
Graph-Transformational Swarms
A Graph-Transformational Approach to Swarm

Computation

von

Larbi Abdenebaoui

Dissertation
zur Erlangung des Grades eines Doktors der

Ingenieurwissenschaften
-Dr.-Ing.-

Gutachter:
Prof. Dr. Hans-Jörg Kreowski

Prof. Dr. Jürgen Pannek

Vorgelegt im Fachbereich 3 (Mathematik/Informatik)
der Universität Bremen

im August 2016

Acknowledgements

This thesis would not have been possible without the guidance, the help and the support
of many people, to whom I would like to express my gratitude.
First, I would like to thank my supervisor, Hans-Jörg Kreowski, for his engaged and
continuous support and advising for my PhD study and related research, for sharing his
knowledge and expertise, and for given me the freedom to pursue research of my own
interest but also to be there whenever I asked for. I would like also to thank him for
a�ording me the opportunity to work in the friendly and inspiring atmosphere of his
research group.
I would like to thank Jürgen Pannek for o�ering me the chance to present my work in
his research group, for his comments and remarks and for accepting, in a short time, to
referee my thesis.

My sincere thanks also goes to Sabine Kuske for her valuable help and advices. I am
grateful for all the discussions and the support in di�erent aspects. It was a pleasure to
make research and write papers with her and Hans-Jörg Kreowski. I learn a lot from
them.
Thank you Marcus Ermler for sharing the o�ce room with me and for all comments and
advices concerning my PhD. I would like to thank my other colleagues: Melanie Lud-
erer and Caroline von Totth, for the agreeable time in the theoretical computer science
group. In general, I have enjoyed a friendly, supportive, and open exchange with all my
colleagues.

I would like to thank my friend Robert Wogatzke for his proofreading, comments and
motivations. My friend Bertold Bongardt has also proposed several comments and sug-
gestions that I received with gratitude.

I gratefully acknowledge the �nancial support which I have received from the Rosa Lux-
emburg Foundation in form of a scholarship. It was a pleasure to participate to di�erent
workshop that the foundation has organized. The required reports were useful to struc-
ture my research work in order to achieve the thesis within the regular time. In this
context, I would like to thank the International Graduate School for Dynamics in Lo-
gistics for the di�erent courses as well as for all other PhD-related o�ers. Particularly, I
would like to thank Ingrid Rügge for her engagement.

iii

iv

Lust but not least, I would like to thank my family and friends for their patience and
support. Particularly, my wife Elif Gökpinar and our child Mina Jiyan have support me
unconditionally. Your support, encouragement and love have been and are a source for
inspiration and a means for continuation. A considerable thank also goes to the family
Gökpinar for their continuous support. I would like to thank my family in Morocco,
that support me so much during my entire life. For that, I switch to Arabic (in Morocco
speaked version, called also Darija):
A§w�,YfWO� A§w���z� ¾�rkJ .As�r� ¨� A�§d� ¤ Ay�AbF� ¨� ,
r�m�� ¨� ­ry�O�� ¨tl¶A� Y�� �rkJ
...�rhF¤ �rb�¤
�C ¨� Tmyml� ¾�rkJ �A��� T`ybW�¤ .�Ah�� ¨t��¤ 	y`Jw� A§w� ,�y�r��db�

.wm�r§ ¢l�� A�A� dyqf�� �¤C Y�� ­Cwt�d�� £d¡ ©d¡�

Contents

1 Introduction 1

1.1 Objectives . 4
1.2 Related work . 4
1.3 Structure of the thesis . 5

2 Swarms and swarm computing 9

2.1 Swarms in nature . 9
2.2 Major swarm computing methods . 16
2.3 Other methods . 25
2.4 Summary . 27

3 Graph transformation 29

3.1 General ideas and backgrounds . 29
3.2 Preliminaries . 30
3.3 Graphs . 31
3.4 Rules and their applications . 35
3.5 Application context . 41
3.6 Parallel rule application . 43
3.7 Graph grammars and graph transformation units 49
3.8 Graph transformation tools . 54
3.9 First implementations . 60
3.10 Summary . 63

4 Graph-transformational swarms 65

4.1 The main ideas of swarms . 65
4.2 Graph-transformational swarms and their computations 73
4.3 Examples . 75
4.4 Stochastic control . 80
4.5 Modeling: practical considerations . 86
4.6 Summary . 96

5 Uni�cation capability 97

5.1 Preliminaries . 97
5.2 Graph-transformational particle swarm . 98

v

vi CONTENTS

5.3 Graph-transformational cellular automata 103
5.4 Ant colony optimization as a framework 106
5.5 Graph-transformational ant colony . 113
5.6 Summary . 120

6 Swarms with stationary members 123

6.1 Cloud computing . 123
6.2 Stationary members . 124
6.3 Examples . 125
6.4 Summary . 128

7 Modeling in dynamic logistic networks 129

7.1 From swarms in nature to logistic networks 129
7.2 Routing of automated guided vehicles . 132
7.3 Summary . 141

8 Conclusion 143

8.1 Summary . 143
8.2 Contributions . 145
8.3 Outlook . 146

Chapter 1

Introduction

Computer systems are becoming increasingly distributed and interconnected. Various
emerging notions, such as smart grids, system of systems, industry 4.0 or cyber-physical
systems have gained more and more importance during the last few years. All of them
propose to solve engineering problems by using several autonomous components that act
in parallel and are interconnected, foremost using Internet technologies. These emerging
concepts look very promising, but also exhibit various technical challenges. For instance,
how is it possible to develop decentralized control mechanisms that produce a desired
emerging behavior to solve a given task or how to model such solutions in order to analyze
their behavior in terms of complexity and correctness? These are two major questions
that this thesis attempts to answer. Indeed, it provides graph-transformational swarms as
a novel concept that combines the ideas and principles of swarms and swarm computing
and the formal methods of graph transformation to model distributed systems. Figure
1.1 illustrates how graph-transformational swarms captures the advantages of swarms
and swarm computing and of graph transformation. This combination is introduced in
the following three paragraphs in more detail.

Swarms and swarm computing Swarms in nature are fascinating phenomena where
animals living in groups cooperate with each other to solve complex problems. Many
familiar examples can illustrate the teamwork within a swarm. For instance, both ant
colonies and bee hives build nests and manage the resources inside of them. Further-
more, they forage for food and transport it in an e�cient and �exible way, drawing upon
elements of mutuality. Schools of �shes and �ocks of birds migrate every year traversing
very long distances. They act as one body in the face of predator attacks, overcoming
complex hydrodynamic constraints. In addition to the macroscopic scale, several organ-
isms on the microscopic scale seem to act like a swarm if one considers their cellular
components as swarm members. For example, microbial colonies, nervous systems, or
immune systems.
Several studies agree on the assumption that the complex behavior of swarms arises
from relatively simple rules on the individual level (see e.g., [9, 74, 18, 45, 16, 38]). In
biology, the underlying mechanism is also known as self-organization: The individuals
that constitute the group interact locally with other group members without further

1

2 CHAPTER 1. INTRODUCTION

Graph-Transformational
Swarms

correctness general framework

massive parallelism

visualization

complexity

Swarms &
Swarm Computing

decentralization
self-organization

ant colony
 optimization

particle swarm

cellular automata

Graph Transformation

precise formalism

parallelism
rule based

graph transformation units

visualization

Figure 1.1: An overview of the main components in the thesis and their advantages.

knowledge of the global behavior of the entire group. Furthermore, all members play the
same role without any hierarchical structure.
The robustness and e�ciency of solving complex problems based on the simplicity of
the individual level are characteristics that make swarms promising models for solving
problems in engineering domains. Particularly, in computer science one encounters quite
a variety of swarm concepts and swarm algorithms in the literature (see, e.g., [6, 7, 33, 50,
71]). Moreover, there are several general computational approaches which are subsumed
under the heading of swarm intelligence. But there seems to be no common framework
covering all approaches to swarms.
Throughout this dissertation, the term �swarms and swarm computing� is used to refer to
swarms in nature and the approaches in computer science inspired thereby. In contrast
to the term �swarm intelligence�, which is very often employed to designate both � the
speci�c animal behavior in nature as well as the inspired methods in di�erent engineer-
ing �elds � the chosen term de�nes computer science more precisely as an application
�eld. Moreover, it emphasizes the di�erence between the biological foundations and the
approaches inspired by them avoiding ambiguities.

Graph transformation In computer science and in many other branches of science,
graphs are well-established to represent information. They can visualize structures con-
sisting of entities and the relations between them. Such structures can correspond in
turn to certain states of a dynamic system such as the initial state or the goal state.
Graph transformation extends the static representation capability of graphs by o�ering
the possibility to specify and visualize the dynamics of a system. The main idea therein
is the transformation of graphs based on the application of rules. A rule, in this context,

3

de�nes what should be deleted and/or added in a graph.
Graph transformation was introduced in the late sixties and early seventies [78, 84, 91,
29]. Since then, the �eld has continued to evolve, leading to several theoretically well-
founded approaches and providing various applications in di�erent branches of computer
science. This development is documented in three handbooks [89, 25, 90, 32] as well
as in several other articles and monograms (see, e.g., [26, 31, 23, 28, 53, 14, 27]). A
graph transformation approach de�nes � amongst other things � what the rules look
like exactly and how they are applied to graphs to perform transformations. This thesis
chooses an approach of graph transformation in such a way that rules can be applied in
parallel and that their parallel applicability follows from the applicability of each of the
involved rules and additional conditions.
In order to structure the rules and control their application, the concept of graph trans-
formation units [55] is used. A graph transformation unit consists of a set of rules, a
control condition that regulates the application of rules as well as descriptions of initial
and terminal graphs. This thesis investigates the capabilities of graph transformation
units to specify swarm members and how to generate similar members that have the
same role in a swarm.

Graph-transformational swarms This thesis proposes graph-transformational swarms
as a general approach to swarm computation. It is designed to unify di�erent existing
concepts of swarm computing, motivated by the lack of a common approach in the
literature.
A graph-transformational swarm consists of an arbitrary number of members. The mem-
bers can have the same or di�erent role in the swarm. They act simultaneously within
a common environment which is represented as a graph. Moreover, there may be a co-
operation condition to regulate the interaction and cooperation of the members as well
as a goal to be reached. Members are modeled as graph transformation units which are
computational devices based on rules. The key is that the framework of graph transfor-
mation provides the concept of parallel rule application to formalize the simultaneous
actions of swarm members.
The employment of graph transformation to formulate the components needed in graph-
transformational swarms together with the uni�cation approach yield to the following
features and advantages:

� di�erent models of swarm computation can be compared with each other more
easily within a common framework,

� transferring the results of one model to other models is made simple,

� new methods that combine the ideas of di�erent swarm computing approaches can
be comfortably developed,

� a graphical speci�cation can simplify the analysis and survey of complex systems,

� a well-de�ned mathematical semantics is used for formal speci�cations,

4 CHAPTER 1. INTRODUCTION

� a systematic speci�cation of parallelism allows the development distributed models
and

� graph transformation tools can be employed for simulation, model checking and
SAT solving in a standardized way.

1.1 Objectives

In order to reach the aim of building a framework that exhibits the desired advantages,
the following four objectives have been de�ned. The �rst objective of this thesis is to
determine the common principles of swarms and swarm computing. A part of this objec-
tive is to review the problem-solving behavior of social animals and to report the main
related theories from biology. Another part of this objective is to designate the major
swarm computing approaches, specifying their shared characteristics. Consequently, this
objective determines the requirements that a common framework has to satisfy.

The second objective concerns the de�nition of methods of graph transformation needed
to respond to the stated requirements. More precisely, a suitable graph transformation
approach has to be speci�ed. Subsequently, its components have to be adapted and
extended. Particularly the question, how suitable is graph transformation for modeling
parallel processes has to be thoroughly discussed.

The third objective is based on the two previous: The design of a concept that uni�es
the major swarm computing approaches, that is in accordance with biological founda-
tions and that is formulated using graph transformation capability. The syntax and the
semantics of each proposed component has be speci�ed and illustrated. The computa-
tion process has also be well speci�ed in such a way that it is possible to describe the
evolution of the system systematically.

The fourth and last objective is to evaluate the developed concept by means of several
examples. In order to demonstrate the uni�cation capability of the concept, the major
swarm computing approaches have to be embedded in the framework. Furthermore, the
advantages of the formal semantics and the visualization capabilities have to be explored
using di�erent case studies.

1.2 Related work

There is, to the author's knowledge, no other comparable research work in the literature
that attempts to unify the di�erent swarm computing approaches such as this thesis
does. However, this thesis is related to other research work, in term of being in�uenced
by their concepts or sharing certain ideas and methods. The chapters and sections in
this thesis are equipped with speci�c paragraphs providing the underlying references.
This section gives a brief overview of additional and closely related works.

1.3. STRUCTURE OF THE THESIS 5

The idea to employ graph transformation to model swarm computing methods was ini-
tiated in the works [63] and [64] using the notion of communities of autonomous units.
The proposed solutions in these two works focus on a unique swarm computing approach
namely, ant colony optimization. In particular, the salesperson and the capacitated ve-
hicle routing problems were successfully modeled. The �ndings of these works has moti-
vated the research on graph-transformational swarms. Since, graph transformation units
have also been employed as basic component for modeling the swam members. However,
the concept of graph-transformational swarms shifts several features from the level of
graph transformation units to the swarm level. It makes the graph transformation units
as simple as possible and, in return, proposes a powerful structuring concept in a higher
level.

Graph-transformational swarms are also related to [51] where graph transformation has
been used for plant modeling. The proposed relational growth grammars can be consid-
ered as a combination of L-systems and graph grammars. As a consequence, relational
growth grammars extend the strength of L-systems for plant modeling to represent even
more structures and their dynamics in a natural way. The common aspects of relational
growth grammars and graph-transformational swarms is that both employ graph trans-
formation to represent knowledge from biology. Furthermore the parallelism plays an
important role in both concepts. However, the application �elds are di�erent. While rela-
tional growth grammars is designed to model biological systems, graph-transformational
swarms uses the principles from biology to solve engineering problems. As a conse-
quence, the structuring concept in graph-transformational swarms is more adapted to
swarm-inspired solutions.

Graph-transformational swarms are related to other graph transformation approaches
to parallelism and distribution as they are surveyed in [90] (see particularly the contri-
butions by Litovsky, Métivier and Sopena, by Janssens and by Taentzer et al.) These
related approaches consider parallel and distributed computing on the level of rule appli-
cation rather than on the level of units as in the case of swarms. One of the most closely
related approaches to swarms with stationary members seems to be the graph relabeling
systems (see, e.g.,[69, 5]). In this realated approach all node labels are changed simulta-
neously in every step implying massive parallelism and stationarity with respect to nodes.

1.3 Structure of the thesis

The overall structure of the thesis takes the form of seven chapters, including this intro-
duction.

Chapter 2 provides an overview on swarms and swarm computing. It starts by review-
ing swarms in nature reporting seminal experiments that have in�uenced the �eld of
swarm computing. Afterwards, the major approaches in swarm computing are intro-
duced. They consists of the three approaches: ant colony optimization, particle swarm

6 CHAPTER 1. INTRODUCTION

optimization and cellular automata. To show the diversity of the �eld, two relatively
recent approaches are also brie�y introduced. Finally, the chapter discusses the common
principles of the presented approaches.

Chapter 3 introduces graph transformation focusing on the basic elements as far as
needed for this thesis. It presents the appropriate approach with respect to the require-
ment of swarms specifying the used graphs and rules. In order to allow more �exibility
in modeling, the notion of application context is also integrated in the approach. Chap-
ter 3 provides a very important theorem concerning parallel rule applications, namely
the generalized parallelization theorem. Graph transformation units are introduced as
the basic structuring concept that is used to represent members and kinds of a swarm.
The chapter starts to explore the possibility of implementing the introduced components
in di�erent graph transformation tools. It compares di�erent tools and presents the �rst
results of implementations in the one selected for the purpose of this work.

Chapter 4 introduces the notion of graph transformation swarms. It starts by combining
the main ideas from Chapter 3 and Chapter 2 in order to de�ne the components needed.
It thereby provides the main principles of swarms and swarm computing with a graph
transformation perspective. Graph-transformational swarms and their computations are
then formally introduced. To illustrate the concept, two examples are given: a very
simple ant colony and a swarm that computes Hamiltonian cycles. The chapter extends
the notion of control condition in order to specify stochastic processes. Finally, the
chapter discusses practical considerations when to implement the components of graph-
transformational swarms.

Chapter 5 provides graph-transformational versions of the three major swarm comput-
ing approaches: ant colony optimization, particle swarm optimization and cellular au-
tomata. In this way, it demonstrates the unifying capabilities of the designed framework.
The three approaches are recalled in a formal manner in this chapter. Particle swarm
optimization as well as cellular automata are recalled, based on the so called canonical
versions. Ant colony optimization is recalled as a framework embedding several methods.

Chapter 6 introduces stationary members. Stationary members are assigned to partic-
ular subgraphs of the considered environment graphs and are responsible for the local
calculations and transformations. The concept can be considered as a positive result of
the uni�cation of di�erent swarm computing approaches. Cloud computing is proposed
as an application �eld for the notion of graph transformational swarms with stationary
members. Two illustrative case studies of problems from the �eld are presented.

Chapter 7 discusses how graph-transformational swarms can be used to model dynamic
logistic networks. Motivated by the observation that swarms in nature already solve
problems closely related to logistics, the chapter shows how close the main features of
dynamic logistic networks and the syntactic and semantic components of graph-trans-
formational swarms are. Thereby, the graphical representation as well as the parallel

1.3. STRUCTURE OF THE THESIS 7

semantics of graph-transformational swarms play an important role. To illustrate this,
essential aspects of the routing problem of automated guided vehicles are modeled as
graph-transformational swarms. The chapter demonstrates the capability of the ap-
proach regarding visualization in the design level as well as the computation level.

Hence the contents of this thesis can be summarized in the following table. The table
also shows the distribution of the peer reviewed contributions that have been published
during the development of this thesis.

Chapter Title Remarks

1 Introduction
2 Swarms and swarm computing
3 Graph transformation
4 Graph-transformational swarms Contains the main part in [3]
5 Uni�cation capability Contains a part from [3]
6 Stationary members Contains [4]

7
Modeling of decentralized processes
in dynamic logistic networks

Contains [1] and [2]

8 Conclusion

8 CHAPTER 1. INTRODUCTION

Chapter 2

Swarms and swarm computing

The motivation behind graph-transformational swarms is not restricted to the uni�cation
of existing swarm computing approaches. It should also o�er the possibility to develop
new kinds of swarm inspired solutions designed for other application areas than the
classical use for optimization problems. For this reason, knowledge about biological
foundations of swarm computing is also important.
Animals living in groups can solve complex problems based on their cooperation. It is
assumed that the complex behavior of swarms emerges from relatively simple rules that
are followed by the members (see, e.g., [9, 74, 18, 45, 16, 38]).
This chapter starts by giving an overview of the historical development of the knowledge
gained from the observation of some swarm behaviors. It outlines some seminal experi-
ments done in laboratories with real animals as well as the developed models that sim-
ulate the real behavior. Such models were a very important milestone in understanding
the principles behind swarm behavior as well as in developing swarm computing meth-
ods. In the second part, this chapter reviews the major swarm computing approaches
focusing on the common ideas and principles. In order to illustrate the diversity of the
�eld, two relatively new methods are also introduced.
This chapter is organized as follows: Section 2.1 provides a compact review on how
swarms in nature solve their problems, highlighting two main behaviors: the foraging
behavior of ants and the schooling and �ocking behaviors as can be observed in �sh and
birds respectively. The three major computational swarm approaches: cellular automata,
particle swarm optimization and ant colony optimization are introduced in Section 2.2.
Section 2.3 provides also a brief overview on two other swarm computing approaches
namely, arti�cial immune systems and bees algorithm. Finally, this chapter closes with
a summary that includes a discussion about the common ideas of swarms and swarm
computing.

2.1 Swarms in nature

The purpose of this section is to give a brief overview on the literature on swarms in
nature. It focuses on two main behaviors. The motion behavior which can be found
in bird �ocks and �sh schools as well as the foraging behavior of ants. This overview

9

10 CHAPTER 2. SWARMS AND SWARM COMPUTING

highlights some well known studies that are directly related to the computing methods
which are introduced in the next section.

2.1.1 Bird �ocks and �sh schools

When a bird �ock moves like a wave turning and gliding around and around, it appears
to the observer like a single body that changes its velocity, volume and shape in a
cohesive manner (cf. Figure 2.1). Several other group-living animals produce similar
collective coordinated motion behavior. Some examples are �sh schooling (cf. Figure
2.2), humpback whales hunting and locusts migrating. The common characteristic of
these behaviors is the ability to move synchronously and very fast as a group. In biology,
this ability is considered to be a result of self-organization which is de�ned by S. Camazine
and colleagues as follows:

... self-organization is a process in which pattern at the global level of a system
emerges solely from numerous interactions among the lower-level components
of a system. Moreover, the rules specifying interactions among the system's
components are executed using only local information, without reference to
the global pattern[9]

Generally, the self-organization theory is well established to explain swarm behavior
(i.e,[16, 9, 74]). However, only a little is known yet about the details of the mechanisms
responsible for the actual behavior.
For many decades, numerous studies have been carried out to explain the functions and
the structures of �sh schools and bird �ocks 1. The majority of results in this area
has been obtained by observing the behavior of animals in the presence of (simulated)
predators or food.
The seminal work of Radakov [85] highlights the role of the informational transfer in a
school. Radakov was one of the �rst scientists that tried to explain school behavior as
a result of the propagation of local information through the school and not as a phe-
nomenon coordinated by a leader. He observed that when distributed, the schools of
atherinomorus exhibit a propagation of information in a form which he coined: waves
of excitation. Theses so-called waves can be attenuated or ampli�ed by obstacles or
interactions in the school. Partridge, Pitcher and colleagues have undertaken a series of
studies based on longitudinal observations of the species of European minnows, cod and
herring in large circular tanks and �ow channels which have produced results similar to
those presented by Radakov [74, 73, 81]. They too investigated the communication mech-
anisms of schools, but focusing this time on the sensorial capacities of their members.
They found out that the lateral line plays a crucial role in the schooling behavior [73].
The lateral line is a system of organs that sense vibrations in water. Furthermore, they
observed that the respective species exhibit swarm behavior without leaders in groups
of up to three members. Partridge summarizes these results in his de�nition of a school:

1However, studies of �sh schooling are more frequent in the literature. This is due to the fact that
�she are more easy to observe when maintained in open tanks compared to the observation of birds in
�ight.

2.1. SWARMS IN NATURE 11

Figure 2.1: A �ock of starlings performs an aerobatic display in the south of Scotland
before roosting for the night. 2

It is a group of three or more �sh in which each member constantly adjusts
its speed and direction to match those of the other members of the school.[74]

Patridge has argued that due to water being the medium of movement, the �sh in a
school are more di�cult to detect for predators than when swimming alone. If detected,
they can react quickly, building di�erent shapes as a group which confuse the predator
[74]. More recent studies have supported the above mentioned observations and thesis
but have also complemented them. Swarm behavior can improve the foraging activities in
some cases [80]. It also provides hydrodynamic bene�ts. It has been demonstrated that
forming certain school patterns can reduce the energy consumption of the �sh [42, 95] .
These functional results have been associated mainly with two mechanisms: The many
eyes e�ect of animal aggregation and the rapid propagation of information across the
school (cf. [72]).

From observation to modeling As mentioned above, it is accepted in research that
the members of a swarm act locally, communicating with neighbors and following rules.
However, numerous questions remain hard to answer, such as those pertaining to the
exact nature of the rules that the individuals follow and their number, or how to de�ne

2License: CC BY-SA 2.0, Source: http://www.geograph.org.uk/photo/1069366, Photographer: Wal-
ter Baxter

12 CHAPTER 2. SWARMS AND SWARM COMPUTING

neighborhood; whether it is determined by the number of the nearest members or by a
given radius that the members can sense. It is very di�cult in general (in some cases
even impossible) to predict the behavior of a system composed of a huge number of
subsystems by analyzing the behavior of the subsystem and vice versa. One established
method used to answer such questions is mathematical modeling using simulations in
computers. One of the best known and �rst simulations of collective behavior was devised

Figure 2.2: A school of bigeye trevally forming a big bait ball.3

by C. Reynolds [87]. He generated the motion of computer-animated �ocking boids. In
his model every individual follows three simple rules which are stated by the author as
follows:

Collision avoidance: avoid collisions with nearby �ockmates

Velocity matching: attempt to match velocity with nearby �ockmates

Flock centering: attempt to stay close to nearby �ockmates

The neighborhood is de�ned locally as a local region. Every boid has a region which
is de�ned by a �xed distance, measured from its center, and a �xed angle, measured
from the boid's direction of �ight. Boids outside this local neighborhood are ignored (see
illustration in Figure 2.3). The resulting animation exhibits realistic-looking �ocking and

3License: CC BY-NC-ND 2.0, Source: https://www.�ickr.com/photos/racaza/2450934646/ , Pho-
tographer: Raymond

2.1. SWARMS IN NATURE 13

Figure 2.3: The neighborhood of a boid as de�ned in [Reynolds87]. It is a region speci�ed
by a distance d measured from the center of the boid and an angle α measured from the
boid's direction of �ight

schooling behaviors such as cohesion and polarization. Since the publication of Reynolds
animation which was originally developed for entertainment purposes, many other more
sophisticated and more rigorous models have been developed (see, e.g., [16, 45, 60]).

2.1.2 Ant colonies

Ants are social insects living in groups. Such groups are called colonies and are highly
organized structures composed of units that range from a few hundred to several millions
of individuals. In general, the members of an ant-colony are structured in at least
three so-called castes: workers, drones and queens.The workers make up the majority of
the members, and are sterile females. They can also be organized in some specialized
subgroups depending on the tasks that they perform [43].
An ant-colony continually solves numerous complex problems by means of division of
labour and self-organization. Among others, the members of the colony construct nests,
keep them clean, organize reproduction, search for food and transport it to the nest.
The method of operation that is discussed in this work deals with the behavior behind
this latter activity, also called foraging behavior . The foraging behavior has inspired one
of the most famous swarm computing approaches namely ant colony optimization, which
will be introduced in the next section. For computing approaches derived from other
activities in ant colonies refer to [7]
Note that foraging behavior di�ers from one species to another. It also depends on other
factors such as environment and food quality (cf.,[99]). For some ant species, where the
individual's capacities are limited, the indirect communication by means of pheromone
trails plays a crucial role. Pheromone is a chemical substance which an ant deposits to
mark a path or position in such a way that other ants or the ant itself can retrieve it
later. It can, for example, be used as a marker to help ants return to the nest or to
attract other foragers to a given food source. Figure 2.4 illustrates the building of a
pheromone trail by a colony of Argentine ants. Such a cooperation is called stigmergy .
It describes the indirect communication through applying changes to the environment.

14 CHAPTER 2. SWARMS AND SWARM COMPUTING

Figure 2.4: The building of a pheromone trail by a colony of Argentine ants. The three
images are extracted from a video. The �rst one is at the beginning of the experiment.
The second and the third image are taken respectively at the 0.29 and 1.11 minutes. 4

To understand the mechanisms behind the foraging behavior and in order to carry out
controlled studies many researchers choose to observe ants in laboratories. The work by
J.-L. Deneubourg , S. Aron, S. Goss and J. M. Pasteels can be considered as directly
related to ant colony optimization. The experiments are carried out in laboratories with
colonies of ants from the species Iridomyrex humilis known also as Argentine ant (see
Figure 2.5).
Compared to other species I. humilis ants are very small and possess only a limited
individual capacity for orientation. Therefore they are especially well suited for exploring
cooperation behavior within groups. Another characteristic of this species is that the
ants permanently mark their trail on their way and not only when they have found a
food source as is the case with several other species.
In the above mentioned experiments the nest of the colony was linked to the food source

4(source:[77]. License: Creative Commons Attribution version 2.5

2.1. SWARMS IN NATURE 15

Figure 2.5: Argentine ant (Iridomyrex humili) 5

via a bridge with di�erent setups. The main idea was to simplify the bridge in such a
way that there are some points where the ants have only a choice between two possible
paths: left or right.

Binary bridge experiment Daneubourg et al. used in [18] a simple experimental
setup consisting of a bridge with two equally long branches (see Figure 2.6). This
experiment is also known as the binary bridge experiment. At the beginning of the
experiment, the ants choose randomly between the two branches. After an average
time of ten minutes one of the branches is selected by most of the ants (about 90%
in average). This behavior is explained as a result of the positive feedback mechanism:
Every ant chooses a branch based on the quantity of pheromone present on it, thereby
reinforcing the amount of pheromone on the chosen branch. The selection of one of the
branches from the majority of the ants at the end of the experiment is due to the random
�uctuations in branch selection.

Figure 2.6: binary bridge experiment, a sketch of the experiment setup adapted from
[18]

The researchers developed a formal model of the observed behavior. In this model and
for simpli�cation, it is assumed that every ant deposits the same amount of pheromone
called a pheromone unit, as well as that the pheromone does not evaporate. The second
assumption is quite realistic since the pheromone needs more than half an hour for
evaporation and the experiments are completed before this time scales. Let us denote the

5source:AntWeb.org .Photographer:April Nobile. License: CC-BY-SA-3.0

16 CHAPTER 2. SWARMS AND SWARM COMPUTING

branches by B1 and B2, and let Bi(j) be the numbers of ants that have used branches Bi

after j ants have traversed the bridge for i = 1, 2. Let us de�ne the complement function
i for i = 1, 2 given by 1 = 2 and 2 = 1. The probability that the (j + 1)th ant chooses
the Branch i = 1, 2 is:

Pi(j + 1) =
(k +Bi(j))

α

(k +Bi(j))α + (k +Bi(j))
α
= 1− Pi(j + 1) (2.1)

where k quanti�es the attractiveness of a less visited branch. In other terms, a large
k permits more exploration of new knowledge. α determines the importance of the
di�erence in pheromone between the two branches in the decision process. If α is large,
even if the branch Bi has a lesser number of pheromone units than Bi, Bi will be chosen
by the ant j + 1 with high probability. α can therefore be interpreted as a parameter
for the exploitation bias of the acquired knowledge. The probability in equation 2.1 is
analyzed using a Monte Carlo simulation. It was found that the values that give the
best �t to the experimental measurements are α ≈ 2 and k ≈ 20.

short-path experiment Goss et al. [39] extended the binary bridge experiment, using
a bridge composed of two identical modules. Every module consists of a long and a short
branch by itself. The two modules are placed one after another as depicted in Figure
2.7. The relation between the lengths of the long and the short branch is de�ned by a
ratio r. It was observed that in a given run, initially, the ants randomly choose between
the di�erent possible paths. Over time (approximately 10 min), more and more ants
prefer the shortest path. Towards the end of a run, most ants choose the shortest path.
Particulary, for r = 2, more than 80% of the total tra�c measured between the 30th and
40th minutes used the shortest path in the bridge. The �gure 2.7 gives an illustration
of the distribution of ants in this experiment. It was also found that the probability of
selecting the shorter path increases with r. Theses results are explained by the fact that
the shortest path between the nest and the food source can be traversed more quickly and
frequently. Hence the pheromone density on the shortest path increases in comparison
to other paths attracting more and more ants over time. In this case too, the researchers
have developed a model that mimics the observed behavior. The probability to choose
between two possible branches is based on the equation 2.1 with the �xed parameter
values α = 2 and k = 20.
In summary, the complex behavior of Argentine ant colonies, which consists of �nding
the shortest path, can be explained by the positive feedback mechanism on the individual
level. Every ant in the colony lays pheromone (trail-laying), and follows paths with high
amounts of pheromone(trail-following). These results and the model behind them are
the basis for the development of the swarm computing method ant systems.

2.2 Major swarm computing methods

So far this chapter has presented an introduction to swarms in nature by means of
speci�c behavior of birds, �sh and ants. Now, it is time to introduce the related swarm

2.2. MAJOR SWARM COMPUTING METHODS 17

(a) (b)

Figure 2.7: The experiment shows that Argentine ants select the short branches on both
modules of the bridge with a high probability (adapted from [38]) (a) During the �rst
minutes after the placement of the bridge (less than 5 min) the ants seem to choose
randomly between short and long parts of the two modules. (b) Later, between 5 and
10 minutes the food is discovered by some ants. In this stage, the tra�c on the bridge
increases but the choice between short and long parts of the modules is still random.
Some minutes later one path of the bridge is clearly preferred.

18 CHAPTER 2. SWARMS AND SWARM COMPUTING

computing approaches. Namely, particle swarm optimization, ant colony optimization
and cellular automata.

2.2.1 Particle swarm optimization

General idea Particle swarm optimization (PSO) is a population-based method mo-
tivated from the movement behavior of animal societies like bird �ocks and schools of
�sh. In PSO a number of particles operate in the solution space of an optimization
problem. Thus, their positions correspond to the solutions of the problem. Furthermore,
every particle can move (change its location) in the given space with a certain velocity
(i.e., rate of change). Based on a combination of its own experience and the information
from other particles in the swarm, a particle adapts its position and its velocity in every
calculation step. Precisely, the new position is changed according to the particles own
velocity and the best position found so far (cognitive component) combined with the
best positions found within its neighborhood (social component). Non-determinism also
belongs to the method. It is expressed in the form of small perturbations of the personal
and social components.

The origins In addition to the swarm behavior of animals described above, the social
behavior of humans has also played a major role in the development of particle swarm
optimization. It was a motivation of the developers to model this behavior to prove their
hypotheses. The authors argue that thinking, mind and intelligence are all concepts
that cannot be considered as isolated, private or intern such as the prevailing cognitivist
perspectives do. According to the authors, they derive from the social interaction of indi-
viduals. People learn from each other through comparing, imitating, sharing experiences
and emotions [48, 50].
The main di�erence between the swarm behavior of animals such as bird �ocks and �sh
schools and the social behavior of humans is the abstractness of the latter. Humans
adjust their beliefs and attitudes to conform with other society's members. It can be
assumed that the minds �navigate� in a high-dimensional psychosocial space.
The term particle swarm results from the authors �rst experiments with swarms where
the resulting visualization shows individuals like particles instead of birds or �sh

[...], at some point the two-dimensional plots we used to watch the algorithms
perform ceased to look much like bird �ocks or �sh schools and started looking
more like swarms of mosquitoes. The name came as simply as that. [50, page
xviii]

The term �particle� is then considered to be suitable because of the notion of position and
velocity that was adopted in PSO [50, page xx]. PSO is based on a social-psychological
model of social in�uence and social learning.

Particle swarm optimization as metaheuristic particle swarm optimisation (PSO)
was originally designed and proposed by Eberhart and Kennedy in 1995 [49]. The pro-
posed algorithm is considered as the canonical version of PSO and has been used as basis

2.2. MAJOR SWARM COMPUTING METHODS 19

to generate several other versions (for an overview see for example [82, 105]). In the cur-
rent section, an overview of the canonical PSO is given. A more formal description can
be found later in Chapter 5. The canonical PSO algorithm for a maximization problem
can be summarized in Algorithm 1:

Algorithm 1 Canonical particle swarm optimization

1: initialize a set of n particles {Pi}i∈[n]. A particle Pi starts with random position pi
and velocities vi. It has furthermore a personal best position pbi which corresponds
to the initial position at the beginning.

2: repeat for each particle Pi

3: evaluate the current �tness f(pi) of the current position pi
4: if f(pi) > pbi then
5: pbi ← pi.

6: get the best neighbor bni.
7: generate two random vectors rnd1 and rnd2.
8: vi ← vi + rnd1 ⊗ (pbi − pi) + rnd2 ⊗ (bni − pi).
9: pi ← pi + vi.
10: until terminal condition is met

Let us describe Algorithm 1 using the number in front of each line as line reference. Let
E be a search space that consists of a d-dimensional euclidean space and let f be a �tness
function de�ned over E. A swarm of n particles acts in E as follows. The position pi
as well as the velocity vi are initialized randomly for each particle i = 1, . . . , n (Line 1).
After that, the following iteration is repeated for each particle i. The �tness function of
the current position f(pi) is calculated and compared with the personal best pbi (Line
3). If f(pi) > pbi then a personal best is found and pbi is accordingly adapted (Line 4
and Line 5). The best neighbor bni is evaluated (Line 6). It consists of the particle with
the best �tness value in the neighborhood of i. The form of the neighborhood can be
considered as a parameter that should be speci�ed at the beginning of the algorithm. For
the non-deterministic behavior of the algorithm two random vectors rnd1 and rnd2 are
generated (Line 7). They are uniformly distributed in pregiven intervals. The velocity
and the position of the given particle are changed according to the equations in Line 8
and Line 9 . The symbol ⊗ represents the component-wise multiplication. The algorithm
ends if a terminal condition is met. Usually, the algorithm terminates if a �su�ciently�
good solution is found or a maximum number of iterations has been performed.

