
Open Research Online
The Open University’s repository of research publications
and other research outputs

Developing ontologies in OWL: An observational study
Conference or Workshop Item
How to cite:

Dzbor, Martin; Motta, Enrico; Buil, Carlos; Gomez, Jose; Goerlitz, Olaf and Lewen, Holger (2006). Developing
ontologies in OWL: An observational study. In: OWL: Experiences and Directions 2006, 10-11 Nov 2006, Athens,
Georgia, USA.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://kmi.open.ac.uk/people/dzbor/public/2006/dzbor-etal-owled-2006.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/81623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://kmi.open.ac.uk/people/dzbor/public/2006/dzbor-etal-owled-2006.pdf
http://oro.open.ac.uk/policies.html

Developing ontologies in OWL: An observational study1

Martin Dzbor, Enrico Motta, Carlos Buil, Jose Gomez, Olaf Görlitz, Holger Lewen

KMi, The Open University, Milton Keynes, UK (m.dzbor, e.motta@open.ac.uk)
iSOCO, Madrid, Spain (cbuil, jmgomez@isoco.com)

ISWeb group, University of Koblenz-Landau, Germany (goerlitz@uni-koblenz.de)
Institute AIFB, University of Karlsruhe, Germany (hle@aifb.uni-karlsruhe.de)

1. Introduction: Evaluating ontology engineering

As is known in the human-computer interaction (HCI) domain, interactions involve
the user, the technology, and the ways they work together. We expand these notions
to human-ontology interaction with the aim to investigate how users interact with the
networked ontologies in a realistic ontology lifecycle. In this paper, we describe a
user study that we have carried out in order to improve our understanding of the level
of support provided by current ontology engineering tools in the context envisaged by
the NeOn project. That is, in a scenario when ontology engineers are developing
complex ontologies by reuse, i.e., by integrating existing semantic resources.

Some work on evaluating tools for ontology engineering has been done in the past.
In [2] authors conclude that the tools available in the time of their study (cca 1999)
were little more than research prototypes with significant problems in their user inter-
faces. These included too many options for visualizing ontologies, which tended to
confuse the user and hinder navigation. Moreover, the systems’ feedback was found
to be poor, which meant a steep learning curve for non-expert users. Finally, most
tools provided little support for raising the level of abstraction in the modelling proc-
ess and expected the user to be proficient in low-level formalisms.

Work described in [8] evaluated Protégé in several tasks, from the perspective of a
power user. The authors found the system intuitive for expert knowledge engineers, as
long as operations were triggered by them (e.g. knowledge re-arrangement). How-
ever, difficulties arose when assistance from the tool was expected; e.g. in inference
or consistency checks. Weak performance was also noted in language interoperability.
The survey reported in [3] also noted issues with tool support for operations on on-
tologies beyond mere editing (e.g. integration or re-use). In particular, the authors
emphasised the limited ‘intelligence’ of current tools – e.g. no possibility to re-use
previously used processes in current design. Tools expected the user to drive the in-
teraction, with the tool imposing constraints rather than adapting itself to users’ needs.

Finally, some researchers [11] found that visualization support in Protégé and its
customization models are too complex and do not reflect users’ models of what they
would normally want to see. Others observed users having difficulties with descrip-
tion logic based formalisms in general [5]. Again, tools expected detailed knowledge
of intricate language and logic details, and this often led to modelling errors.

To summarize, existing empirical work highlighted several problems with ontology
engineering tools. However, at the beginning of the NeOn project we felt that there

1 All authors and this study were supported by NeOn project (see http://www.neon-project.org)

2 Martin Dzbor, Enrico Motta, Carlos Buil, Jose Gomez, Olaf Görlitz, Holger Lewen

was a need to conduct a novel study, as none of the studies mentioned above provided
the kind of data we wanted to obtain as a baseline to inform the development of the
next generation ontology engineering tools envisaged by NeOn. Specifically, the
studies did not satisfactorily address the following key concerns of our project:
• Emphasis on ‘normal users’. As ontologies become an established technology, it

makes less sense to focus only on highly skilled knowledge engineers. There are so
many organizations currently developing ontologies that it seems safe to assert that
indeed most ontologies are currently built by people with no formal training in
knowledge representation and ontology engineering. Therefore, it is essential to
conduct studies which focus on ‘normal users’, i.e., people with some knowledge
of ontologies, but who cannot be classified as ‘power users’.

• Emphasis on ontology reuse. NeOn adopts the view that ontologies will be net-
worked, dynamically changing, shared by many applications and strongly depend-
ent on the context in which they were developed or are used. In such scenario it
would be too expensive to develop ontologies ‘from scratch’, and the re-use of ex-
isting, possibly imperfect, ontologies becomes the key engineering task. Thus, it
makes sense to study the broad re-use task for OWL ontologies, rather than focus-
ing only on a narrow activity (e.g. ontology visualization or consistency checking).

• Formal definition of ontology engineering tasks. Studies reported earlier focused
on generic tool functionalities, rather than specifically assessing performance on
concrete ontology engineering tasks. This creates two problems: (i) the results are
tool-centric, i.e., it is difficult to go beyond a specific tool and draw generic lessons
on how people do ontology engineering tasks; (ii) by assessing the performance of
our users on concrete tasks using OWL ontologies, we acquire robust, benchmark-
like data, which (for example) can be used as a baseline to assess the support pro-
vided by other tools (including those we plan to develop in NeOn).

For these reasons we decided to conduct our own user study, addressing the three
criteria described above. We describe the methodology in detail in the next section.

2. Observational user study

We conducted an observational study rather than an experiment to capture user needs
and gaps in the tool support, rather than merely compare different tools. As mentioned
earlier, NeOn is concerned with several facets of networked ontologies, and many of
these facets are currently supported to a very limited extent. This lack of tools and
techniques makes it difficult to assess the actual user performance in any of these
tasks. However, it enables us to acquire generic requirements and insights on a
broader ontology engineering task or process.

By definition [4], ontology is a shared artefact integrating views of different par-
ties. One form of integration used in this study was temporal, where an agent re-used
previously agreed ontologies, perhaps from different domains. All studied ontologies
are publicly available, all are results of principled engineering processes and knowl-
edge acquisition, and they all model domains comprehensible to a ‘normal user’.
Table 1 shows some statistical information on the studied OWL ontologies.

Developing ontologies in OWL: An observational study 3

Table 1. Features of the ontologies used: Cl(asses), Pr(operties), Re(strictions)

Ontology Cl Pr Re Notes
Copyright 85 49 128 Mostly cardinality & value type restrictions, some properties untyped [

http://rhizomik.net/2006/01/copyrightontology.owl]

AKT Support 14 15 n/a All properties fully typed, no axioms
[http://www.aktors.org/ontology/support]

AKT Portal 162 122 130 10 classes defined by equivalence/enumeration, most properties untyped
[http://www.aktors.org/ontology/portal]

The Copyright ontology was set as a base to be adapted by re-using and integrating
terms from the other two ontologies. Two environments were used – Protégé from
Stanford University and TopBraid Composer from TopQuandrant – these satisfied the
initial requirements from ontologies (e.g. on OWL fragment or visualization features)

We worked with 28 participants from 4 institutions (both academic and industrial).
Participants were mixed in terms of different experience levels with designing ontolo-
gies and with different tools. Each person worked individually, but was facilitated by
a member of the study team. Participants were expected to have knowledge of basic
OWL (e.g. sub-classing or restrictions), while not necessarily being ‘power users’.
They were recorded with screen capture software Camtasia, and at the end they filled
in a questionnaire about their experiences of different aspects of the development.

2.1 Tasks given to users
Participants were given three tasks considering different ways of integrating ontolo-
gies into a network. Task 1 was the simplest and most precisely set, and Task 3 the
most complicated and requiring users to break the overall goal into operational steps.

In Task 1, participants were told that the Copyright ontology did not formalize
temporal aspects, and had to be augmented with the relevant definitions from other
ontologies (e.g. AKT Support). The objective was to review the three given ontolo-
gies, locate the relevant classes (i.e. CreationProcess and Temporal-Thing), import on-
tologies as needed, and assert that CreationProcess { Temporal-Thing.

Task 2 was motivated by pointing to a western-centric notion of any right being as-
sociated only with a person, which excluded collective rights. Participants were asked
to review concept copyright:Person, and replace its use with deeper conceptualiza-
tions from the AKT Portal and AKT Support ontologies. In principle, the task asked
people to express two types of restrictions on property ranges:
• simple: e.g. for concept Economic-Rights introduce rangeOf (agent , Legal-Agent);
• composite: e.g. state that rangeOf (recipient , (Generic-Agent ˆ (¬ Geo-Political)))

Task 3 asked people to re-define concept copyright:Collective so that formal state-
ments could match an informal description. Participants were told to make amend-
ments in the base – Copyright ontology, rather than to the other two. We expected
they would first create new local sub-classes for the concept copyright:Collective, and
then make them equivalent to the actual AKT classes, i.e.:
• Create new concept copyright:myOrganization { copyright:Collective
• Make it equivalent to an existing concept myOrganization ≡ akt:Organization
• Prove that the tool ‘knows’ about the intended meaning (by e.g. using an inference

tool to classify the classes as akt:Organization { copyright:Collective)

4 Martin Dzbor, Enrico Motta, Carlos Buil, Jose Gomez, Olaf Görlitz, Holger Lewen

The second half of Task 3 comprised a definition of a new property (e.g. copy-
right:hasMember) with appropriate domain and range, together with its restriction for
class copyright:Collective, so that a collective is defined as containing min. 2 persons.

2.2 Evaluation methodology
We opted for a formative evaluation [9] to inform design of new OWL engineering
tools in the context of NeOn. Two constraints were observed: (i) gathered data shall
not be tool-specific (it was not our objective to prove which one tool was best); and
(ii) while generic tool usability was considered important, measures were expected
not to be solely usability-centric. In terms of what was analyzed, we selected the fol-
lowing levels of analysis [6]: (i) user’s satisfaction with a tool, (ii) effectiveness of a
tool in achieving goals, and (iii) behavioural efficiency. In our study, these categories
took the form of questions exploring usability, effectiveness, and efficiency categories,
to which we added a generic functional assessment category.

Our questionnaire reflected issues that typically appear in the literature correlated
with enhancing or reducing effectiveness, efficiency, usability, or user satisfaction
[10] (36 questions). The remaining 17 questions inquired about various functional
aspects considered relevant to the NeOn vision; incl. ontology re-use, visualization,
contextualization, mapping, reasoning, etc.

The questionnaire included both open and closed (evaluative) questions. The for-
mer asked for opinions; the latter used a Likert scale ranging from very useful (+1) to
very poor (–1). For each such question we calculated a mean, which is listed below
(sign ‘minus’ denoting a negative attitude). We also expressed frequencies and counts
– largely in the context of open, qualitative items and observations. Positively and
negatively stated questionnaire items were interspersed to avoid the tendency of peo-
ple to agree with statements rather than disagree [1]. Nevertheless, this tendency to-
wards agreeing appeared during analysis; e.g. in an overall neutral mark to the tool’s
design quality, despite complaining consistently about its features.

3. Selected findings

This section summarizes key findings from the study. For each category of measures
we give a general summary of observations across the whole population, followed by
commenting on differences (if any) between two common denominators of user per-
formance in knowledge-intensive tasks – the choice of and the expertise with the tool.

3.1 Effectiveness-related observations
Here we explore how effectively the tools were in carrying out the tasks. We look at
measures such as complexity of getting acquainted with the tool, support for repetitive
activities, and overall tool behaviour. Table 2 summarizes a few general observations,
and Table 3 compares several features where differences were observed.

As shown in the tables, the help from tools to get users acquainted with their GUI-s
was rated slightly negative. Participants were not convinced by the tools’ capability to

Developing ontologies in OWL: An observational study 5

reduce the complexity by providing its functions simply and effectively. A stronger
perception of shortcomings emerged for frequently repeated operations (e.g. repeated
definition modifications). Taking user comments in account, they had to, for example,
repeat a search operation not for the sake of finding a class, but as an impromptu
‘spell check’. In this context the overall impression of both tools was rather negative.

Table 2. Selection of a few general observations across population

Measure/question –1 0 +1 Total Mean
process of getting around the tool and understand it 23% 61% 16% 31 –0.065
support for frequently repeated operations 43% 50% 7% 31 –0.367
overall behaviour of the tool 7% 90% 3% 31 –0.032
effectiveness of dealing with task 2 (e.g. difficulties) 27% 54% 19% 31 –0.161
effectiveness of dealing with task 3 (e.g. difficulties) 11% 67% 22% 31 +0.194
help from the facilitator 3% 45% 52% 31 +0.483

Table 3. Comparison of attitudes between tools and expertise groups (TB: TopBraid,
Pr: Protégé, Be: less experienced, Ex: expert); significance threshold: χχχχ2=5.99 at p=0.05

Measure Type Outcome χχχχ2222 Sign.
overall behaviour of the tool tools TB (0.0) vs. Pr (-0.143) 3.14 no
subjective complexity of Task 1 tools TB (-0.70) vs. Pr (-0.33) 2.17 no
subjective complexity of Task 3 tools TB (-0.10) vs. Pr (+0.33) 4.09 no
process of getting around the tool and understand it experience Be (+0.12) vs. Ex (-0.27) 3.02 no
role of tool in reducing complexity of Task 2 experience Be (-0.44) vs. Ex (+0.13) 9.71 yes
role of tool in reducing complexity of Task 3 experience Be (-0.06) vs. Ex (+0.47) 5.63 no

In terms of tool assessment, TopBraid users rated the tool neutral, whereas Protégé
users showed more negative attitudes. Despite TopBraid being unfamiliar, people
found it easier to understand than Protégé; this correlates with a slightly simpler inter-
face of TopBraid and the ‘multi-dimensionality’ of its GUI (e.g. enabling work with
multiple ontologies or clearer structuring of inference). Another possible explanation
is that TopBraid is based on a standard Eclipse environment, which is shared with
other development tools (e.g. Java), and therefore, tends to be familiar to the users.

Nonetheless, both tools were judged as generally unhelpful in supporting frequent
operations, with similar problems: confusion with the import function, non-standard
icons, dialogs or mouse interactions. A minor variance was observed in Tasks 2 and 3,
where less experienced participants suffered more from the lack of tool support. Oth-
erwise, both groups judged the overall tool behaviour as neutral to slightly negative.
More extreme reactions came from the experts regarding support for frequent opera-
tions and understanding the tool’s functions. Qualitatively, experts were suggesting
improvements in using standard features (e.g. delete or move functions), and also in
interaction modalities. An extreme reaction quoted from one user was: “Too much
mouse interaction. […] Feels like programming with the mouse”.

3.2 Efficiency-related observations
Here we look at such measures as how efficient people felt in different tasks, how
they were assisted by the help system or tool tips, how the tools helped to navigate the

6 Martin Dzbor, Enrico Motta, Carlos Buil, Jose Gomez, Olaf Görlitz, Holger Lewen

ontologies or how easy it was to follow the formalisms used in definitions. Table 4
shows general observations, and Table 5 compares features with some differences.

Table 4. Selection of a few general observations across population

Measure/question –1 0 +1 Total Mean
providing sufficient information about ontologies 32% 55% 13% 29 –0.172
support provided by documentation, help 60% 40% 0% 16 –0.500
usefulness of the tool tips, hints, … 50% 46% 4% 27 –0.423
subjective time taken for task 2 25% 55% 20% 31 –0.065
subjective time taken for task 3 6% 56% 38% 31 +0.300

Table 5. Comparison of attitudes between tools and expertise groups (TB: TopBraid,
Pr: Protégé, Be: less experienced, Ex: expert); significance threshold: χχχχ2=5.99 at p=0.05

Measure Type Outcome χχχχ2 Sign.
subjective speed of completing task 1 tools TB (-0.80) vs. Pr (-0.33) 2.94 no
help with handling ontology dependencies tools TB (0.0) vs. Pr (-0.37) 7.65 yes
useful visualization & ontology navigation facilities tools TB (-0.33) vs. Pr (-0.63) 6.00 yes
handling ontology syntax / abstract syntax tools TB (+0.40) vs. Pr (-0.07) 2.33 no
ease/speed of carrying out mappings experience Le (-0.21) vs. Ex (+0.27) 9.75 yes
level of visualization and navigation support experience Le (-0.69) vs. Ex (-0.40) 2.40 no
ontology representation languages, abstract syntax, etc. experience Le (-0.22) vs. Ex (+0.23) 3.64 no
management of versions for engineered ontologies experience Le (+1.0) vs. Ex (–0.50) 3.37 no

The efficiency of the two tools was approximately the same. There was a slightly
faster performance of TopBraid users compared to Protégé, but only in Task 1. This
might be due to a slightly simpler import function in TopBraid, which was the only
major challenge of Task 1. When asked about efficient handling of ontology depend-
encies and navigating through them, Protégé users thought they were significantly
less efficient. Many users were not happy with the abstract syntax of the axiom for-
mulae, which was not helped by the inability to edit more complex restrictions in the
same windows and wizards as the simple ones.

One qualitative feature in both tools concerns the depth of an operation in the user
interface. Subjectively, 32% participants felt they had an explicit problem with find-
ing an operation in a menu or workspace. The main ‘offenders’ were the import func-
tion (expected to be in File Import… menu option) and the in-ontology search
(which was different from the search dialog from Edit Find… menu option).

Expertise seemed to have minimal effect on the assessment of the efficiency di-
mension. Both groups concurred that while a lot of information was available about
concepts, this was not very useful, and the GUI often seemed cluttered. They missed a
clearer access to ‘hidden’ functions such as defining equivalence or importing ontol-
ogy. Non-experts saw themselves inefficient due to lack of visualization and naviga-
tion support, and also due to the notation of abstract DL-like formalism. Experts were
at ease with the formats; non-experts considered support for this aspect not very good.

The overwhelming demand was for complying with common and established
metaphors of user interaction. A quote from one participant sums this potential source
contributing to inefficiency: “More standard compliance and consistency. The search
works differently … usual keyboard commands … don’t always work…”

Developing ontologies in OWL: An observational study 7

3.3 Design and user experience related observations
Two key aspects were evaluated with respect to user experiences – (i) usability of the
tool (which included accessibility and usefulness), and (ii) more general satisfaction
with the tool. The latter included comments regarding user interface intuitiveness,
acceptability, customization, and so on.

Table 6. Selection of a few general observations across population

Measure/question –1 0 +1 Total Mean
usability of tool’s help system 60% 40% 0% 16 –0.500
usefulness of the tooltips, hints, … 50% 46% 4% 27 –0.423
support for customization of the tool, its GUI or functionality 48% 44% 8% 25 –0.400
usefulness of handling ontology dependencies 31% 66% 3% 27 –0.259
visualization of imports, constraints & dependencies 58% 39% 3% 28 –0.536
support for [partial] ontology import 62% 14% 4% 29 –0.739
useful tool interventions in establishing mapping 48% 52% 0% 26 –0.480

Table 7. Comparison of attitudes between tools and expertise groups (TB: TopBraid,
Pr: Protégé, Be: less experienced, Ex: expert); significance threshold: χχχχ2=5.99 at p=0.05

Measure Type Outcome χχχχ2 Sign.
level of overall satisfaction with the tools tools TB (+0.10) vs. Pr (-0.19) 2.67 no
overall satisfaction with tool’s environment tools TB (+0.10) vs. Pr (-0.24) 3.14 no
support for handling dependencies among ontologies tools TB (0.0) vs. Pr (-0.37) 7.65 yes
level of visualization and navigation support tools TB (-0.33) vs. Pr (-0.63) 6.00 yes
ease of carrying out concept mapping tools TB (+0.50) vs. Pr (+0.10) 5.85 no
usefulness of the tooltips, hints, … experience Be (-0.25) vs. Ex (-0.57) 2.45 no
availability of tool customization, its GUI or functionality experience Be (-0.64) vs. Ex (-0.21) 7.90 yes
effort to get acquainted with the tool experience Be (-0.27) vs. Ex (+0.12) 3.02 no
overall satisfaction with tool functionality experience Be (-0.33) vs. Ex (0.0) 3.10 no
support for reasoning and inferences experience Be (0.0) vs. Ex (+0.07) 3.19 no
support for multiple ontology representation formats experience Be (-0.22) vs. Ex (+0.23) 3.64 no

As Table 6 shows, responses in this category are generally negative; participants
considered the existing support as “very low” or “not very good”. Almost invariably,
they were dissatisfied with the role of documentation, help system, tool tips and vari-
ous other tool-initiated hints. Support for tool customization – i.e. either its user inter-
face or functionality – was also inadequate. A common justification of the low scores
was (among others) the lack of opportunity to automate some actions, lack of support
for keyboard-centric interaction, lack of support for more visual interactions. As can
be seen from these examples, the reasons were quite diverse, and to some extent de-
pended on the user’s preferred style.

One emerging trend on the tools’ usability was that too many actions and options
were available at any given point during the integration tasks. On the one hand, this
refers to the amount of information displayed and the number of window segments
needed to accommodate it. An example of this type of usability shortcoming is the
(permanent) presence of all properties on screen. On the other hand, while constant
presence can be accepted, it was seen as too rigid – e.g. no filtering of only the prop-
erties related to a concept was possible. In fact 32% claimed that unclear indication of

8 Martin Dzbor, Enrico Motta, Carlos Buil, Jose Gomez, Olaf Görlitz, Holger Lewen

inheritance and selection was a major issue, and further 14% reported being unable to
find all uses of a term (e.g., property or concept label) in a particular ontology. Other
comments related to usability are summarized below:
• unclear error messages and hints (e.g. red boundary around an incorrect axiom

was mostly missed);
• proprietary user interface conventions (e.g. icons for browsing looked differently,

search icon was not obvious, some menu labels were misleading);
• lack of intuitiveness (e.g. finding an operation in the menu, flagging the concept in

the ontology so that it does not disappear, full- vs. random-text search capabilities);
• inconsistent editing & amending of terms (e.g. while “subClassOf” was visible at

the top level of the editor, “equivalentTo” was hidden)

As shown in Table 7, a significant difference of opinion was in the overall satisfac-
tion with the tools, their design and intuitiveness, where it was more likely that people
complained about Protégé than TopBraid. In this context, we can see that people
tended to be more positive in the abstract than in the specific – responses to specific
queries were negative (between –0.500 and -0.100), yet overall experiences oscillate
between –0.111 and +0.100. As we mentioned, the overall satisfaction with the Top-
Braid environment was more positive (some possible reasons were discussed above).

One case where experience weighed strongly on less experienced users is the tool
intuitiveness. Probably the key contributing factors were the aforementioned non-
standard icons, lack of standard keyboard shortcuts, ambiguous operation labels, and
an overall depth of key operations in the tool. Less experienced users also had issues
with basic features – e.g. namespaces and their acronyms, or ontology definition for-
malisms. The issue with formalisms is partly due to the inability of the tools to move
from an OWL- and DL-based syntax to alternative views, which might be easier in
specific circumstances (such as modification of ranges in Task 2). Experienced users
missed functionalities such as version management – here less experienced users were
probably not clear in how versioning might actually work in this particular case.

Discussion

Technology (such as OWL), no matter how good it is, does not guarantee that the
application for its development would support users in the right tasks or that the user
needs in performing tasks are taken on board. At a certain stage, each successful tool
must balance the technology with user experience and functional features [7]. This
paper explored some persevering issues with OWL engineering tools that reduce the
appeal and adoption of otherwise successful (OWL) technology by the practitioners.

As shown above, although the tools made a great progress since the evaluations re-
ported in section 1, issues with user interaction remain remarkably resilient. The ef-
fort was spent to make the formalisms more expressive and robust, yet they are not
any easier to use, unless one is proficient in the low-level languages and frameworks
(incl. DL in general and OWL’s DL syntax in particular). Existing tools provide little
help with the user-centric tasks – a classic example is visualization: There are many
visualization techniques; most of them are variations of the same, low-level metaphor
of a graph. And they are often too generic to be useful in the users’ problems (e.g.
seeing ontology dependencies or term occurrences in an ontology).

Developing ontologies in OWL: An observational study 9

Table 8 highlights a few gaps between what is provided by the current tools and
what people see as useful for framing problems in a more user-centric way. Some
‘wishes’ (white rows) already exist (e.g. Prompt for version comparison), but perhaps
our findings may further improve design of the existing OWL engineering tools.

Table 8. Summary of gaps vs. support for partial fixes

Measure or remedy Avg. mark (–) current, (+) future
Existing support for ontology re-use –0.097 (not very good)
Support for partial re-use of ontologies –0.739 (very poor)

 flag chunks of ontologies or concept worked with +0.519 (would be very useful)
 hide selected (irrelevant?) parts of ontologies +0.357 (would be useful)

Existing support for mappings, esp. with contextual boundaries –0.065 (not very good)
Management and assistance with any mappings –0.480 (not very good / poor)

 query ontology for items (instead search/browse) +0.433 (would be useful)
 compose testing queries to try out consequences of mappings +0.045 (would be possibly useful)

Existing support for versioning, parallel versions/alternatives –0.200 (not very good)
Existing visualizing capabilities & their adaptation –0.536 (very poor)

 mechanism to propagate changes between alternative versions +0.519 (would be very useful)
 compare/visualize different interpretations/versions +0.700 (would be very useful)
 opportunity to perform operations in graphical/textual mode +0.414 (would be useful)
 visualize also on the level of ontologies (not just concepts) +0.357 (would be useful)

Table 9. Observations of issues with OWL engineering and user interaction

Observation Frequency % affected Examples
Syntactic check (brackets, logic)

 user not alerted or not noticing 21x 64.3% Buttons/icons after axioms misleading;
Single/double clicks to select, edit, etc.

Testing (inference, meaning, inter-
pretation,…) 26x 64.3% Which inference is the right one?; How

to check the intended meaning(s)?
Translate/compose logical opera-
tion (e.g. equivalence, inheritance) 37x 60.7% How to start complex axiom?; Stepwise

definition? …
Dialogs, buttons,… (confusion,
inconsistency) 43x 89.1% Buttons/icons after axioms misleading;

Single/double clicks to select, edit, etc.
Searching for the class (partial
text search on labels) 25x 64.3% Labels starts with X different from label

contains X; namespaces in search?
Functionality unclear (drag&drop,
error indication, alphabetic view) 26x 60.7% Am I in the edit mode?; Where is it

alerting me about error?;

For instance, frequently used operations and their correlations provide us with op-
portunities to improve the support. In our case, the support was given by facilitators,
but clearly, the support for the frequent actions is likely to affect the experiences with
OWL engineering. The most frequent steps in OWL development are the actual cod-
ing of definitions and import of ontologies (unsurprisingly), but, surprisingly, also
search (71% users), re-conceptualization of restrictions and editing of logical expres-
sions (both 54%), and locating terms in ontologies (46%). Compare these operations
with the situations requiring assistance from facilitators (in Table 9).

Correlations were observed between, e.g., incorrect logical conceptualization and
confusion caused by ambiguous labels or dialogs. Other correlations were between
problems with importing an ontology and absence or semantic ambiguity of appropri-
ate widgets in the workspace, and between difficulties with definitions and the failure

10 Martin Dzbor, Enrico Motta, Carlos Buil, Jose Gomez, Olaf Görlitz, Holger Lewen

of tools to alert users about automatic syntactic checks (e.g. on brackets). The transla-
tion of a conceptual model of a restriction into DL-style formalism was a separate
issue: 70% were observed to stumble during such definitions. From our data, we sug-
gest considering multiple ways for defining and editing axioms (to a limited extent
this partly exists in Protégé). Any way, DL may be good for reasoning, but it is by no
means the preferred “medium for thinking” (even among ontology designers).

Another issue is the gap between the language of users and language of tools; a
high number of users was surprised by syntactically incorrect statements. In 64.3%
sessions at least one issue due to syntax (e.g. of complex restrictions) was observed.
Because of these minor issues they had to be alerted to by facilitator, people tended to
doubt results of other operations (e.g. search or classification) if these differed from
what they expected. Lack of trust is problematic because it puts the tool solely in the
role of a plain editor, which further reduces tool’s initiative. In an attempt to restore
‘user trust’, some tools (e.g. SWOOP) move towards trying to justify their results [5].

The extensive use of features in the tools is also an issue increasing complexity of
user interaction. Both tested tools showed most of possibly relevant information on
screen at all times. There was little possibility to filter or customize this interaction.
The granularity at which tools are customizable is set fairly high. For instance, one
can add new visualization tabs into Protégé or use different (DIG-compliant) reason-
ing tool, but one cannot modify or filter the components of user interaction.

Clearly, there is some way to go to provide the level of support needed by ‘normal’
users engineering OWL ontologies. Our analysis highlighted some shortcomings, esp.
the flexibility and adaptability of user interfaces and lifting the formal abstractions.
With this study, we obtained a benchmark, which we plan to use to assess the support
provided by our own future tools in 18-24 months. Obviously, we intend to include
other OWL engineering tools (e.g. SWOOP or OntoStudio) to make the study robust.

References
[1] Colman, A.M., A Dictionary of Psychology. 2001, Oxford: Oxford University Press. 864p
[2] Duineveld, A.J., Stoter, R., et al., WonderTools? A comparative study of ontological

engineering tools. Intl. Journal of Human-Computer Studies, 2000. 52(6): p.1111-1133.
[3] Fensel, D. and Gomez-Perez, A., A survey on ontology tools. 2002, OntoWeb Project.
[4] Gruber, T.R., Towards principles for the design of ontologies used for knowledge sharing.

Intl. Journal of Human-Computer Studies, 1993. 43(5/6): p.907-928.
[5] Kalyanpur, A., Parsia, B., Sirin, E., et al., Debugging Unsatisfiable Classes in OWL On-

tologies. Journal of Web Semantics, 2005. 3(4).
[6] Kirkpatrick, D.L., Evaluating Training Programs: the Four Levels. 1994, San Francisco:

Berrett-Koehler Publishers. 289p.
[7] Norman, D., The Invisible Computer. 1998, Cambridge, MA: MIT Press.
[8] Pinto, S., Peralta, N., and Mamede, N.J. Using Protégé-2000 in Reuse Processes. In

Evaluation of ontology-based tools (EON). 2002. p.15-25.
[9] Scriven, M., Beyond Formative and Summative Evaluation, In Evaluation and Education:

A Quarter Century, McLaughlin, M.W. and Phillips, D.C., Eds. 1991, University of Chi-
cago Press: Chicago. p.19-64.

[10] Shneiderman, B. and Plaisant, C., Designing the User Interface: Strategies for effective
human-computer interaction. 4 ed. 2004: Addison-Wesley. 672p.

[11] Storey, M.A., Lintern, R., Ernst, N.A., et al. Visualization and Protégé. In 7th Interna-
tional Protégé Conference. 2004. Maryland, US.

