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RESEARCH ARTICLE Open Access

The neurotranscriptome of the Aedes
aegypti mosquito
Benjamin J. Matthews1, Carolyn S. McBride1,3, Matthew DeGennaro1,4, Orion Despo1,5 and Leslie B. Vosshall1,2*

Abstract

Background: A complete genome sequence and the advent of genome editing open up non-traditional model
organisms to mechanistic genetic studies. The mosquito Aedes aegypti is an important vector of infectious diseases
such as dengue, chikungunya, and yellow fever and has a large and complex genome, which has slowed annotation
efforts. We used comprehensive transcriptomic analysis of adult gene expression to improve the genome annotation
and to provide a detailed tissue-specific catalogue of neural gene expression at different adult behavioral states.

Results: We carried out deep RNA sequencing across all major peripheral male and female sensory tissues, the brain
and (female) ovary. Furthermore, we examined gene expression across three important phases of the female
reproductive cycle, a remarkable example of behavioral switching in which a female mosquito alternates between
obtaining blood-meals from humans and laying eggs. Using genome-guided alignments and de novo transcriptome
assembly, our re-annotation includes 572 new putative protein-coding genes and updates to 13.5 and 50.3 % of
existing transcripts within coding sequences and untranslated regions, respectively. Using this updated annotation,
we detail gene expression in each tissue, identifying large numbers of transcripts regulated by blood-feeding and
sexually dimorphic transcripts that may provide clues to the biology of male- and female-specific behaviors, such
as mating and blood-feeding, which are areas of intensive study for those interested in vector control.

Conclusions: This neurotranscriptome forms a strong foundation for the study of genes in the mosquito nervous
system and investigation of sensory-driven behaviors and their regulation. Furthermore, understanding the molecular
genetic basis of mosquito chemosensory behavior has important implications for vector control.

Keywords: Mosquito, Aedes aegypti, mRNA-sequencing, De novo genome assembly, Host-seeking behavior, Neural
genes, Chemosensory receptors, Ion channels, G protein-coupled receptors, Gonotrophic cycle, Neurogenetics

Background
Studies in classic genetic model organisms including the
mouse, zebrafish, fly, worm and yeast have led to major
advances in biology. All of these systems have in com-
mon a sequenced genome and the ability to carry out
forward and reverse genetic manipulations. Non-model
organisms, such as the mosquitoes we study, have not
been accessible to mechanistic genetic studies until re-
cently. The availability of genomes, next-generation se-
quencing and genome editing technologies now make it
possible to apply modern genetics to study animals with

important and interesting biology previously inaccessible
to molecular genetics.
Aedes aegypti is the primary vector for dengue, chi-

kungunya and yellow fever – debilitating diseases that
together are responsible for hundreds of millions of in-
fections and thousands of deaths annually worldwide [1].
Female mosquitoes exhibit remarkable behavioral shifts
throughout their adult life. Ae. aegypti are generally ana-
utogenous, meaning that they do not produce eggs with-
out a blood-meal [2]. Female Ae. aegypti use a variety of
chemical and physical cues to locate hosts in their envir-
onment and to discriminate humans from non-human
animals [3–8]. Although male Ae. aegypti do not feed on
blood, they also respond to host chemosensory cues,
perhaps to locate females congregating near humans [9].
At short range, the male locates a potential mate using
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the specific frequencies generated by a female’s wing-
beat [10].
After successfully obtaining a blood-meal, female mos-

quitoes repress host-seeking behavior [11, 12], and
utilize the nutrients in the blood-meal to develop a
batch of eggs. A female who has reached this physio-
logical state is known as “gravid”. It is known that egg
maturation and the beginning of egg-laying behavior
occur between 48 and 96 h after a blood-meal [11].
Once the eggs have matured, a gravid female uses cues
such as humidity and the presence and quality of liquid
water to identify a suitable place to lay her eggs, a
behavior also known as oviposition [13]. Following
oviposition, a female mosquito recovers her attraction
to hosts and seeks out new blood-meals to produce
successive batches of eggs. This process, including
host-seeking, egg maturation and oviposition, is known
as the gonotrophic cycle [11]. Disease transmission by
mosquitoes is driven by this cyclical nature of female
biting behavior, as a mosquito must first bite an in-
fected host before becoming competent to spread infec-
tion to subsequent hosts.
Genetic resources, such as those that have long existed

for conventional model organisms, would greatly facili-
tate investigation into the mechanistic basis of behavior
in mosquitoes. While there has been impressive progress
in mosquito transgenesis and mutagenesis in the past 20
years [3, 8, 12, 14–22], the large size of the Ae. aegypti
genome (~1.3 Gb) and large transposable element load
(~47 %) present formidable challenges to genome as-
sembly, physical mapping and annotation [23–26]. Des-
pite the limitations imposed by incomplete annotation of
new mosquito genomes, several studies have profiled
gene expression in individual sensory organs in the mos-
quitoes Ae. aegypti [27–29], Culex quinquefasciatus [30],
Anopheles gambiae [31–34], and Toxorhynchites amboi-
nensis [34].
Our work builds on these efforts by incorporating

biological replicates sequenced at greater depth and
from many isolated tissues in parallel in both females at
several behavioral states, and in males. This large dataset
makes it possible to detect genes expressed at low levels
or expressed in only a few neurons, and to identify
differential gene expression with statistical confidence.
Since the anatomical substrate of host-seeking, egg-
laying and other mosquito behaviors is likely to be
distributed across several tissues, parallel transcriptional
profiling of multiple tissues in a single study increases
the likelihood of capturing the full repertoire of genes
involved in these complex behaviors.
To generate a transcriptome of peripheral and central

neural tissues (or “neurotranscriptome”) in Ae. aegypti,
we performed Illumina mRNA-sequencing (RNA-seq)
on RNA isolated from male and female tissues. Tissues

sampled included the brain, antenna, maxillary palp,
proboscis, abdominal tip, legs and female ovary. To
understand the influence of blood-feeding state on
gene expression, we performed RNA-seq on a subset
of tissues in female mosquitoes at three time-points:
prior to a blood-meal (non-blood-fed), at 48 h follow-
ing a blood-meal (blood-fed), and at 96 h following a
blood-meal (gravid).
This project, as part of the NIAID VectorBase Driving

Biological Projects Initiative [35], set out to accomplish
three major goals: 1) to improve the existing annotation
of protein-coding genes in the Ae. aegypti genome and
identify genes not found in the current genome assem-
bly; 2) to catalogue gene expression at the resolution of
single tissues in host-seeking female and male mosqui-
toes; and 3) to identify changes in gene expression that
are correlated with blood-feeding state and its associated
behavioral changes. This neurotranscriptome signifi-
cantly enhances the Ae. aegypti genome annotation, and
identifies a large number of genes whose expression is
sexually dimorphic and/or variable across the female
gonotrophic cycle. We anticipate that these data will
drive studies of the genetic and neural circuit basis of
host-seeking and egg-laying behavior in Ae. aegypti.