Interpretation and geometrical illustration As described in the previous section,
the particle swarm optimization has its motivation in modeling social interaction. In this
context, the equations introduced above can be interpreted as follows. The equation in
Algorithm 1 Line 8 is used to update the velocity vi, which represents a kind of �memory�
of the previous velocity for the particle i. This velocity is changed by adding the cognitive
component ∆1 = rnd1 ⊗ (pbi − pi) and the social component ∆2 = rnd2 ⊗ (bni − pi)

20 CHAPTER 2. SWARMS AND SWARM COMPUTING

leading to the following simpli�ed update formula:

vnewi = vi +∆1 +∆2 (2.2)

pnewi = pi + vnewi (2.3)

The cognitive component represents the individual memory consisting of the best posi-
tion found in the past. It quanti�es the tendency of the particles to explore their own
knowledge. The social component represents the in�uence of the neighborhood on the
individual decision. It quanti�es a kind of group standard that individuals try to ac-
quire. The �gure 2.8 illustrates the e�ect of the velocity and position equations for a
single particle in a two-dimensional vector space.

pi

pbi

vi

bni

pnew
i

∆2

∆1vnew
i

bn
i − pi pb i

− p i

Figure 2.8: Geometrical illustration of the velocity and position update

2.2.2 Ant colony optimization

Ant colony optimization (ACO) is a set of algorithmic concepts based on the ideas gained
from the observations of real ants (as described in Section 2.1.2). It was formulated
as a metaheuristic to solve discrete optimization problems by Dorigo in [20]. ACO has
been proposed as a common framework to cover a wide variety of algorithms inspired
by real ant behavior. In fact, since the Ant System(AS) [21] , which is the �rst ant
based algorithm, several other algorithms that can be considered as an extension of AS
have been developed and applied successfully to a wide range of combinatorial prob-
lems (for overview see [22]). One of the most widespread direct successor of AS is the
MAX −MIN Ant System (MMAS). This section recalls the two methods AS and
MMAS using TSP as an example application. Before this, a general description of
the general ideas of ACO algorithms is given. The section ends up with a more formal
presentation of the ACO as metaheuristic for solving combinatorial problems.

General ideas of ant colony optimization In ant colony optimization several ar-
ti�cial ants (in the following text only �ants� is used) operate on a graph searching for
good solutions of a given optimization problem instance. That is, given a discrete opti-
mization problem one has �rst to de�ne an adequate representation of its instances as

2.2. MAJOR SWARM COMPUTING METHODS 21

graphs. Such graphs are called construction graphs and contain pheromone values and
other problem-speci�c information. The ants construct solutions incrementally by walk-
ing on the construction graph. The movement from one node to another is stochastic
following pheromone and heuristic values in the neighboring nodes and edges. This de-
cision is based on a exploration/exploitation process. Meaning that the ants choose the
next node in every step in proportion to the pheromone value of the corresponding edge
(exploitation of the knowledge of the whole system). It is permitted however, that the
ants choose nodes with lower pheromone amount. The pheromone values are changed
during the runs. The main idea of the algorithm is that the edges belonging to good
solutions have the tendency to receive more visits from ants and carry higher pheromone
values than other edges. This corresponds to the positive feedback mechanism that the
real ants follow (see Section 2.1.2). Two questions are behind the development of dif-
ferent versions of ACO. What does the strategy that the ants follow to choose the next
nodes look like exactly? And how are the pheromone values updated?

Ant system Ant System (AS) is the �rst version of the ACO algorithms. It was pro-
posed by Dorigo et al. [21]. It was initially designed to solve the traveling salesperson
problem (TSP). In TSP, an instance corresponds to a pair (G, dist), where G is a com-
plete6 directed graph and dist : EG → R+ assigns to every edge a weight called distance.
A feasible solution corresponds to a Hamiltonian cycle. And the goal is to minimize the
cost function of a Hamiltonian cycle which corresponds to the sum of distances of the
edges belonging to the cycle.
The algorithm adapts the ant behavior to solve the TSP problem as follows: At the begin-
ning every edge of the construction graph is initiated with the same (virtual) pheromone
value τ0. A number of ants n are randomly assigned to starting nodes. Each ant a builds
its own tour by repeatedly choosing the next node to be visited. At a given current node
i, the probability pae to choose a possible next edge e is given by the equation:

pae =
ταe · η

β
e

f∈Ja
i
ταf · η

β
f

(2.4)

where τe is the pheromone value on the edge e and ηe is a heuristic value equal to the
inverse of the distance dist(e) (i.,e. ηe = 1

dist(e)). Ja
i denotes the set of possible edges

for the ant a starting from i, which is equal to the edges outgoing from i and not yet
visited by ant a. The parameters α and β control the relative in�uence of the pheromone
respectively the heuristic value.
After that every ant a constructs a Hamiltonian cycle Ha with the cost costa, the
pheromone quantity of an edge e is updated using the following equation:

τ(e)← (1− ρ) · τ(e) +
n

a=1

∆ρae (2.5)

6not complete graphs can be transformed to fully connected graphs, by connecting the unconnected
nodes with edges having very large distances

22 CHAPTER 2. SWARMS AND SWARM COMPUTING

where ∆ρae is the value of pheromone that ant a deposits on the edge e. It is de�ned as
follows:

∆ρae =


1/costa if edge e ∈ Ha

0 otherwise
(2.6)

In other words, only the pheromone values of the edges visited by the ants a are increased
with an amount equal to the inverse of the cost costa of the constructed cycle Ha. The
idea behind the equation 5.7 is that the edges belonging to Hamiltonian cycles with
lower costs receive more pheromone. By means of the probability equation in 5.5, theses
edges are more likely to be chosen by ants in the next iterations. AS has been tested on
small TSP instances (up to 70 nodes). The results have revealed that the algorithm can
solve instances with up to 30 cities with acceptable performance, compared with other
heuristics. However, it has shown its limit for larger instances [21]. This was another
factor for the development of other ACO algorithms with better performances.

MAX −MIN Ant System MAX −MIN Ant System (MMAS) introduces mod-
i�cations to the Ant System in the way how the update of pheromone is performed. The
solution construction using the equation 5.5 as described above is kept the same. First,
only the edges belonging to the best (or to the best so far) cycle are enhanced. To
prevent rapid stagnation on sub-optimal solutions, a second modi�cation is introduced
byMMAS. It consists of the de�nition of an interval[τmin, τmax] to limit the range of
pheromone values.
According to this, the update equation inMMAS for a given edge e looks as follows:

τ(e)← [(1− ρ) · τ(e) + ∆ρ(e)]τmax
τmin

(2.7)

where ∆ρ(e) = 1/costb if e belongs to the best walk or 0 else. ρ is a parameter called the
evaporation rate. The notation []τmax

τmin
means that the value between the brackets will be

replaced by τmax if it exceeds τmax and respectively if the value is lower than τmin then
it will be replaced by τmin. In addition MMAS have proposed many other technical
improvements like the initialization of the pheromone by τmax or the the reinitialization
of the pheromone values if the algorithm stagnates.

2.2.3 Cellular automata

Historically, cellular automata are one of the �rst computing approaches that exploit the
knowledge and metaphors of biology. The research on cellular automata dates back to the
late 1940s in the studies by von Neumann. The concept of cellular automata is inspired
by inter cellular communication in biological systems exploring the idea that complex
computations can be performed by simple cells acting in parallel. Cellular automata
have been established in computer science for many decades as computational devices
with massive parallelism (see, e.g., [12, 47, 101, 102, 104]). They are also considered as
typical representatives of swarm computation (cf. [50]).
A cellular automaton is a system composed of elementary entities called cells which are
organized as a network. Each cell exhibits a state which is a value in a countable set. The

2.2. MAJOR SWARM COMPUTING METHODS 23

value of a cell is adapted based on some local rules that use the states of the neighboring
cells to change the current state. Usually, the local rules are the same for each cell and
do not change over time. The state of the whole automaton is called a con�guration.
A current con�guration can change into a follow-up con�guration by the simultaneous
changes of all local states using the cells local rules. To keep the technicalities simple, we
consider two and one-dimensional cellular automata. In both cases, a cell is represented
as a square in the Euclidean space.
In the theory of cellular automata, the most commonly used neighborhoods are the
von Neumann and the Moore neighborhood. Both neighborhoods are characterized by
a range r that speci�es how far the neighboring cells are away from each other. To
illustrate this, let us consider two dimentional cellular automata which are represented
by a grid. Let us imagine that there is a kind of agent 7 that can move from one cell to
the next one in every step. Starting from a cell c, the set of cells that can be reached in
r steps constitutes the neighborhood. In the von Neumann neighborhood the agent is
restricted to move only in vertical and horizontal directions. In the Moore neighborhood,
the agent has no restrictions. Figure 2.9 displays the von Neumann (a) and Moore (b)
neighborhood respectively for r = 1, 2, 3. In both examples, the cells marked by r belong
to the neighborhood of c which has a range r for r = 1, 2, 3. In the case where r = 1 the
corresponding cells are additionally drawn with a thick line.

c

1

1

11

2

2

2

2

2

2

22

3

3

3

3

3

3

33

3

3

3

3

(a)

c

3 3 3 3 3 3 3

3 2 2 2 2 2 3

3 2 1 1 1 2 3

3 2 1 c 1 2 3

3 2 1 1 1 2 3

3 2 2 2 2 2 3

3 3 3 3 3 3 3

(b)

Figure 2.9: Two-dimensional (a) von Neumann and (b) Moore neighbors of cell c in the
ranges 1,2 and 3.

One of the most popular examples of a cellular automaton is the Game of Life [36]. Game
of life is a two-dimensional cellular automaton with two states black (which stands for
alive) or white (standing for dead). A cell changes its state using the following four rules:

- if alive and there are less than two alive neighbors, then die (loneliness);

- if alive and there are more than three neighbors, then die (overcrowding);

- if dead and there are three alive neighbors, then comes to life (reproduction);

7The most common example in the case of the von Neumann neighborhood is a taxi. The underlying
distance is also called Manhattan distance and refers to the distance of path that a taxi takes between
any two places in Manhattan.

24 CHAPTER 2. SWARMS AND SWARM COMPUTING

- otherwise, stay unchanged.

With these simple rules one can generate complex patterns starting from initial ones.
In the literature one can �nd di�erent kinds of initial patterns that produce interesting
behavior during the computation process. There are some patterns that oscillate, blink,
grow or move across the grid. Figure 2.10 displays an example of a pattern called glider
that moves in 18 computational steps from the bottom left corner in the north-eastern
direction.
Beside this fascinating visual e�ect that emerges from simple rules, the game of life can
be used to perform computations to solve a given problem. It was also demonstrated that
game of life using some special initial pattern can emulate a universal Turing machine
(see for example the study in [86]).

31 2 3 4 5 6

789101112

13 14 15 16 17 18

Figure 2.10: Example of a glider that moves in north-east direction

Another famous example of cellular automata is the elementary cellular automaton. It is
a one-dimensional cellular automaton, the cells of which have two states, black or white.
Each cell changes its state based only on its current state and the state of immediate
neighbors (the left and right cells). There are 256 di�erent possible rules which are well
studied in the literature. Figure 2.11 displays the history of four automata of which uses
each a di�erent rule, namely the rules 9, 30, 110 and 150. Each row of pixels represents
a generation in the history starting from the top t = 0 which is initialized by a black
cell in the middle of the row. Given an arrow t, the next arrow t + 1 represents the
result of the application of the underlying rule from all cells in arrow t until the bottom
of the grid is reached (in this case 200 steps are needed). Like game of life, Elementary
cellular automata also exhibit a universal propriety. Actually, it has been proven that

2.3. OTHER METHODS 25

the automaton using the rule 110 is capable of universal computation [13]. For more
details on elementary cellular automaton refer to [104].

(a) Rule 9 (b) Rule 30

(c) Rule 110 (d) Rule 150

Figure 2.11: Four examples of the history of elementary cellular automata.

2.3 Other methods

2.3.1 Arti�cial immune systems

Arti�cial immune systems (AIS) are swarm computing methods inspired by the principles
and metaphor of the vertebrate immune system. The immune system of vertebrate
is composed of cells and molecules that collaborate with each other and with other
systems to maintain the host body operational. It protects the body by detecting a
wide variety of infectious agents, known as pathogens, such as viruses, bacteria, viroid
and other parasites. Pathogens exhibit speci�c antigens on their surfaces that provoke
reactions from the immune system. The way in which the immune system responds in
such a detection can have mainly two forms. The innate or adaptive immunity. The
innate immunity plays an initiatory and preparatory role. It reacts in a generic way

26 CHAPTER 2. SWARMS AND SWARM COMPUTING

immediately against any pathogens. The adaptive immunity complements the innate
one by generating adapted responses to speci�c pathogens. It consists mainly of white
blood cells known as lymphocytes, more speci�cally B and T -lymphocytes.
One of the major methods that characterize the �eld of arti�cial immune systems is the
clonal selection. (For an overview of the other methods in the �eld of arti�cial immune
systems see e.g., [10]).
Clonal selection designs a class of algorithms inspired by the clonal selection theory
[8]. The main idea behind this theory is that a speci�c antigen activates only a unique
speci�c B-lymphocyte. When an activation occurs, the organism clones the activated
cell by means of cell division creating similar cells. In this way, it produces a high
quantity of the speci�c antibodies. During the cloning process the resulting antibodies
increase their a�nity for the underlying antigen. This phenomenon is known as a�nity
maturation. It is caused by a mutation and a selection mechanism. The division of cells
leads to the production of two kinds of cells. The plasma cells and the memory cells.
The process of maturation in both kinds is called di�erentiation. While plasma cells
consist of terminal (non-dividing) antibody secreting cells and play a central role in the
immediate response of the active antigens, the memory cells are reserved for an ulterior
antigenic stimulus. They are able to generate high a�nity antibodies, pre-selected for
the speci�c antigen responsible for the primary activation. Figure 2.12 illustrates the
clonal selection principles.

Figure 2.12: Clonal selection principle adapted from [10]

Any approach that uses computational techniques inspired by the a�nity maturation
process of B-cells can be considered as a clonal selection inspired approach. One of the

2.4. SUMMARY 27

most popular ones is the CLONALG [17] algorithm. CLONALG has been proposed to
solve machine-learning and pattern recognition tasks. It has also been adapted to solve
optimization problems.
Given a set S of patterns to be recognized, CLONALG considers the elements in S to
be antigens. The goal is to produce a set of memory antibodies M , that match the
members in S. After creating a random set of antibodies A, the algorithm repeats two
main procedures: (1) Generating f clones of elements in A which mimics the proliferation
of B-cells creating a number of clones for an antibody proportional to its a�nity and
(2) mutation, which mutates attributes of the created antibodies. The antibodies in A
with the highest a�nity are added into the memory set M . A number n (which is a
parameter to be �xed at the beginning) of antibodies with the lowest a�nity in A are
replaced with new randomly generated antibodies.

2.3.2 Bees algorithm

The bees algorithm is a swarm computing method inspired by the food foraging behavior
of honey bee colonies [79]. A bee colony starts foraging searching randomly for promising
�elds. The promising �elds correspond for example to �ower patches with high amounts
of nectar or pollen. The foragers -called scout bees in the underlying algorithm- which
found a promising �eld perform the so called �waggle dance� in a speci�ed place called
�dance �oor�. A waggle dance encodes three indications regarding a �ower patch. The
distance from the hive, the direction to follow and the quality.
The bees algorithm integrates theses ideas to solve optimization problems in the following
way. At the beginning of the search process a small number n of scouts randomly explores
the solution space for solutions with high �tness. Within a recruitment procedure a
simulation of the waggle dance of biological bees is used to communicate �ndings to
the other foragers. The procedure assigns to every solution a number of foragers in
proportion to its �tness. The foragers then perform a local search in the neighboring
region of the assigned solution. If the local search for a given region stagnates, the region
with its local �tness optimum is abandoned. In the algorithm a small number of scouts
keep exploring the solution space looking for new regions of high �tness (global search),
Repeating the procedures above for the new regions.
The algorithm was designed for both combinatorial optimization and functional opti-
mization. However until now it has been mainly used for the latter. The obtained
results are very promising regarding the robustness against trapping in local optima.

2.4 Summary

This chapter has provided an overview of the collective behavior of animals and swarm
computing approaches inspired thereby. How ant colonies forage for food di�ers obvi-
ously from bird �ocking or �sh schooling. It was shown, however, that the mechanisms
behind the two behaviors seem to be similar8. In both behaviors, the individuals are self-

8Despite of the mentioned similarity of underlying mechanisms, the diversity of biological systems
should be stressed. Animals living in groups and exhibiting swarm behavior are not an exception. Even

28 CHAPTER 2. SWARMS AND SWARM COMPUTING

organized. They follow simple rules (compared to the resulting behavior) and they com-
municate using local information collected from their neighbors or from the environment.
In a speci�c experimental setup, the behavior of a given species has been successfully
simulated. Besides con�rming the self-organization assumption, theses simulations have
opened a door to the development of swarm computing approaches o�ering the basic
mathematical models. In this chapter the three major swarm computing approaches ant
colony optimization, particle swarm optimization and cellular optimization were intro-
duced. It was attempted to determine the general ideas as well as the main components
that characterize every approach. Furthermore, the two relatively new swarm computing
approaches arti�cial immune systems and bees algorithm were brie�y introduced.
In an attempt to propose a unifying approach, it can be stated in this summary that the
presented approaches exhibit the following general ideas: A swarm consists of several
members that act in an environment in parallel (at least theoretically). Therein, the
environment is modeled in such a way as to permit an easy coding of the communication
between the members as well as between the members and the environment. Each mem-
ber follows simple rules by updating its state using update equations. Theses equations
can contain non-deterministic factors to simulate the stochastic behavior of biological
systems. In contrast to swarms in nature, swarm computing approaches have some cen-
tralized control 9, that regulate the behavior of the whole algorithm toward reaching a
goal. In Chapter 4 a more systematic analysis of the common ideas and components of
swarms in nature and swarm computing is given as well as a formulation using methods
of graph-transformation. For that an introduction to a suitable graph transformational
approach is needed which follows in the next chapter.

if one consider ants by themselves, the foraging behavior di�ers from species to species. For example,
Sahara Desert ants forage for food using totally di�erent navigation skills then Argentine ants. A Sahara
Desert ant navigates using memorized angles in respect to the Sun. Furthermore, it can count its steps
in grounds where pheromone quickly vanishes using a sort of internal pedometer.

9with the exception of CA

Chapter 3

Graph transformation

This chapter gives an overview on graph transformation focusing on the basic elements
as far as needed in this thesis. We consider directed edge-labeled graphs and their
derivation by application of rules. The graph transformation approach is chosen in such
a way that rules can be applied in parallel and that their parallel applicability follows
from the applicability of each of the involved rules and additional conditions. Moreover,
the notion of graph transformation units which comprise a set of rules and a control
condition is used. Such a unit is a computational device that models the derivation of
graphs while the control condition is obeyed. Units are used in the next chapters as
swarm's members and parallelism makes sure that the members can act simultaneously.
The present introduction is based on a set-theoretical approach.

3.1 General ideas and backgrounds

Graphs are very common and well suited means to represent connected structures. Graph
transformation o�ers a formalism that extends the statical description of graphs to in-
clude the dynamic changes based on rule applications.
The research in the area of graph transformation has been initiated in the late sixties and
early seventies with applications in rule-based image recognition and processing as well as
graph generation and translation (see e.g., [78, 84]). One of the main motivations therein
has been the need for a generalization of Chomsky grammars over graphs [15]. As in
Chomsky grammars the rule-based modi�cation is the basic idea in graph transformation
paradigms. To illustrate what a rule based-modi�cation over graphs look like, let us
consider the following informal description. Given a graph G, and a rule r speci�ed by
two graphs r = (L,R), the application r to G consists of �nding L in G and replacing
it by R, leading to a graph H (see Figure 3.1). This illustration presents the main idea
of a rule-based derivation over graphs, however at the same time, it shows that, unlike
strings in Chomsky grammars, making replacements in graphs is not obvious. Indeed,
some important details are needed in order to introduce a formal de�nition are missing.
For instance, what do the underlying graphs precisely looks like? How to �nd a given
graph L in G? How to disconnect L from G? How to connect R in order to construct
H?

29

30 CHAPTER 3. GRAPH TRANSFORMATION

LL

G

· · · · · · RR

H

· · · · · ·

Figure 3.1: Schematic presentation of a graph transformation

In the literature, there are several manners to handle those questions. This implicates
the existence of di�erent graph transformation approaches (see for example [24, 54,
59]. For an overview see [88]). This work considers directed edge-labeled graphs with
derivations based on the double-pushout approach. Which is one of the �rst and most
used approaches in graph transformation �eld. This approach is introduced based on the
set theory using similar notations as in [54]. Even though this chapter has a recalling
character, it also provides a very important theorem concerning parallel rule applications,
namely the generalized parallelization theorem.

This Chapter is organized as follows: Section 3.3 introduces the kind of graphs used
along this thesis as well as some operations that permit their manipulation. In Sec-
tion 3.4 rules and their applications are presented. Section 3.5 extends the notion of
applicability proposing the concept of application context. In Section 3.6 parallelism for
rules and their application is studied. Section 3.7 recalls �rst shortly the de�nition of a
graph grammar as a �rst structuring of rules and their applications. It introduces then
the concepts of graph class expressions and control conditions, which are used in the
de�nition of graph transformation units. Subsequently, di�erent graph transformational
tools are introduced and compared in Section 3.8. The chapter ends with a summary in
Section 3.10.

3.2 Preliminaries

The reader is assumed to be familiar with the usual basic notions and notations of
set theory. But the disjoint union is explicitly introduced as it is a less conventional
operation that is heavily used in this thesis.

De�nition 1

Let F = (Xi)i∈I be a family of sets such that I is a countable set. A set X is a disjoint
union of F with respect to the injective mappings (ini : Xi → X)i∈I if:

(i) inj(Xj) ∩ ink(Xk) = ∅ for j ̸= k and

(ii)


i∈I ini(Xi) = X

3.3. GRAPHS 31

General assumption 1

The disjoint union of a family F = (Xi)i∈I of sets exists and is denoted by


i∈I Xi. For
two sets A and B, the disjoint union is denoted by A+B.

Note that there is no unique construction of the disjoint union but it is characterized up
to bijections in the following way.

Remark 1

1. Let b : X → Y be a bijection. The set Y is also a disjoint union of F with respect
to the mappings (in′

i : Xi → Y)i∈I with in′
i = b ◦ ini for i ∈ I.

2. If a set Y is a disjoint union of F with respect to the mappings (in′
i : Xi → Y)i∈I

then X and Y are bijective (i.e., there is a bijective mapping b : X → Y de�ned
as b(x) = in′

i(x) for x ∈ ini(Xi)).

Moreover, two important properties of disjoint unions are needed. Both concern the
disjoint union of subsets. Figure 3.2 gives a schematic illustration of the components
used there.

Remark 2

1. Let FX = (Xi)i∈I and FY = (Yi)i∈I such that Yi ⊆ Xi for all i ∈ I and X is disjoint
union of FX with respect to (inX

i : Xi → X)i∈I . Then Y =


i∈I in
Y
i (Yi) is disjoint

union of FY with respect to (inY
i : Yi → Y)i∈I de�ned by inY

i (x) = inX
i (x) for

x ∈ Yi. By construction, we have Y ⊆ X.

2. Let FX = (Xi)i∈I and FY = (Yi)i∈I such that Yi ⊆ Xi for all i ∈ I. Let Y
be a a disjoint union of FY with respect to (inY

i : Yi → Y)i∈I . Then there is a
disjoint union X of FX with respect to the mappings (inX

i : Xi → X)i∈I with
inX

i (x) = inY
i (x) for x ∈ Yi. By construction, we have Y ⊆ X.

3.3 Graphs

All graphs considered in this thesis are directed and have labels on edges.

De�nition 2 (graphs)

Let Σ be a set of labels. A (directed edge-labeled) graph over Σ is a system G =
(V,E, s, t, l) where V is a set of nodes, E is a set of edges, s, t : E → V and l : E → Σ are
mappings assigning a source s(e), a target t(e) and a label l(e) to every edge e ∈ E.

Σ may contain the symbol ∗ which stands for unlabeled and is omitted in drawings of
graphs. An edge e with s(e) = t(e) is a loop. If e ∈ E is labeled with z, e is also
called a z-edge or a z-loop respectively An edge with label ∗ represents an unlabeled
edge. The components V , E, s, t, and l of G are also denoted by VG, EG, sG, tG, and
lG, respectively. The empty graph is denoted by ∅. The class of all directed edge-labeled
graphs is denoted by GΣ. Given a graph G ∈ GΣ, the notation x ∈ G denotes that x is
a node or an edge of G, i.e., x ∈ VG or x ∈ EG.

32 CHAPTER 3. GRAPH TRANSFORMATION

Figure 3.2: An illustration of disjoint union construction

∆1

∆2

s

T1

s

X2

Figure 3.3: Examples of graphs

Example 1 (graphs)

Figure 4.1 displays four simple graphs that are used below for di�erent illustrations.

3.3. GRAPHS 33

At this point, some operations and relations that permit performing changes on graphs
can be introduced. The �rst relation is subgraph which is de�ned as follows.

De�nition 3 (subgraph)

Given a graph H ∈ GΣ, a graph G ∈ GΣ is a subgraph of H, denoted by G ⊆ H, if
VG ⊆ VH , EG ⊆ EH , sG(e) = sH(e), tG(e) = tH(e) and lG(e) = lH(e) for all e ∈ EG.

Example 2

Consider the graphs T1 and X2 in Figure 4.1. T1 is a subgraph of X2 provided that the
underlying nodes and edges are named accordingly. Actually, there are six ways to do
so because the tripod in X2 allows six permutations.

In order to introduce rule applications in the chosen framework, three additional opera-
tions are needed. The �rst operator is the subtraction. It permits the removal of nodes
and edges from a given graph. Note that the resulting structure of a subtraction is not
necessarily a graph, since the removal of nodes can cause dangling edges. To overcome
this, the so called contact condition is introduced. It guarantees that the subtraction
produces a subgraph of the underlying graph. The second operation is the extension of
graphs by a speci�c structure. The third operation is the disjoint union which permits
the construction of graphs using other graphs.

De�nition 4 (subtraction)

Given a graph G ∈ GΣ and a pair of sets of nodes and edges X = (VX , EX), such that
(VX , EX) ⊆ (VG, EG). The subtraction of X from G is given by G−X = (VG−VX , EG−
EX , s, t, l) with s(e) = sG(e), t(e) = tG(e) and l(e) = lG(e) for all e ∈ EG − EX .
Given a graph G and a subgraph H. Then G−H denotes G− (VH , EH).

Example 3

Let Ext be the set of target nodes in T1. Then

T−
1 = T1 − (Ext, ∅) = s

and

X2 − T−
1 =

In order to ensure that the resulting structure of a subtraction is a graph, an additional
condition is needed. Namely the contact condition. It guarantees that there are no
dangling edges after the removal of nodes.

34 CHAPTER 3. GRAPH TRANSFORMATION

De�nition 5 (contact condition)

Given a graph G ∈ GΣ and a pair of sets of nodes and edges X = (VX , EX) such that
(VX , EX) ⊆ (VG, EG). The subtraction G−X = (VG− VX , EG−EX , s, t, l) satis�es the
contact condition if there is no edge e ∈ G−X with s(e) ∈ X or t(e) ∈ X.

If the contact condition is satis�ed, the result of subtraction is a subgraph of the original
graph.

Example 4

In the example above, the subtraction T1−(Ext, ∅) does not satisfy the contact condition
because the resulting structure T−

1 has three edges without targets. In contrary, the
subtraction X2−T−

1 satis�es the contact condition because there is no resulting dangling
edges.

De�nition 6 (extension)

Given a graph G ∈ GΣ and a structure X = (VX , EX , sX , tX , lX) where VX is a set of
nodes, EX a set of edges and sX : EX → VG+VX , tX : EX → VG+VX , lX : EX → Σ are
three mappings. The extension of G by X is given by the graph G+X = (VG+VX , EG+
EX , s, t, l) with f(e) = fG(e) if e ∈ EG and f(e) = fX(e) otherwise for f ∈ {s, t, l}.

An important operation similar to extension, but between two graphs is the disjoint
union of graphs.

De�nition 7 (disjoint union)

The disjoint union of two graphsG andH is de�ned asG+H = (VG+VH , EG+EH , s, t, l)
and, for f ∈ {s, t, l}, f(e) = fG(e) if e ∈ EG and f(e) = fH(e) otherwise.

Example 5

The disjoint union of T1 and ∆1 can be displayed as:

T1 +∆1 = s

Another important ingredient is the notion of a graph morphism.

De�nition 8 (graph morphism)

For graphs G,H ∈ GΣ, a graph morphism g : G → H is a pair of mappings gV : VG →
VH and gE : EG → EH which are structure-preserving, i.e., gV (sG(e)) = sH(gE(e)),
gV (tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(e) for all e ∈ EG.
If gV and gK are bijective, g is an isomophism and G and H are called isomorphic.

For a graph morphism g : G → H, the image of G in H is called a match of G in H,
i.e., the match of G with respect to the morphism g is the subgraph g(G) ⊆ H. If the
mappings gV and gE are injective, the match g(G) is also called injective. In this case,
G and g(G) are isomorphic.
For G′ ⊆ G, the morphism g|G′ : G′ → H denotes the restriction of g to G′.

3.4. RULES AND THEIR APPLICATIONS 35

Example 6

Let us consider the graphs ∆1 and ∆2 as introduced above. There are twelve possible
graph morphism from ∆1 to ∆2 that are all injective. The �rst four graph morphism
map the triangle ∆1 to each of the sub-triangles of ∆2. The rest is obtained by making
additionally rotations around the center of the underlying triangles. Among the graph
morphisms of T1 to itself, there are also non-injective ones. Besides the six permutation
that de�ne isomorphisms, one can also map the three edges that are not loops on two or
one of them in various ways.

3.4 Rules and their applications

As mentioned in the introduction two main components are needed in order to de�ne a
rule: A component L which has to be found in the graph where we want to apply the
rule, and a second component R which replaces L. In the double pushout approach a
third component K is needed to ensure an adequate linking to the surrounding graph.
In addition L, K and R are all graphs and K is a subgraph of L and R.

De�nition 9 (rule)

A rule r = (L,K,R) consists of three graphs L,K,R ∈ GΣ such that L ⊇ K ⊆ R.
The components L, K and R are called left-hand side, gluing graph and right-hand side,
respectively.

In the following, the class of all rules is denoted by R.

Example 7

The Figure 3.4 shows two examples of rules. The �rst one is called delete and has a
gluing graph that consists of two nodes: A start node represented by an un�lled square
and an end node represented by an un�lled circle.
Intuitively, it can be argued that the rule deletes (as the name indicates) an occurrence of
the middle node represented by a �lled circle in L and their attached edges and replaces
them by an edge from the start node to the end node. How this is performed exactly is
explained below.
The second example consists of the rule called terminate. In this rule the gluing graph
consists of the target nodes of the left-hand side. The right-hand side consists of these
nodes connected by edges to form a triangle as ∆1. This rule is used below to generate
interesting forms.

The �rst step in the application of a rule (L,K,R) to a graph G is to �nd a valid match
g : L −→ G of the left-side graph in G. The validity is determined by two conditions
that g should satisfy. The �rst condition is the contact condition. It ensures that the
removal of the part g(L) − g(K), which occurs in the rule application as introduced
in De�nition 11, yields a subgraph of G. Precisely it guarantees that there will be no
dangling edges after the removal of nodes in g(VL)− g(VK). The second condition is the
identi�cation condition. Considering that g can be noninjective, it is possible that two
di�erent items in L have the same image using g. The identi�cation condition requires
that such items should be elements in the image of the gluing graph K. This condition

36 CHAPTER 3. GRAPH TRANSFORMATION

delete: ⊇ ⊆

Tto∆ : s ⊇ ⊆

Figure 3.4: graph transformation rules

is necessary for the Parallelization Theorem below. Both conditions together are called
the gluing condition.

De�nition 10 (gluing condition)

Let r = (L,K,R) be a rule and g : L −→ G a graph morphism. g satis�es the gluing
condition if the following two conditions are satis�ed.

1. The contact condition: g satis�es the contact condition if the subtraction G −
(g(L) − g(K)) satis�es the contact condition as introduced in De�nition 5, i.e.,
there is no edge e ∈ EG − (g(EL) − g(EK)) with s(e) ∈ (g(VL) − g(VK)) or
t(e) ∈ (g(VL)− g(VK)).

2. The identi�cation condition: If two nodes or edges are identi�ed via g they must
belong to the gluing graph K, i.e., g(x) = g(x′) for x, x′ ∈ L implies x = x′ or
x, x′ ∈ K.

Remark 3

The contact condition can also be formulated as follows: if there is a node v ∈ g(L)
which corresponds to a source or a target of an edge e ∈ EG − (g(EL) − g(EK)) then
v ∈ g(Vk).

Example 8

Figure 3.5 shows two examples where the contact and identi�cation conditions are not
satis�ed. Both examples use the same rule r = (L,K,R) and the match of L is sur-
rounded by a gray ellipse. The match of L in the graph G1 via the morphism g1 does
not satisfy the contact condition because the edge labeled by e has as target a node
that is not in the subtraction G1 − (g1(L) − g1(K)). The match of L in the graph G2

using g2 violates the identi�cation condition because the middle and right nodes in L
are identi�ed by g2, however the middle node does not belong to the gluing graph K.

Now we have all ingredients to de�ne a rule application.

De�nition 11 (rule application)

The application of a rule r = (L,K,R) to a graph G = (V,E, s, t, l) consists of the
following three steps.

3.4. RULES AND THEIR APPLICATIONS 37

delete: ⊇ ⊆

G1

e

g1

G2

g2

Figure 3.5: Matches that violate the gluing conditions.

1. Choose a match g(L) of L in G subject to the contact condition and the identi�-
cation condition.

2. Remove the match of L up to g(K) from G, using the subtraction operation. The
result is an intermediate graph Z = G− (g(L)− g(K)).

3. Add the right-hand side R to Z by gluing Z with R in g(K) yielding the graph
H = Z + XR−K with XR−K = (VR−K , ER−K , sX , tX , lR) and for e ∈ ER−K and
f ∈ {s, t} fX(e) = g(fK) if fR(e) ∈ VK and fX(e) = fR otherwise. In other words,
all edges keep their labels. For each edge e ∈ ER − EK which loses its source or
target due to the operation VR − VK , it is redirected to the image of its original
source or target. All other edges keep their sources and targets.

The Figure 3.6 gives a graphical interpretation of an application of a rule (L,K,R) to
a graph G using a morphism g. The �rst step corresponds to �nd a match g(L) in G
represented there as a circle which is composed itself of two parts. A ring (�lled with
horizontal lines) which stands for g(K) and an inner circle (�lled with vertical lines)
standing for g(L) − g(K). The representation of g(K) as a ring re�ects the role of the
gluing graph and the contact condition. Namely, they guarantee an adequate linking
to the surrounding graph which is represented by dots in the �gure. The deletion of
g(L) − g(K) in step 2 yields to a graph Z with a white inner circle. The graph H
represents the resulting graph after the application of the rule. The inner circle (�lled
with oblique lines) corresponds to the added part (R − K, g) as de�ned in step 3 of
the rule application. The graph morphisms d and h are given by h(v) = d(v) = g(v)
for v ∈ VK , h(e) = d(e) = g(e) for e ∈ EK , h(v) = v for v ∈ VR − VK , h(e) = e if
e ∈ ER − Ek.

