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Abstract: Conventional splines offer powerful means for modeling surfaces and volumes
in three-dimensional Euclidean space. A one-dimensional quaternion spline has been
applied for animation purpose, where the splines are defined to model a one-dimensional
submanifold in the three-dimensional Lie group. Given two surfaces, all of the
diffeomorphisms between them form an infinite dimensional manifold, the so-called
diffeomorphism space. In this work, we propose a novel scheme to model finite
dimensional submanifolds in the diffeomorphism space by generalizing conventional
splines. According to quasiconformal geometry theorem, each diffeomorphism determines
a Beltrami differential on the source surface. Inversely, the diffeomorphism is determined
by its Beltrami differential with normalization conditions. Therefore, the diffeomorphism
space has one-to-one correspondence to the space of a special differential form. The
convex combination of Beltrami differentials is still a Beltrami differential. Therefore,
the conventional spline scheme can be generalized to the Beltrami differential space and,
consequently, to the diffeomorphism space. Our experiments demonstrate the efficiency
and efficacy of diffeomorphism splines. The diffeomorphism spline has many potential
applications, such as surface registration, tracking and animation.

Keywords: diffeomorphism; Beltrami differential; Beltrami coefficient; quasiconformal
mapping; auxiliary metric; surface mapping; shape space; spline; animation
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1. Introduction

Conventional splines are applied for modeling shapes [1–7]. For example, spline curves are used to
model planar curves; bi-variant splines are applied for modeling geometric surfaces embedded in R3;
and tri-variant splines are used for volumes. Basically, a m-variate spline can be viewed as a mapping
γ : Ω→Rn, where Ω⊂Rm is the parameter domain. The target space Rn can be replaced by an abstract
manifold Mn, as long as the convex linear combination of two points is well defined in Mn.

In the graphics field, quaternion splines [8] have been applied for key frame animation purposes.
Quaternions are the representation of rotations in R3. The rotation group, denoted as SO(3), is a Lie
group, which has a natural Riemannian metric. Given two quaternions q1,q2 ∈ SO(3), there exists a
unique geodesic connecting them. Suppose q is the linear interpolation between q1,q2 with ratio λ ,
then q is on the geodesic, and d(q,q1)

d(q1,q2)
= 1−λ , where d represents the geodesic distance between two

quaternions. Based on the linear interpolation of quaternions, the quaternion spline can be defined using
de Casteljau’s evaluation algorithm [3]. The quaternion spline is a commonly-used spline, which is
defined in a finite dimensional Lie group.

In this work, we aim at defining spline schemes in an infinite dimensional space, the diffeomorphism
space, which is formed by all diffeomorphisms between surfaces. In mathematics, a diffeomorphism is
an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold
to another, such that both the function and its inverse are smooth. Figure 1 shows a diffeomorphism of
an image. The distortions are visualized by the shape change of circles.

(a) (b) (c)

Figure 1. A diffeomorphism of an image caused by a quasiconformal mapping. The
distortion of circles demonstrates the diffeomorphism of the original image. (a) Original
image; (b) deformed image; (c) quasiconformal deformation.

Generally speaking, suppose S1,S2 are two surfaces in R3, and f ,g : S1 → S2 are two mappings.
For a point p ∈ S1, the linear combination of its images f (p),g(p) ∈ S2, λ f (p) + (1− λ )g(p),
λ ∈ R, may not be on S2. Even if for all points on S1, the linear combinations of its images are on
S2, the mapping λ f +(1−λ )g may not be a diffeomorphism. This means that direct linear interpolation
of diffeomorphisms cannot guarantee a diffeomorphism. This causes the intrinsic difficulty to define
splines in diffeomorphism space.
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1.1. Approach Overview

The solution to solve the problem is to convert the diffeomorphism space into a functional space,
where each point is a function and uniquely determines a diffeomorphism. The definition of this
function is based on the canonical conformal (angle preserving) parameterizations of the source and
target surfaces. The diffeomorphisms between these two surfaces are converted to the ones between their
parameter domains. Once we have the diffeomorphisms, we compute their associated functions and use
them to construct a spline in the infinite dimensional functional space to interpolate diffeomorphisms.
The proposed solution can handle general surfaces. For the sake of simplicity, we assume that S1 and S2

are genus zero surfaces with a single boundary component, such as human face surfaces. In detail, the
computing strategy is as follows:

First, we convert the mapping space to a functional space. There exist conformal (angle preserving)
mappings φk : Sk → D, where D is the unit disk on the complex plane, D = {|z| < 1|z ∈ C}. Any
diffeomorphism φ : S1 → S2 corresponds to an automorphism φ2 ◦ φ ◦ φ

−1
1 : D → D. Therefore, the

diffeomorphism space between S1 and S2 is equivalent to the automorphism group of D, Aut(D). We
define the normalized automorphism group of D, Aut(D), as Aut(D) = { f ∈ Aut(D)| f (0) = 0, f (1) = 1}.
Let f ∈ Aut(D), then the Beltrami coefficient of f is a complex valued function, given by:

µ f (z) =
fz̄

fz
(z)