Results
We profiled Ae. aegypti gene expression in tissues of
males, and females at three points in their gonotrophic
cycle (Fig. 1a). To confirm the distinct behavioral states
associated with these time points in the mosquitoes used
for our RNA-seq study, we measured responses to live
hosts and carbon dioxide, and monitored female egg-
laying. A uniport olfactometer was used to measure
female mosquito attraction to a human forearm, which
was presented along with carbon dioxide (CO2) to acti-
vate the mosquitoes [12]. Non-blood-fed females showed
strong attraction to these host cues, while blood-fed
females did not respond and gravid females showed only
modest host attraction (Fig. 1b). Because the act of
oviposition is correlated with a return to the state of
active host-seeking [11], egg-laying was prevented prior
to behavioral testing or tissue dissection by depriving
females of access to water. We confirmed that ovipos-
ition behavior was normal in these animals by placing
individual blood-fed and gravid female mosquitoes
into oviposition vials and scoring the number of eggs
laid over an 8 h period. As expected, blood-fed mos-
quitoes laid no eggs, but nearly all gravid mosquitoes
did (Fig. 1c).
To determine whether the diminished responses to

human hosts following blood feeding can be solely
attributed to a reduction in sensitivity to CO2, we uti-
lized a multi-insect three-dimensional flight-tracking
system [8] to assess the response of a group of 20 female
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mosquitoes to a 40 s pulse of CO2 (Fig. 1d and e). As
previously described, non-blood-fed female mosquitoes
displayed a robust increase in flight activity in response
to CO2 [8], while blood-fed females showed no increase
in activity following administration of CO2. Gravid
females displayed elevated pre-CO2 baseline flight activ-
ity. Male Ae. aegypti mosquitoes also showed a strong
response to CO2 (Fig. 1d and e).
To study tissue-specific mRNA expression in isolated

sensory and neural tissues of male and female Ae.
aegypti, we dissected individual tissues from pools of
non-blood-fed, blood-fed and gravid female mosquitoes,
as well as males. Tissue was flash-frozen and total RNA
was extracted and used to generate Illumina RNA-seq
libraries from polyA-selected mRNA. From female mos-
quitoes, we generated libraries from brain, antenna, pro-
boscis, maxillary palp, foreleg, midleg, hindleg and ovary
(Fig. 2a). We also dissected the rostrum, a tissue that
includes both maxillary palp and proboscis, and the
abdominal tip, defined in females as the three terminal
abdominal segments, including genitalia and ovipositor
(Fig. 2a). From male mosquitoes, we generated libraries
from brain, antenna, rostrum, foreleg, midleg, hindleg
and abdominal tip, defined in males as the three ter-
minal abdominal segments, including genitalia (Fig. 2b).
We generated at least three biological replicates for
each tissue and subjected each to deep sequencing
using an Illumina HiSeq instrument (with the excep-
tion of four libraries sequenced on the Illumina
Genome Analyzer II) (Fig. 2c).
Correctly quantitating transcript expression from

RNA-seq experiments depends on accurate gene models.
Before analyzing gene expression across tissues, the two
sexes and the female gonotrophic cycle, we utilized our
sequencing data to update the annotation of protein-
coding genes in the Ae. aegypti genome (Fig. 2d). The
depth, replication and diversity of our sequencing
allowed us to re-evaluate the existing annotation of
protein-coding genes in the Ae. aegypti genome using
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two complementary approaches: de novo transcriptome
assembly using Trinity [36] and alignment of sequencing
reads directly to the reference genome. By aligning con-
tigs from the de novo assembly back to the genome, we
were able to combine data generated from these two
approaches and use PASA2 software [37] to update
existing gene annotations (AaegL2.1; obtained from
VectorBase [35]). Reads were also aligned to the genome
using STAR [38], and those aligning to genes were
counted using featureCounts [39], allowing us to esti-
mate transcript abundance and calculate differential ex-
pression at the gene level using DESeq2 [40].
We first carried out a principal component analysis of

male and non-blood-fed female libraries to examine the
clustering of data by tissue and sex. Large batch effects
from library construction methods or problems with tis-
sue contamination during dissection [41] may be

revealed by this process. Virtually all of the biological
replicates of the same tissue clustered tightly in principal
component space, and for brain and legs across the two
sexes (Fig. 2e).
A comparison of the protein-coding transcriptomes

from the community annotations AaegL2.1 and
AaegL3.3 and our updated transcriptome, termed
AaegL.RU, can be found in Fig. 3a-c. In addition to up-
dating existing gene models, analysis identified 403 puta-
tive novel protein-coding genes that did not overlap
with existing gene annotations and >25,000 new putative
alternatively spliced isoforms as compared to the
AaegL3.3 geneset (Fig. 3a and b). Furthermore, we iden-
tified 169 predicted protein-coding transcripts with
orthology to other insect transcriptomes on unaligned
contigs from our de novo assembly that likely derive
from unsequenced portions of the Ae. aegypti genome
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(Fig. 3b and Additional file 1). Our data also allowed for
the extension of existing gene models, substantially in-
creasing the length of UTRs and coding sequence for
many existing genes as compared to the community ref-
erence annotations (Fig. 3b and c). Together, we
propose that there are potentially 572 protein-coding
genes missing from the currently published annota-
tion, although we note that our data must be inte-
grated with and evaluated in the context of the large
body of other genomic, transcriptomic and bioinfor-
matic evidence available for Ae. aegypti [35]. The re-
sults of our reannotation, including novel transcripts,
can be downloaded as Additional file 2.
Using our updated geneset annotation, we next classi-

