically-stressed individuals.  Here, I use a climactic 

extreme event (marine heat wave) and associated catastrophic seagrass loss as a natural 

experiment to investigate the impact of widespread resource loss on the apex predator 

(tiger shark, Galeocerdo cuvier) and mesoconsumer communities of Shark Bay, Western 

Australia.  I compare data from after the event to a nearly 13 year pre-disturbance dataset. 

Tiger shark catch rates were not significantly different after the seagrass die-off, 

suggesting that predation risk remains similar after the disturbance.  In contrast, most 

mesoconsumer populations declined significantly as food and refuge resources were 

reduced.  Furthermore, two species of mesoconusmers (dolphins, cormorants) 

significantly increased use of dangerous but profitable shallow seagrass beds following 

the die-off.  Because the relative spatial distribution of their food resources was similar 
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pre- and post-seagrass die-off, this pattern is consistent with increased risk-taking.  These 

findings suggest that resource reductions can alter anti-predator behavior and reduce the 

strength of risk effects at population and ecosystem scales even when apex predator 

communities remain stable.  Reduced responsiveness of prey to the landscape of fear may 

result in predator effects manifesting more strongly through direct predation and less 

through predation risk as resource species continue to be disturbed by climactic extremes 

globally.     

Introduction 

Most studies of the ecological effects of climate change have focused on how 

organisms and ecosystems will respond to changes in average environmental conditions. 

However, extreme climatic events – such as heat waves and droughts – can rapidly alter 

ecosystems and may be a more immediate threat to long-term ecosystem integrity.  

Climate change is predicted to alter extreme events including the frequency and duration 

of heat waves, heavy precipitation events and droughts, strength of tropical ocean 

currents, and even the frequency of extremes in the ENSO cycle (IPCC 2014, Wu et al. 

2012, Cai et al. 2014, 2015).  While climactic extremes can change species abundance 

directly by causing mortality through direct forcing of the physical environment (e.g., 

Matich et al. 2012, Fraser et al. 2014, Thomson et al. 2014), they can also alter species 

interactions, which are likely to influence how ecosystems respond to climate change 

(Zarnetske et al. 2012, Taylor et al. 2015).  Not all species interactions are equally 

powerful, however.  Apex predators may be particularly powerful biotic multipliers of 

climate change (sensu Zarnetske et al. 2012) in part because of their large number of 

species interactions and ability to generate widespread non-consumptive (i.e., “risk”) 
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effects (Jeffries and Lawton 1984, Heithaus et al. 2008).  Investigations solely into 

numerical effects of climactic extremes on species (i.e., changes in abundance or density) 

without accounting for changes to species interactions, particularly when strong 

interactions are known to exist, may fail to predict the overall effects of climate extremes 

in ecosystems.   

Predators can exert top-down control on prey through direct predation, risk 

effects, and the interaction of the two (e.g., Schmitz et al. 1997, Lima 1998, Dill et al. 

2003, Werner and Peacor 2003).  Predation risk can greatly alter prey behavior and 

forager impacts by inducing changes in absolute foraging intensity, spatial and temporal 

patterns of foraging, and foraging tactics of prey (e.g., Lima and Dill 1990, Creel et al. 

2005, Heithaus et al. 2012 ). Under some circumstances, risk effects can even be more 

powerful than consumptive effects (e.g., Werner and Peacor 2003, Creel and Christianson 

2008).  This is because consumptive effects can be limited by predator properties (such as 

population size or handling time) or result in compensatory growth of remaining prey, 

while risk effects can affect entire populations simultaneously and quickly and result in 

lowered foraging, condition, and fitness (Sinclair and Pech 1996; Creel et al. 2008, Creel 

2011, Heithaus et al. 2012).  Predation risk, and resulting anti-predator behavior, can thus 

generate behaviorally mediated indirect interactions (BMIIs, also known as behaviorally 

mediated trophic cascades, or BMTCs) (Dill et al. 2003) with potentially strong effects 

on lower trophic levels (e.g., Schmitz et al. 1997, Ripple and Beschta 2004, Burkholder et 

al. 2013b).  Understanding the drivers of this anti-predator behavior can therefore lead to 

better predictions of how top-down control may change as ecosystems are altered.  
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Generally, animals can be expected to optimize their behavior to balance fitness-

enhancing behaviors- such as foraging and reproduction- with the risk of death from 

predators (i.e., anti-predator behavior, Lima and Dill 1990).  The tactics employed in 

anti-predator behavior can be diverse and are affected by factors such as prey body 

condition and life history (the “asset protection principle”, Clark 1994), predator 

encounter probability and subsequent escape probability (Lima and Dill 1990), landscape 

features (Heithaus et al. 2009), prey escape mode (Heithaus et al. 2009, Wirsing et al. 

2010), and predator hunting mode (e.g., Pressier et al. 2007).  All of these factors can also 

alter the effectiveness of anti-predator behavior, which can in turn alter the level of 

investment of anti-predator behavior and the strength of BMTCs.     

Ecological theory suggests that species that are relatively long lived, highly 

iteroparous, or in good body condition should invest more heavily in anti-predator 

behavior because their chance for future reproductive success is high; individuals that are 

semelparous or energetically stressed, however, are likely to reduce anti-predator 

behavior and accept increased predation risk in order to fulfill immediate energy or 

reproductive demands (e.g., McNamara and Houston 1990, Clark 1994, Warner 1998, 

Frid et al. 2012).  This results in a dynamic investment in anti-predator behavior 

dependent on both properties of predation risk and prey (i.e., the “risk allocation 

hypothesis”, Lima and Bednekoff 1999).  The myriad factors which can alter the intensity 

of anti-predator behavior results in context dependence of the nature and strength of risk 

effects and BMTCs (e.g., Heithaus et al. 2009).  
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 Because prey adopt anti-predator behavior in a state-dependent manner, prey in 

poor condition are more likely to succumb to actual predation events, while their 

acceptance of higher predation risk weakens the influence of risk effects (Anholt and 

Werner 1995, Sinclair and Arcese 1995, Heithaus et al. 2007b, Heithaus et al. 2008).  

Therefore, resource loss may mediate the absolute and relative strengths of consumptive 

and non-consumptive predator effects (Heithaus et al. 2008), even if predator abundance 

and behavior remains stable.  However, most investigations into human-induced shifts in 

consumptive and non-consumptive predator effects have focused on the role of predator 

loss, not of ecosystem disturbance and resource loss.  Furthermore, the role that climactic 

extremes may play in influencing the importance of non-consumptive predator effects has 

received little attention.  Given increased rates of anthropogenic disturbance and top 

predator loss, it is thus critical to understand in what ways climate-related disturbances 

may influence top down control in ecosystems. 

Seagrass ecosystems support diverse consumer communities and provide myriad 

ecosystem functions including primary production, habitat creation, sediment 

stabilization, and carbon sequestration and storage (e.g., Costanza et al. 1997, Heck et al. 

2003, Orth et al. 2006, Fourqurean et al. 2012).  Despite their importance as foundations 

of coastal ecosystems, seagrass habitats are declining at alarming rates both through local 

stressors such as sedimentation and eutrophication (e.g., Short and Wyllie-Echeverria 

1996, Waycott et al. 2009) and climactic extremes including marine heat waves and 

hurricanes (e.g., Fraser et al. 2014, Thomson et al. 2014).  Seagrass habitats subjected to 

intense stressors therefore represent a valuable opportunity to test a priori predictions 

(e.g., Heithaus et al. 2008) about how resource loss affects abundance and anti-predator 
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behavior of seagrass-associated fauna.  Such tests provide critical insights into our ability 

to predict how top down control will change in response to disturbance and climate 

change.   

The objective of this study was to determine the impacts of widespread seagrass 

loss on abundance and habitat use patterns of large-bodied consumers following a 

widespread seagrass decline in Shark Bay, Western Australia.  Specifically, I used long 

term standardized survey data (shark fishing, visual surface transect surveys) before 

(1997-2010) and after (2012-2014) a heat-wave induced seagrass die-off to test whether 

1) reduction of the resource base resulted in reduced abundance of air-breathing 

megafauna and large sharks, and 2) whether resource loss and a concentration of 

remaining resources to dangerous shallow seagrass bank altered risk-sensitive habitat use 

patterns of tiger shark prey.   

Methods 

Shark Bay (25°45’ S, 113°44’E), Western Australia is a shallow (<15m), 13,000 

km2 semi-enclosed subtropical embayment situated approximately 800km north of Perth.  

The bay historically contained over 4000 km2 of seagrass (Walker et al. 1988)- among 

the largest seagrass ecosystems on earth.  Shark Bay’s seagrass assemblage has been 

historically dominated by the temperate seagrass Amphibolis antarctica, which accounted 

for approximately 85% of seagrass cover and often formed dense, monospecific stands of 

90-100% cover where it occurred (Walker et al. 1988, Burkholder et al. 2013a).  Because 

of the height, density, and productivity of A. antarctica beds, this seagrass is a 

structurally complex ecosystem engineer (sensu Jones et al. 1994) that creates extensive 
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benthic habitat, stabilizes sediment, and contributes significant primary and secondary 

production in this ecosystem (Walker 1985, Walker and McComb 1988).  Indeed, these 

expansive seagrass beds directly or indirectly support a wide variety of megafauna (see 

below).  Despite its large size, Shark Bay is largely undeveloped with a small human 

population and relatively few local and regional anthropogenic stressors (Department of 

Environment and Conservation 2008).   

The study area, immediately north of Monkey Mia, consists of a series of near-

shore shallow (<4m) seagrass banks separated by deep (6-12m), seagrass-depauperate 

channels (Heithaus 2001, Fig. 1).  Since 1997 this study area has been used as a model 

system to understand the importance of risk effects of tiger sharks (Galeocerdo cuvier) 

on associated prey species and ecosystem structure (Heithaus et al. 2012, Burkholder et 

al. 2013, Bessey et al. 2016).  Tiger sharks’ potential air-breathing prey in this system 

include megaherbivores [dugongs (Dugong dugon) and green sea turtles (Chelonia 

mydas)], piscivourous mesopredators [Indo-Pacific bottlenose dolphins (Tursiops 

aduncus), Piedcormorants (Phalacrocorax spp), sea snakes (subfamily Hydrophiinae)], 

and benthic invertivores [loggerhead sea turtles (Caretta caretta) , Heithaus et al. 2012 

and references therein]. Before the seagrass die-off, shark abundance varied temporally 

with consistently high shark abundances during warm months (September-May), and 

very low abundances during most – but, importantly, not all - winters (June-August, 

Heithaus 2001, Wirsing et al. 2006) and with higher use of shallow habitats than deep 

ones (Heithaus et al. 2002, 2006).  These shallow seagrass habitats were characterized by 

relatively higher density and quality of food resources for herbivores (dugongs, green 

turtles) and mesopredators (sea snakes, cormorants, dolphins), but also carry an increased 
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risk of predation by tiger sharks (see Heithaus et al. 2012 and references therein). In 

response to these spatiotemporal patterns of risk and food availability, before the seagrass 

die-off multiple consumer species were distributed in rough proportion to their food 

supply (i.e., an ideal free distribution, Fretwell and Lucas 1970) when predation risk was 

low, but overused resource-poor but safer deeper habitats during dangerous periods (see 

Heithaus et al. 2012 for a review).  These shifts in habitat use resulted in a behaviorally-

mediated trophic cascade that structured the seagrass community in this system with 

intense herbivory from megaherbivores concentrated in safer areas (Burkholder et al. 

2013b). 

 A subtropical seagrass ecosystem, Shark Bay marks the northern boundary for the 

temperate seagrass A. antarctica (Walker et al. 1988). In the Austral summer of 2011 

ocean temperatures rose 2-4°C above average for a two-month period (Wernberg et al. 

2013) driven by strong La Niña conditions that increased the poleward flow of tropical 

water via the Leeuwin current along the Western Australia coast (Pearce and Feng 2013). 

In Shark Bay, daytime water temperatures for the month of February were 29.8 o C (3.5oC 

above average), and average monthly temperatures for January, February, and March 

2011 exceeded average temperatures for February, the hottest month in most years 

(Chapter III).  Following this extreme event, A. antarctica experienced widespread 

declines in cover that exceeded 90% in many areas of Shark Bay (Thomson et al. 2014, 

Fraser et al. 2014), with the magnitude of seagrass die-off positively correlated with 

depth (Thomson et al. 2014).  Seagrass loss of this magnitude has not been previously 

reported in Shark Bay. The seagrass loss was also accompanied by a ~40% decline in 
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benthic fish biomass in shallow habitats and a ~27% decline in fish biomass in deep 

habitats (Nowicki et al. in preparation).  