By direct computation, ‖µ f ‖∞ = supz∈D‖µ f (z)‖ < 1. In the general manifold setting, the Beltrami
coefficient is generalized to the Beltrami differential [9]. Furthermore, we show that for two normalized
mappings f1, f2 ∈ Aut(D), if µ f1 = µ f2 , then f1 = f2, and any µ with ‖µ‖∞ < 1 must be the Beltrami
coefficient of a normalized automorphism f ∈ Aut(D). Namely,

Aut(D)∼= {µ|‖µ‖∞ < 1,µ : D→ C}

Next, we define the linear interpolation between two automorphisms and that between two
mappings. Suppose f ,g ∈ Aut(D) are two normalized automorphisms. Choose a λ ∈ [0,1] and define
µλ := (1−λ )µ f +λ µg, then:

‖µλ‖∞ ≤ (1−λ )‖µ f ‖∞ +λ‖µg‖∞ < 1

There exists a unique φλ whose Beltrami coefficient equals µλ . Then, φλ is the linear interpolation
between f and g with ratio λ . Suppose f ,g : S1→ S2 are two mappings between surfaces. By applying
the conformal mappings φk : Sk → D, φ2 ◦ f ◦ φ

−1
1 and φ2 ◦ g ◦ φ

−1
1 become automorphisms of the unit

disk. Suppose φλ is the linear interpolation between them, then φ
−1
2 ◦ φλ ◦ φ1 : S1 → S2 is the linear

interpolation between the original f and g.
Then, we define the spline curve in the diffeomorphism space from S1 to S2 using de Casteljau’s

evaluation algorithm [3]. By using tensor product construction, multiple variant (m-variant)
diffeomorphism splines can be defined accordingly.

In summary, we first convert the space of all the diffeomorphisms from S1 to S2 to the complex
functional space on S1, the so-called Beltrami coefficient space. The Beltrami coefficient space is closed
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under a convex linear combination operation. Therefore, we define splines in the Beltrami coefficient
space, and each point on the Beltrami coefficient spline corresponds to a diffeomorphism. In this way,
we define the splines in the diffeomorphism space.

1.2. Potential Applications

The diffeomorphism spline has many applications. It can be directly applied for animation purposes.
A 2D animation can be treated as a time-dependent mapping f (t) : Ω1→Ω2; both Ω1 and Ω2 are planar
domains; Ω1 represents the static texture; Ω2 represents the image plane. By changing the mapping f (t),
the 2D texture Ω1 is animated on the image plane Ω2. The animator only specifies several key frames
of the mapping f (t), as the control points { f (t0), f (t1), · · · , f (tm)}. By using the diffeomorphism spline,
we can generate a smooth sequence of mappings f (t).

Another application is 3D deformable tracking. With the development of 3D scanning techniques, a
high-speed 3D scanner can capture 3D dynamic surfaces in real time [10], such as a human expression
sequence. The frames in the sequence are independent of each other. It is highly desirable to establish
the correspondence among all of the frames, which is called the 3D tracking problem. We tackle the
problem using our diffeomorphism spline technique. First, each frame S(t) is conformally mapped to
the unit disk D with normalization conditions. Then, the mapping from the first frame to the frame at
time t, f (t) : S(0)→ S(t), is in Aut(D). We only compute a few key mappings { f (t0), f (t1), · · · , f (tm)}
as control points and construct the diffeomorphism spline. The spline gives the registration and tracking
results without computing all of the mappings for each frame.

1.3. Related Works

There are some existing methods searching for optimal diffeomorphisms, such as curvature
representations [11], regional point representations [12,13], spherical harmonic representations [14,15],
shape distributions [16], physics-based deformable models [17], free-form deformation (FFD) [18] and
level-set methods [19]. FFD embeds the surface in a volume, by deforming the volume to match surfaces.
This method minimizes a special energy using the explicit embedding. Similarly, the deformation field
method optimizes the matching energy, and the variation gives the deformation field. These methods may
encounter local extremes and cannot guarantee global optimization, especially for deformable non-rigid
surfaces with significantly non-rigid deformation, even if the deformations are isometric.

Surface conformal mapping-based methods have been developed for surface matching [20–22],
registration [23,24] and tracking [25]. The key idea is to map surfaces to 2D canonical domains
and then solve the surface registration problem as an image registration problem. The conformal
mapping-based methods can handle nonrigid deformations between surfaces. Surface conformal
mapping can be generalized to surface quasiconformal mapping, which has great potential to handle
large-scale nonrigid (including non-isometric) deformations in surface registration applications. The
Beltrami holomorphic flow method [26] and the auxiliary metric method [27] were introduced for
computing surface quasiconformal maps and have been used for surface registration, compression
and inpainting [28,29]. Simple formulas were given in [30] for computing quasiconformal plane
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deformations. Extremal quasiconformal maps between two planar disks with Dirichlet boundary
conditions were recently explored in [31] for computing surface parameterization.