fied genes into families related to neuronal function by
both incorporating previously published classifications
as well as considering their relationship to genes in the
well-annotated and -studied vinegar fly Drosophila mela-
nogaster. For pre-existing genes, we identified their
closest orthologue in D. melanogaster using pre-
calculated orthology calls of OrthoDB [42]. To account
for genes added in our geneset re-annotation, and thus

not considered by the OrthoDB databases, we addition-
ally performed blastx of the predicted coding sequence
of all transcripts against the D. melanogaster proteome
(Flybase release 6.06) and report the top BLAST hits
with e-values below 0.01 (Additional file 3). Of note, 163
of our 572 proposed novel genes (28.5 %) have blastx
hits that meet this criterion, as compared to 85.5 % of all
other annotated genes. Finally, we point out that due
to the incomplete assembly of the Ae. aegypti genome
[23, 43], ours and other approaches that rely on gen-
omic coordinates to describe gene features will run
the risk of duplication or error.
A single example of a novel protein-coding gene,

RU318, is depicted in Fig. 3d. It has high sequence con-
servation to the D. melanogaster TRP channel water
witch (wtrw) [44]. Notably, the current Ae. aegypti gene-
set annotation lacks a predicted orthologue to water
witch, while two other mosquito genomes (An. gambiae
and Cu. quinquefasciatus) contain orthologues. Based
on this sequence similarity, we have included RU318 in
our revised annotation of TRP channels in Ae. aegypti.
Finally, to aid in transgenesis and other genome
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engineering approaches, we used all predicted coding se-
quences to generate a consensus Kozak sequence for Ae.
aegypti (Fig. 3e).
To describe transcript abundance across tissues, we

mapped reads from our tissue-specific RNA-seq libraries
to the AaegL3 genome and report transcript abundances
in units of transcripts per million (TPM) [45]. Mapping
statistics for each library can be found in Additional file
4, and TPM values for each replicate library can be
found in Additional file 5 and Additional file 6. We first
described the expression of genes related to neuronal
function in specific tissues of non-blood-fed female and
male Ae. aegypti using expression values calculated
against the AaegL.RU annotation.
Insects use three major neurotransmitters: acetylcho-

line is the primary excitatory neurotransmitter in the
central nervous system, glutamate is used for neuromus-
cular transmission from motor neurons to muscles, and
GABA is generally considered to be the primary inhibi-
tory neurotransmitter in insect central synapses.
Additionally, a number of biogenic amines including
serotonin, dopamine, tyramine, octopamine and hista-
mine function as neurotransmitters or neuromodulators.
We identified acetylcholine receptor subunits by

orthology to D. melanogaster and An. gambiae [46].
Expression of most acetylcholine receptor subunits was
highest in male and female brain (Fig. 4a). We profiled
the expression of three types of glutamate receptors:
Kainate, NMDA and AMPA (Fig. 4b). Overall, we found
generally broader expression in peripheral tissues as well
as brain, consistent with a role in neuromuscular trans-
mission. Ionotropic GABA-A receptors and metabotro-
pic GABA-B receptors were uniformly expressed
broadly, with peaks in central brain (Fig. 4c). We found
three histamine receptor orthologues: two most closely
related to D. melanogaster HisCl1 and one to HisCl2
(Fig. 4d). All were expressed in brain at high levels, with
the HisCl1 orthologue AAEL006047 also expressed
broadly in peripheral tissues. Interestingly, we were
unable to identify an orthologue of the glycine receptor
Grd in Ae. aegypti. However, AAEL001568, annotated by
Vectorbase as a potential glycine receptor subunit pre-
cursor, shows broad expression in peripheral tissues and
more modest expression in brain (Fig. 4d).
Our annotation and a previous analysis [47] identified

three genes likely to be involved in ammonia transport in
Ae. aegypti: two predicted orthologues of the D. melano-
gaster gene ammonium transporter (Amt), AAEL007373
and AAEL007377, as well as a single orthologue of Rh50,
AAEL008046. D. melanogaster Amt is required for the
response of antennal coeloconic sensilla to ammonia [48].
Ammonia is known to be a host cue for Ae. aegypti [49]
and An. gambiae [50, 51]. AAEL007377 was expressed at
very low or undetectable levels (TPM< 1 in all tissues)

whereas AAEL007373 was expressed at high levels in fe-
male antenna and proboscis as well as male antenna (see
Additional file 5). AAEL008046 was expressed at very high
levels in male and female brain, as well as antenna (see
Additional file 5). We propose that AAEL007373 and
AAEL008046 may be involved in ammonia detection in
host-seeking Ae. aegypti.
Biogenic amines represent an important class of neu-

rotransmitters and neuromodulators in insects that have
been implicated in processes as diverse as reward,
aggression, oviposition choice and the control of
context-specific social behavior [52–55]. Ae. albopictus
mosquitoes fed constitutively with L-DOPA exhibit
lower levels of host-seeking behavior [56]. Serotonin
neurons innervate the antennal lobe of Ae. aegypti and
An. gambiae [57], as well as the gut of Ae. aegypti [58]
and serotonin has been shown to modulate feeding
behavior in larval D. melanogaster [59]. Most serotonin
receptors were expressed at appreciable levels in brain
and in various peripheral tissues (Fig. 4e). Dopamine
receptors had generally variable expression across
tissues, including brain, legs and antennae (Fig. 4f ).
Octopamine/tyramine receptors had generally lower
expression values than other receptors, but were de-
tected in brain as well as peripheral tissues (Fig. 4g). The
TyrR orthologue AAEL004396 was highly and selectively
expressed in ovary. We generally observed little obvious
sexual dimorphism in neurotransmitter receptor expres-
sion. This suggests that there is a gross conservation of
neuronal cell types and signaling pathways, at the tran-
scriptional level, across male and female tissues.
Neurotransmitter processing enzymes can serve as

