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Abstract

Topoisomerases catalyze changes in DNA topology by directing the movement of DNA strands 

through consecutive cleavage-rejoining reactions of the DNA backbone.  We describe the use of 

a phenylselenyl-modified thymidine incorporated into a specific position of a partially unwound 

DNA substrate in crosslinking studies of Escherichia coli topoisomerase I to gain new insights 

into its catalytic mechanism.  Crosslinking of the phenylselenyl-modified thymidine to the 

topoisomerase protein was achieved by the addition of a mild oxidant.  Following nuclease and 

trypsin digestion, lysine residues on topoisomerase I crosslinked to the modified thymidine were 

identified by mass spectrometry. The crosslinked sites may correspond to proximal sites for the 

unwound DNA strand as it interacts with enzyme in the different stages of the catalytic cycle.  

Keywords: 

topoisomerase, DNA-protein interactions, crosslinking

Introduction

Topoisomerase functions are critical for vital genomic processes including replication, 

transcription, recombination and repair [1-3]. Topoisomerases catalyze the resolution of 

topological barriers that arise during these processes. The enzymes catalyze the movement of 

DNA strands via the cleavage and rejoining of DNA phosphodiester backbone.  The opposing 

activities of bacterial topoisomerase I and DNA gyrase play important roles in the homeostatic 

regulation of DNA supercoiling [4-9].  Escherichia coli topoisomerase I (EcTopA) encoded by 

the topA gene interacts with two single stranded segments in underwound duplex DNA to 

catalyze negative supercoiling removal [10]. The process involves transport of a single strand 

segment of DNA (T-DNA) through the “gate” created by the topoisomerase cleavage of the 

opposite strand of DNA (G-DNA) (Scheme 1) [11-13]. EcTopA recognition of underwound 

duplex DNA is important for the relief of transcription-driven negative supercoiling during 

transcription elongation [14-17]. The action of EcTopA prevents hypernegative supercoiling of 

DNA and accumulation of R-loops.  The interactions between the enzyme and single-stranded 

regions of the underwound duplex DNA and the resulting movement of T-DNA strand are 
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critical for the overall catalytic mechanism [18,19].  A crystal structure of a single strand 

segment of DNA covalently linked to Tyr319 at the active site formed by the N-terminal 

domains of EcTopA provides a view of the break formed on the G-strand of DNA as a catalytic 

intermediate [20,21].  A more recent crystal structure of full length EcTopA showed the 

interaction of the T-strand segment of single-stranded DNA interacting with the C-terminal 

domains of EcTopA [10,22].  The proposed catalytic mechanism for EcTopA requires movement 

of the T-strand DNA into the proximity of the active site opening in order for passage of the T-

strand through the DNA break on the G-strand (Step 3 of Scheme 1).  The C-terminal domains of 

EcTopA contain flexible linkers [10] that could facilitate significant conformational change of 

the complex with both G-strand and T-strand single-stranded DNA segments bound to EcTopA.  

However, there is no structural or biochemical data that support the proposed movement of the 

T-strand into the proximity of the G-strand DNA opening at the active site.  Mapping of the sites 

on topoisomerase I that are proximal to a specific nucleotide present on the T-strand of the 

partially unwound duplex DNA may provide such evidence.

DNA containing photoactivatable nucleotides have been used previously for crosslinking

to proximal residues in interacting proteins [23-31].  Diazirine, halide or thio-substituted 

nucleotides and phenyl-azide modified phosphates have been used to probe DNA interactions by 

proteins involved in replication, transcription and recombination [23,28,29,32-34].  Despite the 

existence of multiple molecular tools, identifying specific DNA-protein interaction sites using 

these approaches is challenging. Often a laser [23,35] or custom built UV apparatus is required 

to obtain a high yield of the crosslinked complex [27].  In addition, the large number of negative 

charges on the cross-linked DNA phosphodiester backbone make it difficult to identify the 

crosslinked peptides by mass spectrometry [25].  