A series of experiments have been conducted to verify whether natural surface deformations are
conformal or not [32]. In the real physical world, isometric or even conformal mappings are rare. Most
natural deformations in the physical world are quasiconformal. The surface registration and tracking
methods based on quasiconformal mappings [27] searching in the diffeomorphism group can model
almost all natural physical deformations. The methods searching in the rigid motion, isometry or
conformal transformation group are subsumed by the method based on quasiconformal mappings. If
the optimal solution is a conformal mapping, the method can find it. Therefore, the method in the
diffeomorphism category is more desirable to handle large deformations in practice.

2. Mathematical Background

In this section, we briefly introduce the most related mathematical background. For a comprehensive
treatment and for references to the extensive literature on the subject, one may refer to [9] for
quasiconformal geometry, [33] for complex analysis and [34] for the Riemann surface.

2.1. Beltrami Coefficient

Suppose f (z) : C→ C is a complex valued function on the complex plane; its real representation is
f (x+ iy) = u(x,y)+ iv(x,y). The complex differential operators are defined as:

∂

∂ z
=

1
2
(

∂

∂x
− i

∂

∂y
),

∂

∂ z̄
=

1
2
(

∂

∂x
+ i

∂

∂y
)

f (z) is a conformal map (also called conformal transformation, angle-preserving transformation or
biholomorphic map), if and only if ∂ f

∂ z̄ = 0, meaning f satisfies the Cauchy–Riemann equations:

∂u
∂x

=
∂v
∂y

,
∂u
∂y

=−∂v
∂x

An analytic (holomorphic) function is conformal at any point where it has a nonzero derivative.

Definition 1 (Beltrami Coefficient). Suppose f (z) : C→C is a complex valued function on the complex
plane; it satisfies the following Beltrami equation:

∂ f
∂ z̄

= µ
∂ f
∂ z

(1)

where µ is called the Beltrami coefficient, ‖µ‖∞ < 1.

If Beltrami coefficient µ is zero, then the mapping is a conformal mapping; otherwise, it is a
quasiconformal mapping. The conformal mapping maps infinitesimal circles to infinitesimal circles,
while quasiconformal mapping maps infinitesimal ellipses to infinitesimal circles. The eccentricity of
the infinitesimal ellipse is described by the dilatation:

K(z) =
1+ |µ(z)|
1−|µ(z)|

,K ≥ 1 (2)
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which is the ratio between the longer axis and the shorter axis of the infinitesimal ellipse. The orientation
of the infinitesimal is given by:

θ(z) =
1
2

arg µ(z),θ ∈ (−π

2
,
π

2
] (3)

which is the angle between the longer axis and the real axis.
Figure 2 gives the examples on the planar domain to demonstrate quasiconformal deformations.

There are six quasiconformal mappings of a square D, fi(z) : D → D, i = 1, . . . ,6, where f2, f4, f6

are the inverse diffeomorphisms of f1, f3, f5, respectively. Each fi(z) has an explicit formula; therefore,
the Beltrami coefficients µ can be computed explicitly by using Equation (1). Furthermore, all of the
functions are symmetric. The distortion of consistent checkers (circles) visualizes the quasiconformality
of diffeomorphisms obviously.

D f1(D) f2(D) f3(D) f4(D) f5(D) f6(D)

Figure 2. Diffeomorphisms of a square. Each diffeomorphism fi, i = 0, . . . ,6, is a
quasiconformal automorphism of a square D (to itself). The first row shows the consistent
checker-board texture mapping results for fi. The second row shows the corresponding
circle packing texture mapping results. The distortion of checkers (circles) visualizes the
quasiconformality of diffeomorphisms.

2.2. Diffeomorphism

Definition 2 (Diffeomorphism). A bijective map f from S1 to S2 is called a diffeomorphism if both
f : S1→ S2 and its inverse f−1 : S2→ S1 are differentiable.

All diffeomorphisms between two surfaces can be classified by homotopy. In topology, two
continuous mappings from one topological space to another are called homotopic if one can be
continuously deformed into the other; such a deformation is called a homotopy between the two
mappings. If the automorphisms of a surface form a set, then they form a group under the composition
of morphisms. This group is called the automorphism group of the surface.

Definition 3 (Automorphism Group). All of the diffeomorphisms from a surface S to itself, which are
homotopic to the identity map, form a group. We call it the automorphism group, denoted as Aut(S).
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Note that the diffeomorphisms in the automorphism group are orientation preserving, so that
reflections from a surface S to itself are excluded. The automorphism group Aut(S) is an infinite
dimensional Lie group. A m-variate diffeomorphism spline is defined as a smooth mapping γ : Ω→
Aut(S), Ω ⊂ Rm. Furthermore, the spline is defined by the control points, and each point is a
diffeomorphism in diffeomorphism space.

2.3. Quasiconformal Mapping

Suppose S1 and S2 are compact surfaces embedded in R3, then they naturally have induced Euclidean
metric g1 and g2. Suppose φ : (S1,g1)→ (S2,g2) is an orientation preserving diffeomorphism between
them. We say the mapping φ is conformal if it preserves angles; mathematically, the pullback metric
φ∗g2 on S1 differs from the original metric g1 by a scalar function,

φ
∗g2 = e2λ g1

where λ : S1→R is a function. In general, the mapping φ does not preserve angles. We say the mapping
is quasiconformal, if the distortion between the angle structures induced by φ is bounded.