cell-type specific markers to reveal the major neuro-
transmitters produced in particular tissues. The ortholo-
gue of D. melanogaster glutamic acid decarboxylase 2,
or Gad2, was expressed in brain and all peripheral sen-
sory tissues, but not ovary. In contrast, Gad1 was largely
restricted to brain, as well as male abdominal tip (Fig. 5a;
Additional file 7). All dopamine processing enzymes
were expressed in male and female brain, including the
family of dopamine decarboxylase (Ddc) genes, as well
as tyrosine hydroxylase (TH), tyrosine decarboxylase
(Tdc) and Tyramine β hydroxylase (Tbh). We also ob-
served strong peripheral expression of TH and the two
Ddc orthologues (Fig. 5a; Additional file 7). Processing
enzymes associated with GABA, glutamate and acetyl-
choline were expressed in male and female brain, with
many also expressed broadly across the majority of tis-
sues sampled (Fig. 5a; Additional file 7).
Genes corresponding to Ae. aegypti neuropeptides and

neuropeptide receptors were defined by orthology to ca-
nonical insect neuropeptides and receptors [12, 60–64].
Many neuropeptides were expressed primarily in brain
of male and female mosquitoes, while a number had
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broader expression patterns that included but were
not limited to brain (Fig. 5b; Additional file 7). This
is consistent with reports of the direct detection of
neuropeptides in specific regions of the brain, includ-
ing the antennal lobe [65]. Other peptides, including
several predicted orthologues of eclosion hormone
(EH), ecdysis-triggering hormone (ETH) and bursicon,
were not detected at appreciable levels. We speculate
that these genes are expressed selectively in earlier
developmental stages that were not sampled in the
present study of adult tissues. Neuropeptide receptors

had generally broad expression patterns (Fig. 5c;
Additional file 7), indicating that neuropeptides may
be centrally produced while exerting anatomically far-
reaching humoral effects.
Insects sense chemical substances such as tastants,

odorants, pheromones, noxious chemicals and CO2 with
an array of chemosensory receptors encoded by large
gene families of odorant receptors (ORs), odorant bind-
ing proteins (OBPs), ionotropic receptors (IRs), gusta-
tory receptors (GRs) and the pickpocket (PPK) and
transient receptor potential (TRP) ion channels. Other
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Fig. 4 Expression of neurotransmitter-related genes. Expression of receptors for the neurotransmitters acetylcholine (a), glutamate (b), GABA (c),
histamine (d), serotonin (e), dopamine (f) and octopamine/tyramine (g) in tissues from non-blood-fed female and male mosquitoes. Data are
presented as the mean Log10 (TPM + 1) for all biological replicates from each tissue. AaegL.RU gene set names and the closest orthologue from
D. melanogaster are indicated on the right
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groups have previously used RNA-seq to profile gene
expression of a number of these genes in various tissues
from several mosquito species [27, 28, 30–34]. Our work
builds on these efforts by simultaneously profiling
expression of all of these chemosensory genes in mul-
tiple individual tissues in Ae. aegypti in the same study
(Figs. 6 and 7; Additional file 7).
ORs are an insect-specific family of divergent seven

transmembrane domain chemoreceptors that sense vola-
tile odors, including pheromones [66]. The majority of
ORs are expressed in the antenna, with restricted sub-
sets expressed in either proboscis or maxillary palp
(Fig. 6a; Additional file 7), consistent with previous
reports of OR-expressing sensory neurons in these tis-
sues in An. gambiae [67] and Ae. aegypti [68]. In con-
trast to the ORs, OBPs are expressed widely in the

tissues profiled here, and vary greatly in their transcript
abundance (Fig. 6b; note expanded TPM scale relative to
Fig. 6a; Additional file 7). Similar results were found in
an analysis of OBP expression in An. gambiae mosqui-
toes [31] and ants [69].
Expression (TPM) values for ORs were broadly ele-

vated in female as compared to male antenna. Antennae
of male Ae. aegypti are specialized for audition and con-
tain an exaggerated pedicel at their base when compared
to female antenna [70]. We speculate that extra cell
numbers associated with this enlarged pedicel would
effectively dilute mRNA coming from other cells in male
antenna, thus reducing the tissue-wide abundance of
odorant receptors and other genes expressed in olfactory
sensory neurons. To account for these putative differ-
ences, we plotted the expression of ORs in male and
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and neuropeptide receptors (c) in tissues from non-blood-fed female and male mosquitoes. Data are presented as the mean Log10 (TPM + 1)
for all biological replicates from each tissue. AaegL.RU gene set names and the closest orthologue from D. melanogaster are provided in
Additional file 7
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female antenna (Fig. 6c) normalized to the olfactory co-
receptor orco to reflect the approximate number of ol-
factory sensory neurons. This normalization depends on

the assumption that orco expression is not sexually di-
morphic, and therefore a reasonable proxy for olfactory
sensory neuron number across sexes. Even after
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Fig. 6 Expression of odorant receptor and odorant binding protein genes. Expression of odorant receptors (ORs) (a) and odorant binding
proteins (OBPs) (b) in tissues from non-blood-fed female and male mosquitoes. Data are presented as the mean Log10 (TPM + 1) for all biological
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accounting for this normalization, we identified 12
OR genes with apparent enrichment in female an-
tenna, with 10- to 35-fold increase in raw expression
values as compared to male antennae (Fig. 6c and
d). Because a number of untested assumptions were
the basis of these conclusions, we note that these re-
sults would need to be validated independently, per-
haps by RNA in situ hybridization, to gain cellular
resolution of gene expression. Increases in mRNA
expression could arise either by selective upregula-
tion of gene expression in females, or through devel-
opmental changes that would lead to an increase in
the number of neurons expressing these receptors in
females. Because female mosquitoes show sex-
specific chemosensory behavioral responses to odors
associated with hosts and oviposition sites, it is not
unreasonable to expect sex-specific differences in
ORs tuned to these specific odors.
IRs are ligand-gated ion channels derived from variant