DNA-protein crosslinks are produced from a phenyl selenide derivative of thymidine

(PhSeT) without the requirement of a laser or custom built UV apparatus (Figure 1A).  The 

reactive entity can be generated by reaction with mild oxidants such as sodium periodate, or 

photochemically using routinely available photon sources [36,37].  Another useful feature of 

PhSeT is that it can be introduced into DNA via standard solid phase synthesis methods or via 

the respective nucleotide triphosphate, which is accepted as a substrate by DNA polymerase. The 

phenyl selenide has been used to probe interactions between histone tails and nucleosomal DNA
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[36].  The electrophilic species produced reacts with the side chains of cysteine, histidine, and 

lysine amino acids.  The interaction sites were inferred by analysis of crosslinking products, their

yields, and the rate constants for their formation from histone variants with mutations at amino 

acid residues that are potential targets for crosslinking due to the technical challenge for direct 

identification of the cross-linked DNA-peptide adducts [36].  We report here the incorporation of 

PhSeT at a specific position on the T-strand of a partial duplex oligonucleotide substrate for 

crosslinking to E. coli DNA topoisomerase I (EcTopA) and direct identification of the 

crosslinking sites by LC/MS/MS as a new approach to probe the catalytic mechanism of this type 

IA topoisomerase.  

Materials and Methods

Oligonucleotide synthesis

The oligonucleotide Substrate-Y with two segments of single-stranded DNA linked to a double 

stranded stem as model for partially unwound DNA substrate for EcTopA is shown in Figure 1.  

EcTopA cleaves the substrate at a unique site 4 nucleotides downstream from a dC indicated by 

the arrow on the G-strand (bottom strand) to form the covalent intermediate.  The bottom strand 

of Substrate-Y containing the PhSeT (X) at the 5’-end of the T-strand of DNA was synthesized 

using previously reported methods [38], followed by hybridization to the top strand (T-strand) to 

form Substrate-Y.  Oxidative crosslinking with Substrate-Y alone showed very low degree of 

inter-strand crosslinking (Figure S1) as X is positioned in the single-stranded region of the 

substrate.  

Assay of cleavage of DNA substrate by EcTopA

The G-strand or T-strand oligonucleotide of Substrate-Y was labeled with 32P at the 5’-end with 

-32P-ATP and T4 polynucleotide kinase before hybridization with the unlabeled opposite strand.  

Substrate-Y formed by hybridization was then incubated with EcTopA in 10 µl of 20 mM 

sodium phosphate, pH 7.2, 1 mM EDTA with 10 or 100 mM NaCl at room temperature for 30 

min.  The reactions were stopped by addition of an equal volume of sequencing gel loading 

buffer and electrophoresed in a 15% denaturing sequencing gel, followed by Phosphorimager 

analysis.
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Crosslinking Reaction

To demonstrate initially that Substrate-Y labeled with 32P at the 5’-end of the T-strand can be 

crosslinked to EcTopA protein via the PhSeT, the crosslinking reaction was carried out under 

conditions similar to those used in a previous study [36] in buffer (20 mM sodium phosphate, pH 

7.2, 1 mM EDTA, 10 or 100 mM NaCl).  The crosslinking reaction was initiated by the addition 

of 5 mM NaIO4 and allowed to proceed in the dark at room temperature for up to 2 hours before 

quenching the reaction by the addition of 50 mM Na2SO3.  After 5 minutes, equal volume of 

loading buffer for SDS PAGE was added, and the reaction products were analyzed by 

electrophoresis in 10% SDS gel, followed by Phosphorimager analysis of the dried gel.

Processing of topoisomerase-DNA crosslinked complex for mass spectrometry analysis

Following the crosslinking reaction between 60 pmol each of unlabeled Substrate-Y and 

EcTopA, the EcTopA-DNA adduct was enriched by applying the reaction mixture to a DE52 

cartridge (with diethylaminoethyl resin, from GE Healthcare) equilibrated with the crosslinking 

buffer and washed with buffer containing 100 mM NaCl.  The fractions enriched in EcTopA-

DNA adduct were eluted with buffer containing 250 mM NaCl. The eluted fractions were 

concentrated and exchanged by ultrafiltration with Amicon Ultra (30,000 kDa Molecular weight 

cut off) into buffer of 20 mM sodium phosphate, pH 7.4, 1 mM EDTA, 100 mM NaCl, 0.5 mM 

MgCl2.  Following digestion with 10,000 U of Micrococcal nuclease (New England BioLabs) for 

1 h at 37°C, the digest was loaded onto a SDS 5-10% gradient polyacrylamide gel, followed by 

Coomassie blue staining.  The Coomassie blue stained gel band containing the mixture of the 

nuclease digested EcTopA adduct and unreacted EcTopA protein co-eluted in the DE52 fractions 

was excised and submitted to the Proteomics and Mass Spectrometry Facility at the University of 

Massachusetts Medical School for tryptic digest and LC/MS/MS analysis.

In Gel Digestion

Gel slices were cut into 1x1 mm pieces and placed in 1.5 ml Eppendorf tubes with 1 ml of 

water for 30 minutes.  The water was removed and 50 µl of 250 mM ammonium bicarbonate 

was added.  For reduction 5 ul of a 45 mM solution of 1, 4 dithiothreitol (DTT) was added and 

the samples were incubated at 50oC for 30 minutes.   The samples were cooled to room 
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temperature and then 5 µl of a 100 mM iodoacetamide solution (to effect alkylation) was added 

and allowed to react for 30 minutes.  The gel slices were washed 2 X with 1 ml water aliquots.  

The water was removed and 1ml of 50:50 (50 mM ammonium bicarbonate: acetonitrile) was 

placed in each tube and samples were incubated at room temperature for 1 hour.  The solution 

was then removed and 200 µl of acetonitrile was added to each tube at which point the gels 

slices turned opaque white.  The acetonitrile was removed and gel slices were further dried in a 

Speed Vac.  Gel slices were rehydrated in 50 µl of 2 ng/µl trypsin (Sigma) in 0.01% 

ProteaseMAX Surfactant (Promega), 50 mM ammonium bicarbonate.  Additional bicarbonate 

buffer was added to ensure complete submersion of the gel slices. Samples were incubated at 

37oC for 21 hours. The supernatant of each sample was then removed and placed in a separate 

1.5 ml Eppendorf tube.  Gel slices were further dehydrated with 100 µl of 80:20 (Acetonitrile: 

1% formic acid).  The extract was combined with the supernatants of each sample. The samples 

were then dried down in a Speed Vac. Samples were dissolved in 25 µl of 5% Acetonitrile in 

0.1% trifluoroacetic acid prior to injection for LC/MS/MS analysis.  

LC/MS/MS on Q Exactive

A 3.0 µl aliquot was directly injected onto a custom packed 2 cm x 100 µm C18 Magic 5 µm

particle trap column.  Peptides were then eluted and sprayed from a custom packed emitter (75

µm x 25 cm C18 Magic 3 µm particle) with a linear gradient from 95% solvent A (0.1% formic 

acid in water) to 35% solvent B (0.1% formic acid in Acetonitrile) in 40 minutes at a flow rate 

of 300 nanoliters per minute on a Waters Nano Acquity UPLC system.  Data dependent 

acquisitions were performed on a Q Exactive mass spectrometer (Thermo Scientific) according 

to an experiment where full MS scans from 300-1750 m/z were acquired at a resolution of 

70,000 followed by 12 MS/MS scans acquired under HCD fragmentation at a resolution of 

35,000 with an isolation width of 1.2 Da.  Raw data files were processed with Proteome 

Discoverer (version 1.4) prior to searching with Mascot Server (version 2.5) against the 

NCBInr database.  Search parameters utilized were fully tryptic with 2 missed cleavages, 

parent mass tolerances of 10 ppm and fragment mass tolerances of 0.05 Da.  A fixed 

modification of carbamidomethyl cysteine and variable modifications of acetyl (protein N-

term), pyroglutamic for N-term glutamine, oxidation of methionine, and crosslinking of 

cysteine and lysine with XPhospho, XGPhospho, XGTPhospho (with X being the PhSeT) on 
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cysteine and lysine were considered. Search results were loaded into the Scaffold Viewer 

(Proteome Software, Inc.) for peptide validation and quantitation.  Data was later analyzed 

again with XGPhospho on histidines being added as a potential modification.

Results

Cleavage of Substrate-Y by EcTopA at a single position on the G-strand of Substrate-Y

EcTopA has a binding pocket in domain D4 for a cytosine base located at a position on the 

single-stranded G-strand DNA segment that is four nucleotides upstream of the phosphodiester 

bond being cleaved by the active site tyrosine, accounting for the sequence selectivity observed 

for its DNA cleavage sites [21,39].  This cleavage target selectivity is shared by all bacterial 

topoisomerase I and reverse gyrase enzymes [40].  EcTopA cleaves both single-stranded T-

strand (Figure 2, lanes 2,3) or G-strand (lanes 8,9) labeled with 32P at the 5’-end in the absence 

of the complementary strand to produce faster migrating products.  When labeled G-strand is 

hybridized to T-strand to form Substrate-Y, the preferred cleavage site (arrow, Figure 1) remains

in the single-stranded region of G-strand to be recognized by EcTopA, resulting in the same

cleavage product (lanes 11,12).  The fraction of cleavage product quantitated by densitometry 

analysis for Substrate-Y in lanes 11 and 12 (11% and 6% respectively) is similar to that observed 

previously for a 39-base long oligonucleotide substrate used to study EcTopA residues involved 

in G-strand binding [41]. In previous studies, oxidative crosslinking reactions with PhSeT had 

included 100 mM NaCl [42].  The cleavage efficiency Substrate-Y by EcTopA was reduced at 

100 mM NaCl (lane 12) compared to reactions with 10 mM NaCl (lane 11).  When the T-strand

is hybridized to the G-strand in Substrate-Y a cytosine base is not present in the single-stranded 

region to align a phosphodiester bond in the active site for cleavage by EcTopA [39]. Hence, 

little or no cleavage product was observed in lanes 5 and 6.  The absence of cleavage product in 

lanes 5 and 6 for the labeled T-strand when hybridized to unlabeled G-strand provides support 

for the formation of the partially double-stranded Substrate-Y structure as postulated in Figure 1.  

Oxidative crosslinking of Substrate-Y to EcTopA 

When the PhSeT incorporated at the 5’-end of 32P-labeled T-strand of the Substrate-Y is 

activated by NaIO4 following binding to EcTopA, the crosslinked complex with EcTopA is
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observed as a high molecular weight 32P-labeled species following electrophoresis of the reaction 

mixture in a 10% SDS gel and analysis of the dried gel by Phosphorimager. The unreacted 

labeled DNA substrate co-migrates with the dye front.  The yield of the crosslinked complex 

increased when the reaction time was extended from 5 min to 2 h (Figure 3A).  The yield of 

crosslinked complex also increased when a higher ratio of Substrate-Y to EcTopA was used

(Figure 3B). As much as 41% of input Substrate-Y could be crosslinked with EcTopA (Lane 7, 

Figure 3B).  The appearance of the crosslinked complex as a doublet could be due to 

crosslinking of a second molecule of Substrate-Y to EcTopA with a molecule of Substrate-Y 

already bound.  The yield of crosslinked complex was about the same with either 10 or 100 mM 

NaCl.  However, since cleavage efficiency was higher in 10 mM NaCl, subsequent crosslinking 

reactions were carried out in reaction buffer with 10 mM NaCl.  

Processing of oligonucleotide in cross-linked complex by Micrococcal nuclease digestion

The crosslinking reaction was scaled up with unlabeled substrate-Y at 1:1 EcTopA:Substrate-Y 

ratio.  The cross-linked complex was observed as a band above the position of EcTopA in a SDS 

PAGE gel using Coomassie blue staining (Figure 4A, lane 2). The crosslinked complex formed 

between EcTopA and Substrate-Y was enriched over unreacted EcTopA using a DE52 cartridge.  

The desired product(s) eluted with high salt (lanes 2, 4 in Figure 4B) and were extensively

digested with Micrococcal nuclease to remove most of the DNA from the complex so that mass 

spectrometry analysis could be carried out for identification of the crosslinked EcTopA residue.  

The DNA component in the substrate-Y:EcTopA adduct was effectively trimmed by the 

nuclease, as evidenced by the co-migration of the nuclease treated EcTopA adduct with the 

unreacted EcTopA in the SDS gel, following 2 h of nuclease treatment (lanes 3, 5 Figure 4B).  

Additional higher molecular weight complexes were observed under these reaction conditions.  

The band in lane 5 of Figure 4B (nuclease digestion product of lane 4 species) was selected for 

further analysis as lane 4 had the higher ratio of crosslinked SubstrateY-EcTopA 

complex:unreacted EcTopA protein when compared to lane 2. 

Identification of lysines in EcTopA crossslinked to PhSeT

Tryptic digest and LC/MS/MS analysis of Micrococcal nuclease treated Substrate Y-EcTopA 

complex mixed with unreacted EcTopA identified peptides crosslinked to XGphospho (X being 

PhSeT) with the added molecular mass of 649 (Table 1).  The extensive digestion with 
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Micrococcal nuclease processed the covalently bound DNA to a dinucleotide unit.  Analysis of 

the spectral data from the fragments (Figure S2) are consistent with the dinucleotide crosslinked 

to lysines at EcTopA positions 19, 28, 279, 303, and 679 found in domains D1 (K19, K28), D2

(K279), D3 (K303) and D6 (K679) as shown in Figure 5A.  Although the spectral data could not 

rule out that in the last peptide H681 may be the crosslinking site instead of K679, no other 

potential crosslinking site to histidines was observed.  Crosslinking adducts from reactions of 

cysteines also were not detected in the spectral data.  Consideration of the crosslinked lysines 

reveals that K279, located in N-terminal domain D2 of EcTopA, is proximal to a nucleotide 

binding site identified previously (PDB 1CY1) in the central hole of the complex between the 

EcTopA 67 kDa N-terminal fragment and trinucleotides pTTT [16] (Figure 5B).  K679 is shown 

in a close-up view (Figure 5C) of the C-terminal domains D5 and D6 in the structure of full 

length EcTopA (PDB 4RUL) in complex with a single-stranded oligonucleotide [10].  Other 

crosslinked lysines, K28 in N-terminal domain D1 and K303 in N-terminal domain D3, are 

positioned on opposite sides of the active site in the structure of the EcTopA 67KDa in covalent 

complex (PDB 3PX7) with a cleaved single-stranded oligonucleotide (Figure 5D), in which the 

5’-end of the cleaved G-strand DNA is linked by a phosphotyrosine to the active site nucleophile 

Y319 in N-terminal domain D3 [20].

Discussion

Substrate Y was designed to model the partially unwound duplex DNA in a negatively 

supercoiled DNA substrate of EcTopA.  Cleavage by EcTopA requires the presence of the 

single-stranded DNA region [19] and the preferred cleavage sites have a cytosine 4 nucleotides 

upstream of the cleaved phosphodiester linkage [21].  Consequently, only one of the 

oligonucleotide strands in Substrate-Y can be utilized as the G-strand for DNA cleavage (Figure 

1).  The goal of this study was to provide insight concerning the interactions between EcTopA 

and partially unwound duplex DNA beyond what can be determined from structural studies on 

complexes formed between EcTopA and small single-stranded oligonucleotides.  The reactive 

thymidine analogue, PhSeT, was placed nine nucleotides from the junction of the single-strand 

and double strand regions, at the end of the single-stranded region of the T-strand of Substrate-Y 

to probe potential interaction sites on EcTopA in solution. Crosslinking reactions of PhSeT
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following oxidative activation likely involve reaction with nucleophilic lysine, histidine, or 

cysteine residues [36]. The molecule does not react with other residues, including tyrosine, 

serine, threonine, glutamine, or asparagine.  Crosslinking to cysteine residues was not observed 

in this study.  Out of the 14 cysteines in EcTopA, twelve of them are part of tetracysteine motifs 

engaged in coordination to Zn(II) for structural organization of the C-terminal domains [10,43].  

Therefore, it is unlikely that these cysteines are available as crosslinking partners.  There are 70 

lysines and 12 histidines in EcTopA.  The MS data unambiguously identified four lysines (K19, 

K28, K279, K303) as crosslinking sites for the reactive PhSeT incorporated into Substrate-Y.  

DNA linkage on the fifth peptide is likely to be at K679, although H681 could not be ruled out as 

a crosslinking site based on the spectral data.  Alignment of different bacterial topoisomerase I 

amino acid sequences (Figure S3) shows that K19 is highly conserved among both gram-positive 

and gram-negative bacteria.  Furthermore, only positively charged lysine or arginine residues are 

present at position 303.  Lysine, arginine, or asparagine is found at position 279.  K28, K679 and

H681 are replaced by hydrophobic amino acids in some topoisomerases.

In the proposed catalytic mechanism of EcTopA (Scheme 1), the enzyme-DNA complex 

undergoes multiple transitions and conformational changes, likely involving different sets of 

protein-DNA interactions [44].  Solvent exposed lysine residues such as K19, K28, and K679 

could be involved in initial interactions between the enzyme and single-stranded regions of DNA 

(step 1 in Scheme 1).  We propose that some of the crosslinked lysines might also be involved in 

interactions with the designed partial duplex substrate that correspond to interactions in the later 

steps in the catalytic cycle.  When the T-strand oligonucleotide with PhSeT was used as substrate 

for oxidative crosslinking to EcTopA in the single-stranded form, the total yield of crosslinked 

complex was much higher (Figure S4), but subsequent Micrococcal nuclease treatment and 

tryptic digest did not produce any peptide adduct in sufficient yield for identification by 

LC/MS/MS analysis.  This is most likely because crosslinking of the single-stranded T-stand 

oligonucleotide occurred with a much larger number of sites.  It is expected that a single-

stranded oligonucleotide without a preferred cleavage site can slide after initial binding and 

occupy a very large number of different sites in the enzyme. In contrast, binding of the T-strand 

oligonucleotide as part of the partial duplex Substrate-Y with a single preferred cleavage site on 

the G-strand would be constrained to a more limited collection of complexes consisting of 

distinct protein-DNA interactions.  This would restrict the possible crosslinking sites for the 
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reactive PhSeT present on the T-strand of the Substrate-Y to a smaller number of EcTopA 

residues.  The selectivity of the oxidative crosslinking sites for studying other protein-DNA 

interactions is expected to be greater when there are more constraints on the interactions based 

on either base recognition or DNA structure requirement.

From the crystal structure of full length EcTopA with DNA bound to the C-terminal

(PDB 4RUL), it was proposed that the T-strand of partial duplex DNA substrate is held by 

hydrophobic stacking interactions between the DNA bases and aromatic amino acids in the C-

terminal domains of EcTopA [10]. This is consistent with an earlier solution structure of 

domains D8 and D9 determined by NMR [45].  Direct interactions between the bound DNA and 

lysines in the C-terminal domains were not observed in this crystal structure.  However, if the

single-stranded oligonucleotide segment present in the structure shown in Figure 5C extends 

further as part of a longer partial duplex DNA substrate, it might reach the vicinity of K679.  

A number of nucleotide binding sites have been identified in crystal structures with 

mononucleotide or trinucleotides bound to the 67 kDa N-terminal domain of EcTopA [46].  One 

of the nucleotide binding sites proximal to K279 (Figure 5B) is found in the central hole and may 

represent an interaction between the passing T-strand of DNA and residues in the central hole 

after the passing T-strand has entered the hole (step 3 in Scheme 1).  

The passing T-strand of DNA has to move through the break in the cleaved G-strand and 

must move to the vicinity of the active site at the junction of domains D1 and D3.  It is expected 

that interdomain protein-protein interactions near the active site nucleophile Y319 must be 

disrupted to increase the distance between the 5’-phosphostyrosyl and 3’-hydroxyl ends of the 

cleaved G-strand to create an opening for the entrance to the central hole so that the T-strand of 

single-stranded DNA can pass through the break.  K28 and K303 are located on opposite sides of 

the active site tyrosine (Figure 5A, 5D) and may interact with T-strand of single-stranded DNA 

as it moves towards the opening to the central hole between Steps 3 and 4 in Scheme 1.  The 5’-

phosphotyrosine linkage primarily holds the region of G-strand DNA downstream of the 

cleavage site (Figure 5D).  K28 and K303 may also interact with this segment of the G-strand 

DNA immediately downstream from the scissile phosphate.  The interaction between EcTopA

and single-stranded G-strand DNA upstream of the cleavage site is well understood from 

biochemical and structural studies [20,39,47].  The structures of the non-covalent complex 
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(1MW8) and covalent complex (3PX7) show that the region of G-strand DNA upstream of the 

cleavage site is bound in a DNA binding groove [47] that contains conserved residues (in region 

from R168 to Q198). This region of the protein interacts with the DNA sugar or nucleobase 

components, including a cytosine 4 bases upstream of the cleavage site that accounts for the G-

strand cleavage site selectivity [39].  

In this study, we developed a method that identifies exact sites of crosslinking between 

protein lysine residues and a specific nucleotide on the DNA substrate using mass spectrometry.

The method does not require prior purification of the individual peptides containing the 

crosslinked adduct.  In addition, this crosslinking approach does not require any special UV 

irradiation equipment, but instead utilizes a commonly available reagent (NaIO4) to initiate 

crosslinking. LC/MS/MS analysis of the crosslinked DNA was carried out after digestion to 

dinucleotides with a single nuclease [48].  We identified several sites on the E. coli

topoisomerase I structure that could represent interaction sites proximal to the passing T-strand 

of single-stranded DNA in the different stages of the catalytic cycle.  The roles of lysines on the 

solvent accessible surface of bacterial topoisomerase I have not been considered previously.  The

positively charged lysines may serve as sources for the initial recognition of complementary 

charged, single-stranded nucleic acid present as unwound DNA in negatively supercoiled DNA. 

Relaxation of the negatively supercoiled DNA would require movement of the T-strand to the 

vicinity of the G-strand opening.  The interaction of the T-strand with nucleotide binding site 

found within the central hole was demonstrated directly by the identification of K279 as a 

crosslinking site in this study.  The new result provides support for the proposed movement of 

the T-strand through the opening on the G-strand into the central hole as a required step of the 

catalytic cycle.  The described crosslinking approach, followed by Micrococcal nuclease 

digestion of the crosslinked protein-DNA adduct can be adopted to investigate other protein-

DNA interactions in solution.  
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FIGURE LEGENDS

Scheme 1. Proposed mechanism of relaxation of negatively supercoiled DNA by bacterial 

topoisomerase I. Step 1: Single-stranded DNA regions in negatively supercoiled DNA bind to 

N-terminal domains as G-strand and C-terminal domains as T-strand.  Step 2: G-strand is 

cleaved to form covalent intermediate with phosophotyrosine linkage to active site tyrosine 

(yellow star).  Step 3: Enzyme undergoes conformational change to allow entry of T-strand into 

central hole.  Step 4: The cleaved G-strand is religated.  Step 5: Enzyme produces DNA product 

with increased winding of one helical turn to reduce negative DNA supercoiling by one linking 

number.  

Figure 1. Incorporation of PhSeT in partial duplex Substrate-Y for oxidative crosslinking 

to EcTopA.  (A) Oxidative crosslinking of PhSeT to lysine, histidine and cysteine residues in 

proteins.  (B) Partial duplex Substrate-Y formed by hybridization of G-strand and T-strand 

oligonucleotides.  The arrow in the G-strand sequence corresponds to the site of cleavage by 

EcTopA to form the covalent enzyme-DNA intermediate.  