 

Figure 1.  Shark Bay, Western Australia.  The study area is located immediately north of 

Monkey Mia (asterisk, a) in the Eastern Gulf.  The study area is typified by a series of 

shallow (<4.0 m) seagrass banks (light grey) separated by deep (6-12m) sandy channels 

habitats (dark grey).  Locations of transect surveys are indicated by black lines.  Shark 

fishing occurred on the three transects marked with asterisks.  Modified from Heithaus 

(2005). 

 

Field methods 

 While fishing and transects occurred in all months, field effort was largely 

concentrated between February and October in most years to ensure capture of seasonal 

transitions.  Shark abundance was estimated using a standardized top-set drumline 

method established in 1997 (Heithaus 2001).  From 1997-2015, tiger sharks were 

sampled via single hook top set drumlines set in three deep channels in the study system 

(Fig. 1).  On each fishing day (approximately 4 days per field month, mean=3.86, 

s=2.07), up to 10 baited drumlines were set at dawn.  Drumlines were secured to the 

bottom with a danforth anchor attached to 20m of line; a 25L floating drum suspended a 

single baited 13-0 Mustad Shark Hook 1-2 m below the surface (Heithaus 2001, Wirsing 
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et al. 2006).  Some sets were baited with 12-0 or 14-0 sized hooks, but since hook size 

can impact tiger shark catch rates in this system (Heithaus 2001), these sets are excluded 

and are not mentioned further.  Drumlines were usually separated by 300m; occasionally, 

drumlines were set concurrently in two channels with drums 700m apart.  Previous work 

has shown these differences in deployment to not influence catch rates (Wirsing et al. 

2006) so results from both deployment types were pooled.   

Drumlines were baited with ~1.5 kg of fish; bait species varied, but was 

dominated by Australian Salmon (Arripis trutta, 37.0% of soak time), Pink Snapper 

(Pagrus auratus¸15.7%), Emperor (Lethrinis spp., 14.4%), Tailor (Pomatomus saltatrix, 

13.7%), and Sea mullet (Mugil cephalus, 8.8%), which made up c.a. 90% of soak time.  

Because catch data were expressed per-day for analysis, and previous analysis of sharks 

caught using these bait species (excluding emperor) indicate bait identity does not 

significantly influence catch rates, a bait correction factor was not applied.  Lines were 

checked every 2-4 hours for bait loss and shark presence.  Soak time was calculated as 

time between bait entry and bait removal; for hooks at which bait was missing or a shark 

was captured, bait removal was assumed to occur halfway between checks.  Catch data 

from all sets in a day were pooled to obtain daily averages and reduce zero-inflation.  

Shark handling procedures are described in detail elsewhere (Heithaus 2001).  

Briefly, hooked sharks were brought along the 4.5-5.5m research vessel and were 

allowed to swim freely to minimize stress while the vessel idled forward.  Shark total 

length (TL), fork length (FL), and pre-caudal length (PCL) was measured to the nearest 

cm and a unique numbered rototag was placed in the dorsal fin.   
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Transect surveys 

Densities of air breathing megafauna (e.g., dolphins, dugongs, green and 

loggerhead sea turtles, cormorants, and sea snakes) were assessed via visual belt 

transects.  Eleven transects, ranging in length from 2.9-4.5 km, were established in the 

study area in 1997; five over shallow (<3m depth) seagrass banks, and six over deeper 

(~6-12m depth) channel and sandflat habitats (Heithaus 2001, Fig 1).  Each transect was 

run between sunrise and sunset c.a. 4 times a month at 6-9 km/hr using a 4.5-5.5m vessel 

with an outboard motor and usually 3 observers (mean=3.24, s=1.05) from 1998-2014 

(excluding 2001 and 2005).  Because of interspecific differences in size and surface 

behavior, transect widths varied among species (Table 1).  Only individuals at the surface 

that had not passed the boat were counted. At each sighting, depth, bottom cover under 

the boat,  heading and distance to the animal were also recorded.     

Slow vessel speeds, relatively short dive times (except for sea turtles, see below) 

and direct comparisons of relative change in animal density within habitat types and 

seasons minimize the need for correction factors (Heithaus et al. 2012, Wirsing et al. 

2007a).  To minimize recounting individuals, transects were not run more than once per 

day, and transects were run in haphazard order and direction.  Cormorants that fled from 

the boat upon approach were watched until they landed or left the area to minimize 

recounting.  Transects were only run in Beaufort sea state conditions of 3 or lower to 

minimize sampling bias (ca. 87% were ≤ 2).  To minimize the influence of large groups 

which were very rarely encountered (<0.1% of sighting events), I excluded encounters in 

which group size exceeded 30 individuals from analysis (n=12 occurrences for 
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cormorants, n = 1 occurrence for dolphins).  All transects from 2011 were excluded from 

analysis to allow for a clear separation between periods before and after the heat wave.   

Sea turtles are capable of lengthy dives and spend a relatively small proportion of 

their time at the surface; as such, reliable identification of turtles to species was not 

always possible.  To derive estimates of the proportions of green and loggerhead turtles 

of unknown sightings, I extracted and pooled species proportion data from years in which 

turtle identification rates were high (>75%, n=9 years) and applied the resulting estimate 

to years in which identification rates were low (<75%, n=5 years).  Because only two 

post-die-off years had high identification success, formal statistical comparison between 

time periods was not possible.  However, species proportions were similar in both time 

periods, so post-decline years (2012-2014) and pre-decline years (1998-2010) were 

pooled.   

 Turtle dive behavior results in significant availability bias for these species 

(Thomson et al. 2012) which can greatly impact density estimates when using surface 

surveys (Thomson et al. 2013).  Since turtle dive profiles and proportional surface use are 

temperature and depth dependent (derived within the study site, Thomson et al. 2012), I 

applied a correction factor that took into account water temperature (monthly average, 

see Chapter III), depth (averaged across each transect), and turtle species.  All reported 

values have been corrected for availability bias. 

Data analysis 

All data were analyzed in R. studio version 0.99.892 (RStudio Team 2015).  

Shark catch rates were expressed as sharks per hour of fishing effort, hereafter referred to 
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as sharks per hook hour.  All hooks set in a day were pooled.  Catch rates appear to be a 

reliable measure of tiger shark abundance since sighting frequency of free swimming 

sharks is directly related to catch rates and sharks tagged with passive acoustic tags (n=8) 

have only been detected during periods of high catch rates (e.g., Heithaus 2001).  

Furthermore, tiger sharks have been caught even at low winter temperatures, suggesting 

that changes in catch rates are not because of temperature-induced suspension of feeding 

(Wirsing et al. 2006, this study).   

Table 1.  Belt transect widths and sighting distances for each species.  

 

Common name Scientific name 
sighting distance/  
transect width (m) 

Indo-Pacific bottlenose dolphin Tursiops cf. aduncus 200/400 

Dugong  Dugong dugon 100/200 

Green turtle Chelonia mydas 30/60 

Piedcormorant Phalacrocorax varius 30/60 

Loggerhead turtle Caretta caretta  30/60 

Bar-bellied sea snake Hydrophis elegans 5/10 

Olive-headed sea snake Disteria major 5/10 

Shark Bay sea snake Aipysurus pooleorum 5/10 

 

 

Shark catch data were analyzed via generalized additive mixed modelling and 

model selection using the “gamm” function in the mgcv package (Wood 2011).  To 

minimize impact of zero inflation and skew, the following transformation was applied to 

catch data: 

√(𝑆ℎ𝑎𝑟𝑘𝑠 𝑝𝑒𝑟 ℎ𝑜𝑜𝑘 ℎ𝑜𝑢𝑟 ∗ 100) + 1 

Day of year (DOY) was included as a smoothing function with cubic regression 

splines; time period (pre/post decline), season (warm, cool) and their interaction were 



147 

 

included as fixed effects in the full model.  Because year is nested within time period, it 

could not be included as a fixed effect and was instead included as a random effect.  

Transect identity was also included as a random effect in the full model to account for 

repeated visits. A monthly variance structure (i.e., “VarIdent” function in the nlme 

package, Pinheiro et al. 2016) was applied to address model heterogeneity.  DOY was 

treated as a continuous variable, while season and pre/post die-off were treated as discrete 

factors.  Because shark catch rates are already a property of soak time, an offset for 

fishing effort was not applied.  I used an information theoretic model selection approach 

to choose the optimal model (Anderson 2004).  Briefly, the Akaike Information Criteron 

(AIC) was used to determine the optimal random and fixed effects structures; differences 

in AIC >2 were interpreted to indicate significant model improvement (Zuur et al. 2009, 

Anderon 2004).  In the event of ΔAIC <2, the more parsimonious model was retained.     

Sightings of air-breathing fauna on transect surveys were converted to densities 

based on sighting band width and transect lengths (and for turtles, availability bias).  To 

assess general impacts of seagrass decline on fauna densities at a system wide scale, a 

general linear mixed-effects model was applied to density data using the “glmer” function 

in the lme4 package in R (Bates et al. 2015).  In each model, time period was the only 

fixed factor; season, habitat, and transect identification were included as separate random 

intercepts (Zuur et al. 2009).  The data were positive and included a large proportion of 

zeroes; however, because the density data were also continuous, a negative-binomial 

distribution was not appropriate to model the data without use of an offset (Zuur et al. 

2009).  Therefore, a tweedie distribution was applied with a power variance structure 



148 

 

which differed by species and model (packages statmod and tweedie, Giner and Smyth 

2016, Table 6).   

  To assess changes in faunal habitat use patterns in relation to the die-off, the 

significance of a three-way interaction between season (cool, warm), habitat (deep, 

shallow), and time period (pre-die-off, post-die-off) on density of each species were 

assessed with generalized linear mixed effects modeling, again using “glmer”.  Since 

shark abundance correlates strongly with season in most years (see results), season was 

used as a proxy for predation risk.  Transect identity was a random effect to account for 

repeated transect visits.  Results were again modeled using a tweedie distribution (link 

power=0, var power=2, packages “tweedie” and “statmod”, Dunn 2014, Giner and Smyth 

2016).  For each model, a “bobyqa” control optimizer was applied with 5 integration 

points.  I interpreted a significant three way interaction between habitat, season, and time 

period to indicate that seasonal habitat use patterns had changed in response to the 

seagrass die-off.  

Results  

 There were 421 shark fishing days between 1998-2015 (1997 was excluded 

because of methodological differences with later years).  Days in which hook hours were 

low (<10 hook hours, n=6 days) were excluded, as were fishing days from 2011 when the 

heat wave occurred (n=23 days), leaving 26,218 hook hours over 392 fishing days (298 

days pre-die-off, 94 days post-die-off).  Daily shark fishing effort before the die-off 

(64.96±23.74 hook hours per day) was lower than after the die-off (72.97±22.56 hook 

hours per day, One-way ANOVA, F1,390=9.10, p=0.003), a pattern driven by increased 
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soak time in post-die-off cold seasons (Two-way ANOVA on interaction term, 

F1,388=4.59, p=0.03, Fig 2a).  Longer soak times tended to yield lower sharks per hook 

our both for large sharks (>3m) (one-way ANOVA, F1,390=84.7, p<0.0001, R2=0.178) 

and for sharks as a whole ( one-way ANOVA, F1,390=86.1, p<0.0001, R2=0.181), making 

my findings of no significant decline in seasonal shark abundances conservative (Fig. 2 

b,c).  

Within fishing days that were retained for analysis, 828 sharks from 15 species 

were captured (553 individuals from 9 species pre-die-off, 275 individuals from 12 

species post-die-off).   The large shark community was dominated overwhelmingly by 

tiger sharks, Galeocerdo cuvier, which made up 89.6% of the overall catch (742 of 828 

captures).  Tiger sharks dominated the catch in both time periods (91.5% and 85.5% of 

catch, respectively); this pattern was even more pronounced among large sharks (≥3.0m 

TL), with G. cuvier making up 99.5% and 97.1% of large shark catch before and after the 

die-off, respectively.  The next most common species was the sandbar shark 

(Carcharhinus plumbeus), which made up 5.6% and 5.1% of the catch before and after 

the die-off, respectively; all other shark species were rarely encountered. 