Theorem 4. Suppose φ : (S1,g1)→ (S2,g2) is a diffeomorphism between two compact surfaces, then φ

is a quasiconformal mapping.

The proof of this theorem requires the concept of Beltrami coefficient µ . In the following, we first
consider mappings between domains on the complex plane and then generalize the concept and the
method to general surfaces.

2.4. Generalized Riemann Mapping for Planar Domains

All of the conformal mappings of the unit disk are Möbius transformations, eiθ z−z0
1−z̄0z , θ ∈ [0,2π),

|z0|< 1. On the unit disk, a Beltrami coefficient determines a quasiconformal mapping uniquely up to a
Möbius transformation. The following theorem generalizes the classical Riemann mapping theorem [9]
to quasiconformal mappings.

Theorem 5 (Generalized Measurable Riemann Mapping for Planar Domains). Suppose S ⊂ C is a
compact domain with a smooth boundary, and suppose µ : S→ C is a measurable complex function,
such that ‖µ‖∞ < 1, then there exists a diffeomorphism f : S→ D mapping S to the unit disk D, whose
Beltrami coefficient is µ . Two such kinds of diffeomorphisms differ by a Möbius transformation.

This theorem tells us that each Beltrami coefficient determines a quasiconformal mapping uniquely up
to a Möbius transformation. On the other hand, each quasiconformal mapping has a Beltrami coefficient.
Therefore, by using this theorem, the space of diffeomorphisms between S and D and the functional space
of Beltrami coefficients have the following relation:

Di f f (S,D)
{Möbius}

∼= {µ|µ : S→ C,‖µ‖∞ < 1}



Axioms 2015, 4 163

Thus, the spline of diffeomorphisms can be further constructed in the Beltrami coefficient space,
and this theorem guarantees that the Beltrami coefficient resulting from spline interpolation uniquely
determines a diffeomorphism up to a Möbius transformation.

2.5. Generalized Riemann Mapping for Surfaces

The generalized Riemann mapping theorem also holds for surfaces. First, the concept of the Beltrami
coefficient is generalized to the Beltrami differential. Then, we show that the Beltrami differential
uniquely determines the mapping.

2.5.1. Surface Ricci Flow

Ricci flow refers to the process of deforming Riemannian metric g proportional to the curvature K,
such that the curvature evolves according to a heat diffusion process; eventually, the curvature becomes
constant everywhere. Analytically, surface Ricci flow is defined as dg

dt =−2Kg. It conformally deforms
the Riemannian metric and converges to constant curvature metric [35,36]. This shows the following
uniformization theorem [34]:

Theorem 6 (Uniformization). Suppose S is a closed metric surface, then depending on the surface
topology, S can be conformally deformed to one of three canonical shapes: the unit sphere S2, the flat
torus R2/Γ, where Γ is a subgroup of Euclidean translation, or H2/Γ, where Γ is a subgroup of a
hyperbolic rigid motion group.

This theorem shows that for each metric surface, we can find a conformal atlas {(Uα ,φα)}, such that
all of the chart transitions φαβ : φα(Uα ∩Uβ )→ φβ (Uα ∩Uβ ) are the elements in Γ, which are planar
conformal mappings. Γ can be the Deck transformation group in the Euclidean domain, the Möbius
transformation group on the unit sphere and the Fuchsian transformation group in hyperbolic space. The
computational strategies and experimental examples can be found in [37].

2.5.2. Beltrami Differential

Suppose φ : (S1,g1)→ (S2,g2) is an orientation preserving diffeomorphism. The conformal atlases
for S1,S2 are {(Uα ,φα)} and {(Vβ ,τβ )}, respectively. If the restriction of the mapping:

τβ ◦φ ◦φ
−1
α : φα(Uα)→ τβ (Vβ )

is a quasiconformal mapping on the complex plane, then φ is called a quasiconformal mapping.

Definition 7 (Beltrami Differential). Suppose {(Uα ,φα)} is a conformal atlas of S1, and the local
parameters on the chart (Uα ,φα) is zα , then the complex differential is called the Beltrami differential:

µα

dz̄α

dzα

where µα is the Beltrami coefficient of the restriction of φ on the current local chart τβ ◦φ ◦φ−1
α .
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The Beltrami differential is invariant under local parameter change, and it is globally well defined.
We have the following theorem [38]:

Theorem 8 (Generalized Measurable Riemann Mapping for Surfaces). Suppose (S1,g1),(S2,g2) are
two compact surfaces with Riemannian metrics. Suppose µ(z)dz̄

dz is a measurable complex differential,
such that ‖µ‖∞ < 1; then, there exists a diffeomorphism φ : S1→ S2 mapping S1 to S2, whose Beltrami
differential is µ(z)dz̄

dz .

