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Independent component analysis (ICA) has become a widely used method for extracting
functional networks in the brain during rest and task. Historically, preferred ICA
dimensionality has widely varied within the neuroimaging community, but typically
varies between 20 and 100 components. This can be problematic when comparing
results across multiple studies because of the impact ICA dimensionality has on the
topology of its resultant components. Recent studies have demonstrated that ICA can
be applied to peak activation coordinates archived in a large neuroimaging database (i.e.,
BrainMap Database) to yield whole-brain task-based co-activation networks. A strength
of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap
can be used to quantitatively assess tasks and cognitive processes contributing to each
component. In this study, we investigated the effect of model order on the distribution
of functional properties across networks as a method for identifying the most informative
decompositions of BrainMap-based ICA components. Our findings suggest dimensionality
of 20 for low model order ICA to examine large-scale brain networks, and dimensionality
of 70 to provide insight into how large-scale networks fractionate into sub-networks.
We also provide a functional and organizational assessment of visual, motor, emotion,
and interoceptive task co-activation networks as they fractionate from low to high
model-orders.

Keywords: meta-analysis, co-activations, BrainMap, intrinsic connectivity networks, functional brain networks,

functional connectivity, resting state networks, independent component analysis

INTRODUCTION
Independent component analysis (ICA) offers a methodology
for investigating functional brain connectivity of intrinsic neu-
ral networks in human neuroimaging data (Beckmann, 2012;
Calhoun and Adali, 2012). This exploratory approach provides
an alternative to hypothesis-driven connectivity techniques (e.g.,
seed-based correlation analyses; Biswal et al., 1995) by identify-
ing independently distributed spatial patterns depicting source
processes in multivariate data (McKeown and Sejnowski, 1998;
Biswal and Ulmer, 1999; Hyvärinen and Oja, 2000; Beckmann
et al., 2005; Calhoun et al., 2008). Over the last few years,
improvements in ICA techniques (Long et al., 2007; Sohn et al.,
2012), as well as their widespread application to functional mag-
netic resonance imaging (FMRI) data in healthy (Damoiseaux
et al., 2006; Kiviniemi et al., 2009; Biswal et al., 2010; Allen et al.,
2011; Mowinckel et al., 2012) and clinical populations (Greicius
et al., 2004, 2007; Seeley et al., 2007; Sorg et al., 2007; Jafri et al.,
2008; Wolf et al., 2008; Mohammadi et al., 2009; Zhang et al.,
2009; Qi et al., 2010; Li et al., 2012; Zhou et al., 2012), have
substantially enhanced our knowledge of resting state functional
connectivity (Ding et al., 2011; Allen et al., 2012; Calhoun et al.,
2012; Jones et al., 2012; Bridwell et al., 2013).

Recent evidence has shown that these intrinsic connectivity
networks (ICNs) can also be extracted from a large neuroimaging
database of task-based co-activation patterns (Fox and Lancaster,
2002) both by region-seeding (Toro et al., 2008) and by ICA
(Smith et al., 2009; Laird et al., 2011a). An advantage of studying
task co-occurrence networks derived from the BrainMap database
is that the BrainMap behavioral taxonomy (Fox et al., 2005;
Laird et al., 2005) for describing functional neuroimaging tasks
allows quantitative classification and relatively automated inter-
pretation of the functional significance of these networks (Laird
et al., 2011b). This was demonstrated by Smith et al. (2009)
when the behavioral metadata of BrainMap-based ICNs was used
to describe the functional nature of corresponding resting-state
networks, and again in Laird et al. (2011a) when providing a
full functional explication of BrainMap ICA networks at a stan-
dard low model order (d = 20). This use of BrainMap metadata
allows for a substantially more rich characterization of ICNs than
previously possible. The BrainMap approach differs from anal-
ysis of data acquired during the task-free resting state, where
network functional characterization relies heavily on subjective
visual inspection to draw upon similarity to published task-based
results.
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In both resting state FMRI and task-based meta-analytic data,
ICA is carried out at a given model order to identify a set of
d (d = dimensionality) spatial components and their associated
time courses or database weighting vectors. Although automated
methods for model order estimation in resting state FMRI data
have been developed (Beckmann and Smith, 2004; Himberg et al.,
2004; Li et al., 2007), these methods can be somewhat arbitrary
and usually depend upon a number of factors (e.g., field strength,
number of time points, number of subjects, and data quality), in
which their application may not be robust enough to rely on for
all implementations of ICA. Model order selection has a signif-
icant impact on the spatial organization of resultant ICNs since
networks at low model orders are fractionated into sub-networks
as model order increases (Kiviniemi et al., 2009; Smith et al., 2009;
Abou Elseoud et al., 2010). Across varying dimensionalities, ICA
of resting state FMRI data has consistently revealed a hierarchical
modularity to functional brain organization, in agreement with
results from graph theoretic approaches (He et al., 2009; Meunier
et al., 2009). Our focus in the present study is how ICA model
order may be leveraged in analyses of task co-activation networks
to more fully investigate this hierarchical modularity.