Example 9

Figure 3.7 shows two examples of rule applications. We use the same names of nodes as
in Example 7. In the �rst step of the rule application, a match g(L) that satis�es both
the contact and the identi�cation conditions is chosen. In the second step the image of
the elements in g(L)− g(K) are deleted yielding to a temporary graph Z. In the third
step the elements in R−K are added with respect to the construction described above.

38 CHAPTER 3. GRAPH TRANSFORMATION

L ⊇ K ⊆ R

G

· · · · · ·

g

Z

· · · · · ·

d

H

· · · · · ·

h

⊇ ⊆

g(K)

g(L)− g(K)

XR−K

h =


id|R-K ,

g|K

d = g|K

Figure 3.6: A graphical interpretation of application of a rule r = (L,K,R) to a graph
G yielding to a graph H

A rule r = (L,K,R) can also be depicted alternatively to the classical presentation
L ⊇ K ⊆ R as L −→ R. However, it is necessary in such a presentation to deduce
unambiguously the graph K. To identify K, generally the same relative positions of
nodes in L and R are used, and if necessary di�erent shapes and colors are also used.
The rule delete can be depicted alternatively as in Figure 3.8.

The application of r to G with respect to the graph morphism g is denoted by G=⇒
r

H.

It is called a direct derivation from G to H. The subscript r may be omitted if it is clear
from the context. Sometimes, the morphism g is included in the notation as G=⇒

r,g
H.

The sequential composition of direct derivations G = G0=⇒
r1

G1=⇒
r2
· · ·=⇒

rn
Gn = H

(n ∈ N) is called a derivation from G to H. As usual, the derivation from G to H can
also be denoted by G

n
=⇒
P

H where {r1, . . . , rn} ⊆ P , or just by G
∗

=⇒
P

H. The string

r1 · · · rn is the application sequence of the derivation.

Example 10

Figure 3.9 shows two examples of derivations. The derivation with application sequence
delete delete and the derivation with application sequence terminate.

3.4. RULES AND THEIR APPLICATIONS 39

⊇ ⊆

g

⊇

d

⊆

h

(a) An application of the rule delete

s ⊇ ⊆

s s

s

⊇

g

s s

⊆

d

s s

h

(b) An application of the rule terminate:

Figure 3.7: Application of rules

40 CHAPTER 3. GRAPH TRANSFORMATION

delete : −→

terminate : s −→

Figure 3.8: Alternative depiction of the rules delete and terminate

delete delete

(a) A derivation using two successive application of the rule delete

s s

s

s s

terminate

s

terminate

terminate

(b) A derivation using three successive application of the rule terminate:

Figure 3.9: Derivations examples

3.5. APPLICATION CONTEXT 41

3.5 Application context

Graph transformation using the rules as introduced in previous subsections is computa-
tionally complete (For its completeness cf. [54]). However it is sometimes useful to have
additional application conditions in order to restrict the applicability of a given rule.
In this section two kinds of application conditions are considered, positive and negative
contexts. While a positive context can be represented by a unique graph that speci�es
what should be present in the host graph G in order to apply the given rule, the negative
context is composed of a �nite number of graphs each specifying a negative constraint. i.e
what should be not present in G. Considering the possibility to represent the application
contexts graphically, the approach presented in this section is related to the negative
applications as introduced in [40].

De�nition 12 (application context)

An application context C = (CP , CN) over a rule r = (L,K,R) ∈ R consists of two
components, a graph CP ∈ GΣ called the positive context and the negative context CN =
{N1, . . . , Nk} which is a set composed of a �nite number k ∈ N of graphs (Ni ∈ GΣ for
i ∈ [k]), each one called a negative constraint. Thus, the left hand side graph should
consist of a proper subset of the positive context if this one is not empty as well as all
negative constraints. i,e., L ⊂ CP if CP ̸= ∅ and for L ⊂ Ni for i ∈ [k].
If not empty the positive context speci�es a positive part CP − L which consists of the
items of CP that do not belong to L. Analogously, every negative constraint speci�es a
negative part Ni − L which consists of the items of Ni that do not belong to L.

An application context over a rule restricts the derivation conditions in the following
way

De�nition 13 (derivation with application context)

Given an application context C = (CP , CN) = (CP , {N1, . . . , Nk}) de�ned over a rule
r = (L,K,R) ∈ R, a graph G ∈ GΣ and a graph morphism g : L→ G. The production
G=⇒

r,g
H satis�es the application context C if

1. the morphism g can be extended to the graph Cp and

2. the morphism g cannot be extended to any of the graphs Ni with i ∈ [k].

The satisfaction of an application context C can be included in the notation of a deriva-

tion as follows: G
C

=⇒
r,g

H

Note that the application of a rule r = (L,K,R) without an application context is
semantically equivalent to its application considering the application context (L, ∅).

Depiction conventions For visual purposes, it is useful to integrate the application
context of a rule in its graphical presentation. Consider a rule r = (L,K,R) and a
corresponding application context C = (CP , {N1, . . . , Nk}). The rule and its application

42 CHAPTER 3. GRAPH TRANSFORMATION

context can be depicted as C −→ R where C is represented as a graph with subgraph
L and extra information such that the negative contexts and the positive condition
are identi�ed. In this representation, the dashed items belong to the negative part. The
positive part is depicted in bold with a gray color di�erent from L and R. The remainder
is L. If the negative part contains more than a single edge, then it will be enclosed by
a dotted line. In this way, all negative constraints and the positive context are easily
recognized. Let us illustrate how to depict rules together with their application contexts.
Let us start by recalling the rule in Figure 3.11 which was already introduced in previous
section as reference.

delete : −→

Figure 3.10: A rule without application context

Figure 3.11 shows an example of a rule with negative parts delete1. The negative context
consists of a unique constraint CN = {N1}. In the illustration the negative part N1 −L
is dashed. L can be identi�ed easily and unambiguously, since L consists of the part
that is not dashed in in the left graph.
This negative context requires that the start node has no incoming edge. In other words,
the rule can be applied only if it exists a match such that the image of the start node
has no incoming edges.

delete1 : −→

Figure 3.11: A rule with a unique negative constraint where its negative part has one
edge

In Figure 3.11 we have a unique negative constraint which speci�es a negative part
having one edge. In the case where a negative part has more than one edge, it is encircled
by a dashed line. For example in Figure 3.12 the negative context requires that the start
node or the end node have no incoming edge, meaning that if one constraint is broken,
the rule can not be applied.

delete2 : −→

Figure 3.12: A rule with a negative constraint where its negative part has two edges

Figure 3.14 shows an example of a rule with a positive context. The positive part is
depicted in bold with another gray color as L. The condition requires that the rule can
be applied only if the �rst node and the end node have outgoing edges.

3.6. PARALLEL RULE APPLICATION 43

delete3 : −→

Figure 3.13: A rule with positive constraint

The last example as depicted in Figure 3.14 shows a rule with a positive and a negative
context. The negative context is composed of two negative constraints, each of which
has one edge. The positive context is similar to the example above.

delete4 : −→

Figure 3.14: A rule with positive and negative contexts

3.6 Parallel rule application

This section introduces parallelism in the chosen graph transformational approach. It is
shown under which conditions two or more direct graph transformation derivations can
be applied in parallel.
Given two or more rules, it is easy to build a rule through the disjoint union of their
components. The resulting rule is called a parallel rule.

De�nition 14 (parallel rule)

Let (ri = (Li,Ki, Ri))i∈I be a family of rules for a countable set I of indices. Then
a parallel rule p =


i∈I ri = (L,K,R) = (


i∈I Li,


i∈I Ki,


i∈I Ri) is given by the

disjoint unions of the components with injective mappings inL
i : Li → L, inK

i : Ki → K
and inR

i : Ri → R for i ∈ I such that inK
i = inL

i |Ki = inR
i |Ki .

The fact that K ⊆ L and K ⊆ R is, without loss of generality, a direct consequence of
Remark 2. Actually, one can �rst construct the disjoint union K of the components Ki.
Based on Remark 2 (2.), the disjoint unions L and R exist such that K ⊆ L and K ⊆ R.
Another way to construct the parallel rule is to start with the disjoint union L and then
construct K based on Remark 2 (1.) with K ⊆ L and then use Remark 2 (2.) to build
R based on K with K ⊆ R.

Example 11

Figure 3.15 shows the parallel rule delete + delete. The parallel rule is a composition of
the same rule delete. The injective mappings are chosen accordingly, so that the resulting
components are disjoints. To illustrate the disjunction, di�erent shapes are used.

44 CHAPTER 3. GRAPH TRANSFORMATION

delete+ delete : −→

3× terminate = s −→

s

s

Figure 3.15: Two examples of parallel rules

De�nition 15 (parallel independence)

Let r = (L,K,R) and r′ = (L′,K ′, R′) be two rules and let G=⇒
r

H and G=⇒
r′

H ′ be

two direct derivations with respect to the morphisms g : L → G and g′ : L′ → G. Then
the direct derivations are parallel independent if the corresponding matches intersect in
gluing items only. i.e., g(L) ∩ g′(L′) ⊆ g(K) ∩ g′(K ′).

Now, we have all ingredients to introduce the generalized parallelization theorem.

Theorem 1 (Generalized Parallelization Theorem)

Let (ri = (Li,Ki, Ri))i∈I be a family of rules for a countable set I of indices and let
p = (L,K,R) = (


i∈I Li,


i∈I Ki,


i∈I Ri) be a corresponding parallel rule. Then the

following holds true.

1. Let G=⇒
p

X be a direct derivation. Then there are direct derivations G=⇒
ri

Hi

that are pairwise parallel independent.

2. Let G=⇒
ri

Hi for i ∈ I be direct derivations. Let each two of them be parallel

independent. Then there is a direct derivation G=⇒
p

X.

Proof.

Let us assume that the parallel rule is constructed using the following injective mappings

3.6. PARALLEL RULE APPLICATION 45

inL
i : Li → L , inK

i : Ki → K and inR
i : Ri → R for i ∈ I. Let g be the graph morphism

used in the derivation G=⇒
p

X and gi the graph morphisms used in the derivations

G=⇒
ri

Hi such that gi = g ◦ inL
i for i ∈ I

1. For the �rst direction, we show that for i ∈ I (a) the matches gi(Li) exist in G; (b)
gi satisfy the identi�cation and (c) the contact conditions; (d) The corresponding
derivations are pairwise parallel independent.

(a) The existence of gi(Li) The graph morphism gi : Li → G is de�ned by
gi = g ◦ inL

i . Hence, the match gi(Li) is well de�ned as gi(Li) = g(inL
i (Li).

(b) The identi�cation condition satisfaction of gi: Let j ∈ I. To show the
assertion, we suppose that gj(x) = gj(x

′) holds for x, x′ ∈ Lj and show that
either x = x′ or x, x′ ∈ Kj holds true.
Using the de�nition of gj , gj(x) = gj(x

′) implies g(inL
j (x)) = g(inL

j (x
′)).

Hence, the identi�cation condition of g requires that inL
j (x) = inL

j (x
′) or

inL
j (x), in

L
j (x

′) ∈ K. Because inL
j is injective, inL

j (x) = inL
j (x

′) implies x = x′

showing the �rst assertion. The second case is equivalent to inL
j (x) ∈ K.

Hence, there exists y ∈ Kk with k ∈ I such that inL
j (x) = inK

k (y) and
gj(in

K
k (y)) is well de�ned due to K ⊂ L. By the de�nition of the parallel

rule we have inK
k = inL

k |Kk
, which implies inL

j (x) = inL
k (y). The disjoint

union construction requires that inL
j (Lj)∩ inL

k (Lk) = ∅ if k ̸= j implying that
j = k. That is, inL

j (x) = inL
j (y) for all x, y ∈ Kj . Using again the injectivity

of inj , we get x = y which implies that x ∈ Kj . Analogously, if we assume
inL

j (x) ∈ K, there exists y ∈ Kk with k ∈ I such that inL
j (x) = inK

k (y) and
we obtain x′ ∈ Kj by an identical string of arguments showing the second
assertion.

(c) The contact condition satisfaction of gi : Let j ∈ I and consider v ∈
gj(Lj) such that there is an edge e ∈ G− (gj(Lj)− gj(Kj)) for Kj ⊂ Lj with
v = f(e) where f = sG or f = tG. Then we have to show that v ∈ gj(Kj)
holds true.
Considering e ∈ G− (gj(Lj)− gj(Kj)) we obtain that either e ∈ G− (gj(Lj))
or e ∈ gj(Kj) holds true. Using the de�nition of gj , this reveals the two cases
e ∈ G− g(inL

j (Lj)) or e ∈ g(inK
j (Kj)).

In the �rst case, e ∈ g(inK
j (Kj)) implies that e ∈ g(K). Since g satis�es the

contact condition, we obtain v ∈ g(K).

In the second case, e ∈ G − g(inL
j (Lj)) implies that e ∈ G − g(L) or e ∈

g(inL
k (Lk)) such that k ̸= j, k, j ∈ I. Considering e ∈ G − g(L), we can use

that g satis�es the contact condition to obtain v ∈ g(K). If e ∈ g(inL
k (Lk))

such that k ̸= j, then the structure preservation property of g reveals v ∈
g(inL

k (Lk)). Hence, we have v ∈ g(inL
k (Lk)) ∩ g(inL

j (Lj)). Now, by the
disjoint union construction we have inL

k (Lk) ∩ inL
j (Lj) = ∅. Therefore, the

contact condition satisfaction of g requires that v ∈ g(K).

46 CHAPTER 3. GRAPH TRANSFORMATION

In all considered cases we have v ∈ g(K) which implies that there is f ∈ I
such that v ∈ g(inK

f (Kf)). Using the de�nition of parallel rule; which requires

that ink
f = inL

f |Kf
, we get v ∈ g(inK

f (Kf)) = g(inL
f (Kf)). Utilizing the

assumption v ∈ g(inL
j (Lj)) together with the disjoint union construction of

L, we obtain j = f . Hence, we have that v ∈ g(inL
j (Kj)) = gj(Kj), i.e., gj

satis�es the contact condition.

(d) Pairwise parallel independence of gi: Consider two di�erent derivations
G=⇒

rj
Hj and G=⇒

rk
Hk using the morphisms gj and gk, for j, k ∈ I, k ̸= j

respectively. To prove pairwise parallel independence, we show that gj(Lj) ∩
gk(Lk) ⊆ gj(Kj) ∩ gk(Kk).

Suppose y ∈ gj(Lj)∩gk(Lk). Hence, there are xj ∈ inL
j (Lj) and xk ∈ inL

k (Lk)
such that y = g(xj) = g(xk). The disjoint union construction requires that
inL

j (Lj) ∩ inL
k (Lk) = ∅. Hence, the identi�cation condition of g implies that

xj , xk ∈ K. Together, we have xi ∈ K ∩ inL
i (Li) for i ∈ {j, k}.

Let us demonstrate that K ∩ inL
i (Li) = inK

i (Ki) for i ∈ I.

Let us start with the inclusionK∩inL
i (Li) ⊇ inK

i (Ki). The de�nition of paral-
lel rule requires that inK

i (Ki) = inL
i (Ki). Hence, Ki ⊆ Li implies inK

i (Ki) ⊆
inL

i (Li). Since by de�nition of K inK
i (Ki) ⊆ K, K ∩ inL

i (Li) ⊇ inK
i (Ki)

holds true.

The second inclusion can be shown using a proof by contradiction. Let us
assume that there is an item x such that x ∈ K ∩ inL

i (Li) and x /∈ inK
i (Ki).

x ∈ K and x /∈ inK
i (Ki) implies, based on the disjoint construction of K,

that there is f ∈ I with x ∈ inK
f (Kf) such that f ̸= i. According to the

de�nition of parallel rule, x ∈ inL
f (Kf). Hence x ∈ inL

f (Kf), x ∈ inL
i (Ki) and

i ̸= f which is in contradiction to the disjoint union construction of L which
requires that inL

f (Kf) ∩ inL
i (Ki) = ∅ if i ̸= f . Thus, our assumption is false

i.e. K ∩ inL
i (Li) ⊆ inK

i (Ki).

All together, we get y ∈ g(inK
j (Kj)∩ g(inK

k (Kk)) implying that y ∈ gj(Kj)∩
gk(Kk), which shows the assertion.

2. For the second direction we have to show that the match g(L) in G exists and the
gluing conditions of the morphism g are satis�ed.

(a) Existence of the match g(L) in G: To de�ne the function g, we introduce
the mapping inL

i : Im(inL
i)→ Li. Since the injective map inL

i is also surjective

on its image Im(inL
i), the map inL

i represents the inverse of inL
i on this subset.

Hence, we can de�ne g via g(x) := g|inL
i
(x) = gi ◦ inL

i (x) for x ∈ Li and all
i ∈ I.

(b) The contact condition of g: Consider a node v ∈ g(L) such that there
exists an edge e ∈ G− (g(L)− g(K)) and v = f(e) where f = sG or f = tG.
Then we have to show that v ∈ g(K) holds true.

3.6. PARALLEL RULE APPLICATION 47

Given e ∈ G− (g(L)− g(K)), we have that either e ∈ G− (g(L)) or e ∈ g(K)
holds true. Let us consider the two cases separately.

In the �rst case, e ∈ g(K) = g(


i∈I) implies that there exists f ∈ I such that
e ∈ g(inK

f (Kf)) = gf (Kf). Utilizing the structure preservation characteristics
of gf , we can conclude that v ∈ gf (Kf) holds. This implies that there exists
xf ∈ Kf such that v = gf (xf) = g(inK

f (xf)) holds. By construction of

the parallel rule we have inK
f (xf) ∈ K, which in turn allows us to conclude

v ∈ g(K).

In the second case, e ∈ G− (g(L)) implies e ∈ G− (gi(Li)) for all i ∈ I. Now
consider j ∈ I to be arbitrary but �xed. Using the contact condition of gj we
get v ∈ gj(Ki), i.e., v ∈ g(inK

j (Ki) ⊂ g(K). This implies that v ∈ g(K).

We have shown that all cases imply v ∈ g(K) and hence that g satis�es the
contact condition.

(c) The identi�cation condition of g: Consider two elements x, x′ ∈ L such
that g(x) = g(x′). The construction of g implies that there exist a ∈ Li and
a′ ∈ Lj such that g(inL

i (a)) = g(inL
j (a

′)), i.e. gi(a) = gj(a
′) with j, L ∈ I.

Here, we distinguish two cases.

If i = j, then the identi�cation condition of the derivation using the morphism
gi implies that the a = a′ or a, a′ ∈ Ki. Together with the injectivity of inK

i

and the construction of K, the latter fact implies that x = x′ or x, x′ ∈ K.

If i ̸= j, then the parallel independence of the derivations using gi and gj
implies that gi(a) ∈ gi(Ki) and gj(a

′) ∈ gj(Kj), which allows us to conclude
that x, x′ ∈ K.

□

Remark 4

In the graph transformation �eld, the parallelization theorem is one of the most impor-
tant results. It has been stated by Kreowski in [52] as a fundamental characteristic of the
double push-out approach. It has then been used as a basis for many research studies in
the �eld with adaptation to di�erent approaches.
The generalized parallelization theorem proposes a generalization to the parallelization
theorem considering a set of direct derivations rather than only two direct direvations.

Example 12

Figure 3.16 illustrates parallel independent direct derivations and their parallelization.
In the �rst example (above) the two direct derivations, each using the rule delete, are
parallel independent since their matches are disjoint. According to the parallelization
theorem, the rules can be applied in parallel using the parallel rule delete + delete.
Conversely, the existence of a derivation using the parallel rule delete + delete implies
that each component rule delete can be applied separately.
Similarly, the second example illustrates the parallelization using derivations based on
the rule terminate. The three direct derivations, each using the rule terminate, are also
parallel independent since their matches intersect only on gluing graphs.

48 CHAPTER 3. GRAPH TRANSFORMATION

delete

delete

delete+ delete

s s

s

s s

terminate

s

s

terminate

s

s

terminate3× terminate

Figure 3.16: parallel independent direct derivations and their parallelization

3.7. GRAPH GRAMMARS AND GRAPH TRANSFORMATION UNITS 49

3.7 Graph grammars and graph transformation units

3.7.1 Graph grammars

Similarly to other rule-based approaches, in graph transformation the notion of graph
grammar proposes a system in order to generate speci�c languages. A graph grammar
is given by an initial graph, a �nite set of rules and a set of terminal symbols. A graph
grammar speci�es a language composed of all derivations starting from the initial graph
and leading to graphs with labels from the terminal symbols.

De�nition 16 (graph grammar)

A graph grammar is a system GG = (G0, P,∆) such that G0 ∈ GΣ is the initial graph, P
is a �nite set of rules and ∆ ⊆ Σ is a set of terminal symbols. GG speci�es the language
L(GG) = {G ∈ Gσ | G0

∗
=⇒
P

G} which consists of all graphs G labeled over ∆ and which

are derivable from the initial graph G0 using rules in P .

Example 13

Let us consider the following graph grammar ∆-grammar = (G0, P,∆), where G0 cor-
responds to the graph a tripod graph T1 as introduced above. P is a set of two rules
already introduced, terminate and the refine rule. Given a tripod graph the rule refine
replaces it by a graph composed of three tripods connected with each other in such a
way that if one replaces each one with a ∆ graph, one gets a ∆2 graph. The set of ter-
minal symbols contains the unique symbol ∗ which means that only derivations leading
to graphs without labels (in this case without the s-loop) belong to L(∆-Grammar).
The following Figure summarizes the components of ∆-grammar.

50 CHAPTER 3. GRAPH TRANSFORMATION

Sier-grammar:

G0: s

P :

terminate : s −→

refine : s −→

s s

s

σ = {∗}

It is obvious that the language of the grammar Sier-grammar contains Sierpinski graphs,
but not only, because there is no guarantee that the re�nement is done equally in each
direction. Figure 3.17 displays an example of a graph in the Sier-grammar language.

3.7.2 Graph transformation units

The concept of transformation units has been introduced by Kreowski and Kuske [55]. It
has been established during the last two decades as a modeling and structuring concept
with several applications (see e.g., [61, 55, 56, 59, 58, 44, 57]). The concept can be con-
sidered as a generalization of graph grammars o�ering more �exibility in the speci�cation
of initial and terminal states by means of graph class expressions, but also permitting
more control over the derivation process by means of control conditions. Graph transfor-
mation units can therefore be used for controlled computations. For more details about
the expressive power as well as the theoretical background of graph transformational
units see, e.g., [59, 62].

Control conditions

In order to regulate the graph transformation process restricting the non-determinism of
rule application, control tools are needed. In the following, control conditions are intro-
duced to ful�ll this aim. A control condition permits the application of rules according
to a given schemata. These can be based for example on their priority or by specifying a
�xed sequence of rules that are applied sequentially. Another type of control conditions

3.7. GRAPH GRAMMARS AND GRAPH TRANSFORMATION UNITS 51

Figure 3.17: An example of a graph that belong to the Sier-grammar language.

52 CHAPTER 3. GRAPH TRANSFORMATION

restricts the matching process. It restricts the set of all matches of a given rules based
on some constraints. More formally,

De�nition 17 (control condition)

A control condition C over a set of identi�ers ID is any syntactic entity over ID that
speci�es a set SEM (C) of derivations.
Typical control conditions are regular expressions, priorities, as-long-as-possible and
maximal parallelism.

1. Let P be a set of rules (names), regular expressions over P specify string languages
over P . By de�nition, the constants ∅, lambda and r ∈ P are regular expressions
and the composites e1; e2, e1|e2 and e∗ are regular expressions if e1, e2, e are regular
expressions. A derivation obeys a regular expression e if the application sequence
of the derivation belongs to the language of e denoted L(e). (i.e SEM(e) =
{G = G0=⇒

r1
G1 · · ·=⇒

rn
Gn = G′ | r1 · · · rn ∈ L(e)}. In other words, e1; e2 allows

a derivation if an initial section is allowed by e1 and the remaining section by
e2 (i.e., L(e1; e2) = L(e1) · L(e2)) e1|e2 allows a derivation if e1 or e2 allows it
(i.e., L(e1|e2) = L(e1) ∪ L(e2)); e∗ allows a derivation if it is a sequence of sub-
derivations each allowed by e (i.e., L(e∗) = L(e)∗). The expression r ∈ P requires
that r is applied (i.e., L(r) = {r}); lambda allows any derivation of length 0 (i.e.,
L(lambda) = {id | G=⇒

id
G′}); ∅ forbids any derivation (i.e., L(∅) = {})

2. Given a regular expression e the notation e! requires that e is applied as long as
possible. In other words e! speci�es the set of all derivations G

∗
=⇒G′ ∈ SEM(e∗)

such that there is no G′′ ∈ G with G′ ∗
=⇒G′′ ∈ SEM(e).

3. Priorities are another typical control condition. Let e1 and e2 be two regular
expressions over P . The priority relation denoted by e2 > e1 requires that a
derivation is allowed by e1 only if there is no derivation allowed by e2.

4. Maximal parallelism, which is denoted by || ||, is a control condition that requires
the application of a rule with maximum parallelism. In other words, given a rule
r ∈ P , ||r|| requires that all possible applications of r that can be performed
in parallel (pairwise parallel independence according to Theorem 1) using r are
performed in parallel.

Further examples of control conditions are introduced in the next chapter. The class of
all control conditions is denoted by C.

Control conditions can be composed by the operator& with SEM (C1 & C2) = SEM (C1)∩
SEM (C2) for all C1, C2 ∈ C.

Graph class expression

Another important concept in graph transformation is the notion of a graph class ex-
pression. It allows the speci�cation of a class of graphs. This is useful, for example, to
de�ne initial or terminal states of a graph transformational process.

3.7. GRAPH GRAMMARS AND GRAPH TRANSFORMATION UNITS 53

De�nition 18 (graph class expressions)

A graph class expression is any syntactic entity X that restricts the class GΣ to a subclass
SEM (X) ⊆ GΣ. The class of all graph class expressions is denoted by X .

� Each graph G ∈ GΣ is a graph class expression with SEM (G) = {G}.

� Graph properties like unlabeled with SEM (unlabeled) = G{∗} or simple with SEM (simple)
is the set of all graphs having no multiple edges or loops.

Graph class expressions can be composed by the operator & with SEM (X1 & X2) =
SEM (X1) ∩ SEM (X2) for all X1, X2 ∈ X .
In the following, graph transformation units are introduced.

De�nition 19 (graph transformation unit)

A graph transformation unit is a system gtu = (I, P, C, T) where I and T are graph class
expressions that specify the initial and the terminal graphs respectively, P ⊆ R is a set
of rules, and C ∈ C is a control condition over P .

The semantics of a graph transformation unit gtu = (I, P, C, T) consists of all derivations
G

∗
=⇒
P

H allowed by C such that G ∈ SEM(I) and H ∈ SEM(T).

Example 14

Figure 3.18 gives an example of a unit that produces Sierpinski triangles. The initial
graphs are speci�ed by the graph class expression X-graph. SEM(X-graph) contains
all graphs that can be constructed recursively as follows: The tripod graph T as intro-
duced above belongs to SEM(X-graph) and for each graph in SEM(X-graph) the result
of the derivation using the rule refine (as introduced above) with maximal parallelism
belongs to SEM(X-graph). Similar to the Sier-grammar, the set of rules P contains the
two rules terminate and refine. The control condition requires that the rule refine
is applied with maximum parallelism. This is repeated arbitrarily often. After that,
the rule terminate is applied with maximum parallelism. The graph class expression
forbidden(loop) requires that the terminal graphs have no loops.

It can be easily shown that the graph transformation unit Sier-unit generates Sierpinski
triangles. Given a start graph G0 ∈ SEM (X-graph), the application of refine with max-
imum parallelism divides all present tripods in the same time. Note that for each tripod
in G0 one can �nd six di�erent matches of the rule refine. However, the Parallelization
theorem requires that only one is chosen because they are not parallel independent. Oth-
erwise, every two derivations having matches in two di�erent tripods in G0 are parallel
independents. This includes of course the case where two matches have a common node,
because it belongs to the image of the gluing graph of both matches. The re�nement
is repeated any number of times, after that the rule terminate is applied with maximal
parallelism to change each present tripod in the current graph to a triangle. This is
possible because similarly to refine, every two terminate derivations with two di�erent
tripods as matches are parallel independent. Figure 3.19 displays a Sierspinski triangle
generated by the unit Sier-unit in seven steps. Starting with a graph composed by a

54 CHAPTER 3. GRAPH TRANSFORMATION

Sier-unit:

I : X −Graph

P :

terminate : s −→

refine : s −→

s s

s

C : ||refine||∗ ; ||terminate||

T : forbidden(loop)

Figure 3.18: The graph transformation unit Sier-unit.

unique tripod the computation is performed by applying the rule refine with maximal
parallelism six times. At the end the rule terminate is applied with maximal parallelism.
For more examples of graph transformational units the reader is referred to the next
chapters. Indeed graph transformation units play a very important role in the de�nition
of graph-transformational swarms. To be more precise, an adapted version of graph
transformation units are employed to specify the members of a swarm and their kinds.

3.8 Graph transformation tools

The aim of this section is to choose a graph transformational tool suitable for the pur-
poses of this research work. A tool that permits, amongst others, to model parallel rule
applications. It would be nice to also have structuring possibilities in order to model
graph transformation units. A wide range of tools exists in the �eld of graph transforma-
tion. This section examines three of the most established tools. The Attributed Graph
Grammar System (AGG), Graphs for Object-Oriented Veri�cation (Groove) and Graph
Rewrite Generator (GrGen.Net). All three tools use typed attributed graphs. This is an
extension to graphs in such a way that the nodes and edges are from certain types and
they can have additional information. It is more e�ective to search in a subset of items
that have a given type instead of searching in all sets of nodes or edges based on labels

3.8. GRAPH TRANSFORMATION TOOLS 55

Figure 3.19: A Sierpinski triangle graph generated using the unit Sier-unit.

56 CHAPTER 3. GRAPH TRANSFORMATION

only. Furthermore, such a solution also makes it possible to visualize certain types with
certain properties such as colors. For a formal introduction to typed attributed graphs
see for example [30].

3.8.1 AGG: The attributed graph grammar system

AGG [96] is an environment tool for attributed graph transformation. It is implemented
in Java and permits the utilization of Java objects for attributes and attributed condi-
tions. This has a double e�ect. On one side, it allows one to easily de�ne a wide range
of computational solutions based on Java libraries and features, but it may also provoke
arbitrary side e�ects because the Java semantics is not covered by a formal foundation.
Every node and edge in a graph is associated with exactly one type from a given type set.
The type is speci�ed by a name and a graphical representation determining the shape,
color etc. By default and internally, AGG uses the single-pushout approach. However,
double-pushout is also supported. It is also possible to use negative application contexts.
In addition to the manipulation of nodes and edges, the graph rules in AGG may per-
form attribute computations. Here it is also possible to call arbitrary Java methods in
attribute expression.
The tool's environment provides a graphical interface for editing graphs and rules as
well as for visualization of computation results. Moreover, it also provides an integrated
textual editor for Java expressions. AGG system solves the problem of graph matching
(i.e subgraph homomorphism problem) using a representation as a constraint satisfaction
problem (CSP). It splits the solution algorithm from the graph model. This approach
allows the use of di�erent graph models without a�ecting the CSP solution algorithm.
The application control in AGG is based on the notion of layers. Layers allow the
speci�cation of priorities between rules. Each layer contains a set of rules and has a
priority. The computation process starts with layer 0 and applies all its rules as long as
possible. Then it continues with the rules of layer 1, etc..

3.8.2 Groove: Graphs for object-oriented veri�cation

Groove is a graph transformation tool that manipulates edge-labeled graphs without
parallel edges. It is possible also to assign types to nodes and edges. It is based on the
single-pushout approach with negative application conditions. However, it supports the
double-pushout approach too.
Its main feature, compared to other graph transformation tools, and as the name already
indicates, is its veri�cation capability. Groove permits an exploration of the entire state
space of reachable graphs. The user can choose di�erent search strategies such as depth-
�rst, breadth-�rst or linear. Moreover, Groove o�ers the possibility to verify properties
speci�ed in Computation Tree Logic (CTL) on the state spaces generated by a graph
grammar.
Groove provides a precise control that speci�es the allowed order of application of the
rules in a given grammar in form of a control program. A control program speci�ed by
a language that contains, amongst others, looping, random choice between rules and
simple function calls. In addition, the rules in Grooves have priorities which can be

3.8. GRAPH TRANSFORMATION TOOLS 57

Figure 3.20: Screenshot of the AGG software.

58 CHAPTER 3. GRAPH TRANSFORMATION

Figure 3.21: Screenshot of the Groove Simulator.

set as properties. The priorities also provide an additional scheduling control over rule
applications. At the level of rules it is also possible to de�ne sophisticated labeling that
controls the matching behavior. To give an example, a label can be a regular expression
over labels. Thus, an edge labeled by l1|l2 is matched if it matches either l1 or l2.
Another feature of Groove is its graphical user interface which is called the simulator.
It is implemented in Java with the aim to be useable by a large group of users. It allows
graphical editing of rules and graphs and integrates additional functionality of a model
checker with interactive exploration possibilities.

3.8.3 GrGen.Net: Graph rewrite generator

GrGen.Net is a graph transformation tool with a focus on execution e�ciency. Based
on Benchmark tests, it is indeed the fastest of the existing graph transformational tools
(see, e.g., [37]). The e�ciency of GrGen.Net is a result of the way the matching problem
is represented and solved. The subgraph matching is performed according to a search
plan allowing its expression as an optimization problem. The solution is then based on
a heuristic method that employs knowledge over the host graphs. The implementation
in .NET supports the rapid execution of GrGen.Net implemented programs.
The graphs in GrGen may be typed and attributed having directed as well as undi-
rected edges. It is also possible to de�ne multiple inheritances on node and edge types.
Furthermore, GrGen.Net supports the speci�cation of negative application conditions as
well as sophisticated attribute computations over rules. The concept of graph transfor-
mation implemented in GrGen.NET follows the single-pushout approach. Alternatively,
it supports the implementation of solutions based on the double-pushout approach.

3.8. GRAPH TRANSFORMATION TOOLS 59

Figure 3.22: Screenshot of the graphical interface of GrGen.Net

Control over the application of rules is speci�ed by so-called regular graph rewrite se-
quences (RGS). RGS are synthetically related to regular expressions over rules including
other expressions such as repetition of application as-long-as-possible or for a �xed num-
ber of steps. Another particularity of GrGen is the possibility to simulate simultaneous
application of all matches of a rule.
The speci�cation of graph grammars and application controls are based on script edit-
ing. However, it is possible to visualize the computation steps in a graphical interface.
Figure 3.22 shows a screenshot displaying the result of a computation step of the graph
transformation unit Sier-unit.

3.8.4 Comparison between the three tools

All three tools o�er a wide range of utilities. However, within the scope of this work,
parallelism plays a very important role. GrGen.Net is the only tool that allows to at
least simulate parallelism. Given a rule r, it is possible in GrGen.Net to apply this rule
with simulated maximum parallelism using a speci�c control condition as follows: The
underlying engine searches for all matches of r �rst and then applies the rule sequentially
using those matches. Moreover, the syntax of the control language in GrGen.Net seems

60 CHAPTER 3. GRAPH TRANSFORMATION

to bear the greatest similarity to that of graph transformation units. Another advantage
of GrGen.Net compared to the two other tools is the possibility to use rules as structuring
devices. A rule can call other rules to be executed following a control condition. All these
factors contributed to choosing GrGen.Net as the primary tool in which the developed
solutions in this thesis are implemented. The next section introduces the �rst example of
an implementation showing the advantages of the tool as well as the problems occurring
regarding parallelism.

3.9 First implementations

This section starts the discussion of the possibility to implement the components intro-
duced in this thesis in GrGen.net focusing on the control condition maximal parallelism.
Other components are discussed in the next chapters.

The unit Sier − unit is taken as illustrative example. The codes in Listing 3.1 are the
direct translation of the rules refine and terminate in Figure 3.18. The lines between 2
and 5 and between 17 and 20 specify the left-hand side of each rule. For example, Line
17 stands for a node named s that has an outgoing edge called one with a target x. Lines
18 and 19 complete the tripod construction. Line 20 requires that the s-node has a loop.
After the keyword modify, the modi�cation that should be performed on the underly-
ing match is described. Two edges are deleted, and 5 new nodes are created. s1 and s2
represent the centers of the new tripods. The nodes are connected with each other to con-
struct an X-graph composed of three tripods as in the right hand side of the rule refine.