2.5.3. Auxiliary Metric

A constructive method is given here to solve the Beltrami equation, namely to recover the mapping
from its Beltrami differential [38,39]. Suppose φ : Ω→ D, Ω is in the z-plane and D is in the w-plane.
The Beltrami differential is denoted as µ

dz̄
dz . Then:

dw(z) =
∂w(z)

∂ z
dz+

∂w(z)
∂ z̄

dz̄ = wz(dz+µdz̄)

The pullback metric induced by φ on Ω is:

φ
∗|dw|2 = |wz|2|dz+µdz̄|2

Therefore, the pullback metric is conformal to the auxiliary metric |dz+ µdz̄|2. Namely, we have
proven the following theorem:

Theorem 9 (Auxiliary Metric). The quasiconformal map:

φ : (Ω, |dz|2)→ (D, |dw|2)

becomes a conformal map under the auxiliary metric:

φ : (Ω, |dz+µdz̄|2)→ (D, |dw|2)

The auxiliary metric is well defined. The proof of this theorem can be found in [38]. It tells us
that in order to solve the Beltrami equation on Riemann surfaces, we simply need to define a new
auxiliary metric associated with the prescribed Beltrami differential. We can then solve the Beltrami
equation by computing a conformal mapping associated with the newly defined metric. In other words,
the quasiconformal mapping is equivalent to a conformal mapping under a suitable auxiliary metric.

3. Algorithm

In this section, we explain the computation details for each stage of the pipeline shown in
Figure 3. We construct the spline for diffeomorphisms based on conformal mappings and quasiconformal
mappings. First, we use conformal mappings to map the surfaces to canonical domains, which
provides an efficient approach to deal with 3D problems. Second, we generate diffeomorphisms by the
quasiconformal diffeomorphic surface registration method, which operates diffeomorphisms as complex
functions, the so-called Beltrami coefficients (Beltrami differentials), and converts diffeomorphism space
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into a functional space. Third, we apply the Catmull–Rom spline for interpolation between Beltrami
differential functions. Each interpolated point corresponds to a diffeomorphism denoted by a Beltrami
differential. The diffeomorphism can be recovered by the quasiconformal mapping associated with the
interpolated Beltrami differential.

Beltrami Differentials
Construction

Diffeomorphism
Recovery

Spline
from Diffeomorphisms

Quasiconformal Diffeomorphic
Surface Registration

Figure 3. Pipeline for computing the spline of diffeomorphisms.

3.1. Quasiconformal Diffeomorphic Surface Registration Framework

The surface registration framework is summarized in Diagram (4).

S1
f−−−→ S2

φ1

y yφ2

D h−−−→ D

(4)

Suppose Sk,k = 1,2 are the input surfaces. Here, we assume the input surfaces for registration are
without occlusions. In order to compute the optimal diffeomorphism f : S1 → S2 to register them, we
conformally map them onto the plane φk : Sk → D, then construct a planar quasiconformal mapping
h : D→D; the registration is given by f = φ

−1
2 ◦h◦φ1. The Beltrami coefficient of h is estimated on the

planar domain, and h is obtained by solving the Beltrami equation in Equation (1).
Under this framework, we use the following sparse-to-dense registration algorithm for 3D mesh

surfaces with large deformations. It includes three stages: (1) feature extraction: we extract the
feature points and their correspondence using the method of the Active Appearance Model (AAM) [40];
(2) Beltrami coefficients estimation: we construct the feature graph from the sparse feature points
using Delaunay triangulation [41]; the matching between the sparse feature graphs induces the rough
Beltrami differentials on the feature points. By smooth interpolation, such as harmonic map, the Beltrami
differential function on the whole surface is estimated (see Figure 4). (3) Solving the Beltrami equation
using discrete curvature flow: we compute the diffeomorphism between the dense mesh surfaces, which
is uniquely determined by the Beltrami differential. The diffeomorphism gives the dense registration
between surfaces. More computational details can be found in [27].

Figure 4 illustrates the Beltrami coefficients for the registration between key frames k0,k2 on the
unit disk map (see Figure 5); the local stretching K is computed by Equation (2). Frame (a) visualizes
the local stretching K(µ0) on the feature graph of key frame k0; and (b) visualizes K(µ) on the dense
mesh of k0. The red color denotes the highest non-conformality and the blue color denotes the highest
conformality. It can be easily seen that the muscles around the mouth have bigger non-conformal
deformation; the bone structure on the forehead is rigid; therefore, the deformation is close to conformal.
Figure 5a shows the four key frames {ki, i = 0..3} from a 3D facial expression video; Figure 5b gives the
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corresponding conformal mappings to the unit disk; and Figure 5c,d show the registration results of ki

to the reference frame k0, where the one-to-one and onto registrations and the distortions are visualized
by the consistent circle packing texture mappings, and the circles are changed to ellipses through the
quasiconformal mapping associated with µ .

(a) (b)

Figure 4. Quasiconformal diffeomorphic surface registration. (a) D on feature graph of S1;
(b) D on dense mesh φ1(S1).

3.2. Generating Beltrami Differentials

Through the above approach, we generate a sequence of diffeomorphisms, { f0, f1, . . . , fn}, for a
sequence of surfaces, {S0,S1, . . . ,Sn}. We usually use the first frame S0 as the reference frame for
generating diffeomorphisms, fk : S0→ Sk for k = 0, . . . ,n, as shown in Diagram (5).

S0
f1−−−→ S1

S0
f2−−−→ S2

... ...−−−→ ...