The functional assessment of network fractionation across
task-based ICA components is also strongly influenced by model
order selection, since this parameter affects spatial topogra-
phy, which in turn impacts classification of the behavioral
domains and paradigms associated with the networks at any
given model order (Smith et al., 2009). Previous analysis of
BrainMap co-activation networks was performed at model orders
of 20 and 70 components, to simplify comparisons with prior
analyses of resting state FMRI data at these dimensionalities
(Smith et al., 2009; Laird et al., 2011a); however, differentia-
tion of preferred model orders is needed before a more complete
examination of network fractionation can be made. Here, we
present a data-driven method for identifying BrainMap-based
ICA decompositions that provide increased explication for func-
tional decoding of task co-activation networks. In addition, we
examine the functional organization as well as the topology of
the resultant ICNs as they fractionate from low to high model
orders.

MATERIALS AND METHODS
GENERATION OF INTRINSIC CONNECTIVITY NETWORK MAPS
Peak activation coordinates were extracted from 8,637 functional
neuroimaging experiments archived in the BrainMap database
(Fox and Lancaster, 2002; Laird et al., 2005, 2009, 2011a; http://
brainmap.org) and smoothed (FWHM = 12 mm) to create mod-
eled activation images. Spatial ICA was applied to this 4D
dataset (space × experiment ID) using MELODIC (multivari-
ate exploratory linear optimized decomposition into independent
components; Beckmann et al., 2005) provided by FSL (FMRIB
Software Library; Smith et al., 2004; Woolrich et al., 2009;
Jenkinson et al., 2012). ICA was performed at multiple dimen-
sionalities, creating sets of 20–200 independent components, at
intervals of 10 (Figure 1). At each model order, ICA maps were
converted to z statistic images via a normalized mixture model
fit, thresholded at z > 4, and viewed on a Talairach space template
image (Kochunov et al., 2002).

METADATA MATRICES
Each set of published coordinates of experimental task activa-
tion locations in the BrainMap database is associated with a
highly organized taxonomy of metadata that describes infor-
mation about the scanned subjects (e.g., behavioral condi-
tions, experiment design, and imaging analysis parameters).
Behavioral domain and paradigm class are two metadata fields
that have been found to contain the most explanatory power
of functional characterization per component (Laird et al.,
2011a). There are currently 75 available paradigms classifying
the experimental task employed during functional image acqui-
sition (Turner and Laird, 2012), and 50 behavioral domains
describing the categories of cognitive processes isolated by an
experimental contrast (Fox et al., 2005; http://brainmap.org/
scribe). To systematically identify the paradigms and behav-
iors associated with BrainMap ICA components at a given
model order, a matrix (125 metadata classes × d compo-
nents) was created for each ICA decomposition, which quantifies
the relationship between a given component and the behav-
ioral domains or paradigms (Smith et al., 2009; Laird et al.,
2011a). In doing so, the matrix M was computed, which is an
e × d matrix whose e rows (one for each experiment) and d
columns (one for each ICA component) describe the weight-
ings of each component for each of the original activation
images,

M = VdMd (1)

where Vd includes the d largest singular values of the “temporal”
(experiment ID) modes and Md is the mixing matrix of size d × d.
We then extracted the n (behavioral domain and paradigm meta-
data classes) × e (experiment ID) matrix P from the BrainMap
archive to form the final matrix of metadata classes vs. ICA
components,

Pd = PM (2)

The resultant metadata matrix measures how strongly each
behavioral domain and paradigm relate to the individual com-
ponents at a specified model order, which informs interpretation
of the functional properties for the ICNs. Repeating these steps
(Figure 1, Steps 2–4) across multiple ICA model orders from
d = 20 to 200 yielded 19 ICA decompositions, and hence 19
metadata matrices, provided a quantitative representation of the
dynamic functional nature of ICNs across a wide range of model
orders.

HIERARCHICAL CLUSTERING ANALYSIS
In our previous study, we established that hierarchical cluster-
ing analysis (HCA) of the metadata matrix at d = 20 provided
a data-driven method for establishing groupings of similar tasks
and behaviors (Laird et al., 2011a). Here, we propose that HCA be
used to introduce a metric for discriminating across ICA model
order. As described above, a metadata matrix was created for
a specified model order that assigned weights of the strength
of each functional metadata class to each ICN. HCA was then
performed on this metadata matrix, yielding a dendrogram that
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FIGURE 1 | The BrainMap ICA processing stream included four steps.