The translation of the control condition of Sier-unit is realized partially as displayed in
Listing 3.4. Partially because there is not a direct expression of arbitrary repetition in
GrGen.Net. For that, and for the �rst attempts, �xed numbers of repetitions are chosen
to perform the �rst experiments. In this example, 6 repetitions of maximal parallel
application of re�ne is allowed. Maximal parallelism is translated using the operator
"[]" in GrGen.Net. The expression [r] in GrGen.Net, called maximal matching, requires
that all possible matches of r are chosen and then the rule is applied (sequentially) with
respect to all these matches.
The problem here is that two derivations can be applied without being parallel indepen-
dents. To illustrate this e�ect, let us consider the application of the rule refine with
maximal matching in GrGen.Net to an initial graph consisting of a unique T -graph.
Figure 3.23 shows the result of this application. The �gure also shows how edges and
nodes are matched in the start graph. This is one of the useful features of the GrGen.Net
tool. As expected, there are six possible matches and the execution does not take into
consideration the parallel independence of derivations.

Listing 3.1 The rules of the unit Sier -unit

3.9. FIRST IMPLEMENTATIONS 61

1: rule terminate1 (){
2: s:Node -one:Edge ->x:Node;
3: s-two:Edge ->y:Node;
4: s-three:Edge ->z:Node;
5: s-loop:Edge ->s;
6: modify{
7: delete(one);
8: delete(two);
9: delete(three);

10: delete(s);
11: y-->x;
12: x-->z-->y;
13: }
14: }
15:
16: rule refine1 (){
17: s:Node -one:Edge ->x:Node;
18: s-two:Edge ->y:Node;

19: s-three:Edge ->z:Node;
20: s-->s;
21: modify{
22: delete(two);
23: delete(three);
24: s-->a:Node;
25: s-->b:Node;
26: s1:Node -->a;
27: s1 -->y;
28: s1 -->c:Node;
29: s1 -->s1;
30: s2:Node -->b;
31: s2 -->c;
32: s2 -->z;
33: s2 -->s2;
34: }
35: }

Listing 3.2 The control condition (control1) in GrGen.Net Sier -unit

1: debug exec(init;> [refine1][6]); > [terminate1])

(parallel) application

inconsistent with Theorem 1

the corresponding matches

Figure 3.23 Derivation using the simulated maximal parallelism of the rule refine in
GrGen.Net without adaptation.

62 CHAPTER 3. GRAPH TRANSFORMATION

To overcome this unwanted e�ect, the notion of edge classes in GrGen.Net is used1.
Three edge classes are de�ned One, Two and Three. The tripod subgraphs are adapted
such that each outgoing edge up to the loop belongs to a di�erent class. In this way, for
the rules refine and terminate there is one possible match in each T -subgraph. The
adaptation is in Listings 3.3 and 3.4. Figure 3.24 gives the output of GrGen.Net after
adaptation for the �rst two steps. In each step the maximal parallel application of rule
refine is truly simulated.

Listing 3.3 The rules of the unit Sier -unit with adaptation

1: rule terminate (){
2: s:Node -one:One ->x:Node;
3: s-two:Two ->y:Node;
4: s-three:Three ->z:Node;
5: s-loop:Edge ->s;
6: modify{
7: delete(one);
8: delete(two);
9: delete(three);

10: delete(s);
11: y-->x;
12: x-->z-->y;
13: }
14: }
15:
16: rule refine (){
17: s:Node -one:One ->x:Node;
18: s-two:Two ->y:Node;
19: s-three:Three ->z:Node;
20: s-->s;
21: modify{
22: delete(two);
23: delete(three);
24: s-:Two ->a:Node;
25: s-:Three ->b:Node;
26: s1:Node -:One ->a;
27: s1 -:Two ->y;
28: s1 -:Three ->c:Node;
29: s1 -->s1;
30: s2:Node -one2:One ->b;
31: s2 -:Two ->c;
32: s2 -:Three ->z;
33: s2 -->s2;
34: }
35: }

Listing 3.4 Control Sier -unit with adaptation

1Note that it is also possible to choose labeling as adaptation strategy.

3.10. SUMMARY 63

1: debug exec(init;>
2: [refine][6]); >
3: [terminate])

||refine|| ||refine||

Figure 3.24 A sample computation of Sier-unit

3.10 Summary

This chapter has presented an overview of graph transformation providing the basic
elements and methods needed in the current research work. In the chosen framework,
graphs are directed edge-labeled. The transformation of graphs is performed based on
double-push-out rule applications. In order to extend the modeling �exibility, positive
and negative contexts are allowed. They restrict the applicability of a given rule based
on surrounding items in the underlying match.

One of the characteristics of graph transformation is the systematic formulation of
parallelism of two derivations by means of the parallelization theorem. This chapter
has proposed a generalization of this theorem for a set of derivations. This can also be
considered as one of the main contributions of this research work.

In order to regulate the rule applications graph transformation units are used as
structuring concept. A graph transformation unit is a computational device that
contains a set of rules, a control condition and two graph class expressions that specify
the initial and terminal class of graphs.

Three software tools have been compared to determine which one is more suitable for
the purposes of this work. GrGen.Net seems to be more suitable regarding parallelism.

64 CHAPTER 3. GRAPH TRANSFORMATION

However, it should be used carefully because the engine does not check the parallel
independence of derivations.

This chapter started to explore how to implement the introduced components in Gr-
Gen.Net. The implementation of the control condition maximal parallelism was illus-
trated and discussed.

Chapter 4

Graph-transformational swarms

This chapter introduces graph-transformational swarms as a novel approach to swarm
computation. Chapter 2 introduced swarm computing by means of the inspiration from
nature and the major existing methods. Chapter 3 provided a graph-transformational
approach where the rules can be applied in parallel. Graph-transformational swarms
combines the knowledge of the two previous chapters. It is based on the ideas
of swarms and swarm computing and is formulated using the capabilities of graph
transformation. The key is that the framework of graph transformation provides the con-
cept of parallel rule application to formalize the simultaneous actions of swarm members.

A graph transformational swarm consists of members all of the same kind or of di�erent
kinds where the number of members is �xed by a given size. Kinds and members are
modeled as graph transformation units that consist of a set of graph transformation
rules specifying the capability of members and a control condition which regulates
the application of rules. The members of a swarm act on an environment, which is
represented by a graph, by applying their rules.

This chapter is structured as follows. Section 4.1 summarizes and combines the
main ideas from the previous chapters in order to de�ne the components needed for
graph-transformational swarms. Section 4.2 provides a formal de�nition of graph-
transformational swarms and their computation. In Section 4.3 two examples are given
to illustrate the concept: a very simple ant colony and a swarm that computes Hamilto-
nian cycles. Section 4.4 extends the notion of control conditions in order to specify the
stochastic matching of rules. The way how to use the developed framework in practice
is discussed in Section 4.5. It studies the modeling and the implementation of the com-
ponents of graph-transfromational swarms using di�erent concepts. Finally, a summary
is provided in Section 4.6.

4.1 The main ideas of swarms

This section combines the ideas and notions described in the two previous chapters sum-
marizing the main components needed to introduce graph-transformational swarms in

65

66 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

the next section. The methodical approach comprises (1) the knowledge gained from ob-
servations of swarms in nature, (2) the analysis of the major swarm computing methods
and (3) the formal methods of graph transformation. Thus, the following description of
the main ideas conforms to this approach. For each component, �rst the biological in-
terpretation is given, followed by the solutions proposed in the major swarm computing
approaches ant colony optimization (ACO), particle swarm optimization (PSO) and cel-
lular automata (CA), and �nally, the corresponding graph-transformational formulation
is proposed. The description is accompanied by illustrations using the components of a
simple ant colony example, which models ants that walk in a graph searching for food.
The details of this example are introduced incrementally in this section.

4.1.1 Environment

The environment plays an important role in swarm behavior. It is used for example
for indirect communication between the swarm members. This is very obvious in the
foraging behavior of ant colonies. Ants use pheromone, which they drop down on the
surface to communicate with each other in a colony. In Bird �ocks, the individuals
which act in the air can keep a permanent eye-contact with their neighbors. In the
medium water, which is the environment of �sh schools, visualization is more di�cult.
However, water facilitates the transmission of vibration, making it possible for the
individuals in the school to perceive the movement of other �shes or external individuals
or obstacles in the neighborhood.

In swarm computing, such environments are modeled in order to play similar roles. In
ACO for example, the environment which is also called the search space is modeled as
a graph where "arti�cial" pheromone values are assigned to the edges. These values are
updated during the computing process. In PSO and CA, the environment is encoded
using data structures that permit a speci�cation, as well as an easy update of the
neighborhood which is changed during the computing process. ACO is the concept that
is most consistent with the ideas of graph transformation, since in ACO the environment
also corresponds to a graph. The question that should be handled in this research
work is how to encode the environments of other swarm computing approaches where
usually graphs are not explicitly used as data structure. This work is based on the
assumption that graphs are powerful enough to permit such a generalization, o�ering
several advantages of the same time. In Chapter 5 it will be demonstrated how graphs
can be used to represent the environment in PSO and CA.

The underlying framework uses the notion of graph class expression as introduced in
previous chapter (precisely, on page 52) to specify the environment. Roughly spoken,
a graph class expression is any expression that speci�es a class of graphs. Thus it is
possible to de�ne not only a unique graph but also to specify a whole class of graphs
that a swarm can have as start graph "initial environments". Furthermore, graph class
expressions are used to specify the goal of a swarm. In addition to the examples already
given, the following typical examples of graph class expressions are used in the context
of swarms:

4.1. THE MAIN IDEAS OF SWARMS 67

Figure 4.1 A graph example in the graph class speci�ed by the graph class expression
some-{nest , food}-looping((unlabeled & simple))

� SEM (required(X)) for X ∈ X contains all graphs with a subgraph in SEM (X).

� SEM (op(X)) for some graph operator op and X ∈ X contains all graphs ob-
tained by the application of the operator to graphs in SEM (X). Explicit ex-
amples of such operators are all-∆-looping, some-∆-looping for ∆ ⊆ Σ and
some-{nest , food}-looping . Applied to G ∈ GΣ, the �rst operator adds exactly
one δ-loop for some δ ∈ ∆ to each node of G, the second operator adds ex-
actly one δ-loop to some nodes and the third operator adds some nest-loops and
some food-loops to some nodes. Figure 4.1 displays an example of a graph in
SEM(some-{nest , food}-looping((unlabeled & simple))).

� SEM ((forbidden(H)) for H ∈ G contains all graphs without a subgraph isomorphic
to H.

4.1.2 Rules

As a direct consequence of the self-organization theory (Section 2.1), which is established
to explain swarm behavior in nature, the members of a given swarm follow a very
limited number of rules. Furthermore, the rules are based on local information. That is,
none of the members have an overview of the whole swarm and there is no entity that
controls the behavior of the swarm centrally. However the behavior of animals cannot
be fully explained by the strict compliance to such local rules. For example, in ant
colonies, the rule to choose the paths with the best pheromone value is mostly heeded by
the ants but not always. Similarly to other natural phenomena, scientists consider this
behavior as a stochastic process and has therefore been formalized using parametrized
probabilistic functions. That is, functions that contain noise terms and can be adapted

68 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

to generate results �tting a given model. In many studies, the simulated behaviors are
astonishingly good. They statistically correspond to the original behavior at least within
a speci�c experimental setup (see Section 2.1). In summary, the rules of swarms in
nature exhibit two important aspects, namely the locality principle and non-determinism.

The rules in swarm computing approaches are related to this and accordingly share two
characteristics. First, there is a kind of non-determinism expressed in the computational
models by probabilistic functions. This is very important in terms of optimization
purposes. The generated noise promotes the exploration of the search space and permits
the avoidance of local optima. The second characteristic is the locality aspect of rules.
That is, the rules also use local information from the local region in the environment
(such as in ACO) or from the neighbors (such as in in CA and in PSO).

The rules and their applications in graph transformation exhibit properties that corre-
spond with the required characteristics of swarms and swarm computing. The rules in
graph transformation are speci�ed by a left hand side graph L, a gluing graph K and
a right hand side graph R, such that K is a common subgraph of L and R. The �rst
step of the application of a rule to a given graph G consists of �nding a match of L in
G. The good thing here regarding the swarms requirement is that the matching pro-
cess is non-deterministic. However, in some cases something more than arbitrary choice
is needed. In order to model stochastic processes, control tools based on probabilistic
calculations are required. As described in the previous chapter, control conditions are a
well suited method to break the non-determinism in rule application. The question now
is: is it possible to develop control conditions that produce stochastic behavior in the
chosen graph transformation approach? Section 4.4 answers this question proposing such
kind of control conditions. To continue our description and to show the locality principle
when applying graph transformational rules, let us consider the rule in Figure 4.2 which
is called food. It is used along with other rules for modeling a simple ant colony. The

found:
A

food

⊇

food

⊆
A

food

food

Figure 4.2 A graph transformation rule that models the behavior of an ant A when it
�nds food

rule food models an ant A that �nds food and returns back by reversing the direction
of A-edge and creating a parallel food edge. This example shows that given an ant A
the application of the rule depends only on the information in the neighboring edges and
nodes, namely in this case a node with a food-loop. The application leads to changes
solely of the neighborhood. Here the edge labeled by A is reversed and a parallel edge
is created. In general, the rules that will be used in swarms follow this schemata. The
members of swarms are assigned to an edge or a node or more generally a small subgraph.
The local information corresponds to the state of the neighboring edges and nodes and

4.1. THE MAIN IDEAS OF SWARMS 69

the local changes consist of creating or deleting neighboring edges or nodes.
In this way the locality principle is satis�ed in an elegant manner. Note that all these
considerations hold true for rules with application contexts (as introduced in 3.5), since
the application context can be very well speci�ed in a prede�ned neighboring region of
the left hand side of a rule.

4.1.3 Kinds and members

Another important component in swarms is the way in which the individuals are
organized. As described in Section 2.1, an ant colony is usually organized in subgroups:
workers, drones and queens. Every subgroup has prede�ned tasks in the swarm. Many
other insects that exhibit swarm behavior, such as bees, wasps and termites, are
organized in similar structures.

The description of the structural organization of insects above gives the impression
that the computing methods inspired by these should also o�er the possibility to
de�ne subgroups. However, this is not the case, at least in the major swarm comput-
ing approaches. ACO for instance is inspired by the foraging behavior of a colony.
In this behavior, only one subgroup is directly involved, namely the subgroup of workers.

Despite of the prevailing approach which assumes that all members should have the same
role in a swarm, it is decided in the present thesis to o�er the possibility that members
can have di�erent tasks. In addition to being inspired by swarms in nature as mentioned
above, this choice is also motivated by the current trend in the application of swarm
computing. It appears to be very promising to combine one swarm computing method
with other swarm computing methods or with other computing approaches such as fuzzy
logic, evolutionary algorithm or arti�cial neural networks to solve complex problems. The
resulting solutions are also known as Hybrid swarm algorithms (see for example [68]).
These sort of solutions can be interpreted as a swarm composed of members that have
di�erent tasks. Every involved method speci�es a kind of task.
The notion of Kind is introduced below in order to re�ect this idea.
A kind consists of a simple graph transformation unit which is an adapted version of the
graph transformation units introduced in the last chapter. Simple transformation units
are graph transformational units without initial and terminal speci�cations.

De�nition 20 ((simple) graph transformation unit)

A (simple) graph transformation unit is a pair gtu = (P,C) where P ⊆ R is a set of
rules, and C ∈ C is a control condition over P .

Section 3.7.1 has introduced regular expressions, as-long-as-possible and priorities as
typical control conditions. Here an additional control condition which is needed in the
context of graph transformational swarms is given. free is a control condition that
allows all derivations using the rules in P without restrictions. This control condition
is particularly useful for inducing transformation units from rules. More precisely, each
set P ⊆ R of rules induces a graph transformation unit speci�ed by gtu(P) = (P, free).
For gtu({p}) with p ∈ R we write gtu(p) for short.

70 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

r�gure4.3 illustrates the notion of kind. The kind ant is speci�ed by a unit composed
of four rules and a control condition. The ant A wakes up by accessing edges that exit
nodes with nest-loops. Then it forages for food by passing one edge and marking the
old position. If A reaches a node with a food -loop, it starts to return, retraveling along
its own marked path while marking this path with the label food. The control condition
requires that the ant A wakes up at the beginning, but never again. Moreover, the
application of the return-rule has higher priority than the found -rule, which in turn has
higher priority than the forage-rule. Hence, the ant stops foraging whenever it �nds
food. From there on it returns along the path labeled with a because the return rule has
the highest priority.

ant

rules:

wakeup:

nest

⊇

nest

⊆
A

nest

forage:
A

⊇ ⊆
a

A

found:
A

food

⊇

food

⊆
A

food

food

return:
a

A

food

⊇ ⊆
A

food food

control: (wakeup ; (forage | found | return)∗) & (return > found > forage)

Figure 4.3 The kind ant

Given a de�ned kind, a set of related members can be generated by relabeling.

De�nition 21 (related unit)

A unit gtu is related to a unit gtu0 if gtu is obtained from gtu0 by relabeling. For a
mapping rel : Σ → Σ, the relabeling of gtu0 is the unit rel(gtu0) = (rel(P0), rel(C0))
where the relabeling replaces each occurring x ∈ Σ in the components P0 and C0 of gtu0

by rel(x). The set of units related to gtu0 is denoted by RU (gtu0).

That is, given a kind k speci�ed by a unit gtu0 one can generate an arbitrary number of
members1 in RU (gtu0). For example, one can create n ∈ N>0 members of kind ant each
called anti for i ∈ [n]. Such that anti is obtained by replacing each occurrence of A and
a respectively by Ai and ai. When designing a kind, it is important to determine which

1The size of a kind will be introduced more formally in the next section

4.1. THE MAIN IDEAS OF SWARMS 71

labels are speci�c for the members and which are not in early stage. Generally, the label
that speci�es the name of a kind is relabeled (in our example, this corresponds to the
label A). The relabeling or not relabeling of created items can have crucial consequences
for the cooperation between the members. In our illustrative example, if the marks a
are not relabeled, then an ant in the swarm follows not only its own created path when
returning but follows any other path from any other ant in the swarm.

4.1.4 Parallelism

A second consequence of the self organization theory is that swarm members in nature
act simultaneously. The animals are active all the time and there is no waiting for input
from other members or other entities.
In ACO and PSO this characteristic, which in computer science terminology can be
termed as parallelism, is not systematically speci�ed. Although there is quite a lot
of research that proposes parallel solutions based on both approaches. The proposed
solution approaches are speci�c for a given problem and lack general methodology (For
a general overview of the parallelization strategies of ACO and PSO see, e.,g., [75, 105])
In CA, parallelism is simple but well speci�ed. All cells act in parallel reacting on
neighboring information. The parallelism in CA is responsible for the emergent behavior
that is subject to research in CA theory.
Parallelism in our approach is speci�ed by a formal semantics. Its description is therefore
precise and unambiguous. The speci�cation is provided by the generalized parallelization
theorem as introduced in the last chapter. Amongst other things, the theorem speci�es
when two or more rules can be applied in parallel. It is therefore possible to model
distributed systems and determine how their computations can be simulated sequentially.

A1
foodA2

A1

food

foodA2

A1
food

food

A2

A1

food

food

food

A2
found

found

found+found

Figure 4.4 parallel application of the rule found by two di�erent ants

72 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

To illustrate this, let us consider again the example of the rule found but this time
performed by two di�erent ants A1 and A2 in parallel. Lets assume that the two ants
are both in front of food-loop i.e., both can apply their found rules. Figure 4.4 displays
such a situation. Because the rules change only the edges labeled by the names of the
ants, each ant can apply its own found rule in parallel. If in contrast it is assumed
that the rule deletes the food-loop, then the parallel application in this situation is
not possible. That is, only one member can apply its rule found. Due to the explicit
speci�cation of such situations, there is an obligation to deal with situations where it
is possible that members can enter con�icts. It will be shown how it is possible to
deal with such situations based on di�erent examples. Furthermore, later chapters will
propose distributed versions of ant colony optimization and particle swarm optimization
developed in a natural way.

4.1.5 Cooperation

Referring again to self-organization theory, something like cooperation does not exist
in swarms in nature. Or at least there is not an explicit cooperation from the point of
view of the individuals in a swarm.

In ACO and PSO, as well as in other heuristic optimization methods in general, the
search for optimal (or good enough) solutions consists of the repetition of certain
procedures until a terminal condition is met. This repetition can alternate with
some adaptations based on additional local search methods. After each repetition
the solutions found so far are evaluated and the best solutions are updated. This
regulation of the computation process as well as the alternation between di�erent kinds
of procedures can be considered as a sort of cooperation between di�erent procedures.

The generalization approach o�ers the possibility to formulate such a cooperation. For
that, the notion of cooperation conditions is employed.
A cooperation condition is any control condition over kinds. It speci�es when members
of a given kind are allowed to apply their rules. Typical cooperation conditions are
introduced in the next section.

Table 4.1 summarizes the main ideas of swarms and swarm computing and their in-
terpretation based on a graph-transformational view. A swarm acts in an environment
(graph), starting in an initial one (graph class expression). A swarm consists of members
(related units) of some kinds (graph transformation units). The members follow simple
rules (graph transformational rules), interact simultaneously (parallel rule application)
and in a coordinated way (control condition). A swarm may have a goal (graph class
expression)

4.2. GRAPH-TRANSFORMATIONAL SWARMS AND THEIR COMPUTATIONS73

main components of swarms

and swarm computing

graph transformational

interpretation

environment graph
initial environment graph class expression
rules graph transformation rules
kinds graph transformation units
members related units
simultaneous action parallelism
cooperation cooperation condition
goal graph class expression

Table 4.1 The main components of swarms and swarm computing and their graph
transformation counterparts

4.2 Graph-transformational swarms and their computa-

tions

This section introduces graph-transformational swarms and their computations. The
swarm members act simultaneously in a common environment represented by a graph.
All the members of a swarm may be of the same kind or of di�erent kinds to distinguish
between di�erent roles members may play. The number of members of each kind is
given by the size of the kind. To increase the �exibility of this notion, multidimensional
swarms are also allowed by means of size vectors. In this case, the number of members
of the respective kind is the product of the size components. Given a size vector
(n1, . . . , nl) ∈ Nl

>0, the index vectors (i1, . . . , il) with ij ∈ [nj] for j ∈ [l] are used
to identify the members of the swarms.2 While a kind is speci�ed as a simple graph
transformation unit, the members of a kind are modeled as units related to the unit of
this kind making sure in this way that all members of some kind are alike. A swarm
computation starts with an initial environment and consists of iterated rule applications.
It requires massive parallelism meaning that each member of the swarm applies one of
its rules in every step. In other words, each member acts sequentially according to its
speci�cation while all of them together are always busy. The choice of rules depends
on their applicability and the control condition of the members. In some cases, a more
restricted way of computation is reasonable. Hence, it is allowed to provide a swarm
with an additional cooperation condition. Finally, a swarm may have a goal given by a
graph class expression. A computation is considered to be successful if an environment
is reached that meets the goal.

De�nition 22 (swarm)

A swarm is a system S = (in,K, size,M, coop, goal) where in is a graph class expression
specifying the set of initial environments, K is a �nite set of graph transformation units,

2N>0 = N− {0} and [n] = {1, . . . , n}.

74 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

called kinds, size associates a size vector size(k) ∈ Nd(k)
>0 with each kind k ∈ K where

d(k) ∈ N>0 denotes the dimension of the kind k, M associates a family of members
(M(k)i)i∈[size(k)] with each kind k ∈ K with M(k)i ∈ RU (k) for all i ∈ [size(k)], coop
is a control condition over kind names called cooperation condition, and goal is a graph
class expression specifying the goal.3

A swarm may be represented schematically as in Figure 4.5 where si = size(ki) and
Mi = M(ki) for i ∈ [n].

name

initial: I
kinds : k1, . . . , kn
size : s1, . . . , sn
members: M1, . . . ,Mn

coop: c
goal: g

Figure 4.5 The schematic representation of a swarm

De�nition 23 (swarm computation)

A swarm computation is a derivation

G0=⇒
p1

G1=⇒
p2
· · ·=⇒

pq
Gq

such that G0 ∈ SEM (in), pj =


k∈K


i∈[size(k)] rjki with a rule rjki of M(k)i for each
j ∈ [q], k ∈ K and i ∈ [size(k)], and coop and the control conditions of all members are
satis�ed. The computation is successful if Gq ∈ SEM(goal)

It is a strong requirement that all members must provide a rule to a computational
step, because graph transformation rules may not be applicable. In particular, if no rule
of a swarm member is applicable to some environment, no further computational step
would be possible and the inability of a single member would stop the whole swarm.
To avoid this global e�ect of a local situation, it is assumed that each member has the
empty rule (∅, ∅, ∅) in addition to its other rules. The empty rule is given the lowest
priority. In this way, each member can always act and is no longer able to terminate
the computation of the swarm. In this context, the empty rule is called sleeping rule. It
can always be applied, is always parallel independent with each other rule application,
but does not produce any e�ect. Hence, there is no di�erence between the application
of the empty rule and no application even within a parallel step.

As mentioned above, cooperation conditions corresponds to control conditions as in-
troduced in Chapter 3, but the identi�ers are kinds instead of rules. In order to use
the same typical control conditions as introduced for rules, some considerations should

3For s = (n1, . . . , nl) ∈ Nl
>0 and some l ≥ 1, [s] = {(i1, . . . , il) | ij ∈ [nj], j ∈ [l]}.

4.3. EXAMPLES 75

be precisely de�ned. Let K be a set of kinds in a swarm S. A kind k ∈ K is said
to be active in a computation step if each member of kind k applies a rule (includ-
ing the sleeping rule) speci�ed by its control condition and the requirement of the
parallelism independence. The resulting parallel rule is p(k) =


i∈[s(k)] rki with rki

is a rule of member M(k)i. Regular expressions as introduced before yield for kinds
when kind activeness is used instead of rule application. More precisely, A deriva-
tion obeys a cooperation condition having the form of a regular expression e if the
application sequence of the derivation belongs to the language of e denoted L(e) with
SEM(e) = {G = G0 =⇒

p(k1)
G1 · · · =⇒

p(kn)
Gn = G′ | k1 · · · kn ∈ L(e)}. The expression k!

requires that the kind k is active as long as possible. A kind can not be active if all
members of kind k can apply only the sleep rule. Finally, the cooperation condition
free requires that all kinds are active in each computation step. This corresponds to
the default case introduced in De�nition 23.
To enhance the feasibility of the swarm concept, unbounded sizes are also allowed, de-
noted by N or Z. In this case, the only computations allowed are those where in each
step all but a �nite number of rules are empty. An example of a swarm with unbounded
size is the swarm version of a cellular automaton in Chapter 5.

4.3 Examples

This section illustrates the notion of graph-transformational swarms by means of two
examples: a very simple ant colony and a swarm that computes Hamiltonian cycles.

4.3.1 Ant colony

A simple ant colony is modeled as the graph-transformational swarm in Figure 4.6. The
colony consists of some ants, all of the same kind. They act in directed graphs with
some nest- and food -loops. Initially, an environment graph is simple and � ignoring
the loops � unlabeled. All ants wake up simultaneously by accessing edges that exit
nodes with nest-loops. Then they forage for food by walking through the graph passing
one edge per step while each ant marks its individual path. If an ant reaches a node
with a food -loop, it starts to return to its nest retraveling along its own marked path
while marking this path with the label food. This ant colony is successful whenever a
path from a food -node to a nest-node is created such that all edges of the path are
labeled with food. Such a path may be called food -path. It can be shown that a shortest
food -path is found by this ant colony with high probability in a linear number of steps
provided that the colony is large enough.

The members are obtained by relabeling A and a by Ai and ai respectively while all
other labels are kept. The control condition requires that an ant wakes up at the
beginning, but never again. Moreover, the application of the return-rule has higher
priority than the found -rule, which in turn has higher priority than the forage-rule.
Hence, the ant stops foraging whenever it �nds food. From there on, it returns to the
nest on the path labeled with a because the return rule has the highest priority. For

76 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

simple ant colony

initial: some-{nest , food}-looping(unlabeled & simple)
kinds : ant
size : n
members: ant(Ai, ai) for i ∈ [n]
coop: free

goal: required(
nest

food

)

Figure 4.6 The swarm simple ant colony

the computations of the ant colony this means for the computations of the ant colony
that all ants wake up simultaneously in the �rst step. The respective rule applications
are parallel independent because nothing is removed. If other rules are applied in later
steps, then only edges with individual labels Ai and ai are removed so that each two
ants can act in parallel as their rule applications are parallel independent.

A �rst version of simple ant colony has been implemented in the graph transformation
tool GrGen.NET. The resulting computation steps of an experiment with a swarm of 7
ants A1, . . . , A7 are displayed in r�gure4.8 where the labels ai with i ∈ [7] are omitted
to allow a good visualization. The initial graph has 26 nodes including a node with a
nest-loop and two nodes with food-loops. In the �rst step, all ants wake up leaving
the nest in random directions applying the rule p1 =


i∈[7]wakeupi where wakeupi is

obtained from wakeup via relabeling A by Ai. In the next two steps applying the rules
p2 =


i∈[7] foragei and p3 = sleep3 +


i∈[7]\{3} foragei, all ants forage for food where

ant A7 succeeds and ant A3 falls asleep because it gets stuck. (Here again, foragei
is obtained from forage by aplying the above mentioned relabeling.) A7 applies its
found-rule in step 4 and returns to the nest in steps 5 and 6 while all other ants forage
further or fall asleep because of reaching a dead end.

Please note that an ant can also return before having reached any food, because there
may be a food -edge inserted by another ant. But this does no harm, because no ant can
start to return before at least one ant has found food, and inserted food -edges extend
paths of food -edges originating at food -loops.
In contrast, in this way the cooperation of several ants may even lead to a shortest
food -path, although none of the ants has found one. Consider for example the graph
in Figure 4.7. Let A1 and A2 be two ants, such that A1 moves along the path 1, 2, 3, 4
in the �rst four steps, while A2 moves along the path 5, 6, 7, 8. Then A1 has to apply
the found -rule and A2 goes to edge 9 with its forage-rule. Afterwards, A1 has to return
to edge 3 and A2 may go to edge 10 with the forage-rule. Now, for i = 1, 2 there is an
Ai-edge as well as a food -edge in parallel to edge 10 and hence, A1 returns to the nest

4.3. EXAMPLES 77

nest

1 2
5 3

10
4

food
6

7 8

9

Figure 4.7 A special initial environment for simple ant colony

via edge 5 in a single step, whereas A2 needs two steps although A2 has found the food.
Hence, the interaction of both ants delivers a shortest food -path.

To see what this ant colony can achieve in general, let p be a simple shortest path from
a nest-node to a food -node in some �nite initial environment graph, and let q be its
length. Consider a computation of the swarm with at least 2q steps. Then each ant runs
along a path of length q in the �rst q steps provided that it does not end up earlier in a
node without outgoing edges. As the number of paths of length q (or shorter) is �nite,
the path p is among the traveled paths with some probability that grows with the size
of the swarm. In more detail the following holds: Let D be the maximal outdegree4 in
the environment graph, then the probability that one ant �nds food in q steps is ≥ 1

Dq .
Let πi be the lower bound of the probability that i ants �nd food in q steps. Then an
(i+1)-th ant increases this value by a 1

Dq -th fraction of the cases where the i other ants
fail, i.e. πi+1 = πi +

1
Dq (1− πi). By induction, one gets πi = 1− (1− 1

Dq)i which proves
that the probability of success is nearly 1 if many ants are involved. In other words, the
ants constitute a Bernouilli process with the ratio 1− 1

Dq . Hence, there is a good chance
that some ant can apply the found -rule in step q + 1. This ant retravels p and marks
it as a food -path in the next q − 1 steps such that a shortest path is established in 2q
steps with high probability, i.e., in a number of steps linear in the number of nodes of
the initial environment as q is always smaller than the number of nodes.

4.3.2 Hamiltonian cycles

Consider an unlabeled and simple graph where each node gets an extra loop with a label
in ∆ ⊆ Σ. A ∆-cycle is a cycle that visits exactly one node with a δ-loop for each δ ∈ ∆
and no other node. If ∆ is the set of nodes and each node v has a v-loop, then a ∆-cycle
is a Hamiltonian cycle. Consequently, the search for a ∆-cycle is a generalization of the
Hamiltonian cycle problem and an NP -complete problem itself.
The graph-transformational swarm in Figure 4.9 searches for ∆-cycles using two rules.
The swarm has two kinds given by the rules nodecopy and edgecopy. An application
of nodecopy generates a copy of a node with a v-loop and decorates it with a b- and
an e-loop. An application of edgecopy copies an edge of the original graph consuming
an e-loop at a copy of the source node and a b-loop at a copy of the target node. All
members are identical to their kinds. Each two applications of nodecopy-rules are par-

4The outdegree of a node is the number of its outgoing edges

78 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

p1

p2

p3

p4

p5

p6

Figure 4.8 A sample computation of the simple ant colony swarm

4.3. EXAMPLES 79

∆-cycle
initial: all-∆-looping(unlabeled & simple)
kinds : gtu(nodecopy), gtu(edgecopy)
size : n1, n2

members: m1i = gtu(nodecopy) for i ∈ [n1]
m2j = gtu(edgecopy) for j ∈ [n2]

coop: nodecopy ; edgecopy
goal: required(∆-cycle copy)

rules:

nodecopy :

v

⊇
vv

⊆

b e

v

v

edgecopy :

e

v v′

b

⊇ v v′
⊆ v v′

p

Figure 4.9 The swarm ∆-cycle based on the rules nodecopy and edgecopy

allel independent as they do not remove anything Therefore, all n1 nodecopy-members
can produce n1 node copies in parallel. The edgecopy-members must sleep in the �rst
step as they need node copies to become active. Due to the cooperation condition,
the nodecopy-members are requested to sleep in the second step. Two applications of
edgecopy-rules are parallel independent if they consume di�erent b- and e-loops. Hence,
there are up to n1 edge copies after the second step. Because the target of an edge
copy may be the source of another edge copy, the edge copies form paths and cycles
corresponding to paths and cycles in the original graph. As paths and cycles may be
copied several times, the edgecopy-step yields a multiset of paths and cycles of the
initial graph. If one is lucky, then there is a cycle copy among the created paths and
cycles that corresponds to a ∆-cycle. This is the goal. Which is reached with high
probability if the sizes of the swarm kinds are large. This can be proved similar to
argumentation in 4.1 as follows. If n1 ≥ k · n where n is the number of nodes of the
considered initial graph and k ∈ N, then there is a good chance that all nodes have got
about k copies after the nodecopy-step. Hence, each edge can be copied up to about
k times in the edgecopy-step. If d edge copies are made where d is the number of
elements of ∆, the resulting set of path and cycle copies represent a multiset of paths
and cycles of the original graph the sum of lengths of which is d. Let N be the number
of all such multisets and M be the number of multisets that correspond to ∆-cycles.
Note that the resulting set of path and cycle copies may contain a single element that
corresponds directly to a ∆-cycle or it may contain several path copies that compose
a ∆-cycle. Then M

N is the probability that d edge copies �nd a ∆-cycle. Let now πi
be the probability that i · d edge copies �nd a ∆-cycle, and add further d edge copies.

80 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

Then πi+1 ≥ πi +
M
N (1− πi) because the (i+ 1)-th set of edge copies may be successful

where the others failed and, in addition, the paths found by the (i + 1)-th set may
compose with the paths found by the other edge copies to ∆-cycles. As in 4.1, one gets
by induction πi ≥ 1 − (N−M

N)i for i ∈ N such that the sequence πi converges toward 1
with growing i.

This swarm solves an NP -complete problem (that covers the Hamiltonian-cycle problem)
in two steps with high probability if the sizes are properly chosen. The task to check
whether there is a ∆-cycle copy is not performed by the swarm. But it could be extended
in such a way that this test needs d steps.

