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Silicene, a novel graphene-likematerial, has attracted a significant attention because of its potential applications for nanoelectronics.
In this paper, we have theoretically investigated the structural stability of edge-hydrogenated and edge-fluorinated silicene
nanoribbons (SiNRs) via first-principles calculations. Various edge forms of SiNRs including armchair edge, zigzag edge, Klein
edge, reconstructed Klein edge, reconstructed pentagon-heptagon edge, and hybrid edges have been considered. It has been found
that fully fluorinated Klein edge SiNRs, in which each edge Si atom is terminated by three fluorine atoms, are the most stable
structure. We also discovered that a hybrid edge structure of trihydrogenated Klein edge and dihydrogenated zigzag edge can
increase the nanoribbon’s stability up to that of dihydrogenated armchair edge SiNR, which is known as the most stable edge-
hydrogenated structure. With the attractive properties of silicene for practical applications, the obtained results will advance
experimental investigations toward the development of silicene based devices.

1. Introduction

Since its discovery [1, 2], graphene has been found to be
an attractive material owing to its wide range of appli-
cations [3–9]. Nonetheless, fabrication of graphene-based
devices has been impeded by difficulties in synthesizing
large area of graphene sheets, toxicity, and incompatibil-
ity with silicon-based CMOS. Silicon resembles carbon
as they appear next to each other in the same group
of periodic table. Recently silicene, the silicon equivalent
of graphene, has captured tremendous attention since it
offers similar benefits as graphene but with fewer chal-
lenges [10–14]. Numerous outstanding properties such as
ferromagnetism [15], half-metallicity [16], quantum Hall
effect [17], and superconductivity [18] have been reported.
Silicene was first theoretically studied by Takeda and Shi-
raishi in 1994 [19] and then reconsidered by Guzmán-
Verri and Lew Yan Voon in 2007 [20], calling it silicene.
Silicene has been experimentally grown on many sub-
strates such as Ag [21–23], Ir [24], ZrB

2
[25], and ZrC

[26]. It possesses electronic properties similar to graphene;

for example, no band gap has been observed in silicene.
The Dirac cones are also seen in silicene because of the linear
crossing of the conduction and valence band at the Fermi
level [27, 28]. As a result, the electron acts like massless
fermions and moves through silicene with a high Fermi
velocity of 105–106ms−1 [29]. Unlike a flat graphene sheet,
the stable silicene sheet is buckled [30, 31], due to the
tendency of silicon atoms to accept sp2 and sp3 hybridization
rather than sp2 hybridization. The extraordinary properties
of silicene along with its compatibility with silicon-based
nanoelectronics give an edge to silicene over graphene in
this respect. Numerous potential applications of silicene in
spintronics [32], FETs [33–35], and sensing devices [36, 37]
have been proposed.

One technique used to open a band gap in silicene
is through silicene nanoribbons (SiNRs) [19]. SiNRs were
synthesized on Ag (110) and Au (110) substrates [38–41]. It
is predicted that nanoribbons can also be fabricated using
nanolithography techniques [42–44]. Like graphene [45],
armchair and zigzag/Klein edges are obtained by cutting
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the silicene honeycomb lattice along ⟨1110⟩ and ⟨21 10⟩
directions, respectively. The chiral edges are the intermediate
orientations which consist of hybrid edge types. Numerous
studies have been performed to explore the outstanding
properties of SiNRs [46–55].

Nonetheless, so far, no in depth study has investigated
the full range of SiNRs edge types. In this paper, first-
principles method based on density functional theory (DFT)
was employed to investigate the effects of edge hydrogenation
(-H) and fluorination (-F) on the stability of different SiNRs
edge types. Our results will help experimental and theoretical
investigations continue to advance Si-based technology.

The paper is organized as follows. Section 2 describes the
details of our first-principles calculations used to investigate
the stability of SiNRs, results and discussions are detailed in
Section 3, and we present our conclusions in Section 4.

2. Computational Methods

First-principles calculations based on DFT method are
employed to perform the calculation using Atomistix ToolKit
(ATK) software package [56–58]. The Perdew Burke Ernzer-
hof (PBE) parameterized Generalized Gradient Approxima-
tion (GGA) exchange correlation with a double-𝜁 polarized
basis set with amesh cut-off energy of 150 Rydberg is utilized.
A vacuum space of 15 Å is employed on each side of the super-
cell to suppress mirroring interaction. Also, the electronic
temperature was set to 300∘K. All the atomic positions and
lattice parameters are optimized with the maximum force
and stress of 0.05 eV/Å and 0.001 eV/Å3, respectively. During
optimization, a kmesh of 1× 1× 11 is used on our 1D structure.
The kmesh is later increased to 1 × 1 × 121 to gather accurate
results.

3. Results and Discussions

Similar to graphene [45], armchair and zigzag/Klein edges
can bemade from a silicene sheet by cutting along the ⟨1110⟩
and ⟨21 10⟩ directions, respectively, which are called normal
edges (Figure 1). Besides these edges, SiNRs with Klein edge
can be reconstructed to enhance the nanoribbons’ stability.
As a result, a reconstructed Klein edge and reconstructed
pentagon-heptagon edge will be formed. To differentiate edge
structures we categorized them, similar to [59], as follows: a:
armchair edge, z: zigzag edge, k: Klein edge, rk: reconstructed
Klein edge, and (5-7): reconstructed pentagon-heptagon
edge.Moreover, we added subscripts which show the number
of functional atoms; for example, z

2
indicates that all the

dangling edge Si atoms are terminated by two functional
atoms in the supercell. In order to separate the number of
functional atoms of the two edges, we added a hyphen to the
subscripts; for example, 𝑧

2-1 shows that the edge Si atoms of
one edge are terminated by two functional atoms, while on
the other edge, they are attached to one functional atom in
the supercell. In this paper, we have theoretically examined
the stability of edge functionalized armchair, zigzag, Klein,
reconstructed Klein, and hybrid edges. To investigate the
effects of edge functionalization on the stability of SiNRs, X

Table 1: Edge formation energy 𝐸edge (eV) of different configura-
tions of functionalized edge ASiNRs.

Edge type Edge atom 𝐸edge (eV/Å)

a
11

Bare +0.33
H −0.08
F −1.03

a
22

Bare +0.33
H −0.12
F −2.48

𝑎
22-11

Bare +0.33
H −0.02
F −1.75

a
21

Bare +0.33
H +0.05
F −1.69

atoms (X = H and F) with different densities on the edges are
considered.

3.1. Armchair Edge Silicene Nanoribbons. Figure 2 shows dif-
ferent configurations of functionalized edge ASiNRs includ-
ing a
11
(mono-H or F atom on the both edges), a

22
(di-H or

-F on the both edges), 𝑎
22-11 (di-H or -F on the one edge and

mono-H or -F on the other edge), and a
21

(both edges are
periodically terminated by di-H or -F and mono-H or -F).

In order to measure the stability of functionalized
edge SiNRs, we calculated edge formation energy which is
described as

𝐸edge =
(𝐸ribbon − 𝑛Si × 𝐸Si − (𝑛𝑋/2) × 𝐸𝑋

2

)
2𝐿 . (1)

Here, 𝐸ribbon stands for the total energy of the functionalized
edge SiNR. X is the functional addend which can be H or
F atom. 𝐸Si and 𝐸𝑋2 represent, respectively, the total energy
of free Si and isolated hydrogen or fluorine molecule. The
numbers of Si atoms and functional addends per supercell are
expressed by 𝑛Si and nX, respectively. L describes the nanorib-
bons’ periodic length and is multiplied by two because of
the two nanoribbons’ edge. Under perfect vacuum condition,
the negative edge formation energy shows that the chemical
reaction is exothermic. Table 1 presents the edge formation
energies for different configuration of functionalized edge
ASiNRs. As we expected, the nanoribbon with bare edges
is unstable with 𝐸edge of +0.33 eV/Å. Edge functionalization
improves the structure’s stabilities. a

22
edged nanoribbons

have the most negative edge formation energies for both
the edge-hydrogenated (−0.12 eV/Å) and edge-fluorinated
(−2.48 eV/Å) cases. It can be also understood that fluorina-
tion of SiNRs’ edges makes the SiNRs much more stable than
hydrogenation.

In order to investigate the effects of experimental condi-
tions on the stability of SiNRs, we consider the gas pressure
and temperature of the process in our calculations. To this
end, we have compared the calculated edge formation energy
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Figure 1: Depending on the cutting directions (⟨1110⟩ and ⟨21 10⟩), armchair and parallel zigzag/Klein edges can be formed by cutting
silicene honeycomb sheet.

L L

L L

a11 a22

a22-11 a21

Figure 2: Various configurations of functionalized edge ASiNRs. The cyan and red balls represent Si and functional addends (H or F),
respectively. The black dashed box shows the primitive supercell. L is the length of the supercell.

to the hydrogen or fluorine molecule’s chemical potential
(𝜇
𝑋
2

) expressed as

𝐺Func = 𝐸edge − 12 × 𝜌𝑋 × 𝜇𝑋2 . (2)

Here, 𝐺Func is the Gibbs free energy. 𝜌𝑋 is the edge density of
functional addends which is equal to 𝑛

𝑋
/2𝐿.The temperature

and gas pressure dependence (𝜇
𝑋
2

) is described by

𝜇
𝑋
2

= 𝐻𝑜 (𝑇) − 𝐻𝑜 (0) − 𝑇𝑆𝑜 (𝑇) + 𝑘𝐵𝑇 ln( 𝑃𝑃𝑜 ) , (3)

whereHo (So) is the enthalpy (entropy) of functional addends
at the pressure 𝑃𝑜 = 1 bar and can be calculated using [60].

Figure 3(a) shows the values of the Gibbs free energy of H
2

molecule versusH
2
molecule’s chemical potential for different

configurations of functionalized edge ASiNRs. When 𝜇H
2

is
less than −1.4 eV, a

11
is the most stable structure. Whereas,

once 𝜇H
2

is greater than −1.4 eV, a
22
becomes the most stable

one. Furthermore, under ambient conditions (𝑇 = 300K,
𝑃 = 5 × 10−7 bar, and 𝜇H

2

= −0.7 eV), a
22

has the most
negative value of energy. For fluorinated edge ASiNRs (see
Figure 3(b)), a

22
is found as the most stable structure for the

whole range of chemical potentials.

3.2. Zigzag, Klein, Reconstructed, and Hybrid Edge Silicene
Nanoribbons. As shown in Figure 1, cutting a silicene sheet
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Figure 3: Gibbs free energy of (a) hydrogenated and (b) fluorinated edge ASiNRs as a function of chemical potential. The bottom inset axis
represents the pressure (bar) of (a) molecular H

2
corresponding to 𝜇H2 and (b) molecular F

2
corresponding to 𝜇F2 when 𝑇 = 300K.

z1 z2 z2-1 z21 z211 z221

k3k2 rk22 rk22 + z2k33 + z2 (5-7)22

Figure 4: Various edge functionalized SiNRs along ⟨21 10⟩ direction. The cyan and red balls represent Si and functional addends (H or F),
respectively. The dashed boxes show the primitive supercells.

along the ⟨21 10⟩ direction makes it possible to have two
parallel zigzag and Klein edges. As a result, the ⟨21 10⟩
orientation is expected to be more complex than ⟨1110⟩.
Different configurations of functionalized edge SiNRs along
⟨21 10⟩ direction including normal edge (zigzag and Klein),
reconstructed edge (reconstructed Klein and reconstructed
pentagon-heptagon), and hybrid edge structures (mixture of
edges) are evaluated in this study, as shown in Figure 4. The

edge formation energies of z
1
, z
2
, 𝑧
2-1, z21, z211, and z

221

are listed in Table 2. Similar to ASiNRs, the bare ZSiNRs
are unstable. Through edge functionalization, the stabilities
of the ZSiNRs are increased. The fully hydrogenated ZSiNR
(z
2
) with edge formation energy of −0.01 eV/Å is found as

the most stable ZSiNR. Since Si atoms tend to accept sp3
hybridizations over sp2 in silicene, the edge formation energy
increases by full functionalization of Si edge atoms.Therefore,
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Figure 5: Gibbs free energy of different edge structures of (a) hydrogenated and (b) fluorinated SiNRs along ⟨21 10⟩ versus chemical potential.
The bottom inset axis represents the pressure (bar) of (a) molecular H

2
corresponding to 𝜇H2 and (b) molecular F

2
corresponding to 𝜇F2 when𝑇 = 300K.

the monohydrogenated ZSiNR (z
1
) has the lowest stability

among the ZSiNRs. In a similar manner to ASiNRs, fluori-
nating would raise the stability of the ZSiNRs (−2.06 eV/Å).

The positive value of edge formation energy for bareKlein
edge SiNR (+0.38 eV/Å) confirms that it is unstable. It is
discovered that even dihydrogenating of SiNRs’ Klein edge
keep them unstable (+0.25 eV/Å). However, trihydrogenated
k
3
is fairly stable (−0.72 eV/Å) due to the sp3 hybridization

of Si edge atoms. On the other hand, fluorination will result
in stable k

2
(−1.85 eV/Å) and high stable k

3
(−3.24 eV/Å)

SiNRs. Therefore, the trifluorinated Klein edge SiNR is the
most stable structure among all the edge structures (see
Table 2). We have also studied different forms of Klein/zigzag
hybrid SiNRs. It is found that the edge formation energy
of hydrogenated k

33
+ z
2
(periodic Klein vacancies which

are fully functionalized by two H atoms) is −0.10 eV/Å, very
close to that of hydrogenated a

22
(−0.12 eV/Å). As previously

mentioned, reconstruction of bare Klein edges is possible
due to its high instability. Our calculations show that bare
reconstructed Klein edge (rk) and reconstructed pentagon-
heptagon zigzag edge (5-7) are a slightlymore stable than that
of bare Klein edge (See Table 2). The monohydrogenated rk
and (5-7) are still unstable; however, full hydrogenation of
edges makes them stable. Interestingly, the edge formation
energies for mono- and difluorinated rk and (5-7) are all
negative, showing that they are all stable. The values of
edge formation energies for fluorinated (5-7)

22
and rk

22

are −2.07 eV/Å and −2.10 eV/Å, respectively. The stability
of rk
22

can be increased by periodically inserting a Klein

edge vacancy and terminating it by two functional addends,
making rk

22
+ z
2
structure. The hydrogenated (fluorinated)

rk
22

+ z
2
is 0.01 eV/Å (0.016) more stable than rk

22
(see

Table 2). In conclusion, the fluorinated k
3
and hydrogenated

k
33
+ z
2
were found to be the most stable structures along the

⟨21 10⟩ direction under perfect vacuum conditions.
In consideration of experimental conditions, the Gibbs

free energies of the hydrogenated edge structures along
the ⟨21 10⟩ direction were calculated using (2) and (3)
(Figure 5(a)). For 𝜇H

2

is less than −1.5 eV, z
1
has the most

negative energy. When −1.5 eV ≤ 𝜇H
2

< −0.2 eV, rk
22

+ z
2

is the most stable structure. For −0.2 eV ≤ 𝜇H
2

< +0.75 eV,
k
3
and k

33
+ z
2
have same Gibbs free energy. And finally,

when 𝜇H
2

≥ +0.75 eV, k
3
is established as the most stable

edge structure. Instead for fluorine, for 𝜇F
2

< −2 eV, (5-7)
22

structure and, for 𝜇F
2

≥ −1.9 eV, k
3
are found as the most

stable structures (see Figure 5(b)). Under ambient conditions,
that is, 300K and 5 × 10−7 bar, the hydrogenated rk

22
+ z
2

(𝜇H
2

= −0.7 eV) and fluorinated k
3
(𝜇F
2

= −0.9 eV) are the
most stable edges.

4. Conclusion

In summary, first-principles simulations based on DFT have
been performed to study the stability of various config-
urations of edge-hydrogenated and fluorinated SiNRs. All
possible edge types such as armchair, zigzag, Klein, recon-
structed Klein, reconstructed (5-7), and hybrid edges are
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Table 2: Edge formation energy 𝐸edge (eV) of hydrogenated and
fluorinated SiNRs along ⟨21 10⟩.
Edge type Edge atom 𝐸edge (eV/Å)

z
1

Bare +0.38
H +0.097
F −0.87

z
2

Bare +0.38
H −0.01
F −2.06

𝑧
2-1

Bare +0.38
H +0.05
F −1.46

z
21

Bare +0.37
H +0.001
F −1.51

z
211

Bare +0.35
H +0.024
F −1.31

z
221

Bare +0.38
H −0.002
F −1.70

k
2

Bare +0.38
H +0.25
F −1.85

k
3

Bare +0.38
H −0.72
F −3.24

k
33
+ z
2

Bare +0.33
H −0.10
F −2.90

(5-7)
22

Bare +0.35
H −0.02
F −2.07

rk
22

Bare +0.33
H −0.07
F −2.10

rk
22
+ z
2

Bare +0.33
H −0.08
F −2.12

studied. Results indicate that, by fluorination of SiNRs’ edges,
the stabilities tend to increase. Among all ASiNRs, a

22
has

the highest chance of forming both experimentally under
ambient conditions and theoretically under perfect vacuum
conditions, no matter the functional addends. Along the
⟨21 10⟩ direction, finding the most stable structure is more
complicated than that of ⟨1110⟩. Functionalization of edge
atoms by hydrogen makes k

33
+ z
2
and rk

22
+ z
2
the most

stable structure under perfect vacuum and experimental
ambient conditions, respectively. Finally, with fluorine as
the functional addend, k

3
structure is formed under both

experiment and vacuum conditions. It should be noted that

other edge configurations can be obtained by changing the
gas pressure and temperature under experimental conditions.
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