Figure 2. Cleavage of the G-strand in Substrate-Y by EcTopA.  The 5’-32P labeled T-strand 

or G-strand oligonucleotides (5 pmol) were used as substrate for cleavage by EcTopA in either 

single-stranded form (lanes 1-3, 7-9) or following hybridization to the unlabeled complementary 

strand to form Substrate-Y (lanes 4-6, 10-12).  Lanes 1, 4, 7, 10 are control reactions with no 

enzyme added.  EcTopA (1 pmol) was added to the other reactions.  Lanes 3, 6, 9, 12 reactions 

had 100 mM NaCl added.  The other lanes had 10 mM NaCl.

Figure 3.  Oxidative crosslinking of Substrate-Y to EcTopA analyzed by SDS PAGE and 

Phosphorimaging.  (A) Time course of formation of crosslinked EcTopA complex from 

crosslinking reaction with 2 pmol of Substrate-Y labeled with 32P at the 5’-end of the T-strand, 

and 40 pmol of EcTopA in reaction buffer containing 100 mM NaCl.  (B) Increase in cross-

linked complex with increasing concentration of Substrate-Y.  Lane 1: control reaction of 0.25 

pmol of labeled Substrate-Y with no enzyme added; Lanes 2-9 had 40 pmol of EcTopA.  NaCl 

concentration: 10 mM in lanes 1-5, and 100 mM in lanes 6-9.  Lanes 2, 6: 0.25 pmol Substrate-

Y; lanes 3, 7: 0.5 pmol Substrate-Y; lanes 4, 8: 1 pmol Substrate-Y; lanes 5, 9: 2 pmol Substrate-

Y. 
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Figure 4. Scaled up reaction for oxidative crosslinking of substrate-Y to EcTopA and the 

processing of the crosslinked complex by Micrococcal nuclease digestion.  The Coomassie 

blue stained SDS gels show: (A) Crosslinked complex formed between Substrate-Y and EcTopA 

in reaction with 60 pmol each of EcTopA and Substrate-Y migrating above unreacted EcTopA 

(lane 2).  (B) Enrichment of crosslinked complex by DE52 chromatography, followed by 

digestion with Microccocal nuclease.  Each fraction eluted from DE52 cartridge (lanes 2, 4) was 

digested with Micrococcal nuclease (lanes 3, 5).  Lane 1: Molecular weight standards.

Figure 5. Positions of lysines identified as crosslinked residues in the structures of EcTopA.  

(A) Position of lysine residues in different domains of apo structure of full length EcTopA 

generated from PDB 4RUL.  (B) A close up view of of EcTopA N-terminal fragment in complex 

with trinucleotides pTTT (PDB 1CY1).  (C) A close up view of the full length EcTopA with 

single-stranded oligonucleotide bound to the C-terminal domains (PDB 4RUL).  (D) A close up 

view of EcTopA N-terminal fragment forming a covalent complex with cleaved single-stranded 

G-strand oligonucleotide (PDB 3PX7).  The images were generated using PyMOL.
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Table 1. Tryptic peptides in EcTopA found to have modification of XGphospho from 

increase of molecular mass by 649.  The lysines predicted to form the crosslinking adduct are 

underlined.  H681 in the last peptide is an alternative crosslinking site if the XGphospho linkage 

to histidine is included as a potential modification in search criteria.  The two cysteines in the last 

peptide have carbamidomethyl (+57) modification.

Residues Sequence
Peptide 

Identification 
Probability

Actual Minus 
Calculated Peptide 

Mass (PPM)
16-28 TINKYLGSDYVVK

88% -1.3

20-35 YLGSDYVVKSSVGHIR 91% -0.37

272-296 EDKPTTSKPGAPFITSTLQQAASTR 87% -0.80

303-310 KTMMMAQR 85% -1.8

679-700 KLHVCGNNPTCDGYEIEEGEFR 99% -1.4

Scaffold (version Scaffold_4.4.3, Proteome Software Inc., Portland, OR) was used to validate 

MS/MS based peptide and protein identifications. Peptide identifications were accepted if they 

could be established at greater than 80.0% probability by the Peptide Prophet algorithm [49] with 

Scaffold delta-mass correction.
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