4.4 Stochastic control

The control conditions considered up to now regulate the application sequence of rules.
This type of control is also known as Language type conditions (for more details see
for example [62]).This section introduces another type of control condition, a control
condition that regulates the matching process based on probability computations. It
will be called stochastic control. 5

A stochastic control is a control condition that is associated with a rule r. It controls the
non-determinism of choosing a match of r in a given graph G. It requires that a match
is chosen with a probability proportional to an associated value. Formally, this can be
done in the following way:

De�nition 24 (stochastic control)

Given a rule r and a graph G. Let MG(r) = {m1, . . . ,mk} be the set of all feasible6

matches of r in G, let f : MG(r) −→ R>0 be a mapping that associates to every match
mi a value f(mi) = fi for i = 1, . . . , k. A stochastic control condition denoted ≀r≀f
requires that a match mj for j ∈ {1, . . . , k} is chosen with the probability

fjk
i=1 fi

.

fi can correspond to a label of a given edge in mi. It can also be the result of a
parametrized function of one or more labels in mi. In literature, one encounters several
examples of distribution functions that control the behavior of stochastic processes based
on some parameters. The parameters make it possible to produce a choice behavior
situated between two extremities: (1) the random choice where all possible matches
have the same probability and (2) the so called greedy choice where a match with the
highest value is selected.
Let v ∈ R>0 be a value associated with a match m ∈ MG(r). Let us consider two
examples of such parametrized functions:

� The �rst example is the function f(v) = (v+β)α. This corresponds to the function
introduced in Chapter 2. It has been used by biologists to model the selection

5Note that in the literature there exists the notion of stochastic graph transformation systems[41].
It refers however to a stochastic choice of rules and not of matches.

6A feasible match is a match for which the underlying morphism satis�es the dangling conditions.

4.4. STOCHASTIC CONTROL 81

behavior of real ants when they forage for food and when they have to choose
between two directions. The parameter β controls the delay needed for further
exploration of the environment at the beginning of the computation process. The
parameter α determines the importance of the di�erence of values in the decision
process.

� The second function is f(v) = e
v
T which is a function often used in the �eld of

reinforcement learning [94]. The parameter T is a parameter called temperature.
The underlying distribution is called Boltzmann or Gibbs distribution. The higher
the temperature is, the more the choice behavior tends to be random. Low tem-
peratures cause a greater di�erence in probability for matches that di�er in their
values, tending to choose greedily with temperatures close to zero.

Stochastic control condition can be implemented based on the "roulette wheel selection"
also known as "Fitness proportionate selection" in the �eld of genetic algorithms. The
idea is to assign to each of the possible matches an interval with a length equal to the
corresponding probability (surface in a wheel proportional to its probability). Afterward,
a random number is generated such it belongs to one of the intervals (turning the wheel).
Section 4.5 proposes a concrete implementation by means of graph transformation units.
But �rst a pheromone-driven ant colony that uses stochastic control illustrates how to
use the control in the graph transformation framework.

4.4.1 Pheromone-driven ant colony

The example of the simple ant colony is extended here to illustrate stochastic control.
The pheromone-driven ant colony is a swarm that models an ant colony, the ants of
which forage for food by means of a simple pheromone mechanism. The sample graph-
transformational swarm is presented in Figure 4.10.
The swarm consists of some ants, all of the same kind. They act in directed graphs
with a nest-loop and some food-loops. The node with the nest-loop has some further
unlabeled loops that represent the actual food stock. All other initial edges are
labeled by a positive integer representing a pheromone rate. nest-food-connectedness
is assumed, meaning that the paths from the nest-looped node to some food-looped
node visit all nodes. Moreover, it is assumed that the underlying environment graph
is simple, meaning that there are no parallel pheromone-labeled edges. This class of
graphs is denoted by (nest & food∗)-looping(simple & pheromone-labeled & nest-
food-connected). During swarm computations, further edges appear and disappear.

The kind ant de�nes the potential activities of an ant by means of �ve rules and
some priorities. It can leave the nest by placing an A-edge and an ϵ-labeled edge
in parallel to a pheromone-labeled edge with the nest-looped node as source. Then
it can forage for food by walking through the graph passing one pheromone-labeled
edge per step and placing a parallel ϵ-edge. The label A refers to the ant, and ϵ
is an integer to be added to the pheromone value. If an ant reaches a food-node,
then the rule found is applied changing the label A into A+ and indicating in this

82 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

pheromone-driven ant colony

initial: (nest & food∗)-looping(simple & pheromone-labeled & nest-food-connected)
kinds : ant, update
size : n, 1
members: ant(Ai, A

+
i) for i ∈ [n], update

coop: (ant ; update)∗

goal: required(stock ≥ b)

ant

rules:

leave:
ϕ

nest

⊇
ϕ

nest

⊆
ϕ

A
nest

ϵ

forage:
A

ϕ
⊇

ϕ
⊆

ϕ

A

ϵ

found:
A

food

⊇

food

⊆

food

A+

return:
ϕ

A+

⊇
ϕ

⊆
ϕ

A+

ϵ

deliver:

A+nest

⊇

nest

⊆

nest

control: ≀leave≀ϕα < ≀forage≀ϕα | found | ≀return≀ϕα | deliver
≀forage≀ϕα < found
≀return≀ϕα < deliver

update

rules:

update:
ϕ

ϵ
⊇ ⊆

ϕ+ϵ

control: ∥ update ∥!

Figure 4.10 The swarm pheromone-driven ant colony with the kinds ant and update

4.4. STOCHASTIC CONTROL 83

way that the ant takes food. In this state, it moves back using the rule return until
it can deliver, which adds a food unit to the stock. Note that the returning ants
pass edges from target to source so that the same paths are used as for foraging.
Moreover, an ant leaves the amount ϵ of pheromone along the return paths too.
The pheromone values of the passed edges are not updated immediately, but in the
next computational step. This allows several ants to pass the same edge in the same step.

The control condition requests some priorities and stochastic control. An ant can only
leave the nest if it cannot do anything else, i.e., if neither the label A nor A+ is around.
In other words, it leaves the nest at the beginning and after each delivery. Moreover,
foraging for food stops whenever food is found and moving back stops whenever the
nest is reached. Further control is provided by the labels A+ and A. As long as A is
present, only the rules forage and found may be applied. As long as A+ is present,
only return and deliver may be applicable. The application of found turns a foraging
phase into a returning phase that ends with deliver. The rules leave, forage and return
are applied following a stochastic control requiring that the number of ants that pass an
edge corresponds to the pheromone value of the edge. More precisely, let l be an ant
that can pass the edges e1, . . . , ek with pheromone values ϕ1, . . . , ϕk in the next step,

then ej is used with the probability
ϕα
jk

i=1 ϕ
α
i

where the parameter α can be chosen in a

suitable way. The larger α is, the more the e�ect of the pheromone values is intensi�ed
in the heuristic choice.
Due to the nest-food-connectivity of the environmental graph, an ant can always act.
If the A-edge points to a food-looped node, then the rule found can and must be
applied. Otherwise the A-edge has a target with another outgoing edge so that forage
can be applied. If there is an A+-loop, then return can be applied. To match the
left-hand side of the rule in this case, its A+-edge must be mapped to the A+-loop.
This is possible because matches are not assumed to be isomorphic images. If there is
an A+-edge pointing to the nest-looped node, then deliver can and must be applied.
Otherwise, the A+-edge points to a node with an incoming edge so that return can be
applied. If all other rules fail, leave is allowed and possible.

The members of kind ant are obtained by relabeling A and A+ by Ai and A+
i resp. for

i = 1, . . . , n where n is the chosen size of the ant colony. All other labels are kept as
they are.
As all rule applications remove only edges with labels Ai and A+

i , all rule applications
are pairwise parallel independent if they concern di�erent labels. In other words, the
maximal parallel computation steps can be performed whenever an applicable rule is
chosen for each ant.

The cooperation condition requires that after each action of the ants an update of the
pheromone values takes place. The only member equals the kind and provides a single
rule that adds ϵ to each pheromone-labeled edge for each parallel ϵ-labeled edge.
The control condition requires that the update-rule is applied with maximal parallelism

84 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

H0 H4

∗

H7 H5

∗

∗

H11 H18

∗

∗

H28

∗

H270

∗

Figure 4.11 A sample computation of the pheromone-driven ant colony swarm

4.4. STOCHASTIC CONTROL 85

as long as possible. The applications of the update-rules are parallel independent if they
update di�erent pheromone-labeled edges. Therefore, update needs m steps where m is
the maximum number of parallel ϵ-edges.
Finally, the goal speci�es graphs where the stock, i.e. the number of extra loops at the
nest-looped node, exceeds a given bound b that can be chosen freely.

From the description of this swarm, it is clear what the computations look like. The
ants act in parallel, each applying one of its �ve rules according to applicability and
priority. In the �rst step, all ants leave the nest. Later in the computations, all �ve
types of rules may occur simultaneously. After each ants action step, an update takes
place. The alternation between ant action and update can go on for ever, but can be
stopped if the stock is large enough. Will this event occur eventually? It is assumed
that the initial graphs are nest-food-connected so that there are paths from the nest to
each food-labeled node in particular. The ants use those paths with some probability
depending on the pheromone values. Consequently, the ants come back to the nest after
they found food with some probability so that the stock increases with some probability
if the computation runs long enough and the number of ants is large enough. This can be
guaranteed by additionally assuming that the initial environments are �nite and cycle-
free because then every ant �nds food and returns to the nest eventually. The pheromone
mechanism favors short paths over long ones. The fastest way to increase the stock is
by running a shortest path from nest to food and back. Short paths get some extra
pheromone earlier than long ones so that they will be used in the further computation
with even higher probability. This reasoning shows that there is a correlation between
the length of paths and the number of computation steps needed to �ll the stock.
Because this is a very �rst example of graph-transformational swarms, it has been kept
simple. In particular, the kind update could be designed in a more sophisticated way
by adding evaporation rules. Moreover, the only member update could be replaced by
update-members that are related to the pheromone-labeled edges so that the pheromone
updating is also in the style of swarms.

The pheromone-driven ant colony swarm has also been implemented in the graph trans-
formation tool GrGen.NET. An experimental computation with a swarm of 20 ants is
documented in Figure 4.11. For better visualization, the labels of the ants have been
omitted and the loops representing the food stock replaced by a single loop labeled with
the number of food units. The initial graph H0 has 23 nodes including a node with
a nest-loop and two nodes with food-loops. The initial pheromone values of all edges
correspond to ϕ = 1. In the probability function, we use α = 2. The seven further
displayed graphs Hi for i ∈ {4, 5, 7, 11, 18, 28, 270} are the graphs after the i-th step of
the ants and the following update each. The graph H4 represents the resulting graph
after four ant-steps. More precisely, in the �rst ant step all ants leave the nest, however
the swarm is split into two groups of almost the same size 9 and 11. This is due to the
pheromone-driven action of ants and the equal initial pheromone values. Afterwards all
ants apply their forage-rules three times. The edges visited by each group can be eas-
ily recognized in H4, since their initial values are augmented by the underlying group's

86 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

number of members. The graph H5 shows the result after the 5th ant-step. One can
see how all members go forward applying their forage rules again. However the group
of 11 members splits into three subgroups when arriving at the node, say u, with three
outgoing edges. In the 7th ant-step which generates H7, a group of 5 ants �nd the
food-node, say f1, while all other ants forage further. In the 11th ant-step, 11 ants have
found food and are returning to the nest. The other members still forage. H18 displays
the results of the 18th ant-step. The �rst ants have delivered 4 units of food, in addition
one can see that the path between u and f1 is slowly starting to be preferred. In H28

the ants already have already 28 steps, and 20 units of food are delivered. The path
between u and f1 is frequently walked through meanwhile. H270 displays the graph after
270 ant-steps with 337 food units. Based on the pheromone values, one can see that ants
prefer the shortest path between the nest- and one of the food-nodes. The computation
may be terminated whenever the chosen bound of the food stock is reached.

4.5 Modeling: practical considerations

One advantage in the �eld of graph transformation is the existence of various tools
dedicated to model graph transformation systems. After the introduction in Chapter 3
that compared di�erent tools regarding the requirements in this thesis and presented a
�rst modeling of parallelism in the selected tool GrGen.Net, the present section provides
a discussion about the implementation of graph transformational swarms using �rst the
notion of stepwise control which is tool independent. Afterwards, an explicit coding in
the tool GrGen.net is provided.

4.5.1 Stepwise control

Stepwise control is a general method for modeling and analyzing control conditions that
are based on regular expressions. For explicit use below, we sketch a special class of the
stepwise control (conditions) presented in [35]. This special class consists of �nite state
automata over rules and negated rules with an arbitrary number of initial states. More
concretely, such a control condition is a system C = (S, J, F,∆) where S is a �nite set of
control states, J ⊆ S is a set of initial control states, F ⊆ S is a set of �nal control states
and ∆ ⊆ S × (P ∪ {¬r | r ∈ P} ∪ {lambda,¬lambda}) × S is the transition relation.
As usual, C can be represented as a graph with S as nodes and ∆ as edges. The
¬r-edges are called negated edges. A (possibly empty) path with only negated edges and
lambda-edges is a negated path. It is a negated path for a graph G, if no rule on the path
is applicable to G. A derivation G0=⇒

r1
. . .=⇒

rn
Gn is speci�ed by C, if there is a sequence

s0, . . . , sn of control states such that s0 ∈ J , there is a negated path for Gn from sn
to some �nal state, and for i = 1, . . . , n there is an ri-path for Gi−1 from si−1 to si,
i.e., a path from si−1 to si that consists of a negated path for Gi−1 followed by an ri-edge.

Figure 4.12 visualizes the state transitions of the above introduced control condition
(wakeup ; (forage | found | return)∗) & (return > found > forage). The nodes represent
control states and the edges visualize the transition relation. An edge labeled r means

4.5. MODELING: PRACTICAL CONSIDERATIONS 87

Figure 4.12 State transition diagram of the control condition
(wakeup ; (forage | found | return)∗) & (return > found > forage)

that the rule r is applicable to the current graph and if labeled ¬r (negated rule) it
means that r is not applicable. lambda and ¬lambda stand for the arbitrary choice
between a repeat of the computation or not. In this visualization, it is easy to see that
for example after the wakeup step a direct derivation using the rule forage corresponds
to a step given by a negated path lamda¬return¬found followed by a forage-edge.
Further examples of stepwise controls including as-long-as-possible expression can be
found in [35] and [67]. In [67], there is also a description of how to compose a stepwise
control from di�erent ones.

Swarm computations by means of stepwise controls

Let S = (in,K, size,M, coop, goal) be a swarm and let us assume that each member
M(k)i has a stepwise control Cki = (Ski, Jki, Fki,∆ki) for k ∈ K and i ∈ [size(k)].
A swarm computation G0=⇒

p1
G1=⇒

p2
· · ·=⇒

pq
Gq such that G0 ∈ SEM (in), pj =

88 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS


k∈Kj


i∈[s(k)] rjki with Kj ⊆ K is the set of active kinds 7 in step j, and rjki is

the chosen rule from the stepwise control Cki to participate in the computation step j.
rjki can be the sleeping rule if no other rule is applicable. Another important condition
of applicability is that each two rule applications in one computation step are parallel
independent.
A computation G0=⇒

p1
G1=⇒

p2
· · ·=⇒

pq
Gq can be performed as follows: At the begin-

ning, the state of all stepwise controls of all members is an initial one. Let us denote
such a state by s0ki for Cki and i ∈ [size(k)] and k ∈ K with s0ki ∈ Jki. In step j for
j ∈ [q], �rst the cooperation condition speci�es the set Kj of active kinds. Afterwards,
each member M(k)i (i ∈ size[Kj]) of an active kind k ∈ Kj chooses an applicable rule
rjki using its stepwise control Cki with respect to the parallelization condition. After
that, the parallel rule pj =


k∈Kj


i∈[s(k)] rjki is applied. The states of the stepwise

controls of the members that have participated in the computation step j with a rule,
di�erent to the sleeping rule, are adapted accordingly. For all other members, the state
of their stepwise control is kept unchanged.
Therefore, given stepwise controls for the members in a swarm, the computation of the
swarm can be performed based on the cooperation condition which designates the mem-
bers that can perform a local computation step. All chosen rules are applied and the
states of the participated stepwise controls are adapted accordingly. An important in-
gredient in this parallelization step is the condition that each two rule applications are
parallel independents. How to manage such a veri�cation is generally complex. More pre-
cisely, assuming that n members are active in a computation step, there are


n
2


(binomial

coe�cient indexed by n and 2) veri�cation that should performed. However, in practice,
there is some strategies to reduce the number of eventual con�icts between two di�erent
members. The most simple form is to design kinds such that if two rules are from two
di�erent members, then their applications is always parallel independent. This is the
case in the simple ant colony example. Another possibility is to consider special cases of
members that are assigned to special regions in graphs and are responsible to manage
the resources (edges or nodes that can be deleted) in this region. The next two chapters
introduces swarms that use this technique.

4.5.2 Modeling in the tool GrGen.Net

This subsection discusses how to implement graph-transformational swarms in the tool
GrGen.Net using the example of the simple ant colony as introduced above in this chap-
ter. The discussion starts by the implementation of the elementary component in the
framework, namely the rules.

Rules

Rules can be easily implemented using the syntax of GrGen.Net. The Listing 4.1 displays
an example of the four rules Wakeup, Forage, Found and Return. They correspond to

7In this notation, a special case of coop (but the only one used in this thesis) is considered. coop
speci�es in every computation step j a set of active kinds Kj ⊆ K.

4.5. MODELING: PRACTICAL CONSIDERATIONS 89

the rules with the same name (up to capitalizing) in the kind ant. The di�erence here
is that the rules are given an edge A of type Ant as argument. The reason for that will
be explained below in detail.The code can be interpreted as follows: Every rule consists
of three parts. The �rst line declares the name of the rule and the arguments that it
takes as input. The second part consists of the lines before the keyword modify(lines
2, 3 and 4 in the rule Wakeup). It speci�es the left hand side of the rule. The third
part in the modify block speci�es what the rule should modify, specifying implicitly the
gluing graph and the right hand side of the underlying rule. Let us describe the rule
Forage starting in Line 11. Line 12 contains the graph consisting of three nodes x, y
and z such that y is an outgoing neighbor of x and z is an outgoing neighbor of y. Line
13 extends the graph by an edge A (of type Ant) from x to y. The Line 15 requires
that an ant path a is added from x to y. In the block starting with the keyword eval,
all computations including assignments of label values and attributes are performed. In
this case, the name and the index of the created ant path are changed accordingly. After
that, a copy of the edge A is created from y to z in Line 20. In Line 21, the old edge A
is deleted.

Listing 4.1 The rules of the unit ant

1: rule Wakeup(-A:Ant ->){
2: x:Node -:Nest ->x ;
3: x- A->x ;
4: x-->y:Node ;
5: modify{
6: x-newA:copy <A>->y;
7: delete(A);
8: }
9: }

10:
11: rule Forage (-A:Ant ->){
12: x:Node -->y:Node -->z:Node;
13: x -A-> y;
14: modify{
15: x-a:AntPath ->y;
16: eval{
17: a.name= "a"+A.indice;
18: a.indice = A.indice;
19: }
20: y-newA:copy <A>->z;
21: delete(A);
22: }

23: }
24:
25: rule Found (-A:Ant ->){
26: x:Node -A->y:Node -:Food -> y;
27: modify{
28: y-:FoodPath ->x;
29: y-newA:copy <A>->x;
30: delete(A);
31: }
32: }
33:
34: rule Return (-A:Ant ->){
35: x:Node -->y:Node -->z:Node;
36: x -a:AntPath ->y;
37: z -A-> y;
38: if { a.indice ==A.indice ;}
39: modify{
40: y- newA:copy <A>->x;
41: delete(A);
42: y -f:FoodPath -> x;
43: }
44: }

Kinds and members

In GrGen.Net, it is possible to use a rule as a structuring device. It
is possible to call other rules that are to be applied using a syntax
based on regular expressions. In the example of ant colony the following

90 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

part of code is used to implement the control condition of the kind ant:

Listing 4.2 the unit ant

1: rule AntUnit(-A:Ant ->){
2: modify{
3: exec (Return(A) || Found(A)|| $[Forage(A)]);
4: }
5: }

The operation r1||r2 in GrGen.Net stands for apply r1 or r2 such that r1 has a higher
priority. That is, the expression in Listing 4.2 is semantically equivalent to the expression
(forage|food|return)& (return > found > forage). The expression $[Forage(A)]
requires that the match of the left-hand side graph of Forage(A) is chosen randomly8.
In order to encode that a rule belongs to a given unit, the present implementation uses
the notion of rule arguments. The rules of a given kind are all given the same argument.
In the example used, all rules get the ant edge A (the unique kind) as argument. For
the speci�cation of members, the notion of classes and attributes is used in GrGen.Net.
The edge A is declared as Ant which is a subclass of the main edge class Edge and
has two attributes. All such speci�cations are declared in a so called graph model �le.
The �le in our example is listed in Listing 4.3. The members are obtained using the
attribute index. The attribute name is used for visualization purposes. Its value during
computations is Aindex.

Listing 4.3 the graph model

1: edge class Food;
2: edge class Nest;
3: edge class Ant {
4: name:string;
5: index:int;
6: }
7: edge class AntPath {
8: name:string;
9: index:int;

10: }
11: edge class FoodPath;

The classes Food, Nest and Foodpath are primarily de�ned in order to permit a good
visualization of the computation steps, given a di�erent color for each class, it is more
easy to follow the behavior of the ants on the graph.

8In GrGen.Net and in order to accelerate the matching process, the �rst found matches in an internal
list are chosen.

4.5. MODELING: PRACTICAL CONSIDERATIONS 91

Swarm computation

A swarm computation is implemented using the notion of maximal parallel matching.
In this regard it is important to note the di�erence between maximal parallelism and
maximal matching which is discussed in Section 3.9. In simple ant colony, each two
direct derivations from two di�erent members are parallel independent. For this reason,
the maximal parallel matching can be used - without restrictions - to match the di�er-
ent members existing in the swarm. Listing 4.4 corresponds to the code in the GRS
"antColony.grs" �le. It contains the code that controls the execution of computation. It
also contains all the operations needed for creating and dumping graphs with a debug
support. In Line 8 and 9, the sequence of the computation sequence is coded. The
InitWord stands for a rule that creates an environment graph. Initmember is a rule
that calls the rule Wakeup. Initmember is called with maximal matching, meaning
that all members leave the nest in parallel. After that, the rule SwarmComputation is
repeated until the Goal is met. The rule SwarmComputation has an empty left hand
side graph, meaning that it is always applied. It calls the rule MatchMember with
maximal matching, the left hand side of which contains the ant edge A. This applies the
rule AntUnit introduced above. Together, all ant edges are matched and for each one,
the AntUnit is called using the corresponding edge as argument.

Listing 4.4 The execution statement in the ".grs" �le

1: new graph antColony
2: debug set layout Organic
3: dump set node Node shape circle
4:
5:
6: randomseed 40
7: debug set layout option INITIAL_PLACEMENT AS_IS
8: debug exec (InitWorld ;> [InitMember] ;>
9: (!Goal&& SwarmComputation)*)

Listing 4.5 swarm computation

1: rule SwarmComputation{
2: modify{
3: exec([MatchMember]);
4: }
5: }
6: rule MatchMember{
7: -A:Ant ->;
8: modify{
9: exec(AntUnit(A));

10: }
11: }

12: rule InitMember{
13: A:Ant;
14: modify{
15: exec($[Wakeup(A)]);
16: }
17: }
18: test Goal{
19: x:Node -:Nest ->x ;
20: :Node -:FoodPath ->x;
21: }

92 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

Figure 4.13 A high level schema of the graphical editor and its components

4.5.3 A graphical user interface

Within the scope of this thesis a prototype of a graphical interface that permit a rapid
and visual development of swarms is developed. Figure 4.13 illustrates the relationship
between the graphical user interface, the graph-transformational swarm framework and
the tool GrGen.Net. The elements in the framework can be loaded, edited and saved
using the graphical interface. Given a graph transformational swarm, input �les for
GrGen.Net can be generated either using textual scripts or using the graphical inter-
face. There is also the aim to develop utilities in the interface to control directly the
computation process.

Figure 4.14 The swarm editor

The graphical user interface is composed of several widgets, Figures 4.14, 4.15 and 4.16

4.5. MODELING: PRACTICAL CONSIDERATIONS 93

are screen-shots of the most important of them. All three images are taken when mod-
eling the simple ant colony swarm as introduced in Chapter 4. Figure 4.14 displays the
swarm-editor widget which o�ers to the user the possibility to specify a swarm. It is
possible to give the name, the initial graph class expression which can be selected from
a prede�ned set, the kinds and the cooperation condition.

Figure 4.15 The kind editor

The kinds are added in an interactive way by pushing the button "add new kind".
As consequence, the kind-editor which dedicated to edit the components of a kind, is
opened. Figure 4.15 illustrates the edited kind ant. The kind-editor allows to specify all
components needed for a kind. Here, it is possible to add rules by pushing the button
"Add Rule". This is achieved using a third widget called the rule-editor as depicted in
Figure 4.16.
The rule-editor allows a comfortable editing of rules. The left-hand side is created in the
left window in the rule-editor widget. The created left-hand side graph is automatically
copied to the middle and right windows which are reserved for the gluing and right-
hand side graphs respectively. Afterwards, modi�cations can be performed to the right
window. If an element is deleted from the right-hand side graph, the gluing graph
is accordingly and automatically adapted. The edited components of a swarm can be
saved and reedited later. The swarm can also be exported to run in GrGen.Net. The �rst

94 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

Figure 4.16 The rule editor

tests and experiments using the developed prototype show promising results, however
several features should be added.

4.5.4 Stochastic control as a graph transformation unit

This subsection illustrates how it is possible to model a stochastic control condition
using graph transformational units. Stochastic control conditions can be implemented
based on the "roulette wheel selection" : One can imagine that each of the matches mi

becomes a surface (bin) proportional to its function value on a roulette wheel. Turning
the wheel corresponds to generating a random number in the range [0, sum] where sum
is the summation of the values of all possible matches. To illustrate how such a selection
can be performed by a graph transformation unit, let us assume the following concrete
situation. An ant A modeled by an A-edge has to choose one edge stochastically from all
possible next edges. The choice is based on a distribution function f having as argument
the pheromone value for each next edge. Figure 4.17 gives an example of a unit that
performs a stochastic calculation.
The rule start initiates the calculation. It chooses a next edge with a pheromone ϕ
arbitrarily, adds a so-called sum-loop in the target node of A and creates a so-called
interval-edge parallel, and with the same direction, to the chosen next edge. The
sum-loop is labeled by SA, f(ϕ) and the interval-edge by IA, [0, f(ϕ)) . SA and IA are
�xed names. They are used to identify the two special edges sum-loop and interval-edge
respectively9. The value f(ϕ) is used as initial value of the sum in the sum-loop as well
as the supremum of the right-open interval in the interval-edge. The in�mum of the
interval is 0. The rule calc chooses a next edge with a pheromone value ϕ that does
not have a parallel interval-edge yet and creates a one. The created interval has as
in�num the current sum and supremum sum+f(ϕ). The sum in sum-edge is changed

9The index A is replaced by the index of the underlying member when relabeling, to permit the
identi�cation of the considered ant. This is necessary, when more than one ant have the same target
node.

4.5. MODELING: PRACTICAL CONSIDERATIONS 95

next edge stochastic

rules:

start:
A

ϕ
⊇

A

ϕ
⊆

SA, f(ϕ)
ϕ

A IA, [0, f(ϕ))

calc:
ϕ

SA, sum

IA, [v1, v2)

⊇
ϕ

⊆
ϕ

SA, sum+f(ϕ)

IA, [sum, sum+f(ϕ))

rand:

SA, sum

⊇ ⊆

RA, γ
(with 0 ⩽ γ ⩽ sum)

choose:

(if γ ∈ [v1, v2))
RA, γ

IA, [v1, v2[

⊇ ⊆
NEXTA

clean:

IA, [v1, v2)

⊇ ⊆

control: start ; calc! ; rand ; choose ; ||clean||

Figure 4.17 A unit that performs a stochastic choice

to be sum+f(ϕ). The rule rand generates a random number λ between 0 and sum. It
replaces the sum-loop by a random-loop labeled RA, λ (RA has the same role as SA

and IA and identi�es the labeled edge as a random edge). The rule choose chooses the
interval-edge with the interval [v1, v2[such that λ ∈ [v1, v2). It replaces the chosen
interval-edge by a next-edge labeled NEXTA and deletes the random-loop. The rule
clean deletes an interval edge.

The control condition requires that the rule start is applied, initializing thereby the
calculation process. The rule calc is applied as long as possible, calculating in this
way an interval proportional to the pheromone value for each possible next edge, it has
the length f(ϕ). Afterwards, the rule rand is applied, generating a random number
between 0 and sum where sum is the sum of all generated distribution values. Based on
the generated random value, the rule choose is applied to choose the interval where λ
belongs. As a consequence of the right opening of the intervals, the intersection between
each two di�erent intervals is empty, therefore the choice is unambiguous. The rule clean

96 CHAPTER 4. GRAPH-TRANSFORMATIONAL SWARMS

is applied with maximum parallelism, deleting all interval-edges in one step.

4.6 Summary

This chapter has introduced a graph-transformational approach to swarm computation,
providing formal methods for the modeling of swarms and the analysis of their correct-
ness and e�ciency. In the �rst step, the main ideas of swarms and swarm computing
were discussed. In this discussion, the major approaches to swarm computing were
considered. The ideas were summarized with a graph transformational perspective,
exploiting the concepts of graph transformation units and the massive parallelism of
rule applications. Graph-transformational swarms and their computation were formally
introduced.

The �rst examples, swarms in search for shortest paths and Hamiltonian cycles, indicate
that graph problems can be solved e�ciently and with high probability. Moreover they
illustrate how several members that act locally can solve global problems.

In order to specify stochastic processes, the concept of control conditions was ex-
tended to specify matching based on distribution functions. The example of a simple
pheromone-driven ant colony has shown how it is possible to use such control to model
the stochastic behavior often required in swarm computing approaches.

The last section of this chapter discussed how graph-transformational swarms can be
used in practice. It has proposed a way to regulate the applications of rules in swarm
computations based on stepwise control, which is a concept based on �nite-state au-
tomata. Furthermore, it has studied the implementation of the developed concept in the
tool GrGen.Net. A concrete example is given and discussed. At the end, an example of
a unit that implements a stochastic control was given.

Chapter 5

Uni�cation capability

This chapter provides graph-transformational versions of three major swarm computing
methods, namely ant colony optimization, particle swarm optimization and cellular au-
tomata. It demonstrates in this way the unifying capabilities of graph-transformational
swarms. The three approaches were introduced in Chapter 2 in a general way. The
current chapter recalls them more formally, starting by introducing some needed pre-
liminaries in Section 5.1. Section 5.2 recalls the canonical version of particle swarm
optimization and provides its graph-transformational counterpart. Section 5.3 discusses
how to model a cellular automaton as graph transformational swarm. Section 5.4 sur-
veys the colony optimization as a framework discussing its di�erent components. It
uses the traveling salesperson problem and the generalized assignment problem as illus-
trative examples and ant system and MIN -MAX ant system as illustrative versions.
Finally, a graph transformational formulation is provided. The chapter is summarized
in Section 5.6.

5.1 Preliminaries

De�nition 25 (walk)

A walk in a graph G = (V,E, s, t, l) is a sequence of nodes and edges w =
(v1, e1, v2, . . . vk, ek, vk+1), where vi ∈ V , ei ∈ E and s(ei) = vi, t(ei) = vi+1 for
i = 1, . . . , k and k ∈ N>0. The nodes v1 and vk+1 are called respectively the start
and the end node of w. k is the length of the walk. The set of all walks in graph G is
denoted WG.

A walk can also be denoted by omitting the edges if it is obvious which edges are
considered between two successive nodes in the walk. This is the case of the graphs
considered in this chapter.

De�nition 26 (cycle, Hamiltonian cycle)

A cycle in a graph G is a walk in G where the start node is equal to the end node. A
Hamiltonian cycle in a graph G = (V,E, s, t, l) is a cycle (v1, e1, v2, . . . vn, en, v1) with
n = #V containing every node in V and the nodes v1, . . . , vn are pairwise distinct
(i.e.,vi ̸= vj if i ̸= j for i, j = 1� . . . n). The set of Hamiltonian cycles in a graph G is

97

98 CHAPTER 5. UNIFICATION CAPABILITY

denoted HG

Given a �nite set A, V A denotes the set of nodes obtained by assigning every element
a ∈ A a unique node denoted va.

De�nition 27 (complete bipartite graph)

Given two sets of nodes V1 and V2, the complete bipartite graph GV1·V2 is the graph
where VGV1·V2

= V1 ∪ V2 and the set EGV1·V2
is the set of directed edges such that every

pair in V1×V2 is connected by a unique pair of edges e1, e2 with opposite directions (i.e.,
s(e1) = t(e2) and t(e1) = s(e2).

V2

V1

Figure 5.1 A complete bipartite graph connecting set V1 (composed of the two nodes
on the left side) with set V2 (composed of the four nodes in the right side).

De�nition 28 (complete graph)

A complete graph is a (directed edge-labeled) graph G = (V,E, s, t, l) where every pair of
distinct nodes is connected by a unique pair of edges e1, e2 with opposite directions (i.e.,
s(e1) = t(e2) and t(e1) = s(e2))

De�nition 29 (discrete optimization problem)

A discrete optimization problem is a set of instances where every instance consists of a
system (i, F, obj) where i is an entity that speci�es a discrete search space, F is a set of
feasible solutions and obj : F → R is the objective function. It assigns a real value to
every feasible solution. The goal is to minimize or to maximize the obj function.

5.2 Graph-transformational particle swarm

Particle swarm optimization is one of the major approaches to swarm intelligence one
encounters in the literature in various variants (see, e.g., [48, 82, 83]). This section
models a discrete version of particle swarm optimization in the framework of graph-
transformational swarms.
A particle swarm acts in the Euclidean space Rd for some dimension d ∈ N. The space is
provided with a �tness function f : Rd → R and a neighborhood N : Rd → P(Rd) (where
P(X) denotes the power set of some set X). A swarm consists of n particles i ∈ [n]

5.2. GRAPH-TRANSFORMATIONAL PARTICLE SWARM 99

each of which carries the following information at each time t ∈ N: a position pit ∈ Rd,
a velocity vit ∈ Rd, a personal best (position) pbit ∈ Rd, and a best neighbor (position)
bnit ∈ Rd.
The initial positions pi0 and initial velocities vi0 are chosen randomly. The initial personal
bests coincide with the initial positions, i.e. pbi0 = pi0. In all steps, the best neighbor
bnit is the position of a particle j in the neighborhood of i, pjt ∈ N(pit), with maximum
�tness, i.e. f(pjt) ≥ f(pkt) for all pk ∈ N(pit). The positions, velocities and personal
bests at time t+1 are given by the following formulas using the positions, velocities and
personal bests at time t:

� vi(t+1) = vit + Ut(0, ϕ1)⊗ (pbit − pit) + Ut(0, ϕ2)⊗ (bnit − pit),

� pi(t+1) = pit + vi(t+1),

� pbi(t+1) = pi(t+1) if f(pi(t+1)) > f(pbit) and pbi(t+1) = pbit otherwise.

Here ϕ1 and ϕ2 are two pregiven bounds, Ut(0, ϕ1) and Ut(0, ϕ1) are vectors with ran-
domly chosen components between 0 and ϕ1 and ϕ2 respectively, and ⊗ is the compo-
nentwise product. A velocity represents a direction and a speed so that a particle moves
in this direction with this speed from step to step where the velocity is adapted in such
a way that the particle moves partly in the direction of the personal best and partly in
the direction of the best neighbor. It is assumed that each particle is a neighbor of itself
to guarantee that the best neighbor always exists. The goal is that one of the particles
reaches a position, the �tness of which meets or exceeds a given bound. In the literature
one can �nd a long list of examples of particle swarms which run successfully for a variety
of optimization problems (see, e.g., [82]).
A simple way to discretize particle swarms is to assume that all position and velocity
components and all randomly chosen scalars are integers. This discrete version of par-
ticle swarms can be transformed into the framework of graph-transformational swarms.
Let PS be such a discrete particle swarm with the �tness function f : Zd → Z, the neigh-
borhood N : Zd → P(Zd), the bounds ϕ1, ϕ2 ∈ N, the goal value b ∈ Z, and n particles.
Then the corresponding graph-transformational swarm is given in Fig. 5.2.

swarm(PS)

initial: space(N, f)
kinds : particle
size : n
members: particlei for i ∈ [n]
coop: synchronize(self ,newvel)

goal: required(
m

pi | i ∈ [n],m ≥ b)

Figure 5.2 A graph transformational particle swarm

The initial environment graph is called space(N, f) and has all points Zd in the d-
dimensional Euclidean plane with integer coordinates as nodes. There is an unlabeled

100 CHAPTER 5. UNIFICATION CAPABILITY

edge (x, y) for x, y ∈ Zd with the source x and the target y whenever y ∈ N(x). Further-
more, each x ∈ Zd has two loops (x, 1) and (x, 2) where x is source and target. The label
of (x, 1) is also x, the label of (x, 2) is f(x). All particles are of the same kind, speci�ed
by the unit particle in Figure 5.3. (For technical simplicity, it is assumed that d > 1.)

5.2. GRAPH-TRANSFORMATIONAL PARTICLE SWARM 101

particle

rules:

init: ⊇ ⊆
p pb

v

self:

p

⊇
p

⊆
p bn

improve:

p bn

p′′

p′

m

n

⊇
bn

⊇ ⊆ for m,n ∈ Z
with n > m

bn

newvel: ⊇
pbp

bn
v

xyz u

w
⊇

v

⊆

v

for x, y, z, u ∈ Zd with w = u+U(0, ϕ1)⊗ (y − x)+U(0, ϕ2)⊗ (z − x)

and U(0, ϕ1) and U(0, ϕ2) chosen as above

newpos: ⊇
pv

xy x+ y

⊇
p

⊆ for x, y ∈ Zd

p

newpb: ⊇
p pb

m n

⊇
pb

⊆ for m,n ∈ Z

with m > n

pb

control: init ; (self ; improve! ; newvel ; newpos ; try(newpb))∗

Figure 5.3 The unit particle

The member particlei for i ∈ [n] is obtained by indexing p, v, pb and bn with i. All
other labels are kept variable with p′, p′′ ∈ {p1, · · · , pn} in particular. Due to the control

102 CHAPTER 5. UNIFICATION CAPABILITY

condition, the rule init is applied �rst and then never again. It chooses two points x
and y, generates a new node (representing a particle) and two edges from this node to x,
labeled with p and pb respectively, and an edge to y labeled with v choosing randomly
an initial position, which is also the personal best, and an initial velocity. As nothing
is removed, each two applications of init are parallel independent such that all particles
can be initialized simultaneously. Afterwards, a sequence of rule applications is iterated
starting with self followed by improve as long as possible. The application of self takes
the current position as best neighbor by adding a bn-edge parallel to the p-edge. The
rule improve can be applied if one can �nd a particle in the neighborhood with a better
�tness. Applied as long as possible, the bn-edge points to the current best neighbor.

If now newvel and then newpos are applied, then the velocity and position of a particle
are changed using the formulas above by redirecting the v-edge and p-edge accordingly.
If the new position has a better �tness than the former personal best, then the rule
newpb can be applied to update the personal best. The control condition try(newpb)
requires that newpb is applied if possible.

The rules self can be applied to all particles in parallel as again nothing is removed.
Two applications of improve for di�erent particles are parallel independent as only the
di�erent bn-edges are redirected. Therefore, the improvements can be done in parallel
provided that at most one improve-rule per particle is applied. The cooperation condi-
tion requires that the applications of newvel are synchronized, which means that they
are done in parallel after all improvements have been performed. Each two applications
of newvel for di�erent particles are parallel independent as only di�erent edges are redi-
rected. Because of the same reason, all particles can get a new position by applying
the newpos-rules in parallel. And analogously the newpb-rules can be applied in parallel
afterwards as far as they are applicable at all. The cooperation condition requires that
self is synchronized, which means that in the next round all applications of self start
simultaneously. The goal requires that one of the particles reaches a position the �tness
of which meets or exceeds the bound value b.
The rules improve, newvel, newpos and newpb describe how the attributes of a particle
can be changed by redirecting the respective edges where the positive context (placed
left-most) provides the parameters that must be considered in each case.
By de�nition, a run ρ of a particle swarm is determined by the choices of pi0 and vi0
for i ∈ [n] and the vectors Ut(0, ϕ1) and Ut(0, ϕ2) for t ∈ N. The family of quadruples
st = ((pit, vit, pbit, bnit))i∈[n] may be seen as the swarm state at time t ∈ N. Such a state
can be transformed into a graph gr(st) that has space (N, f) as subgraph and, for each
i ∈ [n], an additional node i as well as four new edges of the form

i

pi vi bpi bni

pit vit pbit bnit

Consider, on the other hand, the computation of swarm(PS) using the same choices as

5.3. GRAPH-TRANSFORMATIONAL CELLULAR AUTOMATA 103

the run ρ. Then the considerations of this section show that, for each t ∈ N, the graph
gr(st) is computed after all improve-steps in round t through the iteration in the control
condition. This proves the following correctness result.

Theorem 2

Let PS be a discrete particle swarm and swarm(PS) the corresponding graph-
transformational swarm. Then the results of runs in PS and the computations in
swarm(PS) are identical.

The proposed discretization can be applied to solve problems de�ned over continuous
domains. In the literature there is also the trend to adapt particle swarm optimization
to solve discrete optimization problems. The particles in this case correspond to problem
solutions and the velocity and position updates, as introduced above, are rede�ned to
be applicable to the discrete space (see i.e., [11, 70]). swarm(PS) can also be adapted in
the same way to solve discrete problems. In this case space(N, f) and the operators in
the rule newvel should be adapted to the corresponding domains. Despite those changes
all other components can be used unchanged.

5.3 Graph-transformational cellular automata

Cellular automata are computational devices with massive parallelism that have been
known for many decades (see, e.g., [12, 47, 101, 102, 104]). They are also considered as
typical representatives of swarm computation (cf.[50]). In this section, we embed cellular
automata into the framework of graph-transformational swarms.
A cellular automaton is a network of cells where each cell has got certain neighbor
cells. A con�guration is given by a mapping that associates a local state with each cell.
A current con�guration can change into a follow-up con�guration by the simultaneous
changes of all local states. The local transitions are speci�ed by an underlying �nite
automaton where the local states of the neighbor cells are the inputs. If the network is
in�nite, one assumes a particular sleeping state that cannot change if all input states of
neighbor cells are also sleeping. Consequently, all follow-up con�gurations have only a
�nite number of cells that are not sleeping if one starts with such a con�guration.
To keep the technicalities simple, we consider 2-dimensional cellular automata, the cells
of which are the unit squares in the Euclidean plane

(i, j+1) (i+1, j+1)

(i, j) (i+1, j)

for all (i, j) ∈ Z× Z and can be identi�ed by their left lower corner. The neighborhood
is de�ned by a vector N = (N1, . . . , Nk) ∈ (Z × Z)k where the neighbor cells of (i, j)
are given by the translations (i, j) + N1, . . . , (i, j) + Nk. If one chooses the local states
as colors, a cell with a local state can be represented by �lling the area of the cell with
the corresponding color. Accordingly, the underlying �nite automaton is speci�ed by a
�nite set of colors, say COLOR, and its transition d : COLOR × COLORk → COLOR.

104 CHAPTER 5. UNIFICATION CAPABILITY

Without loss of generality, we assume white ∈ COLOR and use it as sleeping state,
i.e. d(white,whitek) = white. Under these assumptions, a con�guration is a mapping
S : Z× Z→ COLOR and the follow-up con�guration S′ of S is de�ned by

S′((i, j)) = d(S((i, j)), (S((i, j) +N1)), . . . , S((i, j) +Nk))).

If one starts with a con�guration S0 which has only a �nite number of cells the colors of
which are not white, then only these cells and those that have them as neighbors may
change the colors. Therefore, the follow-up con�guration has again only a �nite number
of cells with other colors than white. Consequently, the simultaneous change of colors
of all cells can be computed. Moreover, there is always a �nite area of the Euclidean
plane that contains all changing cells. In other words, a sequence of successive follow-up
con�gurations can be depicted as a sequence of pictures by �lling the cells with their
colors.

Example. The following instance of a cellular automaton may illustrate the con-
cept. It is called SIER, has two colors, COLOR = {white, black}, and the neigh-
borhood vector is N = ((−1, 0), (0, 1)) meaning that each cell has the cell to its left
and the next upper cell as neighbors. The transition of SIER changes white into
black if exactly one neighbor is black, i.e. d : COLOR × COLOR2 → COLOR with
d(white, (black, white)) = d(white, (white, black)) = black and d(c, (c1, c2)) = c other-
wise.
If one starts with the con�guration S0 with S0((10, 0)) = S0((0, 10)) = S0((30, 0)) =
S0((0, 40)) = black and S0((i, j)) = white otherwise, then one gets the con�guration in
Figure 5.4 after 50 steps.

Figure 5.4 A pictorial representation of the con�guration S50

Starting with a single black cell, SIER iterates the Sierpinski gadget [cf., e.g., 76]. Cellu-
lar automata can be considered as graph-transformational swarms. Let CA be a cellular
automaton with the neighborhood vector

N = (N1, . . . , Nk) ∈ (Z× Z)k,

5.3. GRAPH-TRANSFORMATIONAL CELLULAR AUTOMATA 105

the set of colors COLOR and the transition function d : COLOR×COLORk → COLOR.
Then a con�guration S : Z×Z→ COLOR can be represented by a graph gr(N,S) with
the cells as nodes, with an unlabeled edge from each cell to each of its neighbors and
two loops at each cell where one loop is labeled with the color of the cell and the other
loop with the coordinates of the cell. The set of all these graphs is denoted by G(CA).
If the color of a cell (i, j) changes, i.e. d(S((i, j)), (S((i, j) +N1), . . . , S((i, j) +Nk))) ̸=
S(i, j), then the following rule with positive context

c

(i, j)

...

(i, j)+N1
c1

(i, j)+Nk

ck
⊇

c

(i, j)

⊇

(i, j)

⊆

d(c, (c1, . . . , ck))

(i, j)

can be applied to the node (i, j) in gr(N,S) provided that c = S(i, j) and cp = S((i, j)+
Np) for p = 1, . . . , k. Due to the loops that identify the nodes, the matching is unique and
the matches of the left-hand sides of each two of such applicable rules do not overlap.
Consequently, all those applicable rules can be applied in parallel yielding gr(N,S′)
where S′ is the follow-up con�guration of S. This remains true if the (empty) sleeping
rule is applied to each other node because it is always applicable, is always independent
of each other rule application and does not change the result. In other words, the
derivation step gr(N,S)=⇒ gr(N,S′) is a swarm computation step if the rules above
belong to members of a swarm which can be de�ned as follows:

swarm(CA)

initial: G(CA)
kinds : gtu(P ((0, 0)))
size : Z× Z
members: gtu(P ((i, j))) for (i, j) ∈ Z× Z
coop: free
goal: all

where the kind and the members are units induced by the sets of rules P ((i, j)) containing
all rules above for (i, j) ∈ Z × Z and the transition d. Every member gtu(P ((i, j))) is
obtained from the kind gtu(P ((0, 0))) by translating all points in the plane by (i, j) which
is a special relabeling. Conversely, a computation step gr(N,S)=⇒H in swarm(CA)
changes a c-loop into a d(c, (c1, . . . , ck))-loop at the node with the (i, j)-loop if and only if,
for l = 1, . . . , k, the neighbor with the (i, j)+Nl-loop also has a cl-loop. All other c-loops
are kept. This means that H = gr(N,S′). In summary, each cellular automaton can
be transformed into a graph-transformational swarm such that the following correctness
result holds.

Theorem 3

Let CA be a cellular automaton with neighborhood vector N and let swarm(CA) be

106 CHAPTER 5. UNIFICATION CAPABILITY

the corresponding graph-transformational swarm. Then there is a transition from S to
S′ in CA if and only if gr(N,S))=⇒ gr(N,S′) is a computation step in swarm(CA).

Therefore, cellular automata behave exactly as their swarm versions up to the repre-
sentation of con�gurations as graphs. We have considered cellular automata over the
2-dimensional space Z× Z. It is not di�cult to see that all our constructions also work
for the d-dimensional space Zd in a similar way. One may even replace the quadratic
cells by triangular or hexagonal cells.

5.4 Ant colony optimization as a framework

The current section shows how it is possible to integrate the metaheuristic ant colony op-
timization (ACO) into the graph-transformational swarms framework. While Section 2.2
introduces ACO in a general way, considering its inspiration and its general functioning,
this section focuses on its formal description. The metaheuristic was proposed in 1999
[20], however a formal formulation has only been given in 2004 [22]. This was a reaction
to the wide range of developed versions each of which was adapted to solve a given op-
timization problem. The formulation in 2004 is proposed to unify the di�erent existing
ACO approaches as a framework. A detailed description of the ACO-framework can be
found in [22]. This section summarizes1 that description.
The framework of ACO is considered to be a composition of three components: (1)
ACO-input is a system that represents an instance of a given problem in a way that
it can be solved by the metaheuristic, (2) ACO-procedures are the procedures that the
metaheuristic iterates until a goal is met and (3) ACO-parameters are parameters and
functions that specify a complete algorithm.
The mapping from a minimization problem to an ACO-input is illustrated via the trav-
eling sales person (TSP) and the generalized assignment problem (GAP). The ACO-
parameters are speci�ed for two well established versions, the Ant System (AS) and
MAX −MIN Ant System (MMAS).
In the second part, the ACO-methaheuristics is formulated as a graph transformational
swarm. Furthermore, the components of the swarm for the two problems GAP and TSP
as well as the algorithmMMAS are speci�ed.
The proposed graph transformational swarm is composed of three kinds: ant, updater
and best. The ant members walk on the graph, building their solutions in parallel. After
that, the members of kind updater update the values of the pheromone. An iteration is
achieved by choosing the best solutions through the members of kind best. The swarm
repeats this iterations until the goal, which consists of �nding a solution with a cost less
or equal a value b, is met.
Figure 5.5 displays an overview of the ACO-framework and the relationship between its
components. These are described as follows:

1The summary is performed with some adaptation in the formulations used in the original formula-
tion. The main di�erence consists of the de�nition of the minimization problem. In the original version,
the authors use a constraints-based de�nition. Here, a classical one based on the speci�cation of the set
feasible solution is used. Another di�erence is the decomposition into three components. This allows a
better description of the attempted uni�cation using graph class expressions.

5.4. ANT COLONY OPTIMIZATION AS A FRAMEWORK 107

minimization
problem instance
I = (i, F, obj)

ACO-input
Inp(I) = (CG,WCG,N ,cost)

Inp

i: discrete entity
F : set of feasible solutions
obj: objective function of
feasible solutions

CG: construction graph
WCG: set of feasible walks
N : neighborhood mapping
cost: cost function of walks

ACO-procedures

solution construction

pheromone update

ACO-parameters

τ0: initial pheromone values
stochastic rule
update rule
local search: local search
procedure
end: termination conditions

Figure 5.5 Overview of the ant colony optimization framework

5.4.1 ACO-input

In order to apply ACO to a given minimization problem, one has to de�ne a mapping Inp
that assigns to every instance I = (i, F, obj) a model Inp(I) called ACO-input. The main
component to be speci�ed in the ACO-input is the construction graph CG that encodes
the corresponding entity i. The edges of the construction graph are labeled by a set of
attributes. For a given subset of edges one of these attributes should be the pheromone
value τ . τ is initialized by the algorithm and is updated during the computations. The
other attributes are problem speci�c and are invariant during the computations. An
equivalent to feasible solutions should be speci�ed in the graphical setup in term of
feasible walks. The set of all feasible walks in a construction graph CG is denoted WCG.
Another important characteristic of ACO is the incremental construction of solutions.
For this purpose a mechanism is needed to guide the ants in their decision in such a way
that only feasible walks are constructed at the end of an iteration2. That is, a kind of
mechanism that transforms the speci�cation from the global level (the feasible solution)
to the local level (the decision of an ant in every step of its movement in the underlying
graph). ACO proposes the notion of feasible neighborhood. Given a walk w the feasible
neighborhood N (w) de�nes the set of possible nodes that can be added to w. In other
terms, if an ant has constructed a walk w = (v1, . . . , vk+1) and is now situated at the
(end) node vk+1, then N (w) is the set of adjacent nodes to vk+1 that can be visited and
added to the walk w. In this way, the feasible neighborhood mapping restricts the ants
to building only walks that belong to a set W

partial
CG ⊂ WCG. Consequently, W

partial
CG is

2In some cases this constraint can be relaxed allowing ants to also construct non-feasible solutions.
Such solutions are then adapted in a suitable way to become feasible solutions

108 CHAPTER 5. UNIFICATION CAPABILITY

called the set of feasible partial walks. Furthermore, the objective function should also
be adapted to apply to walks. The adapted objective function is denoted cost.
More formally, given an instance I = (i, F, obj) of a discrete minimization problem, the
corresponding ACO-input is a system Inp(I) = (CG,WCG,N , cost) where

� CG is a graph called construction graph. It is a presentation of the entity i as
a graph. The nodes are called solution components. 3 The label function lCG :
ECG −→ Σ assigns a vector of attributes (a1, . . . , ak) with k ∈ N to every edge.
For a subset of edges Eτ ⊂ ECG, the �rst attribute is reserved to the pheromone
value,

� W ⊆ WCG is the set of feasible walks in CG. Usually, every feasible walk corre-
sponds to a feasible solution in F ,

� N : WCG −→ P(VCG) is the neighborhood mapping, where P(VCG) is the power
set of VCG containing all its subsets. Given a walk w ∈ WCG the mapping N
returns a subset of nodes in VCG and

� cost : W −→ R is the cost function of a given feasible walk.4

ACO-input for TSP

In TSP, the search space of an instance is speci�ed by a peer (G, dist) where G is a
complete5 graph with n nodes and dist : EG → R+ assigns to every edge a weight called
distance. The set of feasible solutions F corresponds to the set of Hamiltonian cycles
HG. The objective function of a hamiltonian cycle is the sum of distances in its edges.
The goal is to �nd a hamiltonian cycle with minimal sum. An instance corresponds to
a system ITSP = (i, F, obj) where,

� i = (G, dist)

� F = HG

� obj(v1, . . . , vn, v1) =
n−1

i=1 dist(vi, vi+1)+dist(vn, v1)
with (v1, . . . , vn) ∈ HG.

Given an instance (G, dist) of TSP, the corresponding ACO-input is the system
(CG,W,N , cost) where:

� CG = (VG, EG, sG, tG, l) with l = (τ, dist)

� W = HG

3In the literature the construction graph CG is usually de�ned to be fully connected. For more
�exibility, this restriction is suspended in this formulation.

4In some cases cost can be de�ned over the set W o�ering an incremental computation.
5Not complete graphs can be transformed to fully connected graphs by connecting the unconnected

nodes with edges having a very large distance. During an optimization process such large distances are
unattractive and the corresponding edges are disquali�ed from being chosen.

5.4. ANT COLONY OPTIMIZATION AS A FRAMEWORK 109

� N ((v1, . . . , vk)) =


v1 if k = n
{VG ∖ {v1, . . . , vk}} if k = 1, . . . , n-1

� cost(w) = obj(w) for w ∈W

The construction graph is equal to the graph G up to its labeling. The only modi�cation
is the de�nition of the pheromone value as the �rst component of the attributes vector
of edges, the second attribute is the value of the dist function. The set of feasible walks
is the set of Hamiltonian cycles. The feasible neighbor of walk w comprising all nodes
of the graph is the start node of the walk. For other cases, the feasible neighbors are
all nodes which have not yet been visited (do not belong to w). The cost of a walk
corresponds to the value of its objective function.

ACO-input for GAP

In GAP the search space of an instance is speci�ed by a system (A, T, cp, r, c) where A is
a �nite set of agents, T is a �nite set of tasks, cp : A→ N assigns capacity of resources to
every agent a , r : T ×A→ N assigns to every pair (t, a) ∈ T ×A the amount of resources
consumed by the task t if it is assigned to the agent a, c : T ×A→ N assigns the cost of
assigning a task t ∈ T to an agent a ∈ A. Feasible solutions are assignments where every
task is assigned to a unique agent (Equation 5.2) without exceeding the capacities of the
agents (Equation 5.1). An assignment can be speci�ed by a mapping y : T ×A→ {0, 1}
where y(t, a) = 1 if the task t is assigned to the agent a and y(t, a) = 0 otherwise. The
objective function value of a feasible solution y is the sum of the assignment costs. The
goal is to minimize the objective function.
An instance of GAP corresponds to a system IGAP = (i, F, obj) where:

� i = (A, T, cp, r, c);

� F = {y : T ×A→ {0, 1}} with
t∈T

r(t, a) · y(t, a) ≤ cp(a), a ∈ A (5.1)


a∈A

y(t, a) = 1, t ∈ T (5.2)

� obj(y) =


t∈T


a∈A c(t, a) · y(t, a) .

The following translation uses a model based on the work in [66]. Given an instance
IGAP = ((A, T, cp, r, c), F, obj), the corresponding ACO- input is given by the system
(CG,W,N , cost) where:

� CG is the construction graph which is built in two steps. First, the complete
bipartite graph over the sets V T and V A is generated. Afterwards and in order
to encode the capacities of agents, every agent node is decorated with a loop

110 CHAPTER 5. UNIFICATION CAPABILITY

labeled with the corresponding capacity. The set of all such loops is denoted EV A .
The edges from V T to V A are labeled with the values of the vector function (τ, d)
where τ is the pheromone function initialized by a given value and d is the distance
function between a task- and an agent-node, it is equal to the c function between
the corresponding elements in T and A. That is,

ECG = {EV A ∪ EG
V T ·V A

}

and

l(e) =


cp(s(e)) for e ∈ EA

(τ(e), d(e) = c(s(e), t(e)), r(e) = r(s(e), t(e))) for e ∈ EG
V T ·V A

� W is the set of feasible walks corresponding to all walks starting with a task node
and alternating the visit between agent nodes and task nodes. All task nodes
should be visited once at the end. i.e.,

W = {(vt1 , va1 , . . . , vt#T , va#T)}

with vti ∈ V T , vai ∈ V A, i ∈ [#T] and if i ̸= j then vti ̸= vtj for i, j ∈ [#T]

� N is the neighborhood mapping. It di�erentiates between two cases. If the last
node in the walk is a task node, the next node has to be an agent node in such a
way that the capacity of the corresponding agent is not exceeded. If the last node
in the underlying walk is an agent node, the next node should be a task node that
is not yet visited. That is,

N ((vt1 , va1 . . . , vtk , vak , vtk+1)) = {va ∈ V A |
k

j=1,aj=a

r(tj , a) + r(t, a) ≤ cp(a)}

(5.3)

and

N ((vt1 , va1 . . . , vtk−1 , vak−1 , vtk , vak)) = {V T ∖ {vt1 , . . . , vtk}} (5.4)

for ti ∈ T , ai ∈ A, i = 1, . . . , k and k = 1, . . . ,#T -1

� cost is the cost function of feasible walks. It assigns to every feasible walk w the
objective value of the corresponding assignment yw.

cost(w) = cost(yw)

with w ∈W and yw(e) =


1 if e ∈ w
0 otherwise

5.4. ANT COLONY OPTIMIZATION AS A FRAMEWORK 111

5.4.2 ACO-procedures

Given an ACO-input, the metaheuristic ACO consists of the iteration of two procedures:6

1. Solutions construction: In this procedure each ant in the swarm attempts to in-
crementally construct a walk that corresponds to a solution of the underlying
problem. Starting in a randomly chosen node with an empty walk an ant repeats
a movement step until it constructs a feasible walk or meets another end condi-
tion. The state of an ant is given by its memorized nodes visited so far as a walk
(v1, . . . , vk) which includes the current position vk. The movement step consists
of choosing stochasticly a feasible neighbor vnext in N ((v1, . . . , vk)) which becomes
the new position. vk is added according to its current walk yielding to the new
walk (v1, . . . , vk, vnext). The stochastic choice of solution components from feasible
neighbors is based on pheromone values and other attributes of the outgoing edges
from vk to all feasible neighbors.

2. Pheromone update: The values of pheromone of the edges are changed, taking into
consideration the quality of the solutions produced so far. Usually the pheromone
values of the edges that belong to the best walks are increased. In addition, the
evaporation behavior of the real chemical substance is imitated by decreasing the
values of all pheromone in the construction graph.

The two procedures are iterated until a termination condition is met. In the following, it
is considered that a bound b is given. That is the computation ends if an ant constructs
a solution with a cost lower or equal b.

Remark 5

The ants use the neighborhood mapping N to choose the next node in every step. In

this way N forces ants to construct walks belonging to W
partial

. Therefore the domain
of N can be restricted to W

partial
.

The next subsection illustrates the ACO-parameters for the two algorithms ant system
andMAX −MIN ant system.

5.4.3 ACO-parameters

As mentioned above, there are several methods that belong to the ACO family. They
all follow the procedures introduced in the previous subsection but they di�er in some
speci�cations such as the way in which the pheromone values are updated, or what the
stochastic rule followed by the ants in their movement steps looks like. In order to
specify a complete implementation, additional parameters such as the number of ants or
the initial pheromone values are needed. All these parameters are summarized into the
components called ACO-parameters which comprises the following list of items amongst
others:

6In the literature there is an additional procedure called local search. This procedure is optional and
consists of improvements of the constructed solutions using classical local search methods.

112 CHAPTER 5. UNIFICATION CAPABILITY

� m: the number of ants. It is generally proportional to the size of the underlying
construction graph,

� τ0 the initial pheromone function that assigns an initial pheromone value to every
edge,

� the stochastic rule is a rule that the ants follow in every step to choose the
next node with a probability proportional to the pheromone values present in the
corresponding edge,

� the update rule is responsible for the update of the pheromone values in every
edge after all ants have constructed their walks. Usually the update takes into
consideration the best solutions found so far and increases the pheromone values
in the corresponding walks.

ACO-parameters in ant system

ant system (AS) is the �rst version of the ACO algorithms. It has been proposed by
Dorigo et al. [21] to solve the traveling salesperson problem (TSP).
At the beginning, every edge of the construction graph is initiated with the same (virtual)
pheromone value τ0. A number of ants m are randomly assigned to starting nodes.

� τ0 is a constant function that assigns the same (virtual) pheromone value to every
edge of the construction graph.

� stochastic rule: Given an ant with a walk w the probability to choose an edge from
the feasible neighbors is given by the following equation.

pw(e) =
[τ(e)]α · [η(e)]β

e∈N(w)[τ(e)]
α · [η(e)]β

∀e ∈ N (w) (5.5)

where α and β are two parameters that control the relative in�uence of the
pheromone or the heuristic value η respectively. The heuristic value of an edge
is problem speci�c. In the case of TSP , it is equal to the reciprocal value of its
distance (i.e., η(e) = 1

dist(e)).

� update rule: the pheromone value of an edge e is updated as follows:

τ(e)← (1− ρ) · τ(e) +
n

a=1

∆ρae (5.6)

where ∆ρae is the value of pheromone that ant a deposits on the edge e. It is given
by:

∆ρae =


1/cost(wa) if edge e ∈ wa

0 otherwise
(5.7)

where wa is the walk constructed by the ant a. In other words, only the pheromone
values of the edges visited by the ants a ∈ [n] are increased with an amount equal

5.5. GRAPH-TRANSFORMATIONAL ANT COLONY 113

to the inverse of the cost cost(wa) of the constructed walk wa. The idea behind
the equation 5.7 is that the edges belonging to walks with less cost receive more
pheromone. By means of the probability equation in 5.5, theses edges are more
likely to be chosen by ants in the next iterations.

AS has been tested on small TSP instances (up to 70 nodes). The results have revealed
that the algorithm can solve instances with up to 30 cities with acceptable performance,
compared to other heuristics. However, it has shown its limit for larger instances [21].
This was a main factor for developing other ACO algorithms with better performances.

ACO-parameters in MAX −MIN ant system

MAX −MIN ant system (MMAS) introduces modi�cations of the Ant System in
the way in which the update of pheromone values is performed. The most important
contribution of the method is the de�nition of a maximal and a minimal bound τmax and
τmin for all pheromone values. These are calculated based on some heuristic information
about the problem. This simple modi�cation brings forth signi�cant improvements of
the convergence characteristics of ACO methods preventing rapid stagnation on sub-
optimal solutions. The solution construction using the equation 5.5 as described above
is kept the same. The elements of ACO-parameters that correspond toMAX −MIN
ant system are:

� τ0 = τmax,

� stochastic rule: the same as AS (see Equation 5.5),

� update rule: two main modi�cation regarding the AS update are performed. First,
only the edges belonging to the best (or to the best so far) cycle are enhanced. The
second modi�cation introduced byMMAS consists of the de�nition of an interval
[τmin, τmax] to limit the range of pheromone values.

Accordingly, the update equation inMMAS for a given edge e looks as follows:

τ(e)← [(1− ρ) · τ(e) + ∆ρ(e)]τmax
τmin

(5.8)

where ∆ρ(e) = 1/costb if e belongs to the best walk or 0 else. ρ is a parameter
called the evaporation rate. The notation []τmax

τmin
means that the value between the

brackets is replaced by τmax if it exceeds τmax or by τmin if it falls bellow τmin .

In addition,MMAS has proposed many other technical improvement like the reinitial-
ization of the bounds τmax and τmin if the algorithm stagnates.
In the following section a graph transformational swarm version of the ACO metaheuritic
is given.

5.5 Graph-transformational ant colony

This section gives a graph transformational version of the ACO metaheuristic.

114 CHAPTER 5. UNIFICATION CAPABILITY

swarm(ACO)

initial: edge-id& best(CG)
kinds : ant,updater, best
size : m,p,1
members: anti, updaterj , best for i ∈ [m], j ∈ [p]
coop: (ant; best;updater)∗

goal: (
best, costb

| costb ≤ b)

Figure 5.6 The schematic representation of the graph transformational swarm ACO

Given an ACO-input (CG,W,N , cost) a graph transformational swarm version of the
ACO metaheuristic is speci�ed in Figure 5.6.
The initial environment corresponds to edge-id& best(CG) graph. It is obtained by
performing two modi�cations on the construction graph CG. In order to encode the
best solution, an isolated node called best-node is added. The best-node has a loop
labeled with best, σ where σ is a very large positive real number that initializes the
cost value of the best feasible walk found so far. To allow parallel computations based
on the notion of stationary members, identi�er edges are created. Every pheromone
edge in CG becomes a parallel edge having the same direction labeled by an identi�er.
Let us assume that the number of pheromone edges in the underlying graph is equal
to p. Thus, the swarm has p members of kind updater such that each one is assigned
to a unique identi�er edge. The remaining kinds are ant and best. While there are m
members of kind ant in the swarm, only a unique member of kind best exists in the swarm.

The cooperation condition requires that the ants members perform their rules until all
ants fall asleep (beside the sleep rule, no other rule is applicable), followed by the best
member and at the end the updater members. This iteration is arbitrary often repeated.
The goal consists of �nding a solution with a cost denoted costb that is lesser or equal
to the given bound b.

swarm(ACO) models the ACO − procedures in the following way: The solution con-
struction procedure is realized through the members of kind ant, and the update pro-
cedure is e�ectuated via m members of kind updater. However, in order to specify the
kinds a set de�ned through ACO− parameters is needed. In the following,MMAS as
one of the most widespread variants of ACO is considered as basis for the speci�cation of
the kinds. The proposed graph transformational version can be considered as a parallel
version of the original one. More details about parallelism follow below. Furthermore
the exact behavior of ants also depends on the optimization problem into consideration.
The kinds updater and best are rather problem independent and are therefore speci�ed
�rst.

5.5. GRAPH-TRANSFORMATIONAL ANT COLONY 115

The kinds updater and best In the considered swarm the stationary7 members of
kind updater speci�ed in Figure 5.7 perform the update in Equation 5.8 for all pheromone
edges in parallel. The rules perform changes on the pheromone value τ of the pheromone
edge, let's say ej , identi�ed by the parallel identi�er j-edge. τ is the �rst component in
the label vector of e denoted <τ, . . .> meaning that the other components are problem
speci�c and are not changed by the updater rules.
The rule evaporate decreases the pheromone τ of the edge ej by an amount ρ · τ where
ρ is the evaporation rate as introduced in Equation 5.8. The rule deposit augments the
pheromone value τ of the edge ej by 1

costb
provided that the edge ej belongs to the best

walk found so far with the cost costb. The resulting value is replaced by τmax if it is
greater than τmax or by τmin is it is lower than τmin. The control condition requires that
the evaporation is applied �rst followed by deposit if it is applicable.

updater

rules:

evaporate:
j

τ,. . .
⊇

τ,. . .
⊇ ⊆

(1-ρ)τ,. . .

deposit:

costb
best

j

τ,. . .
⊇

τ,. . .
⊇ ⊆

τnew,. . .

with τnew = [τ + 1/costb]
τmax
τmin

control: evaporate ; try(deposite)

Figure 5.7 The kind updater

The kind best is speci�ed in Figure 5.8. In the chosen approach, it is considered that
the ants "work" in parallel. It is therefore possible that more than one ant consider its
constructed walk as the best one if its cost is strictly lesser then the cost of the best walk
found so far. Such a walk is considered then to be solely as a candidate to be the best
walk and the ants create an edge from the best node to the corresponding walk-node by
a cbest-edge (for more details see the description of the kinds ant in following section).
The role of the best member which is equal to its kind is to choose the best walk found in
the current iteration. This is performed by two rules. Given two candidates for the best
solution, the rule delete deletes the one with the greater cost. The rule delete is applied
until only one candidate best walk is leftover. The rule improve updates the cost value

7stationary members are introduced in Section 6.2.

116 CHAPTER 5. UNIFICATION CAPABILITY

of the best walk found so far making it equal to the cost of remaining candidate solution
after the application of the delete rules.

best

rules:

delete:
cbest cbest

cost1 cost2

best, costb

⊇

costb

⊇

costb

⊆

if cost2 ⩽ cost1
costb

improve:
cbest

cost

best, costb

⊇

costb

⊇ ⊆

cost

control: delete! ; improve

Figure 5.8 The kind best

The kind ant The speci�cation of the kind ant depends on the optimization problem
taken into consideration. In the current paragraph, two examples of the kind ant are
given. The kinds ant(TSP) and ant(GAP) which are specialized to solve respectively
the traveling salesperson problem and the generalized assignment problem.
In contrast to the previous chapter where an ant is modeled by an edge, here an ant is
modeled by a node called ant-node with a loop having its name as label and additional
information that represent its current state. It can be depicted as follows:

. . .

...at

ant walk
cost

k 1

The current state of an ant corresponds to its current location (modeled by an outgoing
at-edge having the current node as target) and the walk constructed so far represented
by an outgoing walk-edge having as target a walk-node. A walk-node encodes a walk
(v1, . . . , vk) by having an outgoing edge ei to every node vi labeled by i indicating its
position in the walk for i = 1, . . . , n. The node that represents the current position
coincides with the last node in the walk constructed so far . The loop in the walk -node
represents the cost function. Its label is the value of the cost of the walk constructed so
far.