 Under both model selection procedures, models performed similarly, with the 

optimal model containing the DOY smoother only for both the large shark model and the 

all shark model; this suggests that tiger shark catch rates were similar in both time 

periods (Tables 2,3, Fig 3).   Seasonality in catch rates, which is characteristic of this 

system in most (but not all) years, did not change in response to seagrass die-off (Fig. 3).    

Changes in air-breathing megafauna populations 
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In total, 3329 transects were run (2617 pre-die-off, 712 post-die-off), resulting in 

12,310 linear kilometers surveyed; in total, 22,007 animals were sighted (Table 4).  In 

years where turtle species identification success was high, green turtles made up a smaller 

proportion of sightings (µ=0.42, s=0.09) than loggerhead turtles (µ=0.58, s=0.09).  

Impacts of the seagrass die-off on abundance varied by species.  Dolphin and loggerhead 

turtle relative densities were not significantly different between time periods (t1, 

3314=1.284, p=0.199 and t1, 3314=1.502, p=0.133, respectively; Tables 4 and 5, Fig 4 A,P).  

Relative densities of all other species dropped significantly in response to the seagrass 

die-off.  Dugong densities dropped by 54.4% (t1, 3314=2.455, p=0.014), while cormorant 

and green turtle densities declined by 35.4% (t1, 3314=7.459, p<0.0001) and 24.4% (t1, 

3314=2.338, p<0.0194), respectively (Tables 4 and 5, Fig 4 D, G). Sea snakes suffered the 

largest losses, declining in density by 76.9% (t1, 3314=5.433, p<0.0001, Tables 4 and 5, Fig 

4 J).   

Mixed effect modelling indicated that seasonal habitat use patterns shifted after 

the resource decline for three of the six species surveyed (Table 5).  Neither dolphins nor 

cormorants changed habitat use patterns in cold months, but both increased their relative 

use of dangerous but profitable seagrass banks over safer but less profitable deep habitats 

during warm months when predation risk is highest (Fig. 4B-C, H-I).  The sea snake 

model also indicated shifts in seasonal habitat use patterns, though these results are more 

difficult to interpret (Fig. 4 K, L).  Dugongs, green turtles, and loggerhead turtles did not 

change  seasonal habitat use patterns (Table 5, Fig 4).  Instead, dugongs and green turtles 

became less common in the warm season in both habitats, while loggerhead turtles 
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became more common in shallow habitats in both seasons (Fig. 4 E-F, N-O, and Q-R, 

respectively).   

 
Figure 2.  Shark fishing effort during pre-die-off (1998-2010) and post-die-off (2012-

2015) periods broken up by season and time period (A).  Pre-die-off effort is displayed in 

blue; post-die-off effort is displayed in orange.  Shaded and unshaded areas refer to cold 

and warm seasons, respectively. Relationships between fishing effort and sharks per hook 

hour (in all seasons combined) for large (>3m) sharks (B) and all sharks (C). 
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Table 3.  General additive mixed models (GAMMs) used in model selection for 

shark catch rates. Day of year (DOY) was included as a smoother function in all 

models, with season (cold, warm), time period (pre-die-off, post-die-off), and 

their interaction included as potential fixed effects. Transect identity (ID) and 

year (Yr) were random effects.  AIC=Akaike’s Information Criterion.  The 

optimal model is highlighted in bold.    

 

 
 

 

 

 

 

 

 

 

 

Fixed effects
Random 

effects

AIC (all 

sharks)
ΔAIC

AIC 

(large 

sharks)

ΔAIC

s(DOY) +Prepost*Season Yr, FZ 805.14 3.51 630.1 2.14

s(DOY) +Prepost+Season Yr, FZ 804.28 2.65 629.16 1.20

s(DOY) +Prepost Yr, FZ 803.54 1.91 627.17 -0.79

s(DOY) +Season Yr, FZ 802.42 0.79 629.96 2.00

s(DOY) Yr, FZ 801.63 0 627.96 0
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Figure 3.  Catch rates of all sharks (A) and sharks ≥ 3m TL (B) by day of year and time 

period.  LOESS smoothers (span=0.75) with 95% confidence intervals (shaded buffers) 

have been applied to better visualize temporal patterns. The cold season is represented by 

the shaded vertical bar.   

 

 

Table 4.  Densities for potential tiger shark prey. Turtle sightings include individuals for 

which species could not be determined, distributed to species based on species ratio 

estimates (see methods).    

 

 

 
 

 

transects 

run

animals 

sighted (n)

density 

(km2)
se

transects 

run

animals 

sighted (n)

density 

(km2)
se

5150 1.268 0.053 1605 1.479 0.111

645 0.349 0.04 77 0.159 0.025

417 4.728 0.316 28 1.093 0.248

10765 20.609 0.742 1885 13.305 0.756

624 1.856 0.095 139 1.539 0.177

589 8.022 0.406 118 6.06 0.693

dugongs

sea snakes

cormorants

loggerhead turtles

green turtles

species

dolphins

1997-2010 2012-2015

7122617
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Table 5. GLMM results from density and habitat use models of air-breathing 

mesoconusmers.  Details of model construction can be found in the methods.  

 

 
 

Discussion 

 My results suggest that widespread resource loss can result in large declines in 

densities of consumers across multiple trophic levels as well as alter habitat use of 

mesoconsumers, even when apex predator populations are stable.  Specifically, 

reductions in seagrass and teleost biomass (Thomson et al. 2014, Chapter III) resulted in 

shifts in habitat use patterns of several species of large-bodied piscivores that are 

consistent with increased risk-taking.  These results suggest that resource loss, even in the 

absence of predator declines, can structure population densities and the spatial dynamics 

of communities. Considering how densities and habitat use patterns might change in the 

face of extreme events and resource declines is critical to predicting the consequences of 

climate change and other anthropogenic impacts on ecosystem structure and function.     

Despite widespread basal resource loss, I detected no measurable effect of seagrass die-

off on the relative abundance of tiger sharks.  In addition, shark catch rates retained the 

basic seasonal pattern of this system, with high shark densities in warm months and very 

low densities in most cool months.  Because tiger sharks dominated the catch both before 

and after the die-off, this indicates that warm periods remain risky to tiger shark prey at  

df t value Pr(>|z|)
variance 

power
df t value Pr(>|z|)

dolphins 1, 3313 1.284 0.199 0.5 1, 3317 5.682 <0.0001 2

dugongs 1, 3313 2.455 0.014 1.2 1, 3317 0.355 0.722 1.2

sea snakes 1, 3313 5.433 <0.0001 1 1, 3317 5.865 <0.0001 0.5

cormorants 1, 3313 7.459 <0.0001 2 1, 3317 8.156 0.002 1

loggerhead turtles 1, 3313 1.502 0.133 1.5 1, 3317 1.165 0.244 1.5

green turtles 1, 3313 2.338 0.0194 1 1, 3317 0.084 0.933 2

variance 

power

Habitat use modelDensity model

species
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Figure 4.  Changes in overall density (left column), season and habitat-specific densities 

(central column), and spatio-temporal shifts in habitat use patterns relative to pre-decline 

patterns (right column) of five groups of air-breathing megafauna in response to seagrass 

die-off.  Significant differences are accompanied by p values.  The cold season is shaded.  

In the right column, values of one represent identical densities for that habitat/season 

combination before and after the die-off.  Seasonal habitat use patterns are considered to 

have shifted significantly if confidence intervals for each habitat within a season do not 

overlap.  Error bars = 95% CI; scale bars differ in each plot. Photos: SBERP.    

 

the ecosystem scale, while most winters remain relatively safe.  Thus, the temporal 

pattern of predation risk that typifies this this system and drives shifts in prey habitat use 

patterns (Heithaus et al. 2012 and references therein) remains fundamentally unchanged 

despite massive resource loss. 

  The insensitivity of tiger sharks to widespread seagrass die-off in this system is 

perhaps not surprising.  Tiger sharks are generalist predators at the individual level that 

feed on a wide variety of prey - including fish, other elasmobranchs, sea snakes, 

gastropods, crustaceans, birds, and marine mammals; tiger sharks also scavenge 

opportunistically (e.g., Matich et al. 2011, Lowe et al. 1996, Castro 2011).  In addition, 

many individual tiger sharks that use Shark Bay range widely (Heithaus et al. 2007a).  

Thus, local declines in one or even several prey species are unlikely to greatly affect tiger 

shark populations.  Indeed, loss of seagrass could actually result in short term increases in 

foraging success.  For example, energetically stressed prey may take greater risks to 

obtain food (Heithaus et al. 2007b), have reduced capability to escape from predator 

encounters.  Such a situation is possible in Shark Bay; body conditions of green turtles 

were significantly poorer after the die-off than before (Thomson et al. 2014). 

Furthermore, seagrass loss would eliminate refuges for some tiger shark prey, such as sea 
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snakes (Kerford et al. 2008, Wirsing and Heithaus 2009) and has reduced water clarity 

(Chapter III), potentially limiting visual detection of predators.   

Relative abundances of mesoconsumers 

The 2011 Western Australian marine heat wave was associated with widespread 

changes in algae, fish and coral communities throughout Western Australia (Pearce et al. 

2011, Wernberg et al. 2013, Smale and Wernberg 2013, Pearce and Feng 2013).  

Similarly, in Shark Bay, densities of several megafauna taxa declined significantly 

following seagrass loss, including sea snakes (76.9% decline), dugongs (54.4%), 

cormorants (35.4%), and green turtles (24.4%).  Conversely, densities of loggerhead 

turtles and dolphins were relatively unchanged. Sea snakes and dugongs are particularly 

dependent on seagrass ecosystems.  Dugongs are obligate seagrass herbivores (Marsh et 

al. 1982), while sea snakes use seagrass habitats not only to find prey, but also to hide 

from predators (e.g., Kerford et al. 2008, Wirsing and Heithaus 2009). While it is unclear 

what mechanism might drive declines in seasnakes (i.e., mortality vs emigration), several 

lines of evidence suggest declines in dugong densities are likely due primarily to 

emigration from the study system. First, dugongs respond to large-scale seagrass dieback 

events via large-scale movements among alternative foraging areas, with re-immigration 

potentially occurring quickly following disturbance as fast-growing tropical seagrasses 

recover (Preen and Marsh 1995, Hodgson 2007).  For example, following a direct hit by 

category 5 cyclone Vance in 1999, which caused widespread seagrass loss,  dugong 

densities at Ningaloo reef and Exmouth Gulf (350 km north of Shark Bay) declined 

heavily, while dugong populations in Shark Bay simultaneously increased by 40%  
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(Gales et al. 2004, Holley et al. 2006).  This increase could not be explained by 

reproduction alone (Gales et al. 2004).  By 2006, dugong densities began to rise at 

Ningaloo/Exmouth, while by 2002, dugong densities in Shark Bay had returned to pre-

disturbance levels.  This pattern was concomitant with the recovery of several tropical 

seagrass species at Ningaloo/Exmouth on which dugongs feed (Holley 2006, Loneragan 

et al. 2003).  Additionally, tracking data indicates dugongs are capable of migrations of 

hundreds of kilometers, even over short time scales (days), and appear to choose habitat 

based on presence of preferred seagrass food resources (Holley et al. 2006 and references 

therein).   Furthermore, if there had been a mass mortality event, widespread dugong 

strandings should have been reported as happened during a mortality event in eastern 

Australia (Great Barrier Reef Marine Park Authority 2014).  No dead, dying or stranded 

dugongs were encountered during thousands of hours of research, and no abnormal levels 

of dugong mortality or strandings were reported  to local wildlife officers (Department of 

Parks and Wildlife, pers. comm.). This suggests that dugong densities could recover 

relatively quickly in Shark Bay if conditions improve with individuals returning to the 

system from secondary feeding locations (Hodgson 2007).   

The impact of seagrass loss on sea turtle density was species-specific; densities of 

loggerhead turtles remained unchanged while densities of green turtles declined 

significantly.  This is likely due, at least in part, to differences between these two species 

in their level of reliance on seagrass as a food resource.  In the study system, loggerhead 

turtles are diet generalists and feed largely on benthic invertebrates and other taxa 

(Thomson et al. 2012), but they also will scavenge (Seney and Musick 2007).  Therefore, 

seagrass loss might have little – or even a temporarily positive impact – on their foraging 
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as refuge for benthic invertebrates is reduced.  Green turtles in the system are partially 

reliant on seagrass as a food source, but also eat a combination of gelatinous 

macroplankton and benthic macroalgae (Burkholder et al. 2011, Thomson et al. 2014).  

