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Abstract

Wireless sensor networks (WSNs) composed of spatially distributed autonomous sensor

nodes have been applied to a wide variety of applications. Due to the limited energy

budget of the sensor nodes and long-term operation requirement of the network, energy

efficiency is a primary concern in almost any application. Radio communication, known

as one of the most expensive processes, can be suppressed thanks to the temporal and

spatial correlations. However, it is a challenge to compress the communication as much

as possible, while reconstructing the system state with the highest quality.

This work proposes the PKF method to compress the transmission rate for cluster based

WSNs, which combines a k-step ahead Kalman predictor with a Kalman filter (KF). It

provides the optimal reconstruction solution based on the compressed information of a

single node for a linear system. Instead of approximating the noisy raw data, PKF

aims to reconstruct the internal state of the system. It achieves data filtering, state

estimation, data compression and reconstruction within one KF framework and allows

the reconstructed signal based on the compressed transmission to be even more precise

than transmitting all of the raw measurements without processing.

The second contribution is the detailed analysis of PKF. It not only characterizes the

effect of the system parameters on the performance of PKF but also supplies a common

framework to analyze the underlying process of prediction-based schemes. The trans-

mission rate and reconstruction quality are functions of the system parameters, which

are calculated with the aid of (truncated) multivariate normal (MVN) distribution. The

transmission of the node using PKF not only determines the current optimal estimate

of the system state, but also indicates the range and the transmission probability of the

k-step ahead prediction of the cluster head. Besides, one of the prominent results is an ex-

plicit expression for the covariance of the doubly truncated MVN distribution. This is the

first work that calculates it using the Hessian matrix of the probability density function

of a MVN distribution, which improves the traditional methods using moment-generating

function and has generality. This contribution is important for WSNs, but also for other

domains, e.g., statistics and economics.



The PKF method is extended to use spatial correlation in multi-nodes systems without

any intra-communication or a coordinator based on the above analysis. Each leaf node ex-

ecutes a PKF independently. The reconstruction quality is further improved by the cluster

head using the received information, which is equivalent to further reduce the transmission

rate of the node under the guaranteed reconstruction quality. The optimal reconstruction

solution, called Rand-ST, is obtained, when the cluster head uses the incomplete informa-

tion by taking the transmission of each node as random. Rand-ST actually solves the KF

fusion problem with colored and randomly transmitted observations, which is the first

work addressing this problem to the best of our knowledge. It proves the KF with state

augment method is more accurate than the measurement differencing approach in this

scenario. The suboptimality of Rand-ST by neglecting the useful information is analyzed,

when the transmission of each node is controlled by PKF. The heuristic EPKF methods

are thereupon proposed to utilize the complete information, while solving the nonlinear

problem through linear approximations. Compared with the available techniques, EPKF

methods not only ensure an error bound of the reconstruction for each node, but also

allow them to report the emergency event in time, which avoids the loss of penitential

important information.

The proposed approaches are firstly evaluated using simulated systems to observe how

far the reconstructions are from the real states. Then the real WSN datasets are used to

compare the performance of the approaches with other techniques. Besides, the proposed

approaches are implemented in the WSN Openmotes to study how much communication

energy cost can be saved and how much lifetime can be improved.



Kurzfassung

Drahtlose Sensornetzwerke (WSNs), die aus räumlich verteilten autonomen Sensorknoten

bestehen, werden bereits für eine Vielzahl von Anwendungen eingesetzt. Aufgrund des

begrenzten Energiebudgets der Sensorknoten und der Anforderung einer langfristigen Be-

triebsdauer des Netzwerks ist Energieeffizienz bei WSNs von besonders hoher Bedeutung.

Die Funkkommunikation ist für einen Großteil des Energieverbrauchs eines WSN-Knotens

verantwortlich, welcher, unter Ausnutzung der zeitlichen und räumlichen Korrelationen

der Datenströme reduziert, werden kann. Die besondere Herausforderung besteht dabei

darin, die zu übertragenden Daten so weit wie möglich zu komprimieren, ohne die Sys-

temperformance zu beeinträchtigen.

In dieser Arbeit wird die PKF-Methode zur Reduktion der erforderlichen Übertra-

gungsrate für Cluster-basierte WSNs vorgestellt. Sie kombiniert einen Kalman-Prädiktor

mit einem Kalman-Filter (KF). Die Methode liefert eine optimale Rekonstruktionslösung,

basierend auf der komprimierten Information eines Knotens in einem linearen System. Der

Ansatz der PKF-Methode ist es, den internen Zustand des Systems zu rekonstruieren, statt

die verrauschten Rohdaten zu approximieren. Die Methode führt die Datenfilterung, Zu-

standsschätzung, Datenkompression und Rekonstruktion innerhalb eines KF-Frameworks

aus und ermöglicht, dass das auf der Grundlage der komprimierten Übertragung rekonstr-

uierte Signal genauer ist als bei der Übertragung aller nicht aufbereiteten Rohmessungen.

Ein weiterer Teil dieser Arbeit beinhaltet die detaillierte Analyse der PKF-Methode.

Die Analyse charakterisiert nicht nur die Wirkung der Systemparameter auf die Leis-

tungsfähigkeit der PKF, sondern sie liefert auch ein einheitliches Framework für die Anal-

yse des zugrundeliegenden Prozesses der Prädiktor-basierten Ansätze. Die Übertragungsrate

und die Rekonstruktionsqualität sind abhängig von den Systemparametern, die mit Hilfe

der (beschränkten) mehrdimensionalen Normalverteilung (MVN) berechnet werden. Die

Datenübertragung des Knotens unter Anwendung der PKF-Methode bestimmt nicht nur

die aktuell beste Einschätzung der Systemperformance, sondern auch die Weite und die

Übertragungswahrscheinlichkeit des dynamischen Prädiktors im Cluster-Head. Zudem

ist ein bedeutendes Ergebnis dieser Arbeit ein expliziter Ausdruck für die Kovarianz der



zweifach beschränkten mehrdimensionalen Normalverteilung. Eine Literatur-Recherchen

ergab, dass die vorliegende Arbeit die erste ist, welche die Hesse-Matrix der Wahrschein-

lichkeitsdichtefunktion einer MVN-Verteilung für die Berechnung nutzt, die herkömm-

lichen Verfahren (welche die Momenterzeugende Funktion nutzen) verbessert und zudem

allgemeingültig ist. Dieses hat für WSNs, aber auch für andere Bereiche (z. B. aus

Statistik und Wirtschaft), eine große Bedeutung.

Weiterhin erweitert diese Arbeit das PKF-Verfahren, so dass die präsente räumliche Ko-

rrelation in einem Mehrknotensystem ausgenutzt wird, ohne dafür jegliche clusterinterne

Kommunikation oder Koordination (basierend auf der zuvor beschriebenen Analyse) zu

verwenden. Jeder Sensorknoten führt unabhängig eine PKF aus. Die Rekonstruktions-

qualität wird durch den Cluster-Head, unter Verwendung der empfangenen Informationen,

weiter verbessert, was einer weiteren Reduktion der Übertragungsrate des Knotens unter

Einhaltung der garantierten Rekonstruktionsqualität entspricht. Die optimale Rekon-

struktionslösung, genannt Rand-ST, wird erreicht, wenn der Cluster-Head die unvollständi-

gen Informationen verwendet, indem er die Übertragung eines jeden Knotens als zufällig

annimmt. Die Rand-ST löst eigentlich das KF-Fusionsproblem mit farbigen und zufällig

gesendeten Daten-Sampeln. Eine Literatur-Recherche ergab, dass dies die erste Arbeit ist,

welche diese Problematik untersucht. Die Ergebnisse zeigen auf, dass der KF in Kombina-

tion mit der State-Augment-Methode im untersuchten Szenario genauer ist als der Ansatz

der Differenzen-Messung. Aufgrund der Vernachlässigung relevanter Informationen tritt

eine Suboptimalität bei der Rand-ST-Lösung auf. Diese wird unter der Annahme, dass

die Übertragung über alle Sensorknoten mittels einer PKF gesteuert wird, analysiert. An-

hand dieser Analyse zeigt die vorliegende Arbeit die Notwendigkeit der Verwendung der

heuristischen EPKF-Methoden. Die EPKF-Methoden ermöglichen es, den kompletten In-

formationsgehalt auszuschöpfen und gleichzeitig das Problem der Nicht-Linearität durch

eine Approximation ersten Grades zu lösen. Verglichen mit bisherigen Verfahren stellen

die EPKF-Methoden nicht nur eine obere Fehlergrenze für die Daten-Rekonstruktion in

jedem Knoten sicher, sondern ermöglichen zudem eine frühzeitige Detektion systemkritis-

cher Ereignisse. Dadurch wird der Verlust besonders relevanter Informationen vermieden.

Die in dieser Arbeit vorgestellten Verfahren werden zunächst anhand einer Simulations-

Plattform evaluiert, um zu quantifizieren wie weit die Rekonstruktionen von den ur-

sprünglichen Werten abweichen. Anschließend werden reale WSN-Datenströme verwendet

um die vorgestellten Verfahren mit den bisherigen zu vergleichen. Zudem werden die Ver-

fahren in WSN Openmotes implementiert, um die Reduktion des Energieverbrauchs und

die daraus folgende Erhöhung der Akkulaufzeit zu untersuchen.
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1 Introduction

Wireless sensor networks (WSNs) consist of spatially distributed and mutually communi-

cated sensor nodes to monitor physical or environmental phenomena [1]. Each node is able

to collect information from the surrounding environment with a sensing unit, elaborate

this information locally with a processing unit, and communicate with other nodes with

a communication unit [2]. The WSN has been considered as one of the most important

technologies for the 21st century [3] and has gained much attention from the research and

industrial communities in the past decades. This key technology enables a wide range

of new applications and services including monitoring of physical environments [4] [5],

enhanced industrial control [6] [7], remote health care [8] [9], logistic [10] [11] and so on.

The sensor nodes are usually required to be operational for long periods, ranging from

several days in the case of long-term health monitoring, months for supply chain manage-

ment, and years or even decades for applications such as weather monitoring. However,

they are typically battery-powered and it is hard or even impossible to change or recharge

batteries due to the large quantities or the harsh physical environments. This would lead

to the fragmentation of the network and loss of potentially crucial information. Thus, in

almost any application of WSNs, energy efficiency is a primary concern.

This dissertation aims to reduce the energy consumption of sensor nodes by compressing

their transmission rates, while providing sufficient information to understand and interpret

the monitored systems.

1.1 Motivation

The energy consumption of the sensor nodes typically involves sensing, processing and

communication [12]. As widely recognized by the research community, one of the most

energy intensive processes of a sensor node is the wireless communication [13]. In a

classical architecture for instance, a single bit transmission can consume over 1000 times

more energy than a single 32-bit computation [13]. In addition to the energy consumption

of data packets transmission, significant energy is also required by overhead activities,

1
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Normal communication

Compress packet size

Compress transmission rate 

Figure 1.1: Schematic comparison between data packet compression and transmission rate
compression.

such as radio start-up, channel accessing, control packets, turnaround, idle listening,

overhearing, and collision as analyzed in [14]. Thus, most of the research focuses on

developing energy efficient schemes for reducing the communication cost.

Data compression is very attractive due to the inherent existence of spatial and temporal

correlation in the physical phenomena [2]. Spatially adjacent sensor nodes have correlated

observations and the consecutive measurements of a sensor node are temporal correlated.

Exploiting this characteristic can efficiently compress the redundant information. The

related algorithms aim to either compress the packet size or the transmission rate as

illustrated in Fig. 1.1.

The approaches for packet size compression typically refer to dictionary-based compres-

sion [15] [16] or predictive coding [17]. They usually suffer from the growing dictionary

or the latency problems depending on the specific techniques. Even if these techniques

are able to compress the data size with a high compression ratio, they are incapable of

reducing overhead of each transaction which can dominate the energy consumