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Several standard protocols based on repetitive transcranial magnetic stimulation (rTMS) have been employed for treatment of a
variety of neurological disorders. Despite their advantages in patients that are retractable tomedication, there is a lack of knowledge
about the effects of rTMSon the autonomic nervous system that controls the cardiovascular system.Current understanding suggests
that the shape of the so-called QRS complex together with the size of the different segments and intervals between the PQRST
deflections of the heart could predict the nature of the different arrhythmias and ailments affecting the heart. This preliminary
study involving 10 normal subjects from 20 to 30 years of age demonstrated that rTMS can induce changes in the heart rhythm.
The autonomic activity that controls the cardiac rhythm was indeed altered by an rTMS session targeting the motor cortex using
intensity below the subject’s motor threshold and lasting nomore than 5minutes.The rTMS activation resulted in a reduction of the
RR intervals (cardioacceleration) in most cases. Most of these cases also showed significant changes in the Poincare plot descriptor
SD2 (long-term variability), the area under the low frequency (LF) power spectrum density curve, and the low frequency to high
frequency (LF/HF) ratio. The RR intervals changed significantly in specific instants of time during rTMS activation showing either
heart rate acceleration or heart rate deceleration.

1. Introduction

The TMS technology was introduced in the 1980s, and
since its introduction, it has been used in clinical care for
several neurological disorders [1–4]. The initial intent of
this technology was to improve the health of patients with
depression as exemplified in studies [5–8]. Its application
has now been extended to gauge the merits of magnetic
stimulation to other neurological disorders such as epilepsy
[9–11], Huntington’s disease [12], Parkinson’s disease [13],
different effects of schizophrenia [14–16], Alzheimer’s dis-
ease, and effects of aging [17, 18], in patients who have
had a stroke [19–21], autism [22], and attention deficit and
hyperactivity disorders [23, 24]. These are by no means an

exhaustive listing of such noteworthy references, but these
are examples of studies that highlight the extensive use of
TMS technology. It should be noted that the use of TMS
can be performed under two modes of operation, namely,
single pulse [25] or repetitive mode of stimulation [26, 27].
Safety measures and ethical considerations in the use of TMS
technology are well described in [28, 29]. In many of these
disorders, the autonomic symptoms are peculiar and may
represent the clinical onset of the disorder. For instance,
motor activity and some brain abnormalities are associated
with changes in the heart rate rhythm and blood pressure;
among those abnormal conditions are epilepsy, stroke, and
intense emotional stress. External stimulations with TMS
are accompanied with diverse effects depending on the site
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Figure 1: PQRST waveforms from an electrocardiography device.

of stimulation [28, 29]. When applied to the motor cortex,
which is accompanied by the contraction of muscles, TMS
can alter the heart rate variability (HRV) due to connections
between the brain cortex and the autonomic centers [30, 31].
Generally, central nervous system (CNS) activation of motor
areas is accompanied by diverse scales of cardiac acceleration
mediated by the autonomic nervous system (ANS). The
ANS is in turn modified by the reflex activity triggered
by feedback of the cardiovascular system and articulation
sensors which are stimulated by movement [32]. The brain
cortex, the brain stem, and the autonomic nerves can alter the
heart function and potentially trigger arrhythmias [33]. Such
clinical manifestations in some patients suggest that there
is a link between cortical structures and autonomic centers.
However, not too many studies refer to this problem; only
very few research groups have investigated this phenomenon
[29]. For example, it is known that epilepsy alters significantly
the heart rhythm [10] and produces prolonged QT intervals,
T wave alternans, and ventricular late potentials. During
seizures, bradycardia and asystole states can occur in some
patients. Stroke can also alter the heart rhythm [34] and
intense emotions can disrupt significantly the heart rate and
blood pressure of a given patient [35]. An illustration of the
PQRST deflections of the heart is given in Figure 1.

High frequency stimulation with rTMS (≥5Hz) produces
cortical excitation, so when applied to the primary motor
cortex, it additionally provokes muscle movement. It could
also evoke cardiac responses mediated by connections in the
brain cortex with the cardiac-related centers of the CNS. In
several studies, muscle reaction due to rTMS over the left
primary motor cortex (M1) appears to be limited to the limb
areas; however they are also accompanied by changes in the

heart rate variability (HRV) of the𝑅𝑅 intervals and the power
spectrum of the ECG signals. By using low frequency rTMS
[36], it was found that the low frequency (LF) and high
frequency (HF) power were significantly increased. Also by
measuring the HRV, it was found that rTMS produced signif-
icantly greater reduction in the sympathetic/parasympathetic
ratio, suggesting improvement in the sympathovagal balance.
The LF and HF areas from power spectral plots show that
there is an increment of these values after rTMS stimulation,
while the LF/HF ratio decreased [37]. As rTMS technology
develops in scope and application domains, its use on patients
with known cardiac conditions should be carefully weighed
with respect to the heart ailment itself and the effects that
were observed in this study with healthy controls. With this
posed assertion, this study presents a new methodology that
relies on a newly developed hardware-software assimilated
system with real time integration of electrocardiography
(ECG) recordings while a patient is undergoing brain stim-
ulation through rTMS. Real time effects of rTMS on the
HRV are performed both in the time and frequency domains
through the automatic examination of the 𝑅𝑅 intervals
variability [17].

The integration of several modalities augments the capa-
bilities of a given system to produce amore accurate diagnosis
and therefore a better plan for treatment [16, 38–40]. The
proposed study thus aligns in time and space electrocardiog-
raphy (ECG) with the neuronavigated transcranial magnetic
stimulation (TMS) machine using a repetitive pulse (rTMS)
[41]. By time and space alignment we mean the opportunity
for simultaneous recordings of the ECG under repeated
transcranial magnetic stimulation (rTMS) while using the
same 3D coordinate system on the same patient.
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2. Materials and Methods

2.1. Specific Aim of the Study. The strategy behind this study
design is to control the magnetic stimulation of the brain
according to the selected moments of the cardiac cycle.
Empirical evidence suggests that if the magnetic stimulus
is not adequately synchronized with the cardiac cycle, there
is potential for slowing the heart rate; however, the same
stimulus can produce minimal or no alteration of the heart
rate if an adequate synchronization is carefully chosen.

More importantly, experimental evaluations indicate the
importance of the interval between two consecutive 𝑅 deflec-
tions (the deflection with the highest amplitude in the cardiac
cycle), which is referred to in this study as the 𝑅𝑅 interval.
Whether the treatment is through providing stimulation or
medication, every precaution needs to be taken such that any
effects observed on these heart deflections in healthy control
subjects could not otherwise yield unwarranted effects on
subjects with specific heart ailments. For example, according
to the American Heart Association, ADD/ADHD stimulant
medications have been found to cause sudden death in
children and adults with specific heart conditions. Several
research studies have later shown that these medications do
increase the heart rate in some predisposed individuals. Even
though such side effects are rare and are observed in a small
number of children with ADHD, they remain of extreme
importance and every precaution should be taken to prevent
these types of risks.

2.2. Subjects. The effects of the high frequency repetitive
TMS (rTMS) on 10 young volunteers (3 females and 7
males) with no history of medical conditions were examined.
The study was approved by the Institutional Review Board
(Protocol number: IRB-13-0230; Reference number: 101219)
and consent forms were provided to the subjects. These
subjects did not experience any signs of any cardiovascular
disease and were not taking anymedication and were advised
not to take any caffeine or perform any physical activity that
can alter the ECG signal prior to the rTMS session.

All the subjects were laid down in a comfortable chair
in a supine position. The Nexstim system’s 6-channel EMG
module (SR = 1450Hz, cut-off frequency of 350Hz for the
low pass filter) automatically calculated the motor evoked
potential (MEP) amplitudes and latencies as themotor cortex
(cortex area of the thumb) is stimulated [34]. Disposable
Ag-AgCL surface electrodes were used to record the MEP
responses that were displayed in a computer screen in order
to assess the validity of the response based on the strength
of MEPs reflecting the ability of that area to develop muscle
contraction.

2.3. Design and Implementation of the Study. The research
aims of this study were carried out using a hardware-software
systemdeveloped in our lab that aligns in time and space ECG
with the operational functions of the TMS machine. This
integrated and noninvasive ECG-TMS system consists of two
main components: (1) a novel hardware design solution that
automatically activates the solenoids of the TMS pedals for
the 3 different operational functions: increasing the intensity,

decreasing the intensity, and triggering the electromagnetic
pulse; (2) a software module that serves a dual purpose: (i)
reading the ECG signal and synchronizing the trigger of
the TMS via the hardware component, a synchronization
which can be made in relation to any of the deflections
of the recorded ECG in monitoring the heartbeat during
brain stimulation [42], and (ii) serving as a graphical user
interface for man-machine interaction and for the potential
deployment of a feedback mechanism.

Themagnetic stimulation was performed using the Nexs-
tim eXimia TMS system. The rTMS session was delivered
by an 8-inch coil with an orientation quasi-perpendicular
to the area of the central sulcus (about 45∘ from the brain
midline) and applied to the left primary motor cortex (M1),
which is related to the hand movement of the right side. The
coil was positioned 2 cm lateral to the scalp projection of the
sagittal suture and 1 cm to the projection of the coronal suture
(posterior portion of the frontal lobe). The motor threshold
was calculated for each subject prior to the session. This
threshold was defined as the lowest magnetic stimulation
possible that was still able to induce MEPs response in the
range of 100–500 𝜇Vpeak-to-peak amplitude in the right arm
in the abductor pollicis brevis (APB)muscle in at least 4 out of
several attempts. The MRI-guided marker was positioned on
the motor cortex at approximately 25mm depth as an initial
position to begin the stimulation.Then, magnetic pulses with
an intensity of 10% below this motor threshold were applied
and ECG and blood pressure were recorded before, during,
and after the rTMS sessions. Heart rate variability (HRV) was
processed in the time domain. A comparison was established
between the baseline and rTMS activation recordings.

The ECG biophysical amplifier used was able to record 12
leads of real time ECG at a sampling rate (SR) of 1 KHz. A
band-pass filter (0.05–300Hz) was implemented and applied
to the recorded signals with a 16-bit A/D conversion, a
sensitivity of 0.4 𝜇V, and a common-mode rejection ratio
(CMRR) of 120 dB.

The rTMS protocol implemented for all subjects is as
described in Figure 2, where trains of stimuli of 1-second
duration at 10Hz were applied to four different electrode
locations (𝐹1𝐿, 𝐹2𝐿, 𝐹1𝑅, and 𝐹2𝑅) on the scalp; as a
total, 50 pulses were delivered to each brain location, as
the train of pulses was repeated 5 times at intervals of 1
minute (interstimulus time: 59 seconds). The intensity of the
magnetic pulses was below the visual motor response in the
hand. An initial blood pressure was obtained and an ECG
signal was recorded for 5 minutes as baseline measurements.
These same measurements were also collected at the end of a
5-minute session of brain stimulation to assess the difference
in these measurements between baseline and after brain
stimulation.

The TMS session applied to the subject in order to record
the ECG signalswas delivered by the in-house developed soft-
ware, which is fully compatible with and coupled effectively
to the TMS machine. An extended ECG montage with 12
leads was simultaneously recorded as illustrated in Figure 3
and stored in a computer, making it amenable to real time
ECG monitoring. During the offline analysis of the ECG,
normal 𝑅𝑅 intervals were automatically identified, removing
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Figure 3: 12-lead ECG recording. Note: stimuli artifact (1 sec, 10Hz)
is seen at the beginning of recording in several leads.

those intervals altered by noise or by a surge of ectopic beats,
a disturbance of the cardiac rhythm. These intervals were
replaced by amean𝑅𝑅 interval value calculated automatically
by the software.

Figure 4 describes the main steps of the proposed study.
A high frequencymagnetic pulse was applied to the subject in
the motor cortex region in order to see the induced changes
of this stimulation in the cardiovascular system and to gauge
the balance between the sympathetic and parasympathetic
nervous system. The ECG signal was acquired and digitized
for 15minutes. Feature extraction algorithmswere performed
on the input signal, and a reliable 𝑅𝑅 interval vector was
extracted for further processing in both time and frequency
domains.

2.4. TimeDomain Variability. Time domain variables such as
mean, standard deviation of 𝑅𝑅 intervals, and coefficient of
variationmeasured before, during, and after stimulationwere
extracted [43]. A Poincare plot representation and calculation
of its parameters such as SD1 (short-term variability) and SD2
(long-term variability) were also assessed [44].

The heart rate variability (HRV) was significantly
changed, as shown in Figure 5 for a particular subject. In
this figure, vertical black lines divide the session into five
1-minute intervals. An increase of the heart rate was observed

as the 𝑅𝑅 interval values decreased due to the stimulation
on the left frontal motor cortex. Specifically to this subject,
during the first minute, there was an evident decrease of the
𝑅𝑅 interval values in the active phase when the subject is
stimulated using rTMS as compared to the baseline when
the subject is at rest.

As can be observed from the histograms of Figure 5,
the mean of the 𝑅𝑅 interval value dropped from 771 in
the baseline phase to 615 during the stimulation phase.
Furthermore, the standard deviation increased from 33.2 at
baseline to 53.5 during stimulation.

To elicit a better understanding of these 𝑅𝑅 intervals,
Figure 6 represents a Poincare plot with the distribution of
the 𝑅𝑅 interval values at baseline and during stimulation
performed on the left side of the motor cortex. The line
(𝑥 = 𝑦) in the plot has a physiological significance because
all the points that fall in this line correspond to equal and
consecutive 𝑅𝑅 interval values (distances from 𝑅

(1)
-𝑅
(2)
,

𝑅
(2)
-𝑅
(3)
, and so on until𝑅

(𝑛−1)
-𝑅
(𝑛)
). All the points above the

identity line correspond to a decrease in the heart rate and the
points below this line correspond to an increase in the heart
rate [44].

The Poincare plot for a given 𝑅𝑅 vector of length 𝑁,
denoted by 𝑋 = (𝑥
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These two subvectors correspond to the 𝑥-axis and 𝑦-axis
of the Poincare plot. When this graphical representation is
used with real data (10 minutes of ECG recording), the data
points are fit to an ellipse for further interpretation. This plot
is characterized by two standard descriptors (SD1, SD2) as
defined below:

SD1 = √var (𝑋
𝑅𝑅
), SD2 = √var (𝑋

𝑅𝑅+1
). (2)
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The HRV measure can be expressed as in

var = (
𝑋
𝑅𝑅

𝑋
𝑅𝑅+1

− 𝜇(
𝑋
𝑅𝑅

𝑋
𝑅𝑅+1

))

2

. (3)

An ellipse has two perpendicular axes that intersect at the
center of the ellipse due to its symmetry. The larger of
these two axes is called the major axis (SD2), while the
smaller of these two axes is called the minor axis (SD1).
It is considered that SD1 reflects the standard deviation of
the short-term variability of the ECG, while SD2 reflects the
standard deviation of the long-term variability of the ECG.

A clear displacement and higher concentration of the
points (shorter 𝑅𝑅 interval) are observed during stimulation
as recorded from the 𝐹1𝐿 electrode, which is located on
the left hemisphere. The SD2 descriptor increased and SD1
decreased, which is clear evidence of the change in both the
short- and long-term variability.

The Poincare plot and its inherent descriptors constitute
a novel approach to visualize the HRV in a given patient. The
mean and standard deviation of these descriptors were also
calculated for all subjects at baseline and during stimulation
in order to assess a meaningful global change within the two
different phases. Quantified results are provided in Table 1.

An overall assessment of these results as given in Table 1
for all the subjects indicates that the average of the 𝑅𝑅
intervals during the entire rTMS session decreased (baseline
862 ± 94, rTMS 840 ± 16ms). These results also show a slight
increase of the heart rate (70 to 71 bpm). However in 7 out
of the 10 cases, 𝑅𝑅 intervals decreased (cardioacceleration;
from baseline 850 ± 86 to rTMS 830 ± 119ms), while, for the
remaining 3 cases, 𝑅𝑅 intervals increased (cardioinhibition;
baseline 826 ± 137, rTMS 865 ± 108ms).

A new descriptor was incorporated in order to assess with
higher accuracy the total variability of a session. The new
descriptor takes into account the two standard deviations of
the two axes (SD1 and SD2) and the average behavior of the
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Figure 5: 𝑅𝑅 interval and related histograms comparing (a) baseline to (b) active phase.

heart rate (Mean
𝑅𝑅
) as a directmeasurement of theHRV.This

measurement is normalized with respect to the number of
subjects (𝑁) as follows:

Totalvar =
Mean

𝑅𝑅
∗ SD1 ∗ SD2
𝑁

. (4)

It is observed that the SD1 descriptor did not change after
rTMS (baseline 32±9.5 and rTMS 30±11ms).The descriptor
SD2, on the other hand, had a more pronounced variation
(baseline 71 ± 17, rTMS 81 ± 17ms). SD1 in 70% of the cases
showed the same trend (baseline 30 ± 10, rTMS 30 ± 12ms).
SD2 showed again a larger increase (baseline 64 ± 15, rTMS
80±17ms). Conversely in 30% of the cases, both descriptors,
SD1 and SD2, decreased after rTMS (SD1 baseline 36 ± 11,
rTMS 31 ± 4.3; SD2 baseline 88 ± 11, rTMS 82 ± 19ms).

The periodogram slope of every minute interval of the 5-
minute period of stimulation was also calculated. If the trend
of the periodogram plot increased, the slope of the best fit

line was quantified as “+1”; if instead the trend of the peri-
odogram plot decreased (decrease in 𝑅𝑅 intervals), the slope
was quantified as “−1”; if no change (no significant increase or
decrease of 𝑅𝑅 intervals) occurred, it was quantified as “0.”

Figure 7 shows a comparison between baseline (supine
position during 5 minutes) and the activation phase (during
rTMS stimulation using a frequency of 10Hz). The slopes of
the baseline phase (blue) and active phase (red) of the 𝑅𝑅
intervals are calculated for each minute during the recording
to show the effect of the rTMS on the heart rate.

The stimulation started at the beginning of every minute
and lasted only 1 second.The effects of the magnetic stimula-
tion are observed for 59 seconds, until another stimulation of
1 second begins. From these results, it can be observed that
there is an evident deflection of the 𝑅𝑅 intervals from the
baseline, and during stimulation, the heart rate increased due
to a decrease of the 𝑅𝑅 interval values.

An interesting remark to be made on the basis of the
results shown in Figure 7 is the gradual move of the red
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Table 1: Comparative measurements at baseline and during stimu-
lation.

Subject Baseline rTMS stimulation
number 𝑅𝑅 SD1 SD2 𝑅𝑅 SD1 SD2
1 932 21.9 62.1 817 21.6 48.3
2 842 46.6 83.9 820 46.7 96.2
3 780 25.6 56.3 767 17 79.8
4 772 16.2 44 615 12.5 74.7
5 937 35.8 85.7 920 36.7 100
6 893 31 77.1 889 33.8 87.1
7 1004 31.7 53.9 982 38.7 79.2
8 872 30.4 63 888 35.9 84.5
9 918 48.1 87.1 959 26.8 59.8
10 668 28.5 100 746 34.6 98
Mean 861.8 31.58 71.31 840.3 30.43 80.76
STD 93.67 9.45 17.03 15.79 10.67 16.64
Total
variability 195,846 204,120

segments towards the blue (baseline) segments in time as
stimulations are given. Does this mean that in time the effect
of the stimulation on the ECG is lessened? In other words it
is as if one is startled by such stimulation at first and then
gets used to it in time; it is an observation to be considered in
future studies.

The results showed that changing of trends in slopes dur-
ing rTMS was statistically significant regardless of whether
the orientation is positive or negative. Figure 7 also shows
that the number of slope changes, positive or negative, was
more frequent at any minute of rTMS than at baseline.
These findings suggest that there was disruption of the
vagosympathetic balance in most cases as a consequence of

Table 2: Influence of rTMS upon the slope of consecutive 𝑅𝑅
intervals during each minute of baseline and rTMS recordings.

Baseline rTMS
Min. 1 2 3 4 5 1 2 3 4 5
1 0 0 −1 0 0 0 0 −1 0 1
2 1 0 0 0 0 0 −1 1 1 −1
3 0 0 0 −1 1 0 −1 0 0 0
4 1 0 0 0 0 0 1 0 0 0
5 0 0 0 0 0 1 1 0 1 1
6 0 0 1 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 −1 1 0
9 0 0 −1 0 0 −1 1 1 1 −1
10 0 0 1 0 1 1 0 0 0 −1

∗ ∗∗

Baseline: ∗𝑃 < 0.05.
Active phase: ∗∗𝑃 < 0.02.

rTMS. Some cases showed cardioacceleration followed by
cardioinhibition as shown in Table 2.

2.5. Statistical Analysis. Comparisons of average values of
𝑅𝑅 intervals in the whole 5-minute recording were made
using the Student’s t-test for small samples. When recording
signals are analyzed empirically, it is mandatory to assess
if results are consistent or are only due to random events.
This is performed by statistical hypothesis testing using the 𝑃
value, which is the probability of obtaining the observed test
statistics given the null hypothesis. If the 𝑃 value is smaller
(a given predefined significance level), the null hypothesis is
rejected and the observed result is considered “significant”
for our analysis. To compare slopes changes, three categories
were considered: no change (0), positive (+1), or negative
(−1). Statistical significance of 𝑃 < 0.05 using the chi-square
method was considered. The chi-square statistic measures,
instead of a population average, the difference between the
observed counts and the counts that would be expected if
there was no relationship between the two groups (baseline
and stimulation). An important observation that can bemade
from the results shown in Table 2 is that, for the baseline,
the 3rd minute (indicated by a ∗) is the one that showed the
most significant variation in terms of changes in slope trend
(𝑃 < 0.05). In the active phase, it is minute 5 (indicated by
a ∗∗) that showed the most significant variation in terms of
changes in slope trend (𝑃 < 0.02).

2.6. FrequencyDomainVariability. Spectral analysis has been
performed using the fast Fourier transform (FFT) in the
tachogram signal. For frequency domain measurements, it
is recommended that the duration of the ECG recording is
at least greater than 5 minutes. ECG signals were visually
corrected for ectopic and missed beats. This was performed
by filtering the signal to eliminate the false peaks and by
interpolating in between missing beats. This way a modified
and corrected tachogram is obtained for the analysis. The
power spectrum of the HRV vector during 5 minutes of ECG
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Figure 7: Illustrative examples on observed changes on the 𝑅𝑅 intervals for 2 subjects: subject 1 (a); subject 2 (b).

recording was used as a quantitative measurement to assess
autonomic changes in the cardiovascular system.

In humans there are two frequency ranges of interest
defined in the low frequency as LF = (0.04–0.15Hz) and in
the high frequency as HF = (0.15–0.4Hz). Parasympathetic
and sympathetic effects are associated with the changes
of these frequencies. Parasympathetic activity is considered
responsible for these HF values. Both parasympathetic and
sympathetic activities, together with other mechanisms, are
considered to determine the LF range [45, 46].

As shown in Figure 8, the results of a representative
subject show some differences in HRV as determined from
spectral analysis in the LF and HF ranges. These results
are observed for all subjects of the study. Repetitive TMS,
particularly after stimulation of the left hemisphere, induced
a slight decrease in the parasympathetic (HF components
of the spectrum) and a stronger decrease in the LF power
spectrum (partially sympathetic activity). The quantitative
changes in the power spectrum of the HRV proved that the
cardiovascular control mechanism was altered during rTMS
[47, 48].

In reference to the results shown in Figure 9 and Table 3,
frequency domain estimates (see Table 3) suggest that the
ratio LF/HF, an indicator of sympathetic activation, increased
for 60% of the subjects while it decreased for the remaining
40% of the subjects.Themajority of these results indicate that
rTMS influenced the vasomotor center, which is located in
the reticular substance of the medulla and pons, connected
with the motor cortex. The indirect influence of rTMS upon
cardiac centers was apparently heterogeneous. Some previous
reports describe changes in the power spectrum of the
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Figure 8: Power spectrum. Note: sampling rate of the ECG was
1Hz, so the frequency spectrum was plotted until 0.5HZ (Nyquist
frequency criteria). There is an increment of the power around 0.05
and 0.1Hz during the stimulation using 10Hz and 5 repetitions.

HRV accompanying rTMS. For example, when using low
frequency rTMS it was found that both LF and HF power
increased significantly. The area under the LF and HF curves
from power spectral plots increased after TMS stimulation
and LF/HF ratio decrease for 40% of the subjects.
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Figure 9: Power spectrum: (a) corresponds to LF and (b) to HF components.
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Figure 10: Area under the curve: baseline (a) and active phase (b).

A comparison of the area under the curve (AUC) of the LF
and HF components, as observed in Figure 9, was performed
on the spectral curve of the 𝑅𝑅 intervals during 5 minutes (at
baseline and in the activation phase) for one of the subjects as
an illustrative example. Results shown in Figure 10 indicate
that there is a considerable change in the total area when
comparing baseline to the activation phase: total baseline HF
= 81 and total activationHF= 48.TheLF is also altered during
stimulation.

3. Discussions

No adverse incidents and no relevant changes in blood
pressure (±10mmHg in systolic or diastolic pressure), or
any discomfort, were expressed by the subjects under rTMS
stimulation. Motor responses observed in some cases were
hand contractions of the contralateral side stimulated. Results
show that, after rTMS, the mean 𝑅𝑅 interval decreased by
2% (cardioacceleration). Two distinct groups were identified
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Table 3: Differences in HRV (as determined from spectral analysis:
LF and HF).

Subject Baseline rTMS stimulation
number LF HF L/H LF HF L/H
1 397 159 2.5 167 197 0.69
2 509 1218 0.41 742 1153 0.64
3 243 167 1.46 298 96 3.12
4 201 81 2.48 143 48 2.98
5 824 405 2.04 683 447 1.53
6 967 394 2.45 1470 1400 1.05
7 659 1589 0.41 450 538 0.84
8 432 271 1.59 856 354 2.42
9 678 245 2.77 302 261 1.16
10 1619 328 3.18 1112 349 4.94
Mean 653 486 1.92 622 484 1.94
STD 418 502 1.4 435 447 1.4

Table 4: General statistics.

𝑅𝑅 (ms) HR (bpm) SD1 SD2 LF HF L/H
Baseline

Mean 861 71 32 71 652 489 1.92
±STD 94 4.5 9.5 17 418 502 0.95

rTMS stimulation
Mean 840 74 30 81 422 484 1.94
±STD 146 12.5 11 17 435 447 1.4

according to their reaction to rTMS: group 1with cardioaccel-
eration (7 cases) and group 2 with cardioinhibition (3 cases).
In group 1, 𝑅𝑅 intervals decreased by 6%; one case showed
a heart rate increment of 10 bpm. In this group, the SD2
descriptor of the Poincare plot increased by 5.4% while SD1
did not change.The area under the curve of the low frequency
band (LF) of the power spectrum density increased by 4%,
while the high frequency band increased by 8%. The ratio
LF/HF increased from 0.94 to 1.02. In group 2, an increment
of 5.2% in 𝑅𝑅 interval (cardioinhibition) was observed. In
this group, both SD2 and SD1 decreased. The LF band area
was decreased by 17%, while the HF band increased by 14%.
However, the ratio LF/HF decreased from a baseline value of
3.23 to 2.35 after rTMS. Generally, the ratio LF/HF increased
in 60% of all cases.

As can be observed in Table 4, the mean 𝑅𝑅 interval
did not change considerably from the baseline phase to
the stimulation phase, but the standard deviation increased
substantially during rTMS, meaning that dispersion of the
points (𝑅𝑅 values) became apparent. Also, the mean LF
component of the spectral curve decreased during the stim-
ulation, so there was a disruption of the normal rhythm
of the parasympathetic and sympathetic activities of the
cardiovascular system.

The results showed that, for the majority of the cases, a
decrease of the 𝑅𝑅 interval was observed, while for 25% of
the cases the response was reversed. As an overall, changes

in the RR intervals were even more apparent during the first
minute of stimulation using trains of 10Hz.

4. Conclusion

With this study we have extended the application field of
TMS and ECG integration by examining the effects of rTMS
brain stimulation on the heart rhythm as observed through
recorded ECG signals. Our findings indicate that it is impor-
tant to know and understand the basic interactions between
the human cortex and the autonomic nervous system. We
suggest that ECG monitoring should be performed when
stimulating patients through the TMS machine under the
repetitive mode of operation, most especially in subjects with
known heart ailments or persons in the older age groups.
This is essential for checking in real time for any potential
changes that could lead to unforeseen events. Our technology
will stop stimulation automatically as soon as such initial
changes occur. For example, it is reported that subjects older
than 40 years of age are more vulnerable to alterations of the
cardiac rhythm. If any rTMS session should be undertaken,
a monitoring ECG protocol should be followed in order to
avoid any complications.

Finally, the monitoring of the HRV is a powerful tool
for understanding and monitoring the cardiovascular sys-
tem, especially for patients with known cardiac illnesses.
Objectively, since rTMS has a great impact on some patients
suffering from a diverse number of neurological diseases, it
remains to be determined if it can also help in predicting
any cardiac condition during or after any session of repetitive
magnetic stimulation.
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