5.5. GRAPH-TRANSFORMATIONAL ANT COLONY 117

Given an ACO−input of the traveling salesperson problem as introduced above, the kind
that models the ant specialized to construct walks for this problem is called ant(TSP)
and given in Figure 5.9.

ant(TSP)

rules:

init: ⊇ ⊆
at

ant walk
cost : 0

1

move:

at

ant walk

k

cost

τ, d
⊇
at

cost

⊇ ⊆
at

cost+d

k+1

close:

at

ant walk

n 1

cost

τ, d
⊇

cost

⊇ ⊆

cost+d

cmpbest:

ant walk

at

best, costb

cost

⊇ ⊇ ⊇

if cost < costb
cbest

free:

at

ant walk

⊇
at

walk

⊇ ⊆

control:init ; ≀move≀ τα
dβ
! ; close ; try(cmpbest) ; free

Figure 5.9 The kind ant(TSP) which is specialized to construct solutions for the trav-
eling salesperson problem

At the beginning, the rule init initializes the iteration by creating an ant-node with

118 CHAPTER 5. UNIFICATION CAPABILITY

initial location (at) by choosing an arbitrary node in the graph. The corresponding walk
has an initial cost equal to 0 and a start node that coincides with the current location.
The rule move is applied as long as possible. It chooses a feasible neighbor that has not
yet been visited from the underlying ant stochastically. The rule move makes the ant
move one step forward to a feasible neighbor which it has not yet visited. The control
condition requires that the choice is made stochastically using the function τα

dβ
. The

ant therefore changes its location (at) and updates its walk by linking the new location
to the walk through an edge labeled k + 1 where k is the label of the location before
applying the rule move. The value of the cost function cost is updated to cost + d
where d is the distance between the old and new location. The rule close closes the
Hamiltonian cycle by adding the distance between the last and the �rst node in the
walk to the cost value. After the construction of a feasible walk it is compared with
the best solution found so far through the rule cmpbest. The rule is applied if the
underlying cost value is smaller than the best walk so far. In this case it is considered as
a candidate to be a best walk (cbest) and an edge labeled with cbest is added between
the best-node and the constructed solution. It is solely a candidate because there may
be other ants with better walks in the same iteration. At the end of the construction
iteration the ant-node is deleted along with its outgoing edges.8

Given an ACO− input of the generalized assignment problem, Figure 5.10 speci�es the
kind ant(GAP) that is specialized to construct the corresponding feasible walks.
The init rule initializes the ant node with a walk of cost=0, starting in an arbitrary
task-node. For this reason, the negative application condition requires that the initial
node should have no capacity loop which is a characteristics only of agent-nodes in
the underlying graph. In order to encode the change of capacity consumed during the
assignment process, the maximal parallel application of initcp create an edge from the
walk-node to every agent node labeled by the capacity of the the underlying agent. After
the initialization process, the control condition requires that one of the movement rules:
moveta or moveat should be stochastically applied. The both rules make ant forward
moving, changing its current location and creating an order-edge to the new location.
The movement step should be applied as long as possible. moveta models the movement
from a task node to an agent node. It is applied when the ant is located (at) a task-node
(i.e a node that has no a capacity loop). The rule chooses stochastically an agent with a
capacity cp1 such that the amount of resources consumed c of such assignment is lower
than its current capacity, regarding the constructed walk c ≤ cp. That is, the rulemoveta
incorporates the constraint formulated in the Equation 5.1. In addition to the forward
movement of ant, the application of the rule moveta updates the remaining capacity of
the chosen agent. The rule moveat is applied when ant is situated at an agent-node
(having a capacity-loop cp). The rule moveta chooses stochastically a task-node that
does not yet belong to the underlying walk. The rules cmpbest and free are the same

8In the proposed solution, the walk-node and its outgoing edges are not deleted. The presence of
these nodes and edges does not in�uence the correctness of the proposed solution, however it would
be nicer to delete the useless walks, that is, all constructed walks up to the best one. This can easily
be implemented, for example by using a kind specialized for cleaning the underlying graph after each
iteration.

5.5. GRAPH-TRANSFORMATIONAL ANT COLONY 119

ant(GAP)

rules:

init: ⊇

cp

⊆
at

ant walk
cost : 0

1

initcp:

ant walk

cp

⊇ ⊇ ⊆

cp

moveta :

at

ant walk

k

cp

cp

cost

τ, d, r
⊇
at cp

cost

⊇ ⊆
at

cost+d

k+1

cp-r

moveat :

at

ant walk

k

cp

⊇
at

⊇ ⊆
at k+1

cmpbest:

ant walk

at

best, costb

cost

⊇ ⊇ ⊇

if cost < costb
cbest

free:

at

ant walk

⊇
at

walk

⊇ ⊆

control: init ; ||initcp|| ; (≀moveat ≀f | ≀moveta≀g)! ; cmpbest ; free

Figure 5.10 The kind ant(GAP) which is specialized to construct walks for the gener-
alized assignment problem

120 CHAPTER 5. UNIFICATION CAPABILITY

as in the kind ant(TSP) (see description above). 9

5.6 Summary

In this chapter the major approaches to swarm computing have been surveyed and
embedded into the framework graph-transformational swarms.

This chapter has modeled a discrete version of particle swarm optimization as a graph-
transformational swarm. The main idea behind its discretization is the consideration
that all information that specify the state of a particle are integers, each of which
can be represented each by a node having a loop labeled by the corresponding value.
Each particle is then presented by a node having outgoing edges to the components
of its state. In this way all possible usual operations can be performed using graph
transformation rules in a natural way. It was shown that the computations in the
graph-transformational swarms version correspond with the runs in the corresponding
discrete particle swarm.

Cellular automata has also been embedded into the graph-transformational swarms.
The cells, their states and their neighbors, which together determine a con�guration of a
cellular automaton, are easily presented in a graph. Multidimensional cellular automata
can be modeled using multidimensional sizes of graph-transformational swarms. Each
cell is assigned a swarm member such that all members have the same kind speci�ed by
a graph transformation rule. Considering suitable representations of con�gurations as
graphs, it was shown that cellular automata behave exactly like their swarm versions.

Ant colony optimization has been formulated as a framework composed of three com-
ponents: (1) ACO-input which determines the elements needed as input for a speci�c
ACO method, (2) ACO-procedures which is the �xed part in the framework describing
the main procedures that a speci�c algorithm should apply and (3)ACO-parameters
which contains amongst others the parameters that specify a given version in the ACO
algorithms. Illustrative examples were provided for ACO-input and ACO-parameters. It
was then shown how to formulate the di�erent components in the graph-transformational
swarms framework.

One of the aims behind embedding di�erent swarm computing approaches into graph-
transformational swarms was the development of new concepts that combine the ideas
and advantages of these approaches. This chapter has provided implicitly an example
where such a combination occurs. In the graph-transformational version of the ant colony
optimization the members of kind updater are based on the ideas of cellular automata.
They are not moving in the graph and perform computations based on the information

9The distribution functions f and g are speci�ed in the scope of this work. See [66] for concert
examples of f and g.

5.6. SUMMARY 121

available in the neighboring nodes and edges (cells). The resulting swarm contains two
kinds of members. Members that move (of kind ant) and others (of kind updater) that
stay in their places and update the state of the whole environment by updating their own
states in parallel. Using this combination of the concepts of cellular automata and ant
colony optimization, it was possible to provide a version of ant colon optimization where
parallelism is speci�ed in a natural manner. The next chapter investigates in-depth the
idea of a special case of members that are not moving in the graph called stationary
members.

122 CHAPTER 5. UNIFICATION CAPABILITY

Chapter 6

Swarms with stationary members

This chapter studies a special type of members called stationary members. The stationary
members are assigned to particular subgraphs of the considered environment graphs and
stay there. They are responsible for calculations and transformations at the assigned
areas. The number of such members is proportional to the size of the underlying graph
if parts of the members' subgraphs are exclusively assigned. The advantage of stationary
members is that it is easier to establish the applicability of rules and to guarantee that
the members can act in parallel than for moving members.
Cloud computing for example is an engineering topic where swarms with stationary
members can be applied in an adequate way, namely by modeling the nodes of the server
network that form the cloud as stationary members. We illustrate the proposed concept
by means of two case studies.
The current chapter is organized as follows: Section 6.1 sketches how cloud-based sys-
tems can bene�t from the concept of stationary members. In Section 6.2 the notion
of stationary members is de�ned. Section 6.3 demonstrates the notion of stationary
members by means of two case studies. The chapter ends with a summary.

6.1 Cloud computing

Cloud computing is an emerging technology with high promises, but also with various
technical challenges. A cloud consists of a network of computer systems that have dif-
ferent tasks providing resources as services. Such a network can be modeled in a natural
way as a graph. Every computer system in the cloud can be represented by a node and
the connections between them through labeled edges. The labels can encode various
technical information. Given such a graph, the graph-transformational swarms with sta-
tionary members can be applied to solve problems and to analyze the behavior of the
cloud.
The key connection of this chapter to cloud systems is the assignment of the stationary
members to the nodes of the cloud network so that the members can execute calculations
locally and parallel to each other. Depending on the problem and the architecture of the
chosen network, it is possible to de�ne di�erent kinds of stationary members that have
di�erent roles. The technical details about how this can be achieved in a graph follow

123

124 CHAPTER 6. SWARMS WITH STATIONARY MEMBERS

in the rest of this chapter.
Graph-transformational swarms with stationary members can contribute to cloud- based
engineering systems at least by (1) o�ering a visual and mathematical basis for the anal-
ysis of cloud behavior, and (2) providing a framework to design distributed algorithms
based on parallel rule applications able to be used directly in a cloud. The �rst claim
is directly inherited from the advantages using graph transformation as basic method
in the proposed framework. The second claim is supported by the examples introduced
in Section 6.3. The proposed solutions can be directly applied to a cloud system for
detecting deadlocks.

6.2 Stationary members

The basic idea of swarm computation is that the members of a swarm can solve problems
by team work and massive parallelism better or faster than a single processing unit. In
the general setting, there may be two obstacles to meet these advantages. (1) To compute
which member can perform which action may take time proportional to nk where n is the
size of the environment and k is the size of the left-hand side of the rule to be applied.
The latter one can often be chosen small enough, but the former can get very large. (2)
To make sure that members can act in parallel, one must check independence for each
pair of matches of rules to be applied which is quadratic in the number of members in
general.
Both obstacles can be avoided by stationary members. Their matches can be found
locally in a small area rather than in the whole environment and independence of most
pairs of matches is automatically guaranteed because they are always far away from each
other. Although the environment is changed in a swarm computation, there may be an
invariant part.
A member of a swarm may be considered as stationary if all left-hand sides of its rules can
only match in the vicinity of a �xed subarea of the permanent part of the environment.
Then the matches of the rules depend only on the size of this subarea and its vicinity
and no longer on the size of the whole environment. Moreover, the independence of such
a match from other matches must only be checked if the subareas and vicinities overlap
which is never the case if the involved subareas are far enough away from each other.
The following de�nition introduce the notion more formally,

De�nition 30 (stationary members)

Let S = (in,K, size,M, coop, goal) be a swarm. Then its members are called stationary
if the following holds:

1. Each initial environment graph G ∈ SEM(in) is associated with a set SUB of
subgraphs which is kept invariant by swarm computations, i.e. SUB is a set of
subgraphs of G′ for each swarm computation G

∗
=⇒G′.

2. Each member m ∈ M(k) for each k ∈ K is associated with a subgraph G(m) ∈
SUB.

6.3. EXAMPLES 125

3. Each left-hand side of each rule of each member m ∈ M(k) for each k ∈ K
contains a subgraph that matches only in G(m) and the full match can be found
in the neighborhood of G(m).

Here neighborhood is a generic notion and may consist of all nodes adjacent to G(m)
and the edges incident to them or all nodes reachable by paths from G(m) of a bounded
length.

6.3 Examples

The notion of stationary members is illustrated by means of two simple and well-known
decision problems.

6.3.1 Cycle freeness test

A swarm is provided with stationary members that tests an input graph for cycle
freeness. Due to the massive parallelism of the swarm members' teamwork, the number
of computational steps is linearly bounded. This example is kept simple. But to
illustrate all the features of swarms, cycle freeness problem is solved in a dynamic
setting, meaning that new edges are added to the underlying graph from time to time
so that eventually every initial graph ends up with cycles.

To keep the model as simple as possible, the swarm that tests a simple, unlabeled
and directed graph G for cycle freeness receives this graph as a parameter where we
assume, in addition, that the nodes are numbered from 1 to n. G is turned into the
initial environment by adding an i-loop to each node i ∈ [n] . There are three kinds:
(1) marker with a single rule mark which marks an edge outgoing of a node with an
X- loop, provided that there is no incoming unlabeled edge. The control condition
||mark|| requires that the rule be applied with maximum parallelism. The size is the
number n of nodes. The member markeri for i ∈ [n] is obtained from marker by
relabeling all occurring X with i. (2) resetter has just a single rule that turns a marked
edge into an unmarked one. The X- and Y -loop identify the source and the target
yielding stationarity of the members resetteri,j where X and Y are relabeled by the
node identi�er i , j ∈ [n] . (3) adder has a rule that adds an edge between an X- and
a Y -looped node. The control condition [add] requires that the rule may be applied or
not. The cooperation condition requires that marker is applied as long as possible,
followed by an arbitrary number of repetitions of resetter followed by adder followed by
marker repeatedly as long as possible. The goal is to reach a graph without unlabeled
edges meaning that all unlabeled edges are changed into c-marked ones. The swarm
and its kinds are schematically speci�ed in Figure 6.1.

As the rule applications of the swarm members of kind marker change unlabeled edges
into c-marked ones, the nodes and their loops are kept invariant so that the members
are stationary and the match of the rule mark of the member markeri is �xed by
the unique i-loop and varies only in the outgoing edges. Two matches of mark of the

126 CHAPTER 6. SWARMS WITH STATIONARY MEMBERS

cyclefree(G)

initial: id-looped(G)
kinds : marker, resetter, adder
size : n, n2-n, n2-n
members: markeri for i ∈ [n]

resetteri,j for i, j ∈ [n], i ̸= j,
adderi,j for i, j ∈ [n], i ̸= j

coop: marker!
goal: forbidden()

marker

rules:

mark:

X

−→ c

X

control: ∥mark∥

resetter

rules:

reset:

X

c

Y

−→

X Y

control: reset

adder

rules:

add:

X Y

−→

X Y

control: [add]

Figure 6.1 The cyclefree swarm with its kinds marker, resetter and adder

6.3. EXAMPLES 127

member markeri are independent if they access di�erent outgoing edges which can be
checked locally. Matches ofmark that are preformed by two di�erent members are always
independent. Consequently, a maximum parallel step of the swarm marks simultaneously
all edges outgoing from nodes without incoming unlabeled edges. As long as there are
such edges, their number decreases in each computational step of the marker-members
such that - by induction - we always end up with the unlabeled edges on cycles. In
particular, the number of such steps is bounded by the length of the longest simple path
and cycles are never broken. Summarizing, the following result is shown.

Theorem 4

The swarm cyclefree(G) reaches its goal if and only if G is cycle-free. To decide this,
the number of steps is bounded by the length of the longest simple path in G.

Moreover, the resetter-step returns the graph given before the marker- computations,
and the adder-step adds new edges. The resulting graphs are tested by the marker-
computations for cyclefreeness in the same way as the initial graph. Therefore, Theorem
1 holds for them, too. Note that resetteri,j and adderi,j are stationary members �xed
by the nodes i and j and the corresponding loops.

6.3.2 Reachability test

In analogy to cycle freeness example, the swarm takes as parameter a simple, unlabeled
and directed graph G, where the nodes are numbered from 1 to n. In order to test if a
node t is reachable from a node s the swarm has additionally, two parameters s, t ∈ [n].
The graph G becomes an initial environment by adding an i-loop to each node i ∈ [n].
The swarm has a unique kind catcher with a single rule catch. This rule creates an
s-loop at a node with no s-loop, if there is an edge from an s-looped neighbor to this
node. According to the control condition, this rule is applied if possible.
Every node beside s gets a member. The members catcheri for i ∈ [n]-{s} is obtained
by relabeling every occurrence of X with i. The cooperation is free and the goal is to
spread the s-loop to reach the node t. The members are stationary because the nodes
and their loops are kept unchanged. Figure 6.2 speci�es the swarm reachable(G,s,t) and
the kind catcher.
One can imagine that in every node, beside s, a member catcheri is sitting and waiting
(sleeping) until an incoming neighbor gets an s-loop. If this happen, then catcheri
"catches" the s-loop by creating a copy in the underlying node. After that, catcheri
sleeps again. In the next step all outgoing neighbors of catcheri catch the s-loop.
The matches of two rules catch from di�erent members are always independent. Ac-
cordingly, a maximum parallel step of the swarm spreads simultaneously an s-loop to
all nodes without an s-loop that are outgoing neighbors of nodes with s-loops. If t is
reachable from s, then the number of such steps is equal to the length of the shortest
simple path from s to t. If not, then the number of steps is bounded by the length of
the longest simple path starting from s.

Theorem 5

The swarm reachable(G,s,t) meets its goal if and only if the node t is reachable from

128 CHAPTER 6. SWARMS WITH STATIONARY MEMBERS

reachable(G,s,t)
initial: id-looped(G)
kinds : catcher
size : n-1
members: catcheri, for i ∈ [n]-{s}
coop: free

goal: required(
ts
)

catcher

rules:

catch :

s s

X

−→

s s

X

control: try(catch)

Figure 6.2 The swarm reachable with its kind catcher.

the node s in G. The number of steps to decide this is bounded by the minimum of the
length of the shortest path from s to t and the length of the longest simple path starting
from the s node.

6.4 Summary

In this chapter, the notion of graph-transformational swarms with stationary members is
introduced. Stationary members are assigned to particular subgraphs of the considered
environment graphs and are responsible for the local calculations and transformations.
Their advantage is that it is easier to establish the applicability of rules and to guarantee
that the members can act in parallel compared to the general case where the members
are moving. This chapter proposes cloud computing as an application �eld for the notion
of graph transformational swarms with stationary members. The key is the modeling
of a cloud as a graph. Two case studies that are directly related to cloud computing
were presented. The case studies show that such solutions take advantage of massive
parallelism, can be visually represented and support correctness results. However, in
order to prove the power of the concept, bigger and more di�cult examples should be
modeled in the future. In cloud computing specially, one can consider task scheduling
problems which are NP- hard problems in general and can pro�t from a combination of
swarm heuristics and the massive parallelism in the proposed framework.

Chapter 7

Modeling in dynamic logistic

networks

As logistic networks get larger and larger and more and more complex, they become
more di�cult to handle and to control. The traditional central control does not
work �exibly and e�ciently enough in any case so that one must look for alternative
approaches. This applies particularly if the logistic network may change dynamically.
One of the most signi�cant current paradigms that faces this complexity is the so-called
autonomous control approach (cf. [46]). This approach proposes that each logistic
object, such as a container or an automated guided vehicle, receives its own computing
processor and makes its decision autonomously. Therefore, the components can react
locally and quickly to changes in the environment. However, a major challenge within
this kind of decentralized approach is how the individuals act and cooperate with each
other to reach a desired global goal. This applies and discusses graph-transformational
swarms as a formal modeling approach to dynamic logistic networks with decentralized
control. As an illustrative example, the routing problem of automated guided vehicles
is considered and discussed.

This chapter is organized as follows. Section 7.1 discusses how graph-transformational
swarms can be used to model dynamic logistic networks. To illustrate this, essential
aspects of the routing problem of automated guided vehicles are modeled as graph-
transformational swarms in Section 7.2. Section 7.3 summarizes the chapter.

7.1 From swarms in nature to logistic networks

This section argues that graph-transformational swarms as introduced in the previous
chapters are appropriate means to model dynamic logistic networks. Several approaches
to swarm computation, including graph-transformational swarms, mimic swarms in
nature, as pointed out in Chapter 2 in more detail. The interesting aspect is that
already, swarms in nature solve problems closely related to logistics. Moreover and
more interestingly in the context of this chapter, a closer look the other way round at

129

130 CHAPTER 7. MODELING IN DYNAMIC LOGISTIC NETWORKS

dynamic logistic networks in Subsection 7.1.2 reveals that they can be considered as
graph-transformational swarms.

7.1.1 Relating swarms in nature with logistics

The proposed framework is inspired by the swarm behavior in nature which describes
the group behavior of social animals. Chapter 2 has shown that several studies agree
on the assumption that the swarm behavior results from relatively simple rules on the
individual level (see, e.g.,[9, 16, 18, 74]). In biology the underlying phenomena is also
known as self-organization: The individuals in the group interact locally with other group
members and have no knowledge of the global behavior of the entire group. Furthermore,
all members play the same role without any hierarchical structure [9].
Chapter 2 has also shown that, based on swarm behavior, social animals solve continu-
ously complex problems. Ant colonies as well as bee hives construct nests and manage
the resources inside of them. They forage for food and transport it in an e�cient and
�exible way, based on the cooperation with each other and the communication through
the environment. Obviously, such phenomena have logistic aspects. Therefore, it is
somewhat evident that the behavior of swarms in nature has inspired the introduction of
such concepts as arti�cial intelligence and swarm computation that are based on the idea
of self-organization to solve logistic problems. One encounters some approaches to swarm
computation in the literature (see, e.g., [6, 7, 33, 50, 71]) where logistic problems are
solved as typical examples, such as the shortest-path problem, the traveling-salespersons
problem and others. One may summarize that the passage from swarms to logistics is
not very long.

7.1.2 Dynamic logistic networks as graph-transformational swarms

On the other hand, consider dynamic logistic networks. Their underlying structures
consist of nodes and connecting edges. The nodes represent logistic hubs of di�erent
types like production sites, storage facilities, car pools, etc. or - on a more detailed
level - packages, containers, cars, trucks, etc., and the edges represent transport lines
or information channels or the like. Without loss of generality, one can assume that
there is always some start structure. To manage the �ows of material and information
in a logistic network, various logistic processes are running. If the network is large
and widely distributed, then it may not be meaningful to control the processes
centrally. Alternatively, the logistic processes in the network may run simultaneously
and independently of each other, each performing its own actions and following its
own autonomous control. But such a decentralized control requires coordination and
cooperation whenever material or information must be exchanged carrying out the
overall tasks. To coordinate autonomous logistic processes in a network in such a
way that the cooperation works properly,s becomes even more di�cult if the network
changes structure dynamically . One needs appropriate modeling methods like those
provided by graph-transformational swarms.

The underlying structures of dynamic logistic networks are de�ned as graphs so that

7.1. FROM SWARMS IN NATURE TO LOGISTIC NETWORKS 131

dynamic logistic network graph-transformational swarm

underlying structure environment graph
types of logistic entities kinds
logistic entities members
possible actions rules
autonomous control control conditions
start structures initial environments
coordination cooperation conditions
tasks goals
simultaneous and decentralized massively parallel rule application
processing

Table 7.1 Correspondence between dynamic logistic networks and graph-transforma-
tional swarms

they correspond directly to environment graphs of graph-transformational swarms
where the initial environments play the role of the start structures. The various types of
logistic entities like hubs, sites, carriers, containers, etc. together with the actions that
are performed on them or a�ect them can be seen as kinds so that the entities themselves
are the swarm members. In particular, the possible process actions correspond to the
rules and the autonomous control is re�ected by the control conditions. Finally, the
coordination of the processes running on the logistic networks is embodied by the
cooperation conditions and the overall tasks by the goals.

Summarized in Table 7.1, there is a very close relationship between the main fea-
tures of dynamic logistic networks and the syntactic components of graph-transforma-
tional swarms. Moreover and most interestingly, the idea of autonomous processes that
run simultaneously and decentralized in a logistic network is well re�ected on the seman-
tic level of graph-transformational swarms, as all the members always act in parallel.

7.1.3 The potentials of the approach

We propose in this chapter to model dynamic logistic networks by means of graph-
transformational swarms. In the previous subsection, one can see that the notion of such
swarms covers all the main features one expects and �nds in dynamic logistic networks.
Nevertheless, one may wonder which particular potentials and advantages this approach
provides:

1. The conception of graph-transformational swarms o�ers a formal framework with a
precise mathematical semantics based on massive parallelism of rule applications.

2. As the environments are graphs and the processing is modeled by graph transfor-
mation rules speci�ed by four graphs each, the approach provides a fundament for
visualization so that it can be considered as a visual modeling approach.

132 CHAPTER 7. MODELING IN DYNAMIC LOGISTIC NETWORKS

3. In fact, graph-transformational swarms can be executed on graph transformation
engines like GrGen.NET (see [37]) or AGG (see [96]) so that visual simulation
is possible for illustrations, tests and experiments of various kinds. The next sec-
tion for example illustrates in Figures 7.3 and 7.7 computations generated by Gr-
Gen.NET. They visualize the computational steps in a simple environment in order
to make it easier for a reader to understand how the developed swarm behaves.
Moreover, the implementation in GrGen.NET allows us a visual testing using dif-
ferent graphs.

4. The formal semantics is based on derivations which are sequences of rule appli-
cations. Therefore, a proof technique is provided by induction on the lengths of
derivations.

5. If one �xes the initial environment and bounds the lengths of derivations, then the
behavior of graph-transformational swarms can be translated into formulas of the
propositional calculus so that SAT-solvers can be employed for automatic proving
of properties, as far as they are expressible in propositional calculus (cf. [34]). A
typical correctness property one would like to prove in this way is: Will the goal be
reached? Another property of interest that can be proven in this way is deadlock
freeness.

6. The approach is very �exible and generic because all the modeling concepts can be
chosen from a variety of possibilities. This applies to the kind of graphs which may
be directed or undirected, labeled or unlabeled, connected, simple, etc. It applies
similarly to the kind of rules, control conditions and graph class expressions. The
actual choice may depend on the application at hand or the taste of the network
designers.

7. Graph-transformational swarms do not need extra features to make logistic net-
works dynamic, i.e. to allow the modeling of dynamic changes of the underlying
structure. The members of the swarm perform their tasks by applying rules to
the environment graph. This includes the possibility of members to change the
environment structurally.

.

7.2 Routing of AGVs by a graph-transformational swarm

This section proposes a solution to the routing problem of the automated guided vehicles
(AGVs) using the notion of graph-transformational swarms. Automated guided vehicles
are driverless transportation engines that traditionally follow guide paths like lines on
the ground. Their use has expanded rapidly in the last decades. Beside the classical
application in small manufacturing systems, nowadays, the tendency is to use AGVs
more and more for transport in highly complex systems including external areas like
container terminals (for a general overview, see, e.g., [65, 100]). One of the important
problems that a designer of an AGV system faces in complex areas is the collision-free

7.2. ROUTING OF AGVS 133

routing problem. The classical way to solve this problem is the central time windows
planning (see, e.g., [93, 97, 98]). However, the tendency in the last years is to explore
more decentralized approaches (e.g., [92, 103]). In the same vein, this section proposes
a decentralized solution using the notion of graph-transformational swarms.

7.2.1 The routing swarm

The infrastructure where the AGVs operate is modeled as an id-looped distance graph.
In a graphical representation the nodes correspond to the ends or intersections of paths
including important stations like pick-up and delivery locations. The edges represent
the paths or segments of paths in the infra-structure depending on their lengths. The
distance of an edge can correspond to the distance of the corresponding path or to some
cost of traversing it.

This thesis proposes a solution based on two stages. The �rst one consists of the prepa-
ration of the layout in a such way that the AGVs follow only local information later. The
second one consists of the navigation process of the AGVs depending on an arbitrary
task assignment.

routing(m)
initial: id-looped(distance)
kinds : preparator,resolver,assigner,navigator
size : n = #nodes,n,m,m
members: preparatori for i ∈ [n]

resolverj for j ∈ [n]
assignerk for k ∈ [m]
navigatorl for l ∈ [m]

coop: preparator; (assigner; (resolver;navigator)∗)∗

goal: all vehicles arrived

Figure 7.1 The schematic representation of the graph-transformational swarm routing

The parameter m is the number of AGVs and can be chosen freely. The swarm
has four kinds: preparator, resolver, assigner, and navigator. Their sizes are
n,n, m and m respectively where n is the number of nodes in the underlying graph
G ∈ SEM(id-looped(distance)). The members are obtained by relabeling in such a
way that every node in the graph gets assigned two member one of kind preparator
and the other of kind resolver, and similarly, every AGV gets assigned a member of
kind assigner and a member of kind navigator. How relabeling is achieved is described
below in the detailed introduction of the kinds.

The cooperation condition requires that preparator is applied realizing the layout prepa-
ration followed by an arbitrary repetition of assignments, each followed by an arbitrary
number of con�ict resolving and navigation. The goal is that all AGVs reach their

134 CHAPTER 7. MODELING IN DYNAMIC LOGISTIC NETWORKS

assigned targets. The swarm is schematically presented in Figure 7.1.
As mentioned before, we have implemented the swarm routing in the graph transfor-
mational tool GrGen.NET. The resulting computation steps of an experiment with an
environment composed of a very small graph and three AGVs are used in this section
to accompany the explanation of the behavior of the swarm routing. Figure 7.3 sum-
marizes the layout preparation process and Figure 7.7 illustrates the remainder of the
computation which consists of the assignment and the con�ict free navigation of the
AGVs.

7.2.2 Layout preparation

The layout preparation equips the underlying graph with additional edges in such a
way that every node in the graph can indicate an AGV having the target T whose
next node can be visited to reach T with the minimal distance possible. Given an
i-node, let us code such an indicator as an outgoing edge e labeled with a pair T,D.
Let us say that i has an indicator to T with the distance D using the successor s,
where s is the destination of e. If D is minimal considering simple paths up to the
maximal lengths l, we say that the indicator is called l-minimal. If D is minimal
considering all possible paths, then the indicator is optimal. A path composed of
indicators to a target T is called an indicator path to T . If every node in the graph has
only optimal indicators to every reachable node, then the graph is called fully indicated.

preparator

rules:

init:
d

X s

−→
d

X s

s, d

connect:
d

T, new

X

T,D2

(D2 < new)

s

T,D1

−→

new=D1+d

d
X s

T,D1T, new

select:

T,D2

X

T,D1

−→
D2 > D1 X

T,D1

control: ∥init∥; (∥connect∥; ∥select∥)!

Figure 7.2 The unit preparator

7.2. ROUTING OF AGVS 135

The members of kind preparator realize the layout preparation process. The kind
preparator speci�ed in Figure 7.2 initializes this process with rule init. It adds an
indicator in an X-node to a direct successor s provided that such an indicator does not
yet exist. The rule connect connects an X-node with an existing indicator path to T .
It is applied if a direct successor s of X exists, having an indicator to T with a distance
D1, provided that there is no other direct successor of X having the same target T
with a distance D2 such that D2 < D1+d. The rule connect generates an indicator to
T with the new distance D1+d using the successor s. If an X-node has two indicators
to a target T with di�erent distances, the rule select deletes the one with the larger
distance, selecting in this way the best one to be kept. The control condition requires
that the rule init is applied with maximum parallelism. Afterwards, the rule connect is
applied; followed by select, both with maximum parallelism. Because of the negative
application constraint of init, for every successor node init is applied only once in the
whole swarm computation while connect and select are iterated as long as possible
according to the control condition of preparator.

In the swarm, there are n members of kind preparator. The member preparatori for
i ∈ [n] is obtained from preparator by relabeling all occurring X with i.
Then i becomes a �xed label in preparatori. The role of the other labels must be
explained now: They are placeholders for all possible values so that the rules are rather
rule schemata that must be instantiated before they are applied. A control condition
like ||init|| means accordingly, that the maximum number of the instantiations of the
rule init must be applied in parallel. This mechanism that keeps the representation of
rule sets small is used in all our examples of transformation units.

The following describes how the members work together using the computation in Fig-
ure 7.3 as illustrating example. In the �rst step, all members apply the rule init in
parallel, generating in every node indicators to all successor nodes (see the result of
the derivation p1 in the example). In the second step, the parallel application of the
rule connect in parallel connects all nodes to construct indicator paths of length 2. It
also connects those that are already connected to indicator path of length 1 if the new
distance is smaller than the old one (in the example, p2 adds indicators in the nodes
2 and 3). In the third step, all members apply select in parallel deleting all indicators
using paths of length 2 and 1 that are not 2-minimal (p3 deletes the indicator in 2 to 1
with distance 3 keeping the minimal indicator to 1 with distance 2). Note that a node
can have more than one minimal indicator to the same target (in the example, the node
3 is given two indicators to 1 with the same distance 4). By induction, one can prove
that in 2L − 1 steps all L-minimal indicators are constructed. If the longest path with
a minimal distance is constructed, then the preparator-members cannot apply any rule
anymore (except the sleeping rule) and the constructed indicators are optimal. Because
the length of such a path is shorter or equal n − 1, the number of steps is bounded by
2n− 3. In summary, the following correctness result holds:

Theorem 6

Given an id-looped distance graph G, the swarm routing transforms it by the initial

136 CHAPTER 7. MODELING IN DYNAMIC LOGISTIC NETWORKS

preparation phase into a fully indicated graph in a number of steps bounded by 2n− 3,
where n is the number of nodes in G.

Note that the layout preparation process can be considered as a distributed version of
the Dijkstra's shortest path algorithm (cf. [19]).

p1 p2

p3

p4

Figure 7.3 A sample computation of the swarm routing illustrating the layout prepa-
ration process

The behavior of the swarm in the layout preparation stage can also be interpreted as
follows: In the �rst step, a change in the environment is introduced using the rules init.
The swarm reacts by propagating this information backwards over all nodes, combining
the rules connect and select of all members of kind preparator. In more sophisticated
versions of the underlying swarm, one can consider that additional changes can occur in
the environment. For example, the suppression of indicator edges can simulate a tra�c
congestion. Such a change can also be handled in the same way by propagating the
information backward to all concerned members. For illustration purposes, the prepa-
ration process here is kept simple and the next subsection shows how the automated
guided vehicles can use the generated information to navigate to their assigned targets
con�ict-free.

7.2. ROUTING OF AGVS 137

7.2.3 Assignment, con�icts resolving and navigation

The kinds assigner and navigator model the task assignment and navigation process
from the point of view of the AGVs. However, the task assignment has the most sim-
ple form, serving solely the simulation purposes of the computational steps. The kind
resolver models the con�ict resolving from the point of view of a node that multiple
AGVs have it as next destination and would like to visit the same next position, which
is determined by a direct successor of the underlying node.
An AGV is encoded as an AGV-edge labeled by a, T, p where a is the name of the AGV,
T ∈ [n] corresponds to its assigned target and p ∈ N is its current priority. A vector of
nodes < n1, n2 >, such that an indicator (T, d) from n1 to n2 exists, is called therefore
an AGV position. It is considered that AGVs with target T can occupy such a position
with the restriction that at most one AGV can be present in a position at a given time.
The priority is needed to resolve con�icts if more than one AGV compete for the same
position.
The kind assigner has just a single rule assign that creates a vehicle edge labeled with
a, T, p between two arbitrary nodes, provided that this position leads to the target T
and is free and that the vehicle edge is not yet present in the whole graph. Note that
the edges labeled by T, d in the rule assign have di�erent forms meaning that they do
not belong to the gluing graph of the rule. The control condition [assign] requires that
the rule may be applied or not, so that not every vehicle must be present any time. The
members assignerj for j ∈ [m] are obtained from the kind assigner by relabeling all
occurring a with aj and the a′ by ak for j ̸= k.
The kind resolver has a single rule reserve. It reserves for an incoming AGV-edge
labeled by a, T, p a next possible position < X, s > having an indicator T, d provided
that the following four negative contexts are all satis�ed: (1) There is no other
concurrent AGV (represented in the rule by the incoming AGV-edge a1, T1, p1) with
a higher priority (p1 > p), and can visit too the position < X, s > (see the edge
(T1, d1) in the rule). This negative context with two edges is bordered by a dotted
line to indicate that the two parts should be satis�ed together. (2) The position
< X, s > is free: there is no other outgoing AGV-edge labeled by a2, T2, p2 parallel
to the (T, d)-edge. (3) There is no reservation a3 for any other vehicle in the next
position < X, s >. (4) The AGV a has not yet a reservation: there is no outgoing
edge labeled by a. The rule reserve adds an outgoing edge labeled by a parallel to the
(T, d)-edge which indicates that the underlying position is reserved for the AGV a. The
rule reserve may be applicable for two AGVs with the same priority both claiming the
same next possible position < X, s >. But the control condition requires that the rule
is applied sequentially as long as possible so that only one of the potential reservations
is chosen non-deterministically. The member resolverj for j ∈ [n] is derived from
resolver by relabeling all occurring X with j. This means in particular that reserva-
tions are done sequentially at the node with the j-loop, but in parallel for di�erent nodes.

The kind navigator contains three rules wait, move and arrive. The rule wait
increments the priority p with 1. The rule move is responsible for the forward movement
of the AGV until the target is reached. It moves the AGV a with the target T forward

138 CHAPTER 7. MODELING IN DYNAMIC LOGISTIC NETWORKS

assigner

rules:

assign:
T, d

a′, T ′, p′ a, T, p

−→
a, T, 1

control: [assign]

Figure 7.4 The unit assigner

navigator

rules:

wait:

a, T, p

−→
a, T, p+1

move:

a, T, p

a
−→

a, T, p=1

arrive:

a, T, p

T

−→

T

control: move|arrive|wait & wait < move & wait < arrive

Figure 7.5 The unit navigator

resolver

rules:

reserve:

a, T, p

T, dX

a1, T1, p1
(p1 > p)

a3

T1, d1

a2, T2, p2a

−→
X T, d

a, T, p a

control: reserve!

Figure 7.6 The unit resolver

7.2. ROUTING OF AGVS 139

following an a-edge (which is added by a resolver member). If the target node is
reached, the rule arrive can be applied. The rule arrive deletes the AGV-edge,
signaling in this way to the task assigner that the AGV a is free for a new assignment.
The control condition requires that one of the rules move, arrive or wait is applied.
Therein, wait has the lowest priority. The member navigatork for k ∈ [m] are obtained
from navigator by relabeling all occurring a with ak.

After the layout preparation, only members of kind assigner, resolver and navigator
are active. The assigner members create an arbitrary number less or equal m of AGV-
edges in parallel. According to the parallelization theorem together with the fact that
the T, d edges in the rule assign do not belong to the gluing graph, the positions of
the created AGVs are pairwise di�erent ensuring a con�ict-free assignment. Afterwards,
all created AGV-edges act in parallel by moving forward or waiting depending on the
decision of the resolver members which are present in every node to check for and to
resolve con�icts. They reserve the next possible position of the AGVs based on their
priorities. The AGVs with a reservation are moved forward, setting their priorities to
one, the others that arrive at their targets have their corresponding edge deleted, all
others have to wait, incrementing their priorities by one. If the number of repetitions is
high enough, the swarm reaches its goal, otherwise the process starts again by assigning
new tasks to inactive vehicles. The swarm repeats this process until the goal is reached.
Especially, the following result is obtained.

Theorem 7

If the swarm routing reaches its goal, each AGV that has been assigned to a target
reaches this target collision-free.

Proof Consider a computation G0
∗

=⇒Gn of the swarm routing. According to the
cooperation condition, an initial section G0

∗
=⇒Gi for some i prepares the initial

environment G0 into a graph with the properties stated in Theorem 1. And the
tail Gi

∗
=⇒Gn is composed from sections of the form Gkj =⇒Gkj+1

∗
=⇒Gkj+1

for
i = k1 < · · · < km = n, m ≥ 1 where, for j = 1, . . . ,m, the �rst step is an
assign-step and the remainder repeats resolver-steps followed by navigator-steps. For
m = 0, this is the empty sequence. Then the theorem can be proved by induction
on m. For m = 0, no car moves so that no collision can happen. Let now the
computation have m+1 assign-steps. Due to the induction hypothesis, the vehicles
run collision-free for the �rst m assign-steps. The (m+1)-st assign-step adds some
further AGVs, but only if none of these is already present and the edges where the
vehicles are assigned are not occupied. All further steps are applications of the
rule reserve alternated with the applications of the rules wait, move, and arrive.
A collision would only happen, whenever two AGVs move onto the same edge at
the same time. But such collision is impossible because the entered edge is reserved
before by exactly one vehicle as discussed in detail above in the explanations of the kinds.

The swarm routing is designed to solve con�ict-free situations where two or more con-
current AGVs want to traverse the same node. However, it should be mentioned that

140 CHAPTER 7. MODELING IN DYNAMIC LOGISTIC NETWORKS

p5 p6

p7

p8p9

p10

p11 p12

p13

p14

Figure 7.7 A sample computation of the swarm routing, illustrating the navigation
process

7.3. SUMMARY 141

the presented swarm does not handle deadlocks caused from circular waits. The charac-
terization, detection and avoidance of such situations should be treated in future work.
Figure 7.7 illustrates the computations in the navigation process of three AGVs a1,a2
and a3 starting with the fully connected graph resulting from the preparation process
in Figure 7.3. In the �rst step of this stage, two AGVs are arbitrarily chosen to receives
assignments and the reminder is kept inactive. a1 and a3 are assigned the targets 1 and
4 and the start positions < 3, 1 > and < 3, 2 > respectively as a result of the application
of the rule p5 = assign1 + assign3 + sleep2, where the indices in the rules correspond
to the indices of the members that apply them. After the assignment, the member
resolver2, which resolves con�ict in node 2, reserves the next position for the AGV a3
by generating an a3-edge while all other members of kind resolver apply their sleeping
rule i.e, p6 = reserve2 +


i∈[5]\{2} sleepi. The rule p7 = arrive1 + move3 + sleep2 is

applied, making a1 available for other assignments because it has already arrived at its
target, and moving forward the vehicle a3 to its reserved position. The AGV a2 is still
sleeping in this step. At this point, the repetition of resolving and navigation is �nished,
allowing that the assignment starts again. p8 = assigner2+


i∈[3]\{2} sleepi assigns the

target 1 and the start position < 5, 4 > to the AGV a2. The other members of kind
assigner sleep because the a1 is not chosen to be assigned and a3 is already assigned.
In the next step, the rule p9 = resolver4 +


i∈[5]\{4} sleepi chooses a2 to move forward,

reserving the only possible next edge for it. This step illustrates the behavior of a member
resolver in a situation where concurrent AGVs having the same maximal priority and
want to traverse the assigned node. Namely one is chosen arbitrarily. Following this
decision, a2 moves forward and a3 waits, augmenting its priority by 1 as a result of
the rule p10 = move2 + wait3 + sleep1. The navigation rules yield that a2 applies
its arrive rule and that a3 waits again because the next position is occupied, that is
p11 = arrive2+wait3+ sleep1. In the next two steps p12 = resolver4+


i∈[5]\{4} sleepi

reserves the next position for a3 followed by p13 = move3 +


i∈[2] sleepi which moves it
to the reserved position. In the last step, and because the last active AGV a3 arrives at
its target p14 = arrive3 +


i∈[2] sleepi, the swarm reaches its goal.

7.3 Summary

This chapter proposed modeling dynamic logistic networks with decentralized processing
and control by means of graph-transformational swarms. The members of such a swarm
act and interact in a common environment graph. It is a rule-based approach, the
semantics of which is based on massive parallelism according to local control conditions
of the members and a global cooperation condition of the swarm as a whole. As was
discussed above, this corresponds to dynamic logistic networks with their logistic hubs
and their processes which run simultaneously and autonomously with a proper way of
coordination. It was sketched out how automated guided vehicles and their routing
can be modeled by a graph-transformational swarm as an illustrative example. In this
example, an innovative decentralized control has been proposed. The main idea behind it
it to equip the environment with computing devices, that perform several computations,
relieving the AGVs from calculating the whole path between a start and a target position.

142 CHAPTER 7. MODELING IN DYNAMIC LOGISTIC NETWORKS

The environment can act to changes like by propagating such information based on
neighboring communication. The AGV use only local information provided from the
environment. This example has demonstrated the capability of the approach regarding
visualization in the design level as well as the computation level. Furthermore, two
theorems have been provided using the advantage of the formal semantics of graph-
transformational swarms.

Chapter 8

Conclusion

8.1 Summary

In this thesis, the concept of graph-transformational swarms was introduced and
studied. The concept combines the ideas of swarms and swarm computing and the
formalism capability of graph transformation.

The major approaches of swarm computing as well as their biological foundations are
surveyed using a unifying perspective. That is, focusing on the common principles, with
the aim to propose a concept that embeds the di�erent swarm computing concepts. The
identi�ed ideas and principles are formulated by means of graph transformation. For
this purpose, a suitable graph transformation approach is chosen, adapted and extended.

The resulting concept consists of a system composed of a set of members that act and
interact in an environment represented by a graph. The members are structured into
kinds such that each kind speci�es the role to play in the swarm. The number of members
of a kind is given by the size of the kind. Using the notion of vector size, it is possible
to de�ne multidimensional swarms where the members can be assigned to points in a
multidimensional space. Furthermore, unbounded sizes are allowed. A kind corresponds
to a simple graph transformation unit which consists of a set of rules and a control
condition that regulate the rule applications. The members of a kind are modeled as
units related to the unit of this kind, assuring in this way that all members of some kind
are alike.
A swarm computation starts with an initial environment and consists of iterated rule
applications. In every step, each member of the swarm applies one of its rules, requiring
therefore massive parallelism. The choice of rules depends on their applicability and
the control condition of the members. The applicability of rules is well speci�ed
by the individual conditions of each candidate rule and by means of the generalized
parallelization theorem that speci�es the conditions for parallel application of rules
of di�erent members. Another possibility to regulate the rule applications is the
cooperation condition. It regulates the alternation between di�erent kinds, determining
therefore which members are allowed to participate in a computation step. Finally,

143

144 CHAPTER 8. CONCLUSION

a swarm may have a goal also given by a graph class expression. A computation is
considered to be successful, if an environment that meets the goal is reached.

The concept of graph-transformational swarms provides a formal framework for the
study of swarm computation. In many swarm approaches, the environments of the
swarms are either chosen as graphs explicitly or can easily be represented by graphs.
And because rules are widely and successfully used as the core of computation, graph
transformation combining rules and graphs is a natural candidate for the formalization
of swarm computation. This is shown by embedding the major swarm computing
methods into the graph transformation framework.

This thesis presents several examples where graph-transformational swarms is success-
fully employed to solve problems. First, simple illustrative examples are used, followed
by classical optimization problems, and �nally a sophisticated logistic problem is mod-
eled. Therein, it was possible to demonstrate the capability of the approach regarding
visualization on the design level as well as on the computation level. Furthermore, cor-
rectness theorems are formulated and proved using the advantage of the formal semantics
of the concept. In summary, this thesis provides a framework that o�ers the following
features and advantages:

� Graphs and rules are mathematically well-understood and quite intuitive syntactic
means to model algorithmic processes. Moreover, the additional use of control and
cooperation conditions as well as graph-class expressions allows very �exible forms
of regulation.

� Derivations as sequences of rule applications provide an operational semantics that
is precise and re�ects the computational intentions in a proper way.

� Based on the formally de�ned derivation steps and the lengths of derivations, the
approach provides a proof-by-induction principle that allows one to prove proper-
ties of swarm computations like termination, correctness, e�ciency, etc.

� In the area of graph transformation, one encounters several tools for the simulation,
model checking and SAT-solving of graph transformation systems that can be
adapted to graph-transformational swarms.

� And maybe most important, the proposed framework o�ers systematic and reliable
handling of massive parallelism. In several swarm approaches, the simultaneous ac-
tions of swarm members are organized in a very simplistic way by avoiding any kind
of con�ict or are required, but not always guaranteed (cf. e.g., [75]). In contrast
to that, the simultaneous actions of members of graph-transformational swarms
are assured whenever the member rules are applicable and pairwise independent.
Both can be checked locally and much more e�ciently than the applicability of the
corresponding parallel rule.

8.2. CONTRIBUTIONS 145

8.2 Contributions

This thesis makes several noteworthy contributions to the current state-of-art in science
and engineering. The scienti�c results are embedded in a framework that o�ers a base
for future studies and exploration of swarm computing and distributed networks. In
more detail, the following contributions are obtained:

� The general ideas and principles of swarms and swarm computing are identi�ed.
The formulation is based on theories and �ndings from biology and studies of the
major swarm computing methods.

� The generalized parallelization theorem is introduced and proved. It proposes a
generalization to the well-known parallelization theorem considering an arbitrary
set of direct derivations rather than only two direct derivations. The generalized
parallelization theorem o�ers a theoretical basis but also practical techniques to
specify and handle massive parallelism.

� The research on graph transformation units is complemented and enriched. Graph
transformation units are adapted and successfully used as the basic modeling com-
ponents for kinds and members in swarms. Their modeling power has been, there-
fore, con�rmed. Furthermore, the use of relabeling to generate similar units is an
intuitive technique that is proposed here, as alternative to the classical inheritance
methods.

� Stochastic control is introduced as a new control condition. It extends the concept
of control condition to specify matching based on distribution functions. Therefore,
it o�ers the possibility to model stochastic processes not only in the �eld of swarm
computing but also in other �elds of soft computing.

� The new notion of stationary members is introduced. The advantage of the notion
is its e�ciency regarding the examination of the applicability of rules. Cloud com-
puting is proposed as an application �eld for the notion of graph transformational
swarms with stationary members. However the notion can be used as modeling
approach in many other �elds where computing devices are distributed.

� A distributed version of the well-known ant colony algorithm MIN -MAX ant
system is proposed. It is a natural result of the formulation using graph-
transformational swarms. Besides the ants, other stationary members are assigned
to edges and are responsible of updating of the corresponding pheromone locally.

� In this thesis, it is argued that graph-transformational swarms are suitable for
modeling dynamic logistic networks with decentralized processing and control in
general. In particular, an innovative decentralized control that solves the routing
problem of automated guided vehicles is proposed.

With these contributions, the thesis opens new perspectives for developing innovative
computing methods. It provides new insights into modeling and solving distributed
problems. Since, the systematic description of parallelism encourages and often enforces

146 CHAPTER 8. CONCLUSION

to face the problem of critical sections � where a mutual exclusion of access is required
� in early stages of solutions design.

8.3 Outlook

Further research could also be conducted to shed more light on the signi�cance of the
approach. In particular, the following topics will be studied in future research:

1. Further case studies are needed including real applications. This would allow to
test the implementation of a distributed network against a formal speci�cation
by means of graph-transformational swarms rather than against informal or semi-
formal models or just against the intuition of the designers.

2. The stochastic behavior of swarms should be further explored by means of proba-
bility theory, together with empirical experiments. As consequence, more general
correctness results, i.e., for classes of problems and not only for speci�c problems,
can be developed.

3. The use of tools has to be made more comfortable. At the moment, one must adapt
each graph-transformational swarm separately by hand to simulate and visualize
it on a graph-transformation engine or to verify properties on a SAT-solver. By
�xing the syntactic features of swarm modeling, one can construct translators into
the tools so that the tools run automatically on swarms and simulate and verify
dynamic networks in this way.

4. It may be meaningful to translate the modeling concepts of graph-transforma-
tional swarms into explicit modeling concepts of dynamic logistic networks. In
this way, modelers of networks do not need to make themselves familiar with the
swarm ideas, and they could follow their intentions directly within the edi�ce of
ideas of logistic networks.

Index

CG, 108
HG, 98
WG, 97
C, 52
X , 53
GΣ, 31
R, 35
Σ, 31
W , 108

W
partial
CG , 107

WCG, 107

ant colonies, 13
Argentine ant, 13

binary bridge experiment, 15
boids, 12

complete graph, 98
complete bipartite graph, 98
contact condition, 33
control condition, 52
cooperation condition, 72
cyle, 97

discrete optimization problem, 98
disjoint union, 34

extension, 34

foraging behavior, 13

gluing condition, 36
graph, 31
graph class expression, 52
graph morphism, 34
graph transformation unit, 53
graph-transformational swarm, 73

Hamiltonian cycle, 97

identi�cation condition, 36
isomorphism, 34

loop, 31

many eyes e�ect, 11
match, 34

parallel independence, 43
parallel rule, 43
pheromone, 13

related unit, 70
restriction, 34
rule, 35

school of �sh, 10
scout bees, 27
self-organization, 10
Short-path experiment, 16
simple graph transfromation unit, 69
stationary members, 124
stigmergy, 13
stocahstic control, 80
subgraph, 33
subtraction, 33
swarm computation, 74

walk, 97

147

148 INDEX

Bibliography

[1] L. Abdenebaoui and H.-J. Kreowski. Decentralized routing of automated guided
vehicles by means of graph-transformational swarms. In M. Freitag, H. Kotzab,
and J. Pannek, editors, Dynamics in Logistics, Proceedings of the 5th International
Conference LDIC, 2016 Bremen, Germany, Lecture Notes in Logistics. Springer,
2016.

[2] L. Abdenebaoui and H.-J. Kreowski. Modeling of decentralized processes in dy-
namic logistic networks by means of graph-transformational swarms. Logistics
Research, 9(1):1�13, 2016.

[3] L. Abdenebaoui, H.-J. Kreowski, and S. Kuske. Graph-transformational swarms.
In S. Bensch, F. Drewes, R. Freund, and F. Otto, editors, Fifth Workshop on
Non-Classical Models for Automata and Applications - NCMA 2013, Umeå, Swe-
den, August 13 - August 14, Proceedings, pages 35�50. Österreichische Computer
Gesellschaft, 2013.

[4] L. Abdenebaoui, H.-J. Kreowski, and S. Kuske. Graph-transformational swarms
with stationary members. In M. L. Camarinha-Matos, A. T. Baldissera, G. Di Orio,
and F. Marques, editors, Technological Innovation for Cloud-Based Engineering
Systems: 6th IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Elec-
trical and Industrial Systems, DoCEIS 2015, Costa de Caparica, Portugal, April
13-15, 2015, Proceedings, pages 137�144. Springer International Publishing, 2015.

[5] M. Bauderon, Y. Métivier, M. Mosbah, and A. Sellami. Graph relabelling systems:
a tool for encoding, proving, studying and visualizing - distributed algorithms.
Electr. Notes Theor. Comput. Sci., 51:93�107, 2001.

[6] C. Blum and D. Merkle, editors. Swarm Intelligence: Introduction and Applica-
tions. Natural Computing Series. Springer, New York, 2008.

[7] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to
Arti�cial Systems. Oxford University Press, 1999.

[8] F. M. Burnet. The clonal selection theory of acquired
immunity. Nashville,Vanderbilt University Press� 1959.
http://www.biodiversitylibrary.org/bibliography/8281.

149

150 BIBLIOGRAPHY

[9] S. Camazine, N. R. Franks, J. Sneyd, E. Bonabeau, J.-L. Deneubourg, and G. Ther-
aula. Self-Organization in Biological Systems. Princeton University Press, Prince-
ton, NJ, USA, 2001.

[10] L. N. d. Castro. Arti�cial Immune Systems: A New Computational Intelligence
Approach. Springer-Verlag, London, 2002.

[11] M. Clerc. Discrete particle swarm optimization, illustrated by the traveling sales-
man problem. In New Optimization Techniques in Engineering, volume 141 of
Studies in Fuzziness and Soft Computing, pages 219�239. Springer Berlin Heidel-
berg, 2004.

[12] E. F. Codd. Cellular Automata. Academic Press, New York, 1968.

[13] M. Cook. Universality in Elementary Cellular Automata. Complex Systems,
15(1):1�40, 2004.

[14] A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg, editors. Graph
Transformations, Third International Conference, ICGT 2006, Natal, Rio Grande
do Norte, Brazil, September 17-23, 2006, Proceedings, volume 4178 of Lecture Notes
in Computer Science. Springer, 2006.

[15] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, Vol. 1: Foundations, pages 163�245. World Scienti�c,
Singapore, 1997.

[16] I. D. Couzin and J. Krause. Self-Organization and Collective Behavior in Verte-
brates . Advances in the Study of Behavior, 32:1 � 75, 2003.

[17] L. N. de Castro and F. J. V. Zuben. Learning and optimization using the clonal
selection principle. IEEE Transactions on Evolutionary Computation, Special Issue
on Arti�cial Immune Systems (IEEE), 6(3):239�251, 2002.

[18] J. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels. The self-organizing ex-
ploratory pattern of the Argentine ant. Journal of Insect Behavior, 3(2):159�168,
Mar. 1990.

[19] Dijkstra, E. W. A note on two problems in connection with graphs. Numerical
Mathematics, 1(5):269�271, 1959.

[20] M. Dorigo, G. D. Caro, and L. M. Gambardella. Ant algorithms for discrete
optimization. Arti�cial Life, 5:137�172, 1999.

[21] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-part
B, 26(1):29�41, 1996.

BIBLIOGRAPHY 151

[22] M. Dorigo and T. Stützle. Ant colony optimization. MIT Press, 2004.

[23] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science. An EATCS Se-
ries). Springer, Berlin Heidelberg, 2006.

[24] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science. An EATCS Se-
ries). Springer, Berlin Heidelberg, 2006.

[25] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. 2: Applications,
Languages and Tools. World Scienti�c, Singapore, 1999.

[26] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Graph Transfor-
mations - 6th International Conference, ICGT 2012, Bremen, Germany, Septem-
ber 24-29, 2012. Proceedings, volume 7562 of Lecture Notes in Computer Science.
Springer, 2012.

[27] H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors. Graph Trans-
formations, Second International Conference, ICGT 2004, Rome, Italy, September
28 - October 2, 2004, Proceedings, volume 3256 of Lecture Notes in Computer
Science. Springer, 2004.

[28] H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors. Graph Grammars and Their
Application to Computer Science, Berlin, 1991.

[29] H. Ehrig, M. Pfender, and H.-J. Schneider. Graph grammars: An algebraic ap-
proach. In IEEE Conf. on Automata and Switching Theory, pages 167�180, Iowa
City, 1973.

[30] H. Ehrig, U. Prange, and G. Taentzer. Fundamental theory for typed attributed
graph transformation. In H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg,
editors, Graph Transformations: Second International Conference, ICGT 2004,
Rome, Italy, September 28�October 1, 2004. Proceedings, pages 161�177, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[31] H. Ehrig, A. Rensink, G. Rozenberg, and A. Schürr, editors. Graph Transfor-
mations - 5th International Conference, ICGT 2010, Enschede, The Netherlands,
September 27 - - October 2, 2010. Proceedings, volume 6372 of Lecture Notes in
Computer Science. Springer, 2010.

[32] K. Ehrig and H. Giese, editors. Proceedings of the Sixth International Workshop on
Graph Transformation and Visual Modeling Techniques (GT-VMT 2007), volume 6
of Electronic Communications of the EASST, 2007.

[33] A. P. Engelbrecht. Fundamentals of Computational Swarm Intelligence. John
Wiley & Sons, 2006.

152 BIBLIOGRAPHY

[34] M. Ermler. Towards a veri�cation framework for haskell by combining graph trans-
formation units and sat solving. In M. Hanus and R. Rocha, editors, Kiel Declar-
ative Programming Days 2013, pages 138�152. Christian-Albrechts-Universität zu
Kiel, 2013.

[35] M. Ermler, S. Kuske, M. Luderer, and C. von Totth. A graph transformational
view on reductions in np. Electronic Communications of the EASST, 61, 2013.

[36] M. Gardner. The fantastic combinations of john conway's new solitaire game "life".
Scienti�c American, 223(10):120�123, Oct. 1970.

[37] R. Geiÿ and M. Kroll. GrGen.NET: A fast, expressive, and general purpose graph
rewrite tool. In A. Schürr, M. Nagl, and A. Zündorf, editors, Proc. 3rd Int. Sym-
posium on Applications of Graph Transformation with Industrial Relevance (AG-
TIVE '07), volume 5088 of Lecture Notes in Computer Science, pages 568�569,
2008.

[38] S. Goss, S. Aron, J. Deneubourg, and J. Pasteels. Self-organized shortcuts in the
Argentine ant. Naturwissenschaften, 76(12):579�581, 1989.

[39] S. Goss, S. Aron, J. Deneubourg, and J. Pasteels. Self-organized shortcuts in the
Argentine ant. Naturwissenschaften, 76(12):579�581, Dec. 1989.

[40] A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application
conditions. Fundamenta Informaticae, 26(3,4):287�313, 1996.

[41] R. Heckel, G. Lajios, and S. Menge. Stochastic graph transformation systems. In
H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors, Graph Trans-
formations, volume 3256 of Lecture Notes in Computer Science, pages 210�225.
Springer Berlin Heidelberg, 2004.

[42] J. Herskin and J. F. Ste�ensen. Energy savings in sea bass swimming in a school:
measurements of tail beat frequency and oxygen consumption at di�erent swim-
ming speeds. Journal of Fish Biology, 53(2):366�376, 1998.

[43] B. Hölldobler and E. Wilson. The Ants. Belknap Press of Harvard University
Press, 1990.

[44] K. Hölscher, H.-J. Kreowski, and S. Kuske. Autonomous units to model interacting
sequential and parallel processes. Fundamenta Informaticae, 92(3):233�257, 2009.

[45] S. Hubbard, P. Babak, S. T. Sigurdsson, and K. G. Magnússon. A model of the
formation of �sh schools and migrations of �sh. Ecological Modelling, 174(4):359 �
374, 2004.

[46] M. Hülsmann, B. Scholz-Reiter, and K. Windt. Autonomous Cooperation and
Control in Logistics. Springer, Berlin Heidelberg, 2011.

[47] J. Kari. Theory of cellular automata: A survey. Theoretical Computer Science,
334:3�33, Apr. 2005.

BIBLIOGRAPHY 153

[48] J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE International
Conference on Neural Networks (ICNN'95), volume 4, pages 1942�1948, Perth,
Western Australia, Nov. 1995. IEEE.

[49] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks,
1995. Proceedings., IEEE International Conference on, volume 4, pages 1942�1948
vol.4. IEEE, Nov. 1995.

[50] J. Kennedy and R. C. Eberhart. Swarm Intelligence. Evolutionary Computation
Series. Morgan Kaufman, San Francisco, 2001.

[51] O. Kniemeyer. Design and implementation of a graph grammar based language
for functional-structural plant modelling. PhD thesis, Brandenburg University of
Technology, 2008.

[52] H.-J. Kreowski. Manipulationen von Graphmanipulationen. PhD thesis, Technische
Universität Berlin, 1977.

[53] H.-J. Kreowski, R. Klempien-Hinrichs, and S. Kuske. Some essentials of graph
transformation. In Z. Ésik, C. Martín-Vide, and V. Mitrana, editors, Recent Ad-
vances in Formal Languages and Applications, volume 25 of Studies in Computa-
tional Intelligence, pages 229�254. Springer, 2006.

[54] H.-J. Kreowski, R. Klempien-Hinrichs, and S. Kuske. Some essentials of graph
transformation. In Z. Esik, C. Martin-Vide, and V. Mitrana, editors, Recent Ad-
vances in Formal Languages and Applications, volume 25 of Studies in Computa-
tional Intelligence, pages 229�254. Springer, Berlin Heidelberg, 2006.

[55] H.-J. Kreowski and S. Kuske. On the interleaving semantics of transformation
units � a step into GRACE. In J. E. Cuny, H. Ehrig, G. Engels, and G. Rozen-
berg, editors, Proc. Graph Grammars and Their Application to Computer Science,
volume 1073 of Lecture Notes in Computer Science, pages 89�108, 1996.

[56] H.-J. Kreowski and S. Kuske. Graph transformation units with interleaving se-
mantics. Formal Aspects of Computing, 11(6):690�723, 1999.

[57] H.-J. Kreowski and S. Kuske. Autonomous units and their semantics - the concur-
rent case. In G. Engels, C. Lewerentz, W. Schäfer, A. Schürr, and B. Westfechtel,
editors, Graph Transformations and Model-Driven Engineering, volume 5765 of
Lecture Notes in Computer Science, pages 102�120. Springer, 2010.

[58] H.-J. Kreowski and S. Kuske. Graph multiset transformation: a new framework for
massively parallel computation inspired by dna computing. Natural Computing,
10(2):961�986, 2011.

[59] H.-J. Kreowski, S. Kuske, and G. Rozenberg. Graph transformation units � an
overview. In P. Degano, R. D. Nicola, and J. Meseguer, editors, Concurrency,
Graphs and Models, volume 5065 of Lecture Notes in Computer Science, pages
57�75. Springer, 2008.

154 BIBLIOGRAPHY

[60] H. Kunz and C. K. Hemelrijk. Arti�cial �sh schools: Collective e�ects of school
size, body size, and body form. Arti�cial Life, 9(3):237�253, 2003.

[61] S. Kuske. More about control conditions for transformation units. In H. Ehrig,
G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Proc. Theory and Applica-
tion of Graph Transformations, volume 1764 of lncs, pages 323�337, 2000.

[62] S. Kuske. Transformation Units�A structuring Principle for Graph Transforma-
tion Systems. PhD thesis, University of Bremen, 2000.

[63] S. Kuske and M. Luderer. Autonomous units for solving the capacitated vehicle
routing problem based on ant colony optimization. ECEASST, 26, 2010.

[64] S. Kuske, M. Luderer, and H. Tönnies. Autonomous units for solving the trav-
eling salesperson problem based on ant colony optimization. In H.-J. Kreowski,
B. Scholz-Reiter, and K.-D. Thoben, editors, Dynamics in Logistics, pages 289�298.
Springer, Berlin Heidelberg, 2011.

[65] T. Le-Anh and M. D. Koster. A review of design and control of automated guided
vehicle systems. European Journal of Operational Research, 171(1):1 � 23, 2006.

[66] H. R. Loureno and D. Serra. Adaptive search heuristics for the generalized assign-
ment problem. Mathware and Soft Computing, 9(2-3):209�234, Dec. 10 2002.

[67] M. Luderer. Control Conditions for Transformation Units : Parallelism, As-long-
as-possible, and Stepwise Control. PhD thesis, Universität Bremen: Informatik/-
Mathematik, 2016.

[68] Y. Marinakis and M. Marinaki. A hybrid multi-swarm particle swarm optimization
algorithm for the probabilistic traveling salesman problem. Computers & OR,
37(3):432�442, 2010.

[69] Y. Métivier and E. Sopena. Graph relabelling systems : a general overview. Com-
puters and arti�cial intelligence, 16(2):167�185, 1997.

[70] A. Moraglio and J. Togelius. Geometric particle swarm optimization for the sudoku
puzzle. In H. Lipson, editor, GECCO, pages 118�125. ACM, 2007.

[71] S. Olariu and A. Y. Zomaya. Handbook of Bioinspired Algorithms and Applications.
Chapman & Hall/CRC, 2005.

[72] R. S. Olson, P. B. Haley, F. C. Dyer, and C. Adami. Exploring the evolution of a
trade-o� between vigilance and foraging in group-living organisms. Royal Society
Open Science, 2(9), 2015.

[73] B. Partridge and T. Pitcher. The sensory basis of �sh schools: Relative roles of
lateral line and vision. Journal of Comparative Physiology, 135(4):315�325, 1980.

[74] B. L. Partridge. The structure and function of �sh schools. Scienti�c American,
pages 114�123, June 1982.

BIBLIOGRAPHY 155

[75] M. Pedemonte, S. Nesmachnow, and H. Cancela. A survey on parallel ant colony
optimization. Applied Soft Computing, 11(8):5181 � 5197, 2011.

[76] H.-O. Peitgen, H. Jürgens, and D. Saupe. Chaos and Fractals: New Frontiers of
Science. Springer, 1992.

[77] A. Perna, B. Granovskiy, S. Garnier, S. C. Nicolis, M. Labédan, G. Theraulaz,
V. Fourcassié, and D. J. T. Sumpter. Individual Rules for Trail Pattern For-
mation in Argentine Ants (Linepithema humile). PLoS Computational Biology,
8(7):e1002592, 07 2012.

[78] J. L. Pfaltz and A. Rosenfeld. Web grammars. In Proc. Int. Joint Confenence on
Arti�cial Intelligence, pages 609�619, 1969.

[79] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi. The Bees
Algorithm, A Novel Tool for Complex Optimisation Problems. In Proceedings of
the 2nd International Virtual Conference on Intelligent Production Machines and
Systems (IPROMS 2006), pages 454�459. Elsevier, 2006.

[80] T. Pitcher. Functions of shoaling behaviour in teleosts. In T. Pitcher, editor, The
Behaviour of Teleost Fishes, pages 294�337. Springer US, 1986.

[81] T. Pitcher and B. Partridge. Fish school density and volume. Marine Biology,
54(4):383�394, 1979.

[82] R. Poli. Analysis of the publications on the applications of particle swarm optimi-
sation. Journal of Arti�cial Evolution and Applications, pages 1�10, 2008.

[83] R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization � an overview.
Swarm Intelligence, 1(1):33�57, 2007.

[84] T. W. Pratt. Pair grammars, graph languages and string-to-graph translations. J.
Comput. Syst. Sci., 5(6):560�595, 1971.

[85] D. V. D. i. V. Radakov. Schooling in the ecology of �sh. New York : J. Wiley,
1973. "A Halsted Press book.".

[86] P. Rendell. A fully universal turing machine in conway's game of life. Journal of
Cellular Automata, 8(1-2):19�38, 2013.

[87] C. Reynolds. Flocks, herds, and schools: A distributed behavioral model. Computer
Graphics, 21(4), July 1987.

[88] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, volume 1: Foundations. World Scienti�c, Singapore, 1997.

[89] G. Rozenberg, editor. Handbook on Graph Grammars and Computing by Graph
Transformation Vol. 1 Foundations. World Scienti�c, Singapore, 1997.

156 BIBLIOGRAPHY

[90] G. Rozenberg, H. Ehrig, et al., editors. Handbook on Graph Grammars and Com-
puting by Graph Transformation 3 (Concurrency). World Scienti�c, Singapore,
1999.

[91] H. J. Schneider. Formal systems for structure manipulation. In W. Händler,
J. Weizenbaum, and D. Bitzer, editors, Display Use for Man-Machine Dialog,
München, 1971. Hanser.

[92] C. Schwarz and J. Sauer. Towards decentralised agv control with negotiations.
In K. Kersting and M. Toussaint, editors, Proceedings of the Sixth Starting AI
Researchers Symphosium, volume 241 of Frontiers in Arti�cial Intelligence and
Applications. IOS Press, 2012.

[93] N. Smolic-Rocak, S. Bogdan, Z. Kovacic, and T. Petrovic. Time windows based
dynamic routing in multi-AGV systems. IEEE T. Automation Science and Engi-
neering, 7(1):151�155, 2010.

[94] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition, 1998.

[95] J. C. Svendsen, J. Skov, M. Bildsoe, and J. F. Ste�ensen. Intra-school positional
preference and reduced tail beat frequency in trailing positions in schooling roach
under experimental conditions. Journal of Fish Biology, 62(4):834�846, 2003.

[96] G. Taentzer. Agg: A graph transformation environment for modeling and val-
idation of software. In J. L. Pfaltz, M. Nagl, and B. Böhlen, editors, Applica-
tions of Graph Transformations with Industrial Relevance: Second International
Workshop, AGTIVE 2003, Charlottesville, VA, USA, September 27 - October 1,
2003, Revised Selected and Invited Papers, pages 446�453, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

[97] F. Taghaboni-dutta and J. M. A. Tanchoco. Comparison of dynamic routeing tech-
niques for automated guided vehicle system. International Journal of Production
Research, 33(10):2653�2669, 1995.

[98] A. ter Mors, C. Witteveen, J. Zutt, and F. A. Kuipers. Context-aware route
planning. In J. Dix and C. Witteveen, editors, Multiagent System Technologies,
8th German Conference, MATES 2010, Leipzig, Germany, volume 6251 of Lecture
Notes in Computer Science, pages 138�149. Springer, 2010.

[99] J. F. Traniello. foraging strategies of ants. Annual Review of Entomology, 34:191�
210, 1989.

[100] I. F. Vis. Survey of research in the design and control of automated guided vehicle
systems. European Journal of Operational Research, 170(3):677 � 709, 2006.

[101] J. von Neumann. The general and logical theory of automata, pages 1�41. Wiley,
Pasadena CA, 1951.

BIBLIOGRAPHY 157

[102] J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana, Illinois, 1966. Edited and completed by Arthur W. Burks.

[103] D. Weyns, T. Holvoet, K. Schelfthout, and J. Wielemans. Decentralized control
of automatic guided vehicles: Applying multi-agent systems in practice. In Com-
panion to the 23rd ACM SIGPLAN Conference on Object-oriented Programming
Systems Languages and Applications, OOPSLA Companion '08, pages 663�674,
New York, NY, USA, 2008. ACM.

[104] S. Wolfram. A New Kind of Science. Wolfram Media Inc., 2002.

[105] Y. Zhang, S. Wang, and G. Ji. A comprehensive survey on particle swarm opti-
mization algorithm and its applications. Mathematical Problems in Engineering,
2015:38, 2015.

	Introduction
	Objectives
	Related work
	Structure of the thesis

	Swarms and swarm computing
	Swarms in nature
	Major swarm computing methods
	Other methods
	Summary

	Graph transformation
	General ideas and backgrounds
	Preliminaries
	Graphs
	Rules and their applications
	Application context
	Parallel rule application
	Graph grammars and graph transformation units
	Graph transformation tools
	First implementations
	Summary

	Graph-transformational swarms
	The main ideas of swarms
	Graph-transformational swarms and their computations
	Examples
	Stochastic control
	Modeling: practical considerations
	Summary

	Unification capability
	Preliminaries
	Graph-transformational particle swarm
	Graph-transformational cellular automata
	Ant colony optimization as a framework
	Graph-transformational ant colony
	Summary

	Swarms with stationary members
	Cloud computing
	Stationary members
	Examples
	Summary

	Modeling in dynamic logistic networks
	From swarms in nature to logistic networks
	Routing of automated guided vehicles
	Summary

	Conclusion
	Summary
	Contributions
	Outlook