ionotropic glutamate receptors that tend to be gated by
ligands such as acids, aldehydes and amines [71]. The IR
family of Ae. aegypti has been previously described
[72], and we identified predicted gene models for 2
additional IRs (RU164 and RU199) using blastx against
the D. melanogaster proteome (Additional file 2 and
Additional file 3). We found three patterns of IR gene
expression: those generally restricted to antenna; others
selectively expressed in proboscis, rostrum and maxillary
palp; and a small number of IRs expressed across many
different tissues examined (Fig. 7a; Additional file 7).
Similar results were previously reported in D. melano-
gaster, Apis mellifera, An. gambiae and Culex quin-
quefasciatus [30, 31, 72].
GRs are a family of transmembrane receptors distantly

related to ORs [66] that mediate detection of phero-
mones, tastants, CO2 [73], and in the case of D. melano-
gaster Gr28b (Ae. aegypti Gr19), light and heat [74, 75].
The annotation of the GR family of Ae. aegypti was
previously described [76]. GRs are predominantly
expressed in the rostrum, maxillary palp and proboscis
(Fig. 7b; Additional file 7), consistent with their primary
and conserved role in taste perception [73]. Notable
exceptions include AaegGr1, AaegGr2 and AaegGr3
(Fig. 7b, bottom 3 genes), which encode CO2 receptor
genes that function in the maxillary palp [8].
Pickpocket (PPK) channels are a family of amiloride-

sensitive degenerin/epithelial sodium channels (DEG/
ENaC) that are involved in the transduction of a num-
ber of sensory modalities, including mechanosensa-
tion, hygrosensation and pheromone sensing [77]. We
first identified Ae. aegypti PPK channels by searching
for orthologues to previously described PPKs in D.
melanogaster and An. gambiae [77]. Gene expression
profiles of the PPK channels reveal broad expression

of most genes across several peripheral tissues (Fig. 7c;
Additional file 7), including proboscis and legs, con-
sistent with a role in various forms of contact
chemosensation.
Transient receptor potential (TRP) channels have

been implicated in diverse sensory modalities, including
heat, light and chemosensation [78]. Ae. aegypti TRP
channels were identified by conducting orthologue
searches against the 13 identified D. melanogaster TRP
channels [78]. We identified orthologues to all 13, and
two additional genes predicted to be orthologues of D.
melanogaster painless. Expression of TRP channels was
generally broad (Fig. 7d), with several interesting
tissue-specific expression patterns, most notably in
brain and antenna.
In addition to profiling specific gene families, we

examined transcripts with sexually dimorphic expression
(Fig. 8, Additional file 8). We compared expression in 6
tissues between non-blood-fed females and males
(Fig. 8a–f ). Differences may arise from sexually di-
morphic expression within individual cell-types or differ-
ences in tissue-specific cell-type composition between
sexes. To identify a set of broadly dimorphic transcripts,
we imposed a more conservative threshold of a fold-
change greater than 8 in any tissues, and examined them
for overlapping dimorphism across different tissues
(Fig. 8g and h). Expression patterns of genes that were
determined to be dimorphic in at least three tissues are
indicated in gray in the Venn diagrams in Fig. 8g and h,
and displayed as heat maps in Fig. 8i and j. We note the
presence of two newly annotated RU genes in the male-
specific transcript set, nix (RU468) [79] and RU185.
myo-sex (RU529) [80] was identified as male-specific in
two tissues. The discovery of these genes likely repre-
sents the ability of our RNA-seq data to capture tran-
scripts produced from the Ae. aegypti male-specific
locus on chromosome 1 that have eluded classical gen-
ome sequencing, and therefore annotation, due to large
repetitive regions.
Finally, we examined changes in gene expression

across the female gonotrophic cycle. After locating and
biting a host, female mosquitoes become engorged on a
blood-meal that can exceed their unfed body weight.
Over the next few days, they must digest this blood and
use its nutrients to mature a batch of eggs. During the
first 48 h following a blood-meal, mosquitoes are less
responsive to host cues and demonstrate very little
locomotion overall (Fig. 1b, d and e) [11, 12]. Dramatic
changes in gene expression in An. gambiae [32, 81],
and olfactory function in An. gambiae and Ae. aegypti
[82, 83] after a blood-meal have been documented.
Despite these interesting observations, the mechanisms
of host-seeking suppression following a blood-meal in
Ae. aegypti are not well understood. To examine the
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transcriptional changes associated with this behavioral
shift, and begin to approach possible mechanisms, we
asked whether there were significant changes in gene
expression between non blood-fed, blood-fed and

gravid mosquitoes in brain, antenna, hindleg (Fig. 9 and
Additional file 9) and several other tissues (Additional
file 9 and Additional file 10). Genes showing significant
changes in expression are displayed in MA plots
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(Fig. 9a–f ). We parsed these data to identify dynamics
of gene expression across the gonotrophic cycle in
these three tissues. Hundreds of genes showed selective
up- and down-regulation in blood-fed relative to non-
blood-fed females (Fig. 9g, top). Smaller numbers of

genes showed peaks of expression in non-blood-fed an-
imals, and suppression in blood-fed and gravid stages,
mirroring the behavioral suppression observed in Fig. 1.
We also identified sets of genes that showed lowest
levels of expression at non-blood-fed or gravid stages,
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and those that had low levels of expression that later
peaked in gravid animals. Selected examples of genes
belonging to several of these classes of gene expression
dynamics are shown in Fig. 9h-k, including the neuropep-
tide pyrokinin/PBAN (Fig. 9h) and 7 ORs (Fig. 9i–k).

Discussion
Here we present the “neurotranscriptome” of brain and
peripheral nervous system tissues in female and male
Ae. aegypti mosquitoes. We used both genome-guided
mapping of RNA-seq reads as well as de novo transcrip-
tome reconstruction to improve the annotation of exist-
ing protein-coding gene models as well as identify 572
putative novel protein-coding genes. By mapping tissue-
specific RNA-seq libraries to transcripts generated by
these updated gene models, we examined gene expres-
sion in 10 female and 6 male tissues from non-blood-fed
animals, as well as a subset of tissues from blood-fed
and gravid female mosquitoes, representing two import-
ant and distinct behavioral states following a human
blood-meal.
Given the fragmented state of the Ae. aegypti genome

and gene annotations, it was important to include a de
novo assembly approach in our analysis. This allowed us
to examine the expression pattern of genes derived from
unassembled regions of the genome. For example, a
myosin heavy chain gene, RU529, is identical in se-
quence to Ae. aegypti myo-sex [80], a gene linked to the
sex-determining M-locus of Ae. aegypti in a region ab-
sent from the current genome assembly. A targeted
search for genes in our dataset with similar expression
patterns revealed additional genes with male-specific
expression. Interestingly, we saw several novel un-
mapped genes from our de novo assembly in these
searches and suggest that these may also derive from
unassembled genomic loci similar to the M-locus. A re-
cent study confirmed the presence of such a factor, nix
(identified in our study as RU426), and demonstrated its
critical role in sex-determination in Ae. aegypti [79].
The present study is a valuable dataset, presenting a

comprehensive view of protein-coding gene expression
in adult tissues, and yet it remains incomplete. We only
sequenced polyadenylated RNA derived from 10 adult
tissues. We have not explored the repertoire of small
RNAs including microRNAs, non-coding RNAs or the
regulation of alternative splicing. Our re-annotation ap-
proach relied on alignments of short reads and de novo
transcripts back to the current draft of the genome,
meaning that gene models residing on misassembled
genomic contigs might be incorrectly represented.
Indeed, a recent effort to generate a physical map for the
Ae. aegypti genome found a misassembly rate of ap-
proximately 14 %, including 6 of the 10 largest super-
contigs [23], making it likely that many gene models that

rely on the present assembly remain incorrect. Ultim-
ately, a comprehensive annotation of protein-coding
genes and non-coding loci within the Ae. aegypti gen-
ome will require the incorporation of additional genomic
sequencing and transcriptomic data derived from dis-
tinct developmental stages and tissues [84].
Whole tissue RNA-seq can identify genes differentially

expressed across male and female tissues. However, fur-
ther work will be required to resolve gene expression
profiles in individual cells and cell-types. For the pur-
poses of this study, sexually dimorphic transcripts were
conservatively defined as those for which the fold-
change observed was greater than 8, though we note
that there are many more transcripts with less extreme
sex-biased expression. Anatomical differences will make
it difficult to determine whether observed differences in
transcript abundance represent differential regulation
within shared cell-types or variation in the cell-type
composition of male and female tissues. Interestingly, we
describe relatively few examples of sexually dimorphic
expression within the chemosensory gene families exam-
ined, suggesting that the striking behavioral differences
seen between male and female Ae. aegypti may be
encoded in the neural circuits responsible for the pro-
cessing of sensory stimuli as opposed to gene expression
differences at the sensory periphery.
We do note the statistically significant up- and down-

regulation of a handful of olfactory receptors in antenna
from gravid females. This is similar to an observed shift
in OR expression in the antenna of An. gambiae follow-
ing a blood-meal [32, 81], and suggests that a behavioral
shift from host-seeking to oviposition site selection may
involve the increased expression of particular ORs tuned
to ligands associated with oviposition sites and a con-
comitant decrease in expression of ORs tuned to host
odor. With few exceptions [8, 85], the ligand tuning
of specific chemoreceptors has not been determined
in Ae. aegypti. A systematic effort to de-orphanize Ae.
aegypti chemoreceptors will be required to address
the functional relevance of these observed gene ex-
pression changes.
A major goal of this work was to identify gene expres-

sion changes correlated with blood-feeding state to gain
insight into possible mechanisms by which a blood-meal
might influence behavior. We describe many genes that
change expression in tissues from blood-fed and gravid
mosquitoes, including chemoreceptors, neuropeptides,
neuropeptide receptors and neurotransmitter receptors
and processing enzymes, all of which might play import-
ant roles in the regulation of behavior and physiology.
However, genes from these classes comprise a small
minority of all regulated genes, and thus, are unlikely to
alone explain the marked shifts in behavior as female
mosquitoes transition from host-seeking to oviposition.

Matthews et al. BMC Genomics  (2016) 17:32 Page 14 of 20



We envision this dataset as a resource to guide the se-
lection of candidate genes involved in mosquito behavior
as well as providing insight into the principles of gene
expression regulation by blood-feeding. Transgenesis of
mosquitoes [16] and precisely targeted mutagenesis with
tools such as zinc-finger nucleases [3, 8, 12], TALENs
[18, 19], homing endonucleases [17], and RNA-guided
nucleases [20–22] now allow for the generation of stable
mutant lines and other genetic reagents to test the func-
tion of candidate genes in mosquito behavior.

Conclusions
We present a broad view of gene expression in non-
blood-fed male and female tissues, focusing particularly
on gene families related to neuronal function and che-
mosensation. We demonstrate that the effects of blood-
feeding on gene expression are broad. This study repre-
sents the most comprehensive, tissue-specific survey of
gene expression in adult Ae. aegypti to date and will be
foundational in our understanding of the molecular gen-
etic basis of behavior in this important disease vector.

Methods
Mosquito rearing
Mosquitoes used in this study were from the genome
reference Liverpool strain (LVPIB12) obtained from BEI
Resources/CDC/MR-4 (stock number MRA-735). Eggs
were hatched in autoclaved water containing ground
Tetramin tropical fish food (Tetra) and fed Tetramin
food as necessary during larval and pupal development.
For routine rearing, adult females were blood-fed on
mice under a protocol approved by the Rockefeller Uni-
versity Institutional Animal Care and Use Committee
(IACUC Protocol 14756). Male and female adult mos-
quitoes were reared together under a 14 h light:10 h
dark cycle under conditions of 25–28 °C and 70–80 %
relative humidity. For female blood-fed libraries, mos-
quitoes were offered a human arm and allowed to feed
to completion. Blood-feeding was verified by separating
female mosquitoes with engorged abdomens 24–48 h
following blood-feeding. At least 16 h prior to dissec-
tions, mosquitoes were separated under cold-anesthesia
into groups of the appropriate size for a given library.

Mosquito behavior
Uniport experiments were carried out as described [12],
with the exception of the stimulus, which was a 11 cm2

circle of exposed skin created by cutting a hole in an
elbow-length latex glove. CO2 concentration in the
airstream was measured at 5 % with a Carbocap Hand-
Held CO2 m (model GM70, Vaisala Inc.). SciTrackS
experiments were carried out as described [8]. Groups of
20 mosquitoes were placed into the flight arena, allowed

to acclimate for 15 min, and then presented with a 40 s
pulse of CO2.

Ethics, consent, and permissions
All blood-feeding procedures and behavioral testing with
human subjects were approved and monitored by The
Rockefeller University Institutional Review Board (IRB;
protocol LVO-0652). Subjects gave their written in-
formed consent to participate in these experiments.

Tissue dissection and RNA extraction
Mosquitoes were cold-anesthetized and kept on ice until
dissections were complete. Individual tissues were re-
moved by forceps or scissors and immediately flash-
frozen by placing into nuclease-free tubes in a dry-ice/
ethanol bath (−76 °C). The following number of mosqui-
toes was used for each female library: antenna, 100–220;
maxillary palp, 126–816; proboscis, 275–797; rostrum,
110–142; brain, 9–18; foreleg, 125; midleg, 100–125;
hindleg, 100–138; ovary, 9–25; abdominal tip, 50. For
male libraries, the following number of mosquitoes was
dissected for each tissue library: antenna, 75; rostrum,
40–50; brain, 25; foreleg, 100–125; midleg, 100–125;
hindleg, 100–125; abdominal tip, 50. Dissected tissue
was stored at −80 °C until RNA extraction.
RNA extraction was performed using the Qiagen

RNeasy Mini Kit (Qiagen). Tissue was disrupted with an
electric tissue grinder loaded with a disposable RNAse
free plastic pestle. For legs, abdominal tip and other
cuticle-rich tissue, samples were further disrupted by
passing tissue through a QIAshredder Mini spin column
(Qiagen). RNA quantity and quality were evaluated using
an Agilent BioAnalyzer 2100 and the RNA 6000 Nano
Kit (Agilent Technologies).

RNA-seq library preparation
Unstranded libraries from polyA-selected RNA were
prepared with TruSeq RNA Sample Preparation Kits
(Illumina) or the mRNA sample-prep kit (Illumina),
following the manufacturer’s protocol. Between 200 ng
and 1 μg of total RNA was used as input for each repli-
cate library. For paired-end libraries, size-selection was
performed prior to PCR by gel extraction or by a Pippin
Prep instrument (Sage Biosciences) using 2 % agarose
cassettes containing ethidium bromide. Size selection
resulted in libraries with mean insert sizes (excluding
sequencing adapters) of 250–450 base pairs (bp). Library
quantity and quality were evaluated using an Agilent
BioAnalyzer 2100 and the High Sensitivity DNA Kit.

Sequencing
All sequencing was performed at The Rockefeller
University Genomics Resource Center on HiSeq 2000 or
Genome Analyzer IIx sequencers (Illumina). All paired
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end reads were 2 × 101 bp and all single-end reads were
1 × 101 bp with the exception of four 72 bp libraries.
Data were de-multiplexed and delivered as fastq files for
each library. These sequencing reads are available at the
NCBI Sequence Read Archive (SRA) and are associated
with BioProject PRJNA236239.

Transcriptome generation: reference-based mapping
All reads from all libraries were aligned to the AaegL2
reference genome obtained from VectorBase [35] using
Cufflinks2, Tophat2 and Bowtie2 software packages [86].
Reads were aligned without respect to existing anno-
tations with the following settings: minimum intron
length of 40 bp, maximum intron length of 500 Mb.
Cufflinks was run on reads from individual conditions
and tissues to identify all putative splice junctions,
and then combined using cuffcompare to identify a
consensus set of putative splice junctions identified in
our sequencing reads.

Transcriptome generation: de novo assembly
We performed de novo assembly as a second approach
to reconstruct transcripts from our data. All reads from
all libraries were assembled into a genome-free de novo
assembly using the Trinity software package (version
2013-02-25) [36, 87]. To account for the depth of
sequencing, we first performed read normalization to
down-sample the number of reads used in the assembly
using the included normalization tool in the Trinity soft-
ware package with a max_coverage setting of 25. Male
paired-end, female paired-end and single-end reads were
normalized separately and then combined, resulting in a
49-fold reduction in overall input data. Trinity was run
using default settings, with a minimum k-mer coverage
of 1, resulting in an assembly with 420,978 contigs.

Geneset annotation: PASA
The spliced alignments of individual sequencing reads and
the alignment of contigs from the de novo assembly were
used as input to PASA2 [37] as a means of updating the
reference gene annotation using the software’s alignment
assembly and annotation comparison workflow. Briefly, de
novo contigs were aligned to the genome (AaegL2; Vector-
Base [35]) using the short read aligners BLAT and GMAP.
These alignments were combined with the combined cuf-
flinks output from genome-guided mapping to create as-
semblies of spliced alignments. These assemblies were
compared to reference annotations (AaegL2.1; VectorBase
[35]) and used to extend, update or merge reference anno-
tations. Additionally, this analysis identified 403 putative
protein-coding genes not covered by the current annota-
tion (see “Geneset annotation: naming of genes and gene-
set comparisons below). Default PASA2 parameters were
used with the exception of the number of allowed exons

in 5’ or 3’ UTRs (−−MAX_UTR_EXONS = 3). Due to a
technical oversight, 5 genes were added manually after the
PASA2 run, using previously published coordinates:
AaegGr27, AaegOr54, AaegIr41d.2, AaegIr75k.4 and
AaegIr7h.2.

Identifying novel unmapped genes
To identify novel transcripts that do not map to the
current genome assembly, we filtered our de novo
assembly as follows. First, we excluded all contigs that
mapped to the genome or to cDNA from an existing
transcript using GMAP. Next, we required that each
contig encoded a complete open reading frame (ORF) of
at least 30 amino acids in length, as predicted by trans-
decoder (http://transdecoder.github.io). We then
screened for likely bacterial and fungal contamination by
performing blastx with default settings of the remaining
contigs against the nr database (NCBI), and excluded
anything for which the top hit was fungal, bacterial or
mammalian. Finally, we performed blastx of each
remaining contig against a database of insect transcrip-
tomes (Anopheles gambiae [AgamP3], Apis mellifera
[Amel_4.0], Culex pipiens (now Culex quinquefasciatus)
[CpipJ1], Drosophila pseudoobscura [r3.1], Heliconius
melpomene [v1.1], Ixodes scapularis [IscaW1.2], Nasonia
vitripennis [Nvit_1.0], Rhodnius proxlixus [RproC1],
Bombyx mori [SilkDB v1.0], Drosophila melanogaster
[r5.50] and Triboleum castaneum [v2.0; without mito-
chondria], requiring that there was a match with an e-
value of less than 0.01. 232 contigs that passed these
conservative filters were considered to be high-
confidence novel genes derived from portions of the
genome that have not been sequenced or had assembly
problems. These 232 contigs were collapsed using CD-
HIT [88, 89] resulting in 169 novel transcripts that were
included in downstream analysis.

Geneset annotation: naming of genes and geneset
comparisons
To name each gene in our updated geneset, we first
compared them to existing annotations in AaegL3.3
using cuffcompare [86] and carried over accession num-
bers for those loci that were highly similar to existing
annotations. Genes that did not match existing loci in
these cuffcompare analyses are numbered sequentially as
RU1–RU572 (Additional file 2). For chemosensory gene
families with previously published manual annotation,
names were assigned to be consistent with these previ-
ous annotations (Additional file 3). For genes with a
VectorBase accession number, orthology to Drosophila
melanogaster was retrieved from OrthoDB (ODB8,
dipteran dataset) [42]. We further used NCBI blastx to
compare CDS for all transcripts against the D. melano-
gaster proteome; hits with an e-value of less than 0.01
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(truncated to include the top 10) are listed in Additional
file 3. To determine the proportion of transcripts that
were updated as compared to the VectorBase annota-
tions (Fig. 3c; AaegL2.1 and AaegL3.3), we used the par-
seval tool in the AEGeAn package to compare gff3
annotation files [90].
We note that due to the evolving nature of annotations

in Ae. aegypti and the fact that our orthology relies only
on a single species (D. melanogaster), the gene families
here should not be considered complete or exhaustive.

Library QC
A file detailing library alignment and quantitation statis-
tics is available as Additional file 4 While all sequencing
reads were used for genome reannotation, aberrant clus-
tering of transcriptome-wide expression patterns from
two non-blood-fed female brain libraries resulted in
their exclusion pool and the DESeq2 model was re-run.
Additionally, signs of contamination of male rostrum
libraries resulted in their removal from expression
analysis (note that these are retained in the PCA plot
in Fig. 2e).

Expression data and differential expression analysis
All reads from individual libraries were mapped to
the AaegL3 genome using STAR version 2.4.1c [38],
and reads mapping to each gene in the AaegL.RU or
AaegL3.3 geneset annotation were counted at the
gene level using featureCounts v1.4.6-p3 [39]
(Additional file 3). For abundance visualization, raw
counts were converted to TPM [45] in R. Raw counts
were used for differential expression analysis in R
using DESeq2 v1.8.2 [40], and the PCA analysis in
Fig. 2e was performed with DESeq2 using counts sub-
jected to Variance Stabilizing Transformation (VST).
Sexually dimorphic genes were identified with a

DESeq2 model incorporating all non-blood-fed female
and male libraries from a single tissue and visualized as
MA plots generated with significance indicated at an
FDR of α < 0.01 (Fig. 8a–f, Additional file 8). Venn dia-
grams were generated using the R library VennDiagram
(Fig. 8g and h). Transcript abundance of genes identified
as dimorphic in at least three tissue groups were visual-
ized as heat maps sorted by the sum of the TPM in the
dominant sex (Fig. 8i and j).
Genes regulated by blood-feeding state were identified

in DESeq2 with single-tissue models incorporating
single-end libraries from female tissues (with the excep-
tion of ovary, where all libraries were paired-end). In
tissues with three time-points (brain, antenna and hind-
leg), Z-scores of expression for genes with an FDR of α
< 0.01 (in either comparison) were generated using the
‘scale’ function of R, and clustered using the hclust

(method = ‘complete’) and dist (‘method = euclidean’)
functions in R. (Fig. 9).

Availability of data and materials
All raw reads are deposited in the NCBI SRA under
BioProject number PRJNA236239. Gene set annotations,
expression data and sequences of new genes generated
are available as Additional Files with this manuscript.

Additional files

Additional file 1: Is a FASTA file with the raw sequences for
unmapped genes. (FA 277 kb)

Additional file 2: Is a GFF3 file with the complete annotation of all
genes in the AaegL.RU geneset. (GFF3 90.8 mb)

Additional file 3: Is an annotation table for all genes in AaegL.RU,
including OrthoDB orthologue groups shared with D. melanogaster.
(XLSX 841 kb)

Additional file 4: Describes the mapping and read count statistics
for each individual RNA-seq library. (XLSX 24 kb)

Additional file 5: Is a table of transcript abundance (in units of
TPM) for all non-blood-fed and male tissues, AaegL.RU annotation.
(XLSX 20937 kb)

Additional file 6: Is a table of transcript abundance (in units of
TPM) for all non-blood-fed and male tissues, AaegL3.3 annotation.
(XLSX 21243 kb)

Additional file 7: Shows an expansion of expression heat-maps
from Figs. 5 to 7 showing gene names for individual rows.
(PDF 463 kb)

Additional file 8: Is a spreadsheet describing the DESeq2
differential expression statistics of sexually dimorphic transcripts
for all applicable tissues. (XLSX 1366 kb)

Additional file 9: Is a spreadsheet containing the DESeq2
differential expression statistics of transcripts regulated by
blood-feeding state for all applicable tissues. (XLSX 1852 kb)

Additional file 10: Shows gene expression changes across the
female gonotrophic cycle. MA plots of genes differentially expressed in
non-blood-fed versus blood-fed female rostrum (a) or non-blood-fed
versus gravid female forelegs (b), midlegs (c), ovary (d) and abdominal tip
(e). Genes were identified as significantly regulated by a single-tissue
comparison using DESeq2 (α < 0.01). (PDF 3876 kb)
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