S0
fn−−−→ Sn

(5)

As shown in Figure 5c,d, the diffeomorphisms between each key frame to frame k0 are constructed
by quasiconformal registrations, and their unique Beltrami differentials under a suitable normalization
are computed accordingly. Here, the normalization is performed to map the nose tip of the facial surface
to the origin of the unit disk and the middle point between two inner eye corners to the imaginary axis.

Essentially, given such a sequence of diffeomorphisms denoted as Beltrami coefficients and
constructed from the same reference frame S0, each interpolated Beltrami coefficient µt corresponds to a
diffeomorphism ht in parameter space. By lifting the mapping from parameter space to the 3D surface, as
shown in (4), the Beltrami coefficient µt is converted to a diffeomorphism ft from the reference frame S0

to another surface frame St , which has the parameter domain Dt associated with the µt from the reference
parameter domain D0 of S0.
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Key frame k0 Key frame k1 Key frame k2 Key frame k3

(a)

φ0 : k0→ D0 φ1 : k1→ D1 φ2 : k2→ D2 φ3 : k3→ D3

(b)

h0 : D0→ D0 h1 : D0→ D1 h2 : D0→ D2 h3 : D0→ D3

(c)

f0 : k0→ k0 f1 : k0→ k1 f2 : k0→ k2 f3 : k0→ k3

(d)

K0

K1

K2

K1

K1

K0

K3

θ0

θ1

θ2 θ1 θ1
θ3

θ0

Average of local stretching K(µ)≥ 1 Average of local angles |θ(µ)| ∈ [0, π

2 ]

(e)

Figure 5. Diffeomorphism spline from the key frames of a 3D facial expression video.
(a) Key frames; (b) conformal mappings to the unit disk; (c) consistent texture mappings
on 2D conformal images; (d) consistent texture mappings on 3D original surfaces;
(e) Catmull–Rom spline for diffeomorphisms of 7 key frames, k0,k1,k2,k1,k3,k1,k0,
from k0.
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In the next step, we will use these diffeomorphisms with corresponding unique Beltrami differentials
as the control points for constructing splines. The convex combination of Beltrami differentials is still
a Beltrami differential. Therefore, the conventional spline scheme can be generalized to the Beltrami
differential space, and consequently to the diffeomorphism space.

3.3. Constructing the Spline of Beltrami Differentials

In our framework, any type of spline (e.g., Bézier curve, Catmull–Rom spline) can be constructed
on the given dataset of diffeomorphisms, which are represented by the Beltrami coefficients {µk}.
Catmull–Rom splines [42] are frequently used to get smooth interpolated motion between key frames,
such as most camera path animations. They are popular mainly for being relatively easy to compute and
guaranteeing that each key frame position will be hit exactly and that the tangents of the generated curve
are continuous over multiple segments. In our applications, we use Catmull–Rom splines for smooth
interpolation between the Beltrami differentials induced by key frame registrations.

Given (n + 1) points, µ0,µ1, . . . ,µn, in the functional space, for each interval (tk, tk+1), the
interpolation can be done with the following formula:

µ(t) = h00(t)µk +h10mk +h01µk+1 +h11mk+1 (6)

where h00,h10,h01,h11 are Hermite basis functions:

h00(t) = (1+2t)(1− t)2 h10(t) = t(1− t)2

h01(t) = t2(3−2t) h11(t) = t2(t−1)

and mk is the tangent at tk:

mk =
µk+1−µk−1

tk+1− tk−1

A dataset, {tk,µk} for k = 0, . . . ,n, can be interpolated by applying the above procedure on each
interval, where the tangents are chosen in a sensible manner, meaning that the tangents for intervals
sharing endpoints are equal. The interpolated curve then consists of piecewise cubic Hermite splines and
is globally continuously differentiable in (t0, tn).

In Figure 5e, we construct the Catmull–Rom spline for the Beltrami coefficients of the key frame
diffeomorphisms, {µi, i = 0..3}, which is visualized by the average local stretching and the average local
angle distortion of each interpolated diffeomorphism.

3.4. Quasiconformal Mapping for Diffeomorphism Recovery

The diffeomorphism f : S1 → S2 between surfaces can be recovered by the planar quasiconformal
mapping h : D → D, associated with a Beltrami differential, as shown in Diagram (4). The
quasiconformal mapping can be computed by solving the Beltrami equation in Equation (1) and is
unique up to a suitable normalization condition. Similarly, given a sequence of deformable surfaces
and its diffeomorphism spline constructed, any interpolated diffeomorphism from the reference frame S0

1
to Sm

1 at time tm ∈ [t0, tn] can be recovered from the corresponding Beltrami differential.
We apply the quasiconformal mapping algorithm based on the auxiliary metric induced by the

Beltrami coefficient µ to recover the diffeomorphism (see Theorem 9; the proof can be found in [9,38]).
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Algorithm 1 shows the computation of the auxiliary metric on a discrete triangular mesh [39]. We then
use discrete surface Ricci flow [43] to map the triangular mesh to the canonical domain, by using the
auxiliary metric to replace the induced Euclidean metric of the original surface.

Algorithm 1 Auxiliary metric-based quasiconformal mapping.
Require: A triangular mesh M = (V,E,F) with conformal parameterization z : V → C and discrete Beltrami

differential µ : V → C defined on the conformal structure.
Ensure: Quasiconformal mapping f : M→ D satisfying the Beltrami equation with µ .

1: Compute a conformal mapping φ : M→ D using discrete surface Ricci flow.
2: for all edge [vi,v j] ∈M do
3: Compute the edge length li j using the induced Euclidean metric.
4: Compute the derivative of conformal coordinates on [vi,v j], dzi j← φ(v j)−φ(vi).
5: Compute the Beltrami differential on [vi,v j], µi j← 1

2(µ(vi)+µ(v j)).
6: Compute the scalar of metric λi j←

|dzi j+µi jdz̄i j|
|dzi j| .

7: Compute the auxiliary metric l̃i j← λi jli j.
8: end for
9: Compute the conformal mapping f using Ricci flow based on the auxiliary metric.

4. Experimental Results

We demonstrate the efficiency and efficacy of our method by constructing the diffeomorphism splines
for both images and real scanned 3D surface sequences with large non-rigid deformations. The surfaces
are represented as dense triangular meshes. In the following, we explain the experimental results on the
construction of the diffeomorphism spline and the related applications.

4.1. Diffeomorphism Splines for Shape Modeling

The spline based on diffeomorphisms has much potential in shape modeling. Shape is manipulated
in a general diffeomorphism space, which is essentially equal to a functional space of a special form.
Any arbitrary shape is regarded as a diffeomorphism from a reference shape with the same topology.
The spline provides the smooth and continuous interpolation path in this space. In this sense, the
diffeomorphism space is general to handle any diffeomorphic deformations, subsuming the special
categories of rigid motions, isometric transformations and conformal mappings. Any kind of physical
and natural deformations, large or small, rigid or non-rigid, can be operated in the same way.

The diffeomorphism space also provides a way to compose diffeomorphisms. Suppose two
diffeomorphisms, f1 : S0

1→ S1, f2 : S0
2→ S2. If the diffeomorphisms are from the same reference, then

the composed diffeomorphism f : S1 → S2 is f = f2 ◦ f−1
1 . If they are from different references, then

for another diffeomorphism f0 : S0
1→ S0

2 between two references, the composition is f = f2 ◦ f−1
0 ◦ f−1

1 .
This operation allows modeling diffeomorphisms in a back and forth way.

It is important to note that this work focuses on modeling the “diffeomorphisms” of surfaces in
parameter space, not generating the “embeddings” of surfaces in 3D. This is also the difference from
the diffeomorphisms obtained from statistical models [44]. The 3D geometry from the interpolated
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diffeomorphism of the parameter domain can be recovered based on the conformal representation
theorem [37], which will be explored in future work.

Given the finite number of key diffeomorphic deformations of a reference shape, we can formulate
each deformation as a diffeomorphism of the reference. Figure 5 gives the pipeline for computing
the Catmull–Rom spline from key frames. This framework provides a practical and efficient tool for
modeling shapes and accordingly has a broad range of applications. Here, we introduce several key
applications in detail, such as 2D animation and inter-frame registration in 3D video.

4.2. Animation

The spline for key diffeomorphisms generates the smooth animation path. The key diffeomorphisms
can be learned from the given deformations (e.g., key frames in a video) based on the proposed surface
registration method in this work. They also can be generated manually or computed analytically by
designers. Figure 6 shows the diffeomorphisms of a regular square D (as shown in the left-most frame)
to itself. Each diffeomorphism is a quasiconformal mapping of the regular square. The first row shows
the deformation frames of the kitty image. The second row demonstrates the the quasiconformality of
diffeomorphisms through the consistent circle-packing texture mapping results.

Figure 6. Animation with irregular deformations. The distortion of circles to ellipses
visualizes the quasiconformality of diffeomorphisms.

4.3. Inter-Frame Registration and Tracking

In the physical world, the deformation for a surface is generally diffeomorphic. A spatial-temporal
sequence (video) of deformable non-rigid surfaces can be extracted as a sequence of diffeomorphisms of
the reference surface. Key frames are frequently used for practical video editing purposes. In this work,
the diffeomorphisms between frames are generated based on spline interpolation. This naturally induces
the inter-frame registration within one video, even among videos.

We select the first key frame k0 as the reference surface. Each key frame ki is a diffeomorphism fi

of k0. The diffeomorphism can be represented by a complex function, the Beltrami differential µi. The
Beltrami coefficients for key frames k0,k1, . . . ,kn are µ0,µ1, . . . ,µn, respectively.
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Figure 5 shows the diffeomorphism spline for key frames in a 3D video of a human face with
expression changes.

Sample S6 Sample S26 Sample S46 Sample S66 Sample S86 Sample S106

(a)

(b)

(c)

(d)

Figure 7. Diffeomorphisms interpolation and its application for inter-frame registration.
(a) Surface samples Sti corresponding to interpolated diffeomorphisms fti(µti);
(b) corresponding interpolated diffeomorphisms on the 2D domain hti(µti); (c) Consistent
texture mappings on interpolation frames hti : D0→ Dti; (d) consistent texture mappings on
interpolation frames fti : k0→ Sti .