While the ability to feed on macroplankton or algae might be expected to buffer green 

turtles from the seagrass die-off more than dugongs, it appears that individual turtles 

specialize on specific food, or mixes of food (Burkholder et al. 2011).  Average body 

condition of green turtles captured following the seagrass die-off declined markedly 

(Thomson et al. 2014), and emaciated green turtles were found at the surface in the study 

system on multiple occasions between 2012 and 2015 (Nowicki pers. obs.), suggesting 

that mortality may be an important driver of the observed decline.  Since green turtles in 

poor body condition take greater risks to obtain food (Heithaus et al. 2007b), and 

energetically stressed turtles are probably less likely to be able to escape a predator 

encounter, it is likely that any increases in green turtle mortality are driven by both 

starvation and predation.    

The impact of seagrass die-off on piscivore densities also varied by species.  

Cormorants use seagrass habitats primarily for foraging and the 35% decline in their 

density may be linked to a ca. 40% reduction in the biomass of seagrass-associated fishes 

in the system (Heithaus 2004, Nowicki et al in prep) that they primarily forage on 

(Heithaus 2005).  It is unclear whether density reductions are driven by birds switching to 

different foraging locations or mortality. Interestingly, the reduction in cormorant 

densities occurred mostly in the cold season (when breeding season occurs, Dell and 
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Cherriman 2008), with a much smaller decline in warm period suggesting that mortality 

is unlikely the sole cause of changes in cormorant densities.  

Unlike cormorants, dolphin densities were similar after the die-off. This may be 

driven by differences in foraging abilities and tendencies for dolphins to remain fairly 

resident in the bay.  While dolphins in Shark Bay forage on seagrass-associated fishes 

(Heithaus and Dill 2002), they also forage in deeper habitats (e.g., Sargeant et al. 2007) 

and stable isotopic values indicate that dolphins may derive a substantial amount of their 

energy from plankton- or macroalgae-associated food webs (Heithaus et al. 2013). 

Second, dolphins are larger-bodied with greater energy stores than cormorants, 

potentially reducing their vulnerability to starvation mortality or need to emigrate.  Third, 

dolphins may be less likely to emigrate from the study system than cormorants because 

the former have relatively stable home ranges and inter-individual social bonds which 

likely play critical roles in reproductive success and fitness (e.g., Smolker et al. 1992, 

Connor et al. 2001, Krutzen and Sherwin 2004).  Therefore, dolphins are likely to remain 

in the system as long as adequate resources are available.    

Effects on mesoconsumer habitat use patterns 

  The proportion of dolphins and cormorants that used risky but relatively 

profitable shallow seagrass banks during periods when tiger sharks were abundant was 

greater after the die-off than before it.  This pattern is consistent with individuals taking 

greater risks to obtain higher foraging rewards after the onset of resource (seagrass and 

fish) declines.  The sea snake habitat use model indicated significant shifts in habitat use 

since the die-off, but the biological significance of this result is unclear. Given the 
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magnitude of sea snake decline, and the extremely low frequency of sea snake sightings 

in deep habitats (particularly in the cold season), it may not be possible to reliably infer 

shifts in sea snake habitat use patterns with the methods described here.   

 Loggerhead turtles increased their relative use of shallow habitats in both low-risk 

and high-risk periods after the seagrass decline.  This may reflect enhanced foraging 

success in newly denuded shallow banks.  Indeed, loggerhead turtles in Shark Bay are 

most commonly found, and appear to forage most often, in un-vegetated habitats where 

they can locate and consume both epibenthic and infaunal invertebrates (Thomson et al. 

2012).  Unfortunately, data on loggerhead prey distributions or post die-off foraging 

success are not available to test this hypothesis. 

Like loggerhead turtles, green turtles did not show significant changes habitat use 

patterns.  Instead, green turtle densities declined in both deep and shallow habitats during 

warm seasons.  This was somewhat surprising because green turtle body conditions were 

substantially lower after the seagrass die-off (Thomson et al. 2014); before the seagrass 

die-off, green turtles in poor body condition foraged further into shallow seagrass banks 

than green turtles in good body condition when tiger sharks are abundant, illustrating that 

such condition-dependent risk taking by green turtles does occur in this system (Heithaus 

et al. 2007b).    

Several factors may explain the apparent lack of increased risk taking by 

energetically stressed green turtles at the population level when it is known to exist at the 

individual level. As diet specialists in this system (Burkholder et al. 2011), green turtles 

with seagrass heavy diets may have been disproportionately impacted by the die-off, 
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reducing the proportion of individuals that must enter shallow habitats to feed.  

Alternatively, turtles that previously specialized on seagrass may have switched to other 

food sources which are not necessarily more common in shallow habitats (i.e., gelatinous 

macroplankton).  Finally, since feeding on gelatinous macroplankton occurs in the water 

column instead of on the benthos (Heithaus et al. 2002, Thomson and Heithaus 2014), 

and sea turtles reduce air volume to remain submerged at shallower depths (e.g., Hays et 

al. 2004), shifts in foraging tactics may drive differences in diving behavior and 

availability bias, even if habitat use patterns remain unchanged.  Clearly, further study on 

the implications of resource loss for green turtle populations, diets, and behavior is 

needed.     

More generally, several alternative hypotheses, which I consider less likely, could 

drive the observed patterns of risk-sensitive habitat use in this study.  First, while 

seagrass loss was extensive throughout the study area, it is possible that the relative 

concentration of food resources into shallow habitats versus deep habitats has 

strengthened, not weakened, since the die-off.  If true, shifts in habitat use by some tiger 

shark prey could be driven by a change in the food landscape instead of by increased risk-

taking by tiger shark prey.  However, this is unlikely for most species, with the potential 

exception of loggerhead turtles. For piscivorous species (cormorants, sea snakes, 

dolphins), including those in which shifts in risk-sensitive habitat use were observed, 

declines in fish biomass were stronger in shallow (c.a. 40% decline) than deep habitats 

(c.a. 27% decline, Nowicki et al. in preparation).  Therefore, if resource availability were 

the primary driver of shifts in dolphins and cormorants, relative use of shallow habitats 

should decline, not increase (as was observed).   
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Though tiger shark abundance has not changed, the patterns consistent with 

increased risk taking could potentially be driven by spatial shifts in tiger shark habitat use 

patterns within the study system.  Shark fishing in shallow habitats was not possible 

because of logistical constraints (e.g., high rates of bait loss, Heithaus 2001).  Video 

tracking of sharks before the die-off revealed that tiger sharks spend more time in shallow 

than deep habitats (Heithaus et al 2002, Heithaus et al. 2006).  With the increased use of 

shallow habitats by known prey described here, it seems unlikely that tiger sharks would 

reverse previous habitat preferences to prefer deep habitats.  Even if tiger sharks have 

shifted to using shallow habitats less frequently (and reducing shark encounter rates 

experienced by prey), chance of encounter is only one component of predation risk (Lima 

and Dill 1990, Heithaus et al. 2009).  Indeed, shallow habitats carry higher intrinsic risk 

(i.e., probability of death in an encounter situation) for dugongs (Wirsing et al. 2007), 

dolphins (Heithaus and Dill 2002, 2006), and green turtles (Heithaus et al. 2007b) by 

reducing vertical maneuverability potential (and thus escape probability).  It is thus likely 

that shallow habitats remain more dangerous than deep habitats for tiger shark prey, and 

that the observed shifts in relative densities of dolphins, cormorants, and sea snakes is 

driven by increased risk-taking by these species. 

Ecological implications 

Extreme climactic events are predicted to occur with increased frequency as 

climate change continues (Easterling et al. 2000, IPCC 2014), and species interactions are 

likely to play an important role in determining how ecosystems respond (Zarnetske et al. 

2012, Taylor et al. 2015).  It is therefore critical to develop a better understanding of the 
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impact that such events, as well as their biotic interactions, will have on ecosystems 

(Thomson et al. 2014). Apex predators may act as particularly important biotic 

multipliers of climate change (sensu Zarnetske  et al. 2012) in part because of their large 

number of species interactions and their ability to generate trophic cascades through 

direct predation, risk effects, and the interaction of the two.  Appropriately, there has 

been a focus on determining the ecological role of marine apex predators in the context of 

global apex predator declines (e.g., Ferreti et al. 2010), with the goal of developing a 

predictive framework for the ecological consequences of marine top predator declines 

(e.g., Heithaus et al. 2008, 2009).  However, factors other than predator presence or 

density, such as condition-dependent habitat use by prey, can also alter the strength of 

top-down and bottom up disruptions to ecosystems as prey must take risks to meet 

energetic demands (Heithaus et al. 2008).  Resource declines in particular are predicted to 

shift the mechanisms through which top-down processes occur.  As resource limitation 

increases and risk-sensitive habitat use patterns of energetically stressed prey change, 

consumptive effects of predators should become relatively more important than non-

consumptive (risk) effects (Heithaus et al. 2008).  The behaviors observed in the study 

are consistent with this trend toward increased risk-taking that should increase 

consumptive effects of predators.  

Conclusions 

To my knowledge, this is the first study to investigate the effects of resource 

decline on anti-predator behavior of such a wide variety of consumers at the ecosystem 

scale.  Given the wide-spread nature of condition-dependent risk taking in oceans and on 
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land (e..g wildebeest, Connochaetes taurinus, Sinclair & Arcese 1995;  Redshanks, 

Tringa totanus, Yasue et al. 2003) it is important that resource loss, not only predator 

loss, is explicitly considered as a factor mediating anti-predator behavior at population 

and ecosystem scales.   This includes evaluating the potential for resource loss to alter the 

strength of behavior-mediated trophic cascades.  Inclusion of resource loss into a 

predictive framework for predator risk effects (see Heithaus et al. 2008) is valuable in 

predicting the impacts of both predator losses and system-wide disturbances to 

ecosystems as both local and global stressors (e.g., eutrophication, overfishing, climate 

change) continue. 
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Abstract 

Understanding how multiple stressors interact to impact ecosystems in the context 

of climate change is paramount.  In particular, biotic factors such as species interactions 

likely mediate how ecosystems respond to climate change.  Apex predators generally 

interact with many species in their ecosystems and are thought to enhance ecosystem 

stability and function.  Therefore, loss of apex predators may leave systems more 

susceptible to acute climate extremes. Despite the widespread co-occurrence of apex 

predator losses and disturbances from extreme climate events across multiple ecosystem 

types, we have a poor understanding of if, when, and how these stressors interact to 

influence ecosystems.  Here, I describe the results of a field experiment to determine 

whether loss of an apex marine predator, the tiger shark (Galeocerdo cuvier), might 

exacerbate effects of a recent extreme “marine heat wave” in a subtropical seagrass 

ecosystem.  Predator losses were simulated using diver-applied grazing treatments 

consistent with previously documented shifts in risk-sensitive foraging patterns of 

megagrazers (Dugong dugon).  Temperate late successional seagrasses declined in 

grazing treatments but remained stable in control plots, while early successional tropical 

seagrasses declined irrespective of grazing treatment.  This resulted in losses of structural 

complexity in grazing plots but not in control plots.  My results suggest that tiger sharks 

stabilize disturbed seagrass habitats, providing critical recovery time for high-value 

seagrass beds following major climactic disturbance. More generally, the widespread loss 

of apex predators on land and in oceans may amplify the effects of climate disturbance to 

habitat-forming species across diverse ecosystems and large spatial scales.   
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Introduction 

As extreme climactic events associated with anthropogenic climate change are 

becoming more frequent and intense (e.g., Easterling et al. 2000, Pachauri et al. 2014, Cai 

et al. 2014, 2015), the need to assess the impact of these events on ecosystems has 

become critical.  Warming and extreme events, however, do not occur in isolation and 

multiple stressors, both biotic and abiotic, can widely co-occur, potentially interacting to 

generate emergent ecosystem responses (e.g., Harley and Paine 2009, Harley 2011, 

Zarnetzke et al. 2012, Crain et al. 2008).  It is crucial, therefore, to understand when and 

how these combinations of stressors might interact to impact ecosystems (Mineur et al. 

2014).  

Species interactions are likely to have important roles in determining how 

ecosystems respond to climate change (Zarnetske et al. 2012, Taylor et al. 2015).  One of 

the most critical and widespread biotic changes to species interactions globally is the 

anthropogenically-mediated loss of apex predators (e.g., Ferretti et al. 2010, Estes et al. 