Step 1: Peak activation coordinates from 8,637 experiments in the BrainMap
database were smoothed at a FWHM of 12 mm to create a 4D modeled
activation map (space × experiment ID). Step 2: ICA was applied to the 4D
data using FSL’s MELODIC at a model order of d to create a set of d spatial
components. Step 3: Metadata matrices were created at each d weighting

how strongly each component related to the behavioral domain and paradigm
metadata classes in BrainMap (125 metadata classes × d components). Step
4: HCA was performed on metadata matrices, and the CCc of the resultant
dendrogram was computed to determine the fit of the clustering for that
model order. These 4 steps were repeated for a range of d, from 20 to 200 in
intervals of 10.

allowed visualization of groups of similar metadata classes for that
model order, where each branch in the dendrogram represents
a single paradigm or behavioral domain (Figure 1, Step 4). We
then computed the cophenetic correlation coefficient (CCc) for
the dendrogram:

CCc =
∑

i < J(Yij − y)(Zij − z)√∑
i < J(Yij − y)2

∑
i < J(Zij − z)2

(3)

where Yij is the distance between objects i and j (where i and
j are the indices of the values in the d × 125 metadata matrix)
in Y, Zijis the cophenetic distance between objects i and j in Z
(the height of the node at which these two points are first joined
together in the dendrogram), and y and z are the averages of Y and
Z, respectively. By definition, the cophenetic correlation coeffi-
cient for a cluster tree is the linear correlation coefficient between
the cophenetic distances obtained from the tree, and the origi-
nal distances (or dissimilarities) used to construct the tree (Sokal,
1962), where values close to 1 indicate a high-quality solution.

The CCc of metadata clustered dendrograms were recorded across
model order, as opposed to network clustered dendrograms, to
maintain a comparison of models with a consistent number of
branches.

In this context, we employed the CCc to assess how well
each set of d clustering results reflected its corresponding
metadata matrix for a given model order. We hypothesized
that computing the cophenetic correlation coefficient across a
range of models orders would provide insight into how well
the distributions of functional properties fit co-activation net-
works across different ICA decompositions. This method was
based on the assumption that high CCc values results in more
informative ICA decompositions of task-based intrinsic con-
nectivity networks. HCA was performed in MATLAB (The
Mathworks Inc., Natick, Massachusetts) on the 19 metadata
matrices (one for each model order) using the single linkage
algorithm with 1 − r as the distance between clusters, where r
is the Pearson’s correlation coefficient, and unthresholded clus-
ter distances, similar to the procedure developed by Laird et al.
(2011a).
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RESULTS
SIGNIFICANT MEAN VOLUME AND Z-SCORE OF ICNs
ICA was performed on the BrainMap database to identify task co-
activation networks at model orders of d = 20–200, in intervals of
10. We investigated the impact of model order on the BrainMap-
based ICA spatial component maps. Across each dimensionality,
the average number of significant voxels and the average z-score
of significant voxels were computed for each thresholded com-
ponent (z > 4). As expected, these values showed substantial
changes as a result of altering model order. The average number of
significant voxels per component showed a logarithmic decrease
(R2 = 0.996) as model order increased (Figure 2). This result was
expected since increasing model order forces ICA to separate or
fractionate large spatial components into smaller components.
The average component z-score increased nearly linearly (R2 =
0.975) as model order increased. Our overall observation was that
as the number of components increased, the average volume of
individual components decreased, resulting in a higher concen-
tration of significant activity spanning across fewer voxels. Similar
results were observed by Abou Elseoud et al. (2010) when inves-
tigating ICA model order of intrinsic connectivity networks in
resting state FMRI data.

HIERARCHICAL CLUSTERING OF BRAINMAP COMPONENT METADATA
Metadata matrices were computed at each model order to
quantify the impact of the BrainMap behavioral domains and
paradigms for every network component. Hierarchical clustering
was performed on these metadata matrices, and the cophenetic
correlation coefficient was subsequently computed across the 19
dendrograms from d = 20–200. The observed CCc values are
plotted in Figure 3, and ranged from a minimum of 0.438 to a
maximum of 0.519, with a mean of 0.473 ± 0.020. ICA model
orders corresponding to the two highest CCc values were identi-
fied at d = 20 (CCc = 0.5119) and d = 70 (CCc = 0.5198), while
d = 50 and d = 190 networks were observed to correspond to the
lowest CCc values. The dendrograms for these two highest (i.e.,

FIGURE 2 | The mean number of significant voxels (z > 4) of ICA

components decreased as model order increased (solid, bold), while

the mean z-score of significant voxels in ICA components increased

almost linearly (R2 = 0.975) as model order increased (dashed line).

more clear distribution of functional properties for ICNs) and
two lowest (i.e., less interpretable division of functional properties
for ICNs) decompositions are shown in Figure 4. The pairwise
relationships between any two variables (i.e., metadata classes) are
illustrated, where each branch of the dendrogram represents an
individual metadata class (i.e., behavioral domain or paradigm)
in the BrainMap database. In general, the dissimilarity scale, or
y-axis, of a dendrogram ranges from 0 to 1 where lower branch-
ing points indicate high similarities among clusters and are thus
most desirable. Visual inspection of these graphs indicates that
the two dendrograms with the most branching points low on the
dissimilarity scale exemplify a good clustering solution that fit the
metadata matrices well, while the two dendrograms with higher
branching points do not, in agreement with the more quantitative
differences in CCc values.

INTRINSIC CONNECTIVITY NETWORK FRACTIONATION
Our results indicated that high quality decompositions were
obtained at ICA model orders of d = 20 and d = 70, as these
yielded CCc values that were two standard deviations higher than
the mean. Thus, we sought to investigate general trends in the
functional significance of how BrainMap-based ICNs fraction-
ate from large-scale networks to smaller sub-networks specifically
as a result of increasing model order from d = 20 to d = 70.
The spatial topographies of these ICA components are shown
in Figure 5. HCA was performed on the metadata matrices to
determine similarity across behavioral domains and paradigms;
in this stage, we transposed the matrices and repeated the analysis
to quantify similarity across networks at each of the two best-fit
model orders, similar to the procedure developed by Laird et al.
(2011a).

Figure 6A illustrates the behavioral network groupings at d =
20 where each dendrogram branch corresponds to an individual
non-artifactual ICA network. Visual inspection of dendrogram
indicated that the decomposition included three clear groupings
of networks that were highly similar in terms of their behavioral

FIGURE 3 | Cophenetic correlation coefficients (CCc ) were computed

for the BrainMap metadata matrices across ICA model orders. CCc

values indicate how well the HCA results fit the corresponding BrainMap
metadata. The ICA model orders yielding the two highest CCc values were
generated with metadata from the d = 20 (CCc = 0.5119) and d = 70
(CCc = 0.5198) decompositions.
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FIGURE 4 | Hierarchical clustering dendrograms are shown for ICA

model orders of 20, 50, 70, and 190. Model orders of 20 and 70
resulted in the two highest CCc values, while d = 50 and d = 190
resulted in the lowest CCc values. The dissimilarity scale (y-axis) of
each dendrogram indicates how strongly the behaviors and paradigms

were found to cluster together. High branching points along the
dissimilarity axis in the d = 50 and d = 190 dendrograms indicate
less agreement across variables, whereas lower branching points in
the d = 20 and d = 70 networks indicate a more tightly clustered
solution.

metadata (not their spatial topography), and one set of dissimilar
networks (seen on the far right). Previous HCA results revealed
that these four d = 20 network groupings can be classified on the
basis of their associated mental processes: (1) emotional and inte-
roceptive processes that included networks for limbic and medial
temporal areas, subgenual anterior cingulate cortex (ACC) and
orbital frontal cortex (OFC), bilateral basal ganglia and thala-
mus, bilateral anterior insula and anterior cingulate cortex (blue
networks; ICA-201 − ICA-205); (2) motor and visuospatial inte-
gration, coordination, and execution that included premotor and
supplementary motor cortices, DLPFC and posterior parietal
cortices, hand areas of the primary sensorimotor cortices, and
superior parietal lobule (green networks; ICA-206 − ICA-209);
(3) visual perception, including visual association cortices, as well
as lateral and medial posterior occipital cortices (cyan networks;
ICA-2010 − ICA-2012); and (4) higher cognitive processes that
included the default mode network, cerebellar network, right-
lateralized fronto-parietal cortices, auditory cortices, mouth areas
of the primary sensorimotor cortices, and left-lateralized fronto-
parietal cortices (warm-colored networks; ICA-2013 − ICA-2018).
The last two ICA components (ICA-2019, ICA-2020) were deemed
to be artifacts characterized by uniform metadata distributions
(Laird et al., 2011a).

Figure 6A illustrates that the motor and visuospatial net-
works were found to be more similar to the visual perception
networks than to the emotional and interoceptive networks, as
indicated by their different branching heights. In addition, the
divergent cognitive networks were observed to be strongly dis-
similar across components, compared to each other as well as to
other groupings of networks. Visual inspection of the dendro-
gram observed at d = 70 (Figure 6B) exhibited grossly similar

clustering structure to that of d = 20, but included subtle organi-
zational differences indicative of functional network fractionation
properties. We employed the fslcc tool available in FSL (Jenkinson
et al., 2012), as a means to track network fractionation from
20 components to 70 components. Cross-correlation values were
computed between every network in the d = 20 decomposition
with every network in the d = 70 decomposition. A high corre-
lation value indicated a strong correspondence between spatial
topographies across model order. Using these values, each high-
model order network was grouped with its highest corresponding
low-model order “parent” network, with exception to 3 artifac-
tual networks characterized by implausible activation patterns. As
seen by the color-coding scheme defined for the d = 20 networks,
the majority of d = 70 networks in Figure 6B remained clustered
with networks matching their original d = 20 group, but these
groups were fractionated into multiple smaller sub-groups, sug-
gesting fractionation as a result of non-homogenous behavioral
functions. Figure 6B illustrates how the visuomotor networks
(green) were split into three separate sub-groups of varying num-
bers of networks (MV1, MV2, MV3), while the emotional and
interoceptive networks (blue) were divided into two sub-groups
(Emo/Int1, Emo/Int2). The higher cognitive networks (warm col-
ors) were fractionated into three sub-groups (Cog1, Cog2, Cog3),
while the visual networks (cyan) remained intact and were not
sub-divided (Vis).

VISUOMOTOR FRACTIONATION
Figure 7A delineates how the visuomotor networks at d = 20
(ICA-206, ICA-207, ICA-208, ICA-209; green) split into three dis-
tinct and non-overlapping sub-groups for separate motor and
visuospatial processes at d = 70. According to this higher model
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FIGURE 5 | The spatial topography of ICA model orders yielding high

quality decompositions identified by producing the highest CCc values

at d = 20 and d = 70. The d = 20 components are presented in the same
order as provided in Laird et al., 2011a. The d = 70 components mirror the
hierarchical network organization of their respective model order, beginning

with the most similar components followed by the least similar. ICA maps
were converted to z statistic images via a normalized mixture model fit,
thresholded at z > 4, and viewed in standard (Talairach) brain space.
Orthogonal slices of the representative point in space are shown for each
component.
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FIGURE 6 | HCA of BrainMap-based ICNs at d = 20 and d = 70 provide

insight into how low-model order networks fractionate into

high-model order sub-networks. (A) Network clustering of the d = 20
decomposition revealed three clear groupings of highly similar networks:
emotional and interoceptive networks (blue), motor and visuospatial
networks (green), and visual networks (cyan). The remaining components
were associated with higher cognitive processes (warm colors). The
cognitive networks were behaviorally dissimilar across components and
other network groups, as indicated by high branching points in its
dendrogram. (B) Network clustering of the d = 70 decomposition exhibited
generally similar network organizational properties with the d = 20
dendrogram, but included subtle fractionation properties indicative of
non-homogenous behavioral functions. The left–to–right ordering of
networks in the above dendrograms are the same as presented in
Figure 5. Vis, visual; M/V, motor and visuospatial; Cog, cognitive; Emot/Int,
emotional and interoceptive.

order decomposition, the networks that included the DLPFC
and posterior parietal cortices (Figure 6B, cluster MV1) and the
premotor and supplementary motor cortices (Figure 6B, cluster
MV2) were shown to exhibit strong visuospatial properties and
thus found to be more similar to the visual perception networks.
These visuospatial tasks included saccades/anti-saccades, mental
rotation, visual pursuit and visual distraction. In contrast, the
networks associated with motor processing were clustered into
a different group (Figure 6B, cluster MV3). These included sub-
networks of the hand areas of the primary sensorimotor cortices
and superior parietal lobule, and were generally associated with
finger tapping, flexion/extension, pointing, and grasping.

EMOTIONAL AND INTEROCEPTIVE FRACTIONATION
A strong dichotomy was present within the emotional and inte-
roceptive sub-networks at d = 70 as shown in Figure 7B. Instead

of observing a simple splitting in which individual d = 20 net-
works (ICA-201, ICA-202, ICA-203, ICA-204, ICA-205; Figure 6
blue) were represented in only one high-model order cluster, we
observed a more mixed and complex degree of fractionation. The
d = 20 emotion/interoceptive grouping of networks split into two
main clusters at d = 70 in which both clusters were comprised
of sub-networks from nearly all five of the original d = 20 com-
ponents. Specifically, the d = 20 subcortical network (ICA-203)
fractionated into four different d = 70 sub-networks (including
separate components for putamen, thalamus, and basal ganglia),
which thematically were associated with tactile paradigms and
interoceptive processes. Overall, examination of the functional
nature of this complex dichotomy of emotional and interocep-
tive networks revealed one cluster of sub-networks (Figure 6B,
cluster Emo/Int1) was associated with internal, emotional, and
introspective behaviors requiring little muscle activity, such as
emotional picture discrimination, deception, resting state, anxi-
ety, and thirst stimulation paradigms. In contrast, the other clus-
ter of sub-networks (Figure 6B, cluster Emo/Int2) was related to
more external stimuli or behaviors requiring muscle control over
physical functions, such as micturition and bladder tasks, pain,
thermal and tactile stimulation, TMS, and action preparation.

COGNITIVE FRACTIONATION
With respect to the higher cognitive networks (warm colors),
we observed d = 70 segregation of networks into three distinct
clusters. One sub-network grouping (Figure 6B, cluster Cog1)
was associated with decomposition of the right-lateralized fronto-
parietal network (ICA-2015) into three sub-networks, which
relate to the behavioral functions of reasoning, attention, inhi-
bition, and working memory. A second cognitive subgroup
(Figure 6B, cluster Cog2) included one right-lateralized fronto-
parietal sub-network and three sub-networks representing frac-
tionated components of the default mode network (ICA-2013),
associated with theory of mind and social cognition tasks. Lastly,
the d = 20 networks for auditory, speech, and language processes
(ICA-2016, ICA-2017, ICA-2018, respectively) segregated into the
same cluster at d = 70 (Figure 6B, cluster Cog3), preserving
functional groupings seen at the lower model order.

VISUAL FRACTIONATION
In contrast to the extensive splitting of the visuospatial, emo-
tional/interoceptive, and cognitive network groupings, the visual
networks (ICA-2010, ICA-2011, ICA-2012; cyan) remained highly
similar and relatively intact across model orders (Figure 6B, clust
Vis), with some minor splitting of single components at other
locations in the dendrograms that were related to correspon-
dences between the visual association areas with higher cognitive
functions.

DISCUSSION
Previously, we demonstrated that the combined application of
ICA and hierarchical clustering analysis (HCA) to task activa-
tion patterns archived in the BrainMap database identify and
guide functional interpretation of intrinsic connectivity networks
(Laird et al., 2011a). This has been shown for a standard low
model decomposition (i.e., d = 20). Here, we applied the same
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FIGURE 7 | Topological fractionation of select BrainMap-based ICNs

are shown from low (d = 20) to high (d = 70) model orders. The
spatial cross correlation between the d = 20 and d = 70 networks are
indicated below each respective d = 70 network. (A) The Motor/
Visuospatial networks, which were grouped into one cluster at d = 20
(green ICNs in Figure 6), split into three separate clusters at d = 70.
Metadata associated with these ICNs indicated that two clusters were
more closely related to visuospatial tasks while the other cluster was

highly linked motor tasks. (B) The Emotion/Interoception networks (blue
ICNs in Figure 6) showed a more complex fractionation at d = 70
when splitting into two main clusters. Both of these clusters contained
sub-networks from nearly all of their d = 20 ICNs; however, the
metadata associated with these d = 70 ICNs showed a clear division in
functional characterization into an initial cluster linked to internal and
emotional processes and another cluster linked to external and physical
processes.

methodology at a range of model orders from d = 20–200, in
intervals of 10, to assess the effects of ICA dimensionality. We used
the cophenetic correlation coefficient as a general statistic to char-
acterize how distributions of functional properties fit brain net-
works across a range of decompositions. In doing so, we identified
two model orders that provide the most interpretable segregation
of BrainMap behavioral domain and paradigm labels, thereby
maximizing the ability of behavioral meta-data to inform co-
activation networks in the BrainMap context. Moreover, we found
that this network-based clustering method provided insight into
how large-scale networks fractionate into finer sub-networks
when transitioning from low order decompositions (e.g., d = 20)
to higher order decompositions (e.g., d = 70).

MODEL ORDER SELECTION AND AGREEMENT WITH RESTING STATE
DATA
The cophenetic correlation coefficient was found to vary as model
order was increased or decreased. Each model order results in dif-
ferent patterns of network spatial topographies, which influences
the weightings that correspond to how strongly each behavioral
domain or paradigm is associated with the ICA components.
The resultant metadata matrices subsequently vary across model

order, yielding dendrograms than can be differentiated in terms
of their goodness of fit to the clustered data matrices. Our
findings suggest that the 20- and 70-component ICA decomposi-
tions of BrainMap co-activation networks, when complemented
with their metadata for functional interpretation, yielded more
informative networks than other model orders in the tested range.

We do not assert that we have unequivocally proven that, for
example, a model order of 50 is “superior” compared to a model
order of 20. On the contrary, examination of the spatial topogra-
phies and associated metadata for networks across all model
orders tested were found to be interpretable. Furthermore, we
believe that rather than focus on a single decomposition, multiple
iterations of ICA at different model orders are necessary to truly
understand the complexity of intrinsic connectivity networks in
both task-based and resting state neuroimaging data. That is, we
endorse the practice of performing analyses that include decom-
positions across multiple model orders in order to draw more
meaningful network inferences. However, the full and complete
assessment of network fractionation across 19 decompositions
(2090 total ICA components) is simply impractical. At this time,
we lack the summary statistics and visualization capabilities for
disseminating that level of data complexity. Thus, our goal in the
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present study was to provide an approach to identify a subset of
model orders to facilitate cross-decomposition comparisons via
a quantitative clustering-based metric. We intend to utilize these
results to guide the next stage of our investigation of fractiona-
tion of BrainMap co-activation networks, which will focus on a
more highly detailed explication of sub-network functional orga-
nization at d = 70. Given the results of the present study, we are
less likely to pursue further analyses at d > 120; although, there
is some interest in assessing if model fit continues to decline past
d = 200.

Notably, previous studies investigating ICA model order of
resting state fMRI data indicated similar results recommend-
ing 20 components for a low model order decomposition and
around 70 components for a high model order decomposition
(Abou Elseoud et al., 2010, 2011). Abou Elseoud et al. (2010)
reached this conclusion by evaluating various topological prop-
erties and consistency measures (e.g., volume, mean z-score,
stability, repeatability) of ICA decompositions across a wide range
of model orders. We did not initially anticipate that our metric
for more interpretable model orders of task-based co-activation
networks would yield identical results to that for resting state net-
works. However, in light of the strong correspondence between
spatial topographies across these data sets, it is reasonable to
observe similar correspondence in model order considering that it
has been posited that resting state networks do reflect functional,
task-based networks (Fox and Raichle, 2007; Smith et al., 2009).

One notable difference was observed between the present
study and the related work by Abou Elseoud et al. (2010). In their
results, they observed significant increases in z-score only up to
model order 80, while our results revealed a linear increase in
z-score values up to the d = 200 decomposition. This may reflect
an aspect of data features wherein BrainMap task activation pat-
terns no longer behave similar to resting state FMRI data. Our
approach of blurring thousands of reported stereotactic coordi-
nates of activation locations to create pseudo-activation images
results in large, sparse data sets, which may be more favorable
than BOLD FMRI for high model order ICA decompositions. At
high dimensionalities, ICA tends to over-fit BOLD FMRI time-
series data, in which the noise inherently associated with FMRI
signal overpowers the true physiological neuronal co-oscillations
(Li et al., 2007; Abou Elseoud et al., 2010). Thus, in addition to
the number of studies employed in our analyses, task-activation-
derived ICNs may be intrinsically more powerful and capable
of finer division (i.e., higher model orders) than resting state
derived ICNs.

CONSISTENCY OF BRAINMAP-BASED ICNs
A number of factors might have influence on the spatial topogra-
phy of resultant ICA decompositions, which would affect further
clustering and functional interpretation conclusions.

Thus, we performed a number of additional analyses to exam-
ine the consistency of our results. First, we performed ICA (d =
20) on the same 8,637 experiments in a randomized order. Using
a spatial cross correlation analysis, the original ICNs and the ran-
domized ICNs were nearly identical, indicating that the spatial
maps are not dependent upon the order or experiment input.
Furthermore, varying the FWHM of the Gaussian parameter by

applying the Eickhoff et al. (2009) smoothing algorithm when
creating the 8,637 activation images resulted in ICNs with simi-
lar topography. In terms of clustering approaches, we investigated
the use of other linkage methods (e.g., average linkage) and
observed consistent similar groupings of networks and overall
higher CCc values with similar CCc peaks. However, the results
of using this algorithm showed very little variance in CCc values
(mean = 0.68 ± 0.009) across model orders, indicating that it is
less sensitive to model order.

Additional analyses were performed on 10 random subsets of
90% of the experiments in the BrainMap database at the time
of the initial analysis. Following the same procedure as outlined
in Figure 1 up to d = 100, the peaks in the CCc values initially
observed at d = 20 and d = 70 components continued to be
observed in 10 random subsets of 90% when averaging across all
samples, although the observed peak at d = 70 was not as robust
as the peak at d = 20, as the results were somewhat plateaued
from d = 50 to 70 (Figure 8). Overall, results from these addi-
tional analyses followed a similar trend as shown in Figure 3,
and suggest that d = 20 and d = 70 exemplify appropriate model
orders for further functional interpretation in BrainMap-based
ICN analyses.

Lastly, we acknowledge the possibility that substantial changes
in the selection of published studies archived in BrainMap would
result in relatively different decompositions of ICNs depending
on the cognitive aspects of experiments added to the sample (e.g.,
a large increase in interoceptive experiments would produce an
ICA decomposition more weighted toward ICNs associated with
interoceptive processes).

INTRINSIC CONNECTIVITY NETWORK FRACTIONATION
Comparing dendrograms for low- and high-model order decom-
positions (Figure 6) allowed visual conceptualization of the dif-
ferences between networks associated with homogenous and
heterogeneous functions. Generally, low-model order networks
associated with low-level perceptual function showed little break-
down into sub-networks at a higher model order, such as for

FIGURE 8 | Additional analyses were performed on 10 random subsets

of 90% of the experiments in the BrainMap database at the time of the

initial analysis following the same procedure as outlined in Figure 1

(up to d = 100). The CCc values resulting from the 90% subsets follow a
similar trend as shown in Figure 3 when averaging across all subsets.
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visual and auditory perception. However, multimodal networks
associated with higher-level processes tended to display a high
amount of fractionation into multiple sub-networks according
to breakdown of their constituent functions. Similar results have
previously been found in high-model order ICA decompositions
of resting state FMRI, in agreement with this result (Kiviniemi
et al., 2009; Smith et al., 2009; Abou Elseoud et al., 2010, 2011).

Overall, we observed that the 3 d = 20 visual networks were
subdivided into 9 sub-networks at d = 70, 4 visuomotor net-
works were fractionated into 13 sub-networks, 5 emotional and
interceptive networks into 20 and 6 cognitive networks into 23
sub-networks. This translates to an average of 3 d = 70 sub-
networks for every visual network, 3.25 for visuomotor, 4 for
emotional/interoceptive, and 3.83 for cognitive, which suggests
that for these exemplar model orders, the emotional and inte-
roceptive networks were found to fractionate at the highest rate.
When comparing fractionation properties from d = 20 to d = 70
networks across groupings, we found the visuomotor network
split into non-overlapping visual and motor sub-networks to be
clear and reasonable. However, the emotional and interoceptive
splitting into 2 clusters that included contributions from nearly all
original d = 20 networks will require more examination to fully
understand. For this fractionation, the separation between sub-
groups was comparatively increased in terms of distance along
the dendrograms x-axis, which likely reflects a stronger dissimi-
larity and more fundamental dichotomy between emotional and
interoceptive processes.