Four types of key frames are extracted k0,k1,k2,k3 in Figure 5a based on the conformal module
signature as in [32], mainly describing the deformation intensity of the mouth area. The video is
summarized as a sequence with seven key frames, k0,k1,k2,k1,k3,k1,k0, where k1 appears three times,
because the expression change is repeated. Figure 5b shows their conformal maps on the unit disk. The
diffeomorphic registrations between each key frame to the frame k0 are constructed by quasiconformal
mappings as stated in Section 3.1. The one-to-one correspondence is visualized by the consistent
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circle-packing texture mappings on both 2D conformal images Figure 5c and 3D original surfaces
Figure 5d. The shape change of circles to ellipses demonstrates the quasiconformal deformations of
expressions (Beltrami coefficients µ of the diffeomorphisms) from the reference. The diffeomorphism
spline Figure 5e is then constructed using the key frame diffeomorphisms. Each interval of the spline has
19 samples, and each sample represents a diffeomorphism. Therefore, the whole spline has 121 samples
S0,S1, . . . ,S120, where S0 = S120 = k0,S20 = S60 = S100 = k1,S40 = k2,S80 = k3. The spline is illustrated
by the statistics on the local stretching K(µ) and local angle θ(µ), computed by (2) and (3), respectively.
The diffeomorphisms are quasiconformal, except at the endpoints, which denote the identity map of the
reference frame k0 to itself.

The inter-frame registration is generated through the diffeomorphism spline interpolation as follows.
In our current modeling, for a sample at ti of the diffeomorphism spline, we locate the corresponding
3D frame Sti in the whole video with the same parameter ti. By the interpolated Beltrami coefficient µti

and the surface registration Diagram (4), the registration (diffeomorphism) between the reference key
frame and the current interpolated frame fti : k0 → Sti can be obtained directly. Figure 7a,b show the
2D/3D frames corresponding to the six interpolation samples (ti = 6,26,46,66,86,106) of the spline in
Figure 5e. The consistent circle packing texture mappings in (c,d) visualize the inter-frame registration
and deformation between 3D frame Sti and k0. The texture and normal information of the interpolated
frames are interpolated accordingly through the one-to-one correspondence among the key frames.

4.4. Performance

We implement our algorithm using generic C++ on the Windows platform. The linear systems
are solved using the conjugate gradient method. The experiments are carried out on a desktop with
3.40 GHZ CPU, 3.93 G RAM. The human face surfaces were captured using the phase shifting structured
light method [10], which are discretely represented as triangular meshes. Each raw scan of human facial
expression in Figure 5 has about 120k triangles. We use the raw data for generating the key frame
registrations (diffeomorphisms). In generating diffeomorphism interpolations, we use a disk mesh with
25k vertices as the reference domain for 3D human faces and a regular square mesh with 10k vertices
as the reference for image cases, which result in the consistent size of meshes and Beltrami coefficients.
The computational time is reported in Table 1. The accuracy of inter-frame registration is measured
by the averaged relative Hausdorff distance [24] between the source surface and the deformed result,
which is close to 0.003. The registration can also be visually evaluated through the consistent texture
mapping results on the original 3D surfaces. The experimental results show that the registration results
are satisfactory.

In this work, we focus on topological disk surfaces. This proposed framework can handle any
diffeomorphisms for general surfaces with more complicated topologies, such as the high genus cases.
The only difference is that in the general manifold setting, the Beltrami coefficient is generalized to
the Beltrami differential. Given a general surface, based on the uniformization theorem, a canonical
domain associated with a specific rigid transformation group can be generated from the induced
Euclidean metric. With that, the auxiliary metric method can be directly generalized to use the Beltrami
differential [38,39] according to Theorem 9. This generalization will be explored in our future work.
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Table 1. Computational time (seconds).

Model Human Face Scan Disk Reference Mesh Square Reference Mesh

vertex# 60k 25,088 10,000
face# 120k 49,672 19,602

Tc 83 36 32
Tb 105 50 24
Ts - 10 5
Tq - 40 32

Note: Tc, conformal map for one frame; Tb, Beltrami differential computed by quasiconformal
registration for one diffeomorphism; Ts, spline construction for 7 key frames with 19 samples in each
interval; Tq, diffeomorphism recovery by quasiconformal map for one interpolation point.

5. Conclusions

In this work, we propose a novel spline scheme of modeling finite dimensional submanifolds
in diffeomorphism space by generalizing conventional splines in three dimensional Euclidean space.
Based on quasiconformal geometry, the diffeomorphism space has a one-to-one correspondence to the
space of Beltrami differentials, and the convex combination of Beltrami differentials is still a Beltrami
differential. Therefore, the conventional spline scheme can be generalized to the Beltrami differential
space and, consequently, to the diffeomorphism space. Our experiments on 2D animation and inter-frame
registration and tracking in 3D video demonstrate the efficiency and efficacy of diffeomorphism splines.
The diffeomorphism spline scheme is general for any topological surfaces and has broad impacts on
shape modeling and analysis problems and applications, which we will explore in our future works.
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