2011, 2016, Ripple et al. 2014).  Apex predator loss may act as a particularly important 

biotic multiplier of climate change (sensu Zarnetske et al. 2012) because of their large 

number of species interactions, low functional redundancy, and disproportionate 

vulnerability to exploitation (Jeffries and Lawton 1984, Schindler 1990, Heithaus et al. 

2008).  Despite the potentially powerful nature and likely widespread co-occurrence of 

apex predator losses with climate extremes, the potential that top predator loss amplifies 

effects of extreme events or facilitates ecosystem phase shifts is poorly understood 

(Harley et al. 2006, Richardson and Poloczanska 2008).  
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Trophic cascades induced by the loss of top predators have been widely 

documented (e.g., Daskalov 2007, Heithaus et al. 2008, Estes et al. 2011, Ripple et al. 

2014).  While such cascades can be the result of relaxed predation rates on prey, they can 

also operate exclusively through non-consumptive mechanisms (“risk effects”) and the 

interaction of consumptive and non-consumptive effects (e.g., Werner and Peacor 2003, 

Presser et al. 2005, Heithaus et al. 2008).  Loss of top predators can also lead to changes 

in ecosystem function (e.g., Schmitz et al. 2008, Estes et al. 2011) and, in marine systems 

may lead to reduction of stores of carbon sequestered in seagrass, mangrove, and marsh 

habitats (“blue carbon;” Atwood et al. 2015).   Maintenance of trophic cascades, 

particularly those that suppress herbivores, may be critical following large climactic 

disturbances to primary producer communities.  Despite much research about the effects 

of predator removal on trophic cascades, the impacts of apex predator loss on ecosystem 

stability are still not well understood (Britten et al. 2014) and experimental work 

evaluating this relationship is particularly lacking.   

To assess whether the loss of apex predators can cause emergent effects when 

combined with climactic disturbance, I performed a 16 month field experiment in the 

subtropical seagrass ecosystem of Shark Bay, Australia after a natural extreme climatic 

disturbance.  Shark Bay (25o25’S, 113o44’E) is a shallow (<15m), 13,000 km2 semi-

enclosed subtropical embayment approximately 800 km north of Perth, Western 

Australia.  The bay historically contained over 4000 km2 of seagrass, 85% of which was 

dominated by the temperate seagrass Amphibolis antarctica, which is at the tropical limit 

of its range in Shark Bay (Walker et al. 1988).  Amphibolis antarctica is an ecosystem 

engineer (sensu Jones et al. 1994) that forms dense, continuous beds that greatly increase 
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benthic structure, stabilize sediment, provide food to fauna (largely through the 

production of epiphytes), and provide greater carbon storage than species of tropical 

origin in the system (Walker et al. 1988, Borowitzka et al. 2006, Burkholder et al. 2013a, 

Atwood et al. 2015).  The most common tropical seagrass in the bay is Halodule 

uninervis (Burkholder et al. 2013a), a much smaller and structurally simpler species.  

Seagrasses in Shark Bay are grazed by large populations of green sea turtles (Chelonia 

mydas) and dugongs (Dugong dugon) which are at risk of predation from a largely intact 

population of tiger sharks (Galeocerdo cuvier)- risk which alters behavior in these 

species and triggers a behaviorally-mediated trophic cascade (or BMTC, Heithaus et al. 

2012 and references therein, Burkholder et al. 2013b). 

Over 15 years of research on BMTCs in Shark Bay has taken advantage of inter-

annual and seasonal variation in predation risk from tiger sharks (see Heithaus et al. 

2012).  A combination of manipulative and “natural” experiments have shown that tiger 

shark presence induces shifts in megaherbivore distribution and foraging tactics that 

facilitates the formation and persistence of dense, high-biomass, beds of A. antarctica in 

dangerous shallow waters and lower biomass beds of fast-growing species in safer 

habitats (Heithaus et al. 2012, Burkholder et al. 2013b, Figure 1a).  Beds in safer habitats 

also feature greater carbon storage capacity (Atwood et al. 2015).   Based on these 

studies, and those in other locations (e.g., Preen 1995), it is possible that megaherbivores 

released from shark predation risk may generate a regime-shift to a low-biomass, low 

carbon-storage, system even in previously dangerous habitats.  Because A. antarctica is 

of low nutritional value to herbivores (Burkholder et al. 2012) and the dense canopy of 

intact A. antarctica beds precludes establishment of fast-growing species, such a regime 
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shift might not occur through the loss of predators alone (Fig. 1a).  Synergistic effects of 

overfishing and disturbance to foundational species, however, should allow both the 

establishment of fast-growing seagrasses preferred by megaherbivores now free of 

predation risk and ultimately lead to a regime shift through positive feedbacks wherein 

risk-sensitive excavation grazing by dugongs reinforces the early successional state 

characterized by disturbance-tolerant tropical seagrasses (Fig. 1d).  The refuges from 

herbivory generated by tiger sharks in this system should be most important following a 

disturbance, where the possibility of a positive grazing feedback is highest (Fig. 1c).  

The Western Australian marine heat wave of 2011, during which ocean 

temperatures rose 2-4°C above average for a two month period (Wernberg et al 2013), 

provided an opportunity to investigate this interaction of predator loss and climactic 

disturbance in this system.  The warming event was driven by strong La Niña conditions 

which increased the flow of the tropical Leeuwin current southward along the Western 

coast; this was associated with a catastrophic (>90%) loss of Amphibolis antarctica  

(Pearce and Feng 2013, Thomson et al. 2014) and the opening of substrate to early 

successional tropical seagrasses like Halodule uninervis (Fig. 2), which has become more 

commonly encountered and more expansive where it occurs in the years since the 

original seagrass die-off (Chapter III). 

I implemented my field experiment following this die-off of A. Antarctica, 

mimicking changes in dugong foraging behavior consistent with tiger shark extirpation to 

determine whether a combination of simulated predator loss and climactic disturbance 

could destabilize remaining A. antarctica beds and generate a phase shift towards a 

tropical seagrass community.  I hypothesized: (1) In Shark Bay’s natural, predator rich 
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state, grazing in dangerous seagrass bed interiors will be minimal and both A. antarctica 

and associated tropical seagrass Halodule uninervis will increase in cover (Fig. 1c); (2) In 

the presence of increased grazing, A. antarctica cover will decline because of incidental 

removal during excavation grazing (sensu Preen 1995), while H. uninervis will 

compensate to increase cover (Fig. 1d).  I established 30 experimental plots in degraded 

A. Antarctica beds, separated into 3 grazing treatments (moderate simulated grazing, 

intense simulated grazing, and control).  Divers regularly applied treatments and 

measured changes in percent cover of A. Antarctica, H. uninervis, and benthic 

macroalgae.  I used mixed effects modeling and model selection to determine the impact 

of grazing treatments and seagrass bank identity on change in percent cover of seagrass 

and macroalgae over the experiment’s duration.    

Methods 

This work was conducted in the eastern gulf of Shark Bay, northeast of Monkey 

Mia.  In April-May 2013, 30 experimental plots, each measuring 3m x 3m, were placed at 

2m depth in the interiors of two seagrass banks separated by approximately 2km.  Each 

plot was placed in a degraded A. antarctica bed that was characterized by reduced A. 

antarctica cover, prevalence of exposed, dying A. antarctica rhizome tissue, presence of 

the early successional tropical seagrass Halodule uninervis, and generally low 

macroalgae cover.  Plots were placed in a blocked design on two banks; eighteen plots 

were placed on a heavily impacted bank (mean initial Amphibolis cover =17.3%, 

s=5.2%), and twelve on a moderately impacted bank (mean initial Amphibolis cover 

=33.1%, s=11.3%).  Each treatment was equally represented within each block. The mean 

Halodule cover was similar on both banks (mean 46.4% s=21.4%, Welch’s t-test: 
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Figure 1. Conceptual diagram of the role of trophic cascades and physical feedbacks in 

determining the stability and structure of A. antarctica beds in Shark Bay.  (a) In Shark 

Bay’s normal, undisturbed state, tiger sharks regulate megaherbivores by both 

consumptive and non-consumptive effects (top red arrow), indirectly facilitating 

persistence of A. Antarctica (left green arrow).  Dense seagrass beds generate positive 

physical feedbacks by trapping sediment and increasing water clarity; these beds also 

obscure and likely inhibit expansion of the tropical seagrass undercanopy, inhibiting 

excavation grazing by dugongs and facilitating bed maintenance.  (b) With predator 

losses but without a disturbance, A. Antarctica beds would putatively maintain their 

ability to generate positive physical feedbacks and inhibit excavation grazing, resulting in 

a probable loss of resilience but minimal direct impact on A. Antarctica.  In (c), a thermal 

disturbance causes A. Antarctica beds to die back, exposing preferred tropical seagrasses, 

promoting excavation by dugongs, and reversing positive physical feedbacks.  It is at this 

point that behavioral and consumptive control by tiger sharks is anticipated to be critical 

to minimizing risky excavation grazing in the degraded bed matrix of temperate and 

tropical seagrasses.  In (d), the dieoff of A. Antarctica and loss of apex predators combine 

to promote destructive excavation grazing, which favors a phase shift towards an 

ecosystem dominated by disturbance tolerant tropical seagrass at the expense of 

temperate late successional seagrass species like A. Antarctica. Both (c) and (d) were 

tested in this experiment. Photos: SBERP, Wikimedia creative commons 
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t24.2=0.09, p=0.93).  Macroalgae cover, while generally low (mean= 4.8%, s= 3.8%) was 

higher on the heavily impacted bank (6.8% vs 2.6%, Mann-Whitney test, W=118, 

p=0.0015).   

 

Figure 2. Representative states of the study area’s Amphibolis antarctica beds in their 

pre-decline state (a), approximately 18 months after (b) and 36 months after (c) the 2011 

marine heat wave.  Notice the tropical early successional seagrass Halodule uninervis 

(small shoots) growing in between the larger shoots of Amphibolis antarctica in (c). 

Photos: SBERP 

 

To eliminate biases in location or initial conditions, plots near each other were 

grouped into trios of similar initial macrophyte cover and location.  Plots in each trio 

were randomly assigned a treatment (control, moderate simulated grazing, and intense 

simulated grazing) with 10 plots per treatment.  Each treatment thus had similar initial 

cover conditions and were well mixed spatially with plots from other treatments.  Plots 

were marked with a post at each corner.  Plots were separated by at least 1m, but were 

generally further than 2m from each other. 

Because experimental manipulation of tiger shark predation risk is not feasible I 

used published data on risk-sensitive foraging by dugongs in the current study area 

(Wirsing 2007 a,b,c) to estimate the magnitude of dugong foraging in high-risk habitats 

a                                    b                                   c 
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where the experiments were focused. Dugong foraging effort (sec * month-1 * plot-1) was 

calculated by:   

 

Eqn. 1 

 

Where λ denotes the simulated grazing intensity.  Because excavation foraging is 

a more profitable tactic than cropping (Anderson 1982, 1998), all dugong foraging effort 

was assumed to be directed towards excavation as long as tropical seagrasses were 

present. Focal follows of dugongs in the study area allowed us to determine that  trails are 

excavated at the rate of ca. 10cm * sec-1 .  Dugong abundances and activity levels vary 

seasonally (Wirsing et al. 2007b), so λ was calculated separately for each month.  Plots 

were visited  every 1-2 months from May 2013 to August 2014 to apply grazing 

treatments. 

Control plots were visited to collect data but did not undergo simulated grazing.  

This treatment reflects the current risk landscape of Shark Bay where shallow seagrass 

beds are dangerous habitats for megaherbivores, resulting in general avoidance of 

shallow beds and low grazing intensity – especially through excavation - on such beds 

(Wirsing et al. 2007 a,b).  The moderate simulated grazing treatment mimicked the 

grazing effort that would be expected if the population size of megaherbivores did not 

change in response to shark overfishing, but individuals foraging in low-risk but low 

profitability habitats moved into previously dangerous but productive habitats to forage. 

These plots received λ /10 excavation trails per month, rounded to the nearest integer.  