Lastly, the cognitive networks differed from both the visuo-
motor and the emotional/interoceptive fractionation schemes in
that complex sub-groups were observed, but demonstrated fewer
overlapping contributions than the emotional/interoceptive sub-
networks. In comparison to the d = 20 organization, we found
that many cognitive d = 70 sub-networks remained highly dis-
similar, with the exception of the relatively homogenous and
intact grouping for speech, audition, and language (Figure 6B,
cluster Cog3). The right-lateralized fronto-parietal sub-networks
(Figure 6B, cluster Cog1) were observed to split from the cogni-
tive networks which were grouped with visual and visuospatial
sub-networks, thus indicating greater homogeneity in functions
associated with visual attention and reasoning. Similarly, the
default mode sub-networks were segregated from their d = 20
cognitive neighbors and more strongly associated with emotional
and introspective behaviors at d = 70 (Figure 6B, cluster Cog2).
In turn, there was a group of strongly interoceptive sub-networks
related to bladder control and external stimulation that were frac-
tionated from their original emotional grouping at d = 20 to
become more highly dissimilar to other sub-groups (Figure 6B,
cluster Emo/Int2), thus positioning them near the remaining dis-
similar cognitive sub-networks. These dendrogram shifts between
d = 20 and d = 70 illustrate the functional impact of model
order selection in ICA-based investigations of task co-activation
networks.

USE RECOMMENDATIONS AND FUTURE DIRECTIONS
The network images and associated BrainMap metadata gener-
ated in this study have been made available for download (brain-
map.org/icns) to serve as a shared resource for the neuroscience

community. Currently BrainMap ICA components are provided
at dimensionalities of 20 and 70, which may useful in the interpre-
tation of the functional significance of future resting state results.
For resting state networks that are not a close match with the
20- or 70-dimension BrainMap networks, the Mango/BrainMap
behavioral analysis tool can be used to identify significant behav-
iors within a ROI or network mask (Lancaster et al., 2012).
Additionally, BrainMap ICNs could serve as seed regions or masks
for future resting state analyses in efforts to avoid the inher-
ent problems associated with double dipping (Kriegeskorte et al.,
2009). Future work in this area will involve a thorough analysis
of BrainMap-based ICNs at additional model orders to provide
better insight to the hierarchical organization of these functional
networks.

LIMITATIONS
The results observed in the present study are based on the premise
that the cophenetic correlation coefficient of metadata matri-
ces provides a meaningful metric to discriminate between ICA
model orders. We based this assertion on the fact that the CCC

measures fit between matrix data and corresponding cluster-
ing solution. However, this procedure is highly dependent on
BrainMap’s taxonomy, including the design and implementation
for how BrainMap personnel manually code studies from the
literature. This is most critical for the metadata fields of behav-
ioral domain and paradigm, since our study is based on these
taxonomic classifiers.

These results are additionally dependent on the heterogeneity
of experiments in the BrainMap database. There is an uneven dis-
tribution of experiments archived in BrainMap in which 74% of
experiments elicit cognitive processes, 26% are emotion related
processes, 23% of experiments are perception related, 21% are
associated with action paradigms, and 3% with interoceptive
fields. It is not uncommon for these experiments to be coded
with more than one behavioral domain, thus explaining for the
proportions of behaviors summing greater than 1.

Since the present results are thus limited to the current instan-
tiation of the BrainMap database, future work may involve repli-
cation of the results following extension and/or refinement of
the BrainMap metadata taxonomy. The importance of functional
neuroimaging ontologies cannot be underestimated, as evidenced
by this and other studies. Currently, statistical methodologies
for large-scale meta-analysis and data mining investigations are
being developed for the BrainMap Project. But even with excel-
lent analysis strategies, meta-analytic results are critically affected
by standards and conventions for neuroinformatics and psy-
choinformatics. Efforts to improve the BrainMap ontology are
currently underway and likely will have an impact on the func-
tional interpretation of not only task co-activation networks,
but also functional brain networks derived from meta-analytic
connectivity modeling (Laird et al., 2009; Eickhoff et al., 2010;
Robinson et al., 2010; Zald et al., 2012) and connectivity-based
parcellation (Eickhoff et al., 2011; Bzdok et al., 2013; Cieslik et al.,
2013). Alternatively, a similar analysis could be carried out in
a different task-based meta-analysis database of neuroimaging
results, such as NeuroSynth (http://neurosynth.org; Yarkoni et al.,
2011). Although recent text-based topic modeling of NeuroSynth

Frontiers in Neuroscience | Brain Imaging Methods December 2013 | Volume 7 | Article 237 | 10

http://neurosynth.org
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Ray et al. ICA model of co-activation networks

data has yielded similar intrinsic connectivity networks to those
seen here (Poldrack et al., 2012), to our knowledge the issue of
model order has not yet been addressed in this context.

CONCLUSION
We investigated the effects of BrainMap metadata distribution
of functional properties across intrinsic connectivity networks
as a method for identifying model orders that provide the most
interpretable segregation of BrainMap behavioral domain and
paradigm labels, thereby maximizing the ability of behavioral
meta-data to inform BrainMap based co-activation networks.
Results of our analyses indicated that ICA performed at a model
order of d = 20 and d = 70 provides network metadata matrices
with increased CCc fit. At d = 70, we found that the emotional
and interoceptive networks fractionated at the highest rate into
the largest number of sub-networks. We observed complex frac-
tionation properties for cognitive and emotional/interoceptive
networks and relatively simpler fractionation for visuomotor pro-
cesses, while the visual perception networks remained relatively
intact. These results suggest that selecting ICNs from a single
model order may provide limited information, while interpret-
ing ICNs across multiple model orders yields more dynamic
information about the functional organization and hierarchical
modularity of the human brain.
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