Intense simulated grazing treatments were derived by increasing the moderate treatments 
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by 50%, to simulate both a behavioral and numerical response of megagrazer populations 

to shark loss. Though dugong densities have declined by 54% in the study system since 

the seagrass die-off, multiple lines of evidence suggest this is driven by emigration, not 

mass mortality, and that a return of dugong populations to pre-die-off densities is likely 

to occur before recovery of A. antarctica is complete (Chapters III, IV, also see 

discussion).  Nonetheless, the reduction in natural grazing suggests that our simulated 

grazing did not represent an unrealistic increase in pressure on seagrasses.   

Cropping and excavation grazing were simulated manually by divers.  Dugong 

excavation trails were created with hand trowels and had impacts consistent with dugong 

foraging.  Excavation trails did not target Amphibolis antarctica, but if A. antarctica was 

present in the trail, it was removed to mimic the incidental removal that occurs during 

excavation foraging (Preen et al.1995).  All treatments applied used the excavation tactic 

if sufficient H. uninervis was present (i.e., if a 20cm x 100cm grazing trail frame, 

consisting of five 20cm x 20cm sub-quadrats, could be placed within the plot so that at 

least three sub-quadrats contained H. uninervis).  When sufficient H. uninervis was not 

present, an equal area was grazed by “cropping” A. antarctica, consistent with dugong 

foraging tactics on this species.  In this case, the leaves and leaf sheathes (at the sheathe-

stem interface) were removed from all A. antarctica shoots within a grazing trail using a 

knife.  Halodule densities were only rarely low enough to require a switch to simulate 

cropping. 

Simulated feeding trails were straight and measured 15cm W x 100 cm L x 4 cm 

D.  Excavation trails removed all above-ground seagrass and algae biomass inside of the 

feeding trail.  Actual dugong feeding trails are of similar width and depth and remove 
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almost all seagrass shoots and rhizomes shallower than 3-5 cm deep (e.g., Preen 1995, De 

Iongh et al. 1995, Masini et al. 2001, Nakaoka et al. 2002).  Seagrass recovery and 

response to artificial dugong excavation trails is not significantly different from natural 

feeding trails (De Iongh et al. 1995). 

At 0, 7, 12, and 16 months into the experiment, cover of A. anatarctica, H. 

uninervis, and macroalgae was estimated by divers.  A 60cm x 60cm quadrat was placed 

in one corner of the plot and used to estimate cover, then flipped adjacent to the original 

quadrat until the cover of the entire plot was estimated, resulting in 25 quadrats per plot.  

A mean percent cover estimate was generated for each macrophyte group.  If a plot was 

destroyed (catastrophic loss of seagrass cover from sudden widespread seagrass 

defoliation or storm action), the plot was dropped from further analysis.  

Statistical analyses 

 I applied mixed effects modeling and model selection using the NLME package 

(Pinheiro et al. 2015) in RStudio version 0.98.1091(R Core Team 2014) to determine the 

importance of bank, grazing treatment, time, and their interactions on cover estimates of 

A. antarctica, H. uninervis, and macroalgae.  Four individual a priori  models were run 

for each of the 3 macrophyte groups (Table 1).  Percent cover data of A. antarctica and 

macroalgae were natural log transformed to normalize the data; Halodule cover data were 

fourth-root transformed.  A constant variance (A. antarctica) or exponential variance (H. 

uninervis) function was applied to models that displayed heterogeneity.  The Akaike 

Information Criteron (AIC) was used to determine the optimal model (Anderson 2008).  

When AIC values of competing models were similar (within 2), the similar models were 

compared using the Likelyhood Ratio Test (LRT) to aid in model selection (Anderson 
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2008, Zuur et al. 2009).  If the LRT indicated no significant difference between models, 

the more parsimonious model was retained.  

 

Table 1.  Models applied to macrophyte data.  Time since start (Time), bank identity 

(Bank), and grazing treatment (Treat) were fixed effects.  Plot ID was included as a 

random effect to account for temporal autocorrelation of the repeated measures.   

 

Model Fixed effects 

Random 

effects 

1 Time Plot ID 

2 Time + Bank + Time:Bank Plot ID 

3 Time + Bank + Treatment + Time:Treat + Time:Bank Plot ID 

4 
Time+ Bank + Treat+ Time:Treat + Time: Bank + 

Time:Bank:Treat Plot ID 

 

Results 

Of the 30 plots established, 29 remained intact for at least 12 months and were 

retained in analysis; 23 remained intact until experiment’s end.  Destroyed plots were 

compromised mostly by small-scale blowout events, and were evenly distributed between 

treatments (2 each in control and intense grazing treatments, 3 in moderate treatments).  

All plot losses occurred exclusively on the moderately impacted eastern bank.  

The application of simulated grazing treatments resulted in significant losses of A. 

antarctica cover but did not strongly affect the covers of tropical seagrasses or 

macroalgae (Fig. 3).  I saw no evidence of a significant general recovery of any 

macrophyte group, though A. antarctica did exhibit increases in cover in the moderately 

impacted eastern bank in control and moderate grazing treatments.  The optimal A. 

antarctica model included treatment, time, bank, and the interactions of bank:time and 

time:treatment  (Table 2).  This model was marginally better than the full model  
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Table 2.  Results of optimal model selection for each macrophyte group.  Because the 

response of interest is change in cover over time, only the interactions of treatment:year 

and bank:year are included here.  Values are only given if that parameter was retained in 

the optimal model for that macrophyte group.  Parameters marked with (*) are in 

comparison to the control treatment. 

 

 
 

 

 

Table 3.  Initial cover and absolute and relative changes in percent cover of A. antarctica 

and benthic macroalgae.  Ctrl= control treatment, SG= simulated grazing, ISG= Intense 

simulated grazing, HI= heavily impacted bank, MI=moderately impacted bank. 

 

 
 

(Likelyhood ratio test L=4.83, df=2, p=0.089) which also included a 3 way interaction of 

time:bank:treatment.  A. antarctica cover declined over time in grazing treatments but not 

in control plots on heavily impacted banks; on moderately impacted banks, some 

recovery of A.antarcica occurred in control and moderately grazed plots (Table 3). H. 

uninervis cover declined similarly across treatments throughout most of the experiment 

duration (mean decline= -18.2%, s=11.5%).  Moderate grazing plots, however,  

t df p t df p t df p

Time 1.57 77 0.12 -6.67 80 <0.001 -5.37 73 <0.001

Time:Bank -5.77 77 <0.001 - - - 2.99 73 0.0038

Time:Simulated Grazing* -2.81 77 0.0063 - - - - - -

Time: Intense Simulated Grazing* -3.09 77 0.0028 - - - - - -

A. antarctica H. uninervis Macroalgae
Model parameters

Ctrl 21.2% -4.1% 1.3% -19%

SG 24.5% -6.1% 2.8% -25%

ISG 23.9% -12.1% 2.1% -51%

HI 17.3% -10.1% 1.2% -58%

MI 33.1% -3.5% 2.8% -11%

HI 6.8% -6.6% 1.1% -97%

MI 2.6% 0.1% 0.9% 4%

Factor 

(interacting Factor Level

Initial % 

cover

 Absolute Δ % 

cover SE

Relative Δ % 

cover

A. antarctica

Grazing treatment

Bank

Bank

Macroalge
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Figure 3.  Change in cover of 

Amphibolis antarctica (a), and 

Halodule uninervis (b), and 

benthic macroalgae (c) by 

grazing treatment. Asterisks 

indicate significant differences 

in treatment effects when 

compared to controls.  Points 

intentionally staggered on the X 

axis. Scale of Y-axes differ. 

Error bars=SE.   
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rebounded in cover during the final sampling event (Fig. 3b).  Macroalgae cover 

remained stable on the moderately impacted eastern bank but declined on the heavily 

impacted western bank, with no differences among grazing treatments (Table 3). 

Discussion 

This study indicates that apex predator losses can exacerbate the effects of a 

climate disturbance by releasing herbivores from predation risk following a climate 

extreme, when the primary producer community is highly vulnerable to top down control, 

and that such losses may initiate long-term functional shifts in communities.  

Specifically, following massive climactic disturbance and seagrass die-back, grazing 

treatments consistent with a loss of tiger sharks and associated predation risk to dugongs 

resulted in c.a. 50% losses of remaining Amphibolis antarctica cover.  Conversely, other 

macrophytes such as the early successional seagrass Halodule uninervis and benthic 

macroalgae were insensitive to grazing treatments, instead declining generally with time.  

This suggests that apex predator loss exacerbates the effects of a climactic disturbance in 

this system, and would likely lead to a phase shift to an ecosystem devoid of many of the 

functions characteristic of intact meadows of late-successional seagrasses. 

A. antarctica cover remained fairly stable in control plots, but declined in cover 

by c.a. 50% in grazing treatments.  As A. antarctica is a late successional seagrass with 

generally long return times following large losses (see Chapter III and references 

therein), such a decline after only 16 months of simulated predator loss implies that 

elimination of the “seascape of fear” generated by tiger sharks in Shark Bay would lead 

to a phase shift away from an A. antarctica dominated ecosystem.  Interestingly, the final 

A. antarctica model was only a marginal improvement over than the full model 
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(p=0.089), which included a three way interaction of bank, treatment, and time.  Though 

not significant, this hints that the two banks, which differed in their initial cover of A. 

antarctica, may exhibit somewhat divergent responses to grazing treatments.  If true, this 

suggests that intensity of initial disturbance may mediate impacts of predator losses at 

more fine scales than a simple “disturbed / undisturbed” dichotomy presented here.  

Further work, in which a full design crossing predator loss and intensity of disturbance, 

would be valuable in determining the validity of this relationship. 

Responses of macroalgae and Halodule uninervis in this experiment indicate that 

other structurally complex macrophytes are unlikely to fill functional roles (habitat 

creation, sediment re-suspension) left vacant by A. antarctica.  Declines in already very 

low algae cover (Fig. 3c) indicate that macroalgae do not play a dominant role in the 

post-disturbance macrophyte community.  H. uninervis also declined with time, though 

neither macrophyte group was impacted by grazing treatment (Fig. 3b).   

The H. uninervis results are more difficult to interpret than those of A. antarctica, 

as insensitivity of this seagrass to grazing treatment was driven by general declines in H. 

uninervis in all treatments.  At first glance, a general decline in H. uninervis cover 

conflicts with the life history strategy of H. uninervis as an early successional seagrass 

(Larkum et al. 2006) and with results from sampling at broader geographic scales, which 

indicate H. uninervis is becoming more common throughout the study system (Chapter 

III).  This discrepancy may be caused by patch movement (Walker et al. 2006 and 

references therein) or the ephemeral nature of this seagrass; for example, Burkholder et 

al. (2013b) noticed high variability in H. uninervis shoot densities in interior 

microhabitats near this experiment over a 600 day enclosure experiment.  Plot placement 
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was dictated by relatively high initial H. uninervis cover, so it is more likely that patch 

movement would result emigration of H. uninervis rather than immigration.  

Alternatively, application of grazing to treatment plots which H. uninervis cover in 

treatment plots, may have resulted in spatial shifts in mesograzers like the herbivorous 

teleost Pelates octolineatus to the relatively “rich” control plots.  Indeed, P. octolineatus 

dominates the seagrass associated teleost community even after the die-off (Heithaus 

2004, Nowicki et al. in preparation) and H. uninervis is readily consumed over A. 

antarctica by mesograzers (Burkholder et al. 2012).  Though the mechanism of declines 

of H. uninervis in control plots remains unknown, this does not alter the conclusions 

presented here.  In other systems, heavy grazing pressure by dugongs can result in near 

total bed destruction, followed by rapid recolonization by tropical seagrass species (Preen 

1995, Nakaoka and Aioi 1999).  In response, dugongs and green turtles abandon seagrass 

patches as they become depleted in seagrass cover, only to revisit these sites as they 

recover to take advantage of higher nutrient concentrations in re-growing tissues 

(Bjorndal 1980, Preen 1995, Aragones et al. 2006, de Iongh et al. 2007).  In this 

experiment, there were several plots in which H. uninervis cover increased substantially 

after being almost completely absent a few months earlier.  This demonstrates that even 

in the presence of sustained grazing pressure or large fluctuations over relatively short 

time scales (when compared to recovery times of A. antarctica), early-successional 

seagrass are likely to persist and continue to attract destructive excavation grazing to 

degraded beds of A. antarctica.   

Declines in dugong density since the seagrass die-off (Chapter IV) are also 

unlikely to alter the conclusions presented here.  This is because (1) there was no change 
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in seasonal patterns of risk sensitive dugong habitat use following the decline, indicating 

predation risk is still a viable mechanism to enhance post-disturbance stability (Chapter 

IV); (2) several lines of evidence suggest that dugong declines are driven by emigration 

from the study system to alternate foraging areas, not mass mortality (Chapter IV); (3) 

dugongs are known to undertake large scale movements between foraging areas in 

response to large-scale seagrass loss, with re-immigration occurring within relatively 

short time scales as tropical seagrasses recover (Preen and Marsh 1995, Marsh and 

Lawler 2001, Holley 2006, Hodgson 2007); and (4) H. uninervis, preferred by dugongs 

(Preen 1995), has recovered beyond its pre-die-off extent and is continuing to expand 

(Chapter III).  Furthermore, reports from a wildlife cruise operator in the study area 

indicate that since 2014, dugongs are becoming more common (K. Justice, pers. 

communication), suggesting that dugong densities are beginning to recover.      

Others have suggested that predators can mediate the ecological impacts of 

climate change (e.g., Ripple et al. 2014, Estes et al. 2011, Sala 2006).  For example, gray 

wolves (Canis lupus) in Yellowstone National Park, USA, reduce resource bottlenecks to 

carrion scavengers associated with shifts to shorter winters and earlier snow thaw by 

increasing carrion availability in late winter. This dampens the effects of climate change 

on carrion scavengers (Wilmers and Gets 2005).  Similarly, a combination of climate 

change induced range shifts of the long-spined sea urchin (Centrostephanus rodgersii) 

and overfishing of predatory spiny lobster (Jasus edwardsii) in Tasmanian kelp forests 

increased the risk of phase shifts to urchin barrens (Ling et al. 2009).  However, while 

there is growing appreciation for the capability of predators to influence ecosystem 

responses to climate change, the role of predation risk in this regard is still relatively 
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poorly understood.  Here I show that predation risk can stabilize cover of a dominant 

ecosystem engineer, potentially increasing the resilience of the ecosystem. Because many 

seagrasses, particularly late successional seagrasses, are highly vulnerable to disturbance 

and are characterized by generally long recovery times, maintenance of the risk landscape 

of Shark Bay is likely critical to facilitating a return to an A. antarctica dominated system 

and the functions such dominance provides.  More generally, this work suggests that 

predators can mediate the effects of climate extremes not only through consumptive 

effects, but also through non-consumptive effects and the BMTCs such effects generate.     

While predator loss and climate change are both global threats to the functional 

integrity and resilience of ecosystems, the temporal and spatial scales at which these two 

stressors can be functionally addressed differ greatly.  Indeed, management at local and 

regional levels for ecological resilience may be key to preventing catastrophic phase 

shifts while long-term action is taken on climate change (e.g., DeYoung et al. 2008).  

Therefore, restoration of top predators and the ecological resilience they can impart may 

be a valid (if ambitious) short-term strategy to reduce the likelihood of destructive regime 

shifts caused by climate change as we attempt to slow and eventually rein in our effects 

on Earth’s climate.  However, future work is needed to determine the ecological 

conditions under which predator restoration is most likely to yield measurable increases 

in resilience to climate extremes. This strategy of climate resilience through predator 

restoration may be most effective in systems with highly iteroparous herbivores (such as 

Shark Bay), which are likely to invest highly in anti-predator behavior (Clark 1994) and 

thus are likely to propagate BMTCs.  Indeed, such a strategy for local resilience to 

climate extremes may become increasingly important as megafauna restoration efforts 
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such as those for the herbivorous green turtle (Chelonia mydas) continue to succeed 

(Heithaus et al. 2014).  Without a concomitant effort to also restore the predators of these 

herbivores, the resilience of plant communities to future climate disturbances may be 

reduced.   

With continued declines of top predators in terrestrial, freshwater, and marine 

ecosystems (e.g., Estes et al. 2011, Ripple et al. 2014), successful restorations of 

previously rare megaherbivores (e.g., Heithaus et al. 2014), and increasing impacts to 

foundation species through extreme climactic events (e.g., Easterling et al. 2000), there is 

an urgent need to understand how ecosystems will respond to the combination of top 

predator loss and climate change (Baum and Worm 2009).  While previous work 

indicates that top predators may be important mediators of ecosystem responses to 

climate change, the potential for top predators to enhance resilience to climate change 

remains poorly studied and understood.  In particular, the capability of non-consumptive 

predator effects to mediate the impacts of climate change to ecosystems has received 

little attention (Baum and Worm 2009).  Here I show that simulated shifts in risk-

sensitive behavior by dugongs in a manner consistent with tiger shark loss would 

exacerbate the impacts of an extreme climate event in Shark Bay.  To my knowledge this 

is among the first studies to examine whether predation risk may influence ecosystem 

responses to climactic extremes.  Though it is yet unclear how widely predation risk may 

alter resilience of ecosystems to climactic extremes, the global nature of apex predator 

loss and climate change suggest that co-occurrence of these two stressors is widespread.  

Identifying when predator effects are most likely to yield increased resilience to climate 

extremes will be critical to determining the potential effectiveness of predator restoration 
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as a technique to increase ecological resilience and maintain ecological function in a 

changing world.  

 

Acknowledgements 

I would like to acknowledge the critical assistance of field crews including J. Olson, A. 

Macy, R. Sarabia, J. Johnson, N. Norton, A. Morgan, K. Gastrich, M. Jew, T. Code, H. 

Neutzel, and C. Morgan.  I would also like to thank the people of Monkey Mia Dolphin 

Resort and Shark Bay for considerable logistical support.  Funding was provided by an 

NSF Rapid Response grant awarded to MRH, an NSF Graduate Research Fellowship 

awarded to RJN, a PADI foundation award to RJN, and donations from the public.  

Comments from R. Sarabia improved the manuscript.   

 

Literature Cited 

 

Anderson, D.R. (2008). Model Based Inference in the Life Sciences: A Primer on 

Evidence. Springer New York, New York, NY. 

 

Anderson, P. (1982). Studies of Dugongs at Shark Bay,Western Australia. II.* Surface 

and Subsurface Observations. Wildlife Research, 9, 85. 

 

Anderson, P.K. (1998). Shark Bay dugongs (Dugong dugon) in summer. II: Foragers in a 

Halodule-dominated community. Mammalia, 62, 409–426. 

 

Aragones, L.V., Lawler, I.R., Foley, W.J. & Marsh, H. (2006). Dugong grazing and turtle 

cropping: grazing optimization in tropical seagrass systems? Oecologia, 149, 

635–647. 

 

Atwood, T.B., Connolly, R.M., Ritchie, E.G., Lovelock, C.E., Heithaus, M.R., Hays, 

G.C., et al. (2015). Predators help protect carbon stocks in blue carbon 

ecosystems. Nature Climate Change, 5, 1038–1045. 

 

Baum, J.K. & Worm, B. (2009). Cascading top-down effects of changing oceanic 

predator abundances. Journal of Animal Ecology, 78, 699–714. 



198 

 

 

Bjorndal, K.A. (1980). Nutrition and grazing behavior of the green turtle Chelonia 

mydas. Marine Biology, 56, 147–154. 

 

Borowitzka, M., Lavery, P. & van Keulen, M. (2006). Chapter 19: Epiphytes of 

Seagrasses. In:Seagrasses: Biology, Ecology, and Conservation (eds. Larkum, A., 

Orth, R. & Duarte, C.). Springer, Dordrecht, The Netherlands, pp. 441–461. 

 

Britten, G.L., Dowd, M., Minto, C., Ferretti, F., Boero, F. & Lotze, H.K. (2014). Predator 

decline leads to decreased stability in a coastal fish community. Ecology letters, 

17, 1518–1525. 

 

Burkholder, D.A., Heithaus, M.R. & Fourqurean, J.W. (2012). Feeding preferences of 

herbivores in a relatively pristine subtropical seagrass ecosystem. Marine and 

Freshwater Research, 63, 1051–1058. 

 

Burkholder, D.A., Fourqurean, J.W. & Heithaus, M.R. (2013a). Spatial pattern in 

seagrass stoichiometry indicates both N-limited and P-limited regions of an iconic 

P-limited subtropical bay. Marine Ecology Progress Series, 472, 101–115. 

 

Burkholder, D.A., Heithaus, M.R., Fourqurean, J.W., Wirsing, A. & Dill, L.M. (2013b). 

Patterns of top-down control in a seagrass ecosystem: could a roving apex 

predator induce a behaviour-mediated trophic cascade? Journal of Animal 

Ecology, 82, 1192–1202. 

Cai W, Borlace S, Lengaigne M, Van Rensch P, Collins M, Vecchi G, Timmermann A, 

Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin, F. 

(2014) Increasing frequency of extreme El Niño events due to greenhouse 

warming. Nature Climate Change 4:111–116 

Cai W, Wang G, Santoso A, McPhaden MJ, Wu L, Jin F-F, Timmermann A, Collins M, 

Vecchi G, Lengaigne M, England MH, Dommenget D, Takahashi K, Guilyardi E 

(2015) Increased frequency of extreme La Niña events under greenhouse 

warming. Nature Clim Change 5:132–137 

 

Clark, C.W. (1994). Antipredator behavior and the asset-protection principle. Behavioral 

Ecology, 5, 159–170. 

 

Crain, C.M., Kroeker, K. & Halpern, B.S. (2008). Interactive and cumulative effects of 

multiple human stressors in marine systems. Ecology letters, 11, 1304–1315. 

 

Daskalov, G.M., Grishin, A.N., Rodionov, S. & Mihneva, V. (2007). Trophic cascades 

triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. 

Proceedings of the National Academy of Sciences, 104, 10518–10523. 

 



199 

 

De Iongh, H.H., Kiswara, W., Kustiawan, W. & Loth, P.E. (2007). A review of research 

on the interactions between dugongs (Dugong dugon Müller 1776) and intertidal 

seagrass beds in Indonesia. Hydrobiologia, 591, 73–83. 

 

De Iongh, H.H., Wenno, B.J. & Meelis, E. (1995). Seagrass distribution and seasonal 

biomass changes in relation to dugong grazing in the Moluccas, East Indonesia. 

Aquatic Botany, 50, 1–19. 

 

deYoung, B., Barange, M., Beaugrand, G., Harris, R., Perry, R.I., Scheffer, M., et al. 

(2008). Regime shifts in marine ecosystems: detection, prediction and 

management. Trends in ecology & evolution, 23, 402. 

 

Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R. & Mearns, L.O. 

(2000). Climate extremes: observations, modeling, and impacts. Science, 289, 

2068–2074. 

 

Estes, J.A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J., et al. 

(2011). Trophic downgrading of planet Earth. Science, 333, 301–306. 

 

Estes, J.A., Heithaus, M., McCauley, D.J., Rasher, D.B. & Worm, B. (2016). Megafaunal 

 Impacts on Structure and Function of Ocean Ecosystems. Annual Review of 

 Environment and Resources, 41. 

 

Ferretti, F., Worm, B., Britten, G.L., Heithaus, M.R. & Lotze, H.K. (2010). Patterns and 

ecosystem consequences of shark declines in the ocean. Ecology letters, 13, 

1055–1071. 

 

Harley, C.D. (2011). Climate change, keystone predation, and biodiversity loss. Science, 

334, 1124–1127. 

 

Harley, C.D. & Paine, R.T. (2009). Contingencies and compounded rare perturbations 

dictate sudden distributional shifts during periods of gradual climate change. 

Proceedings of the National Academy of Sciences, 106, 11172–11176. 

 

Harley, C.D., Randall Hughes, A., Hultgren, K.M., Miner, B.G., Sorte, C.J., Thornber, 

C.S., et al. (2006). The impacts of climate change in coastal marine systems. 

Ecology letters, 9, 228–241. 

 

Heithaus, M.R. (2004). Fish communities of subtropical seagrass meadows and 

associated habitats in Shark Bay, Western Australia. Bulletin of Marine Science, 

75, 79–99. 

 

Heithaus, M.R., Alcoverro, T., Arthur, R., Burkholder, D.A., Coates, K.A., Christianen, 

M.J., et al. (2014). Seagrasses in the age of sea turtle conservation and shark 

overfishing. Frontiers in Marine Science, 1, 28. 



200 

 

 

Heithaus, M.R., Frid, A., Wirsing, A.J. & Worm, B. (2008). Predicting ecological 

consequences of marine top predator declines. Trends in Ecology & Evolution, 

23, 202–210. 

 

Heithaus, M.R., Wirsing, A.J. & Dill, L.M. (2012). The ecological importance of intact 

top-predator populations: a synthesis of 15 years of research in a seagrass 

ecosystem. Marine and Freshwater Research, 63, 1039–1050. 

 

Hodgson, A. (2007). The distribution, abundance and conservation of dugongs and other 

marine megafauna in Shark Bay Marine Park, Ningaloo Reef Marine Park and 

Exmouth Gulf. Department of Environment and Conservation. 

 

Holley, D. (2006). Movement patterns and habitat usage of Shark Bay dugongs. Edith 

Cowan University. 

 

Jeffries, M.J. & Lawton, J.H. (1984). Enemy free space and the structure of ecological 

communities. Biological Journal of the Linnean Society, 23, 269–286. 

 

Jones, C.G., Lawton, J.H. & Shachak, M. (1994). Organisms as ecosystem engineers. In: 

Ecosystem management. Springer, pp. 130–147. 

 

Larkum, A., Orth, R. & Duarte, C. (Eds.). (2006). Seagrasses: Biology, Ecology, and 

Conservation. Springer Netherlands, Dordrecht. 

 

Ling, S.D., Johnson, C.R., Frusher, S.D. & Ridgway, K.R. (2009). Overfishing reduces 

resilience of kelp beds to climate-driven catastrophic phase shift. Proceedings of 

the National Academy of Sciences, 106, 22341–22345. 

 

Marsh, H. & Lawler, I. (2001). Dugong distribution and abundance in the Southern Great 

Barrier Reef Marine Park and Hervey Bay: results of an aerial survey in October–

December 1999. GBRMPA Research Publication, 70. 

 

Masini, R.J., Anderson, P.K. & McComb, A.J. (2001). A Halodule-dominated 

community in a subtropical embayment: physical environment, productivity, 

biomass, and impact of dugong grazing. Aquatic Botany, 71, 179–197. 

 

Mineur, F., Arenas, F., Assis, J., Davies, A.J., Engelen, A.H., Fernandes, F., et al. (2015). 

European seaweeds under pressure: Consequences for communities and 

ecosystem functioning. Journal of Sea Research, 98, 91–108. 

 

Nakaoka, M. & Aioi, K. (1999). Growth of seagrass Halophila ovalis at dugong trails 

compared to existing within-patch variation in a Thailand intertidal flat. Marine 

Ecology Progress Series, 184, 97–103. 

 



201 

 

Nowicki, R. & Heithaus, M. (In preparation). Seagrass functional redundancy and 

differential environmental tolerance mediates response of teleost community to 

catastrophic seagrass loss. 

 

Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., et al. 

(2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups 

I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change. 

 

Pearce, A.F. & Feng, M. (2013). The rise and fall of the “marine heat wave” off Western 

Australia during the summer of 2010/2011. Journal of Marine Systems, 111, 139–

156. 

 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. (2015). nlme: Linear and 

Nonlinear Mixed Effects Models. Available at: http://CRAN.R-

project.org/package=nlme. 

 

Preen, A. (1995). Impacts of dugong foraging on seagrass habitats: observational and 

experimental evidence for cultivation grazing. Marine Ecology Progress Series, 

124, 201–213. 

 

Preen, A. & Marsh, H. (1995). Response of dugongs to large-scale loss of seagrass from 

Hervey Bay, Queensland, Australia. Wildlife Research, 22, 507–519. 

 

Preisser, E.L., Bolnick, D.I. & Benard, M.F. (2005). Scared to death? The effects of 

intimidation and consumption in predator–prey interactions. Ecology, 86, 501–

509. 

 

R Core Team. (2015). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. 

 

Richardson, A.J. & Poloczanska, E.S. (2008). Under-resourced, under threat. Science, 

320, 1294. 

 

Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M., 

et al. (2014). Status and ecological effects of the world’s largest carnivores. 

Science, 343, 1241484. 

 

Sala, E. (2006). Top predators provide insurance against climate change. Trends in 

ecology & evolution, 21, 479–480. 

 

Schindler, D.W., Frost, T.M., Mills, K.H., Chang, P.S.S., Davies, I.J., Findlay, L., et al. 

(1990). Comparisons between experimentally-and atmospherically-acidified lakes 

during stress and recovery. Proceedings of the Royal Society of Edinburgh. 

Section B. Biological Sciences, 97, 193–226. 



202 

 

 

Schmitz, O.J. (2008). Effects of predator hunting mode on grassland ecosystem function. 

Science, 319, 952–954. 

 

Taylor, S.A., Larson, E.L. & Harrison, R.G. (2015). Hybrid zones: windows on climate 

change. Trends in ecology & evolution, 30, 398–406. 

 

Thomson, J.A., Burkholder, D.A., Heithaus, M.R., Fourqurean, J.W., Fraser, M.W., 

Statton, J., et al. (2015). Extreme temperatures, foundation species, and abrupt 

ecosystem change: an example from an iconic seagrass ecosystem. Global change 

biology, 21, 1463–1474. 

 

Walker, D.I., Kendrick, G.A. & McComb, A.J. (1988). The distribution of seagrass 

species in Shark Bay, Western Australia, with notes on their ecology. Aquatic 

Botany, 30, 305–317. 

 

Walker, D., Kendrick, G. & McComb, A. (2006). Chapter 23: Decline and Recovery of 

Seagrass Ecosystems— The Dynamics of Change. In: Seagrasses: Biology, 

Ecology, and Conservation (eds. Larkum, A., Orth, R. & Duarte, C.). Springer, 

Dordrecht, The Netherlands, pp. 553–565. 

 

Wernberg, T., Smale, D.A., Tuya, F., Thomsen, M.S., Langlois, T.J., De Bettignies, T., et 

al. (2013). An extreme climatic event alters marine ecosystem structure in a 

global biodiversity hotspot. Nature Climate Change, 3, 78–82. 

 

Werner, E.E. & Peacor, S.D. (2003). A review of trait-mediated indirect interactions in  

ecological communities. Ecology, 84, 1083–1100. 

 

Wirsing, A.J., Heithaus, M.R. & Dill, L.M. (2007a). Can you dig it? Use of excavation, a 

risky foraging tactic, by dugongs is sensitive to predation danger. Animal 

Behaviour, 74, 1085–1091. 

 

Wirsing, A.J., Heithaus, M.R. & Dill, L.M. (2007b). Fear factor: do dugongs (Dugong 

dugon) trade food for safety from tiger sharks (Galeocerdo cuvier)? Oecologia, 

153, 1031–1040. 

 

Wirsing, A.J., Heithaus, M.R. & Dill, L.M. (2007c). Living on the edge: dugongs prefer 

to forage in microhabitats that allow escape from rather than avoidance of 

predators. Animal Behaviour, 74, 93–101. 

 

Zarnetske, P.L., Skelly, D.K. & Urban, M.C. (2012). Biotic multipliers of climate change. 

Science, 336, 1516–1518. 

 



203 

 

Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A. & Smith, G.M. (2009). Mixed effects 

models and extensions in ecology with R. Statistics for Biology and Health. 

Springer New York, New York, NY. 

  

 



204 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER  VI 

 

SUMMARY AND FUTURE DIRECTIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



205 

 

In this dissertation I compiled an extensive review of top-down control in seagrass 

ecosystems, investigated the post-disturbance dynamics of one of the world’s most iconic 

seagrass ecosystems following a widespread climactic disturbance, quantified how such a 

widespread loss of seagrass impacts the abundance and risk-sensitive habitat use of a 

variety of consumers within Shark Bay, and conducted an experiment to determine the 

role of simulated apex predator loss on stability of Shark Bay’s disturbed seagrass 

community.  As such, a central goal of this work was to determine whether (and if so, 

how) this climactic extreme event impacts the flora, fauna, ecological processes, and 

resilience of one of the world’s most iconic seagrass ecosystems.  An additional goal of 

this work was to provide data that may refine predictions of how climate change 

disturbances and anthropogenic alterations to top-down control will influence ecosystems 

in the future.    

Ecosystems are notoriously complex, making reliable prediction difficult.  

However, achieving predictive power in the field of ecology is the most promising way in 

which we can solve ecological crises.  Throughout this dissertation I have used the 

natural experiment presented in the form of a marine heat wave and large scale seagrass 

loss to test ecological theory and add to existing predictive frameworks.  Chapter II 

provided a current review of top-down control in seagrass ecosystems, with particular 

focus on the Australian continent where this work was conducted.  This chapter 

concluded with an extensive list of questions about how top-down control may influence 

seagrass responses to climate change.  Chapter III identified patterns in the post-

disturbance dynamics of submerged aquatic vegetation following an extreme climactic 

event and subsequent massive seagrass loss.  The results indicate that, as in many (but not 
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all) other systems, the late successional seagrass Amphibolis antarctica is not recovering 

from disturbance quickly, and is highly likely to be vulnerable to future perturbations.  

Meanwhile, an early successional and tropical seagrass, Halodule uninervis, is becoming 

more common and may signify a community shift to a tropically dominated state.  

Chapter III concluded by discussing potential drivers of recovery (or a phase shift), which 

will depend in part on ecological properties of the ecosystem.  Chapter IV focused on 

whether this massive resource loss (of seagrass and the teleosts associated with it) 

impacted a variety of seagrass-associated megafauna.  Understanding how consumers 

respond to resource loss is critical to predicting how top down control (including 

herbivory, predation, risk effects) will shape the post-disturbance dynamics of primary 

producer communities.  In this study, several consumers (Piedcormorants, green turtles, 

dugongs, and sea snakes) suffered significant density declines in response to the seagrass 

die-off, though the mechanisms responsible for species-specific declines likely differ 

(Chapter IV).  Importantly, abundances of tiger sharks (Galeocerdo cuvier), the apex 

predator in this system, were unaffected by seagrass loss.  As a result, the “seascape of 

fear” remained intact in the system, allowing for a test of the impacts of resource loss on 

anti-predator behavior by multiple species at an unusually large landscape scale.  Therein 

I found that multiple species (particularly piscivorous Piedcormorants and Indo-Pacific 

bottlenose dolphins) began to over-use dangerous seagrass bank interiors where 

remaining resources were concentrated.  These results provide empirical support of 

theory that suggests that resource losses induced by climactic disturbance can alter the 

ecological role of predators by shifting the relative importance of consumptive and non-

consumptive predator effects.    The goal of Chapter V was to determine whether 
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predation risk can enhance ecosystem resilience to climactic disturbance.  I found that 

under grazing regimes consistent with a loss of predation risk, heavily impacted beds of 

Amphibolis antarctica declined, suggesting that risk of predation can be an important 

mechanism though which resilience is maintained.  To my knowledge, previous work has 

not identified predation risk as an important component of ecological resilience to climate 

change. 

 A central goal in the field of climate change ecology is understanding when and 

where climate extremes are likely to lead to phase shifts, and what will drive resilience 

and resistance to such extremes.  While the answer to this question is still unresolved, 

theoretical and empirical data are growing.  It can be expected that an ecosystem’s 

response to a climactic extreme event will depend not only on the properties of the 

disturbance itself (i.e., nature, intensity, duration, timing), but also on the biotic and 

biophysical properties of the ecosystem (such as plant and animal life histories, trophic 

structure, biophysical feedbacks, etc., Zarnetske et al. 2012, Unsworth et al. 2015, 

Chapter III, Fig 1).  Resolving under what conditions various ecosystem properties (and 

interactions) are important to mediating ecosystem responses to climactic disturbances 

will be critical to creating a broad predictive framework for how ecosystems respond to 

climactic extremes.    

This dissertation adds to a growing framework for understanding and predicting 

ecological responses to climate extremes, but also generates new questions.  For example, 

why do some, but not all, consumers alter anti-predator behavior in the face of resource 

loss?  How commonly do non-consumptive predator effects generate resilience to 

climactic extremes?  How will mismatched conservation efforts of large herbivores and 
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their predators impact resilience to climate change?  There is much work yet to be done 

before a predictive framework encompassing these questions is complete- but continued 

progress towards this goal is critical to managing Earth’s ecosystems in the 

Anthropocene. 

 

 

Figure 1.  Conceptual model illustrating response of an ecosystem to a climactic extreme 

as dependent on both properties of the stressor (e.g., intensity, duration, timing, identity) 

and properties of the ecosystem (which are largely biotic in nature).  In both cases, 

properties may interact to influence the effects of stressors (interactions not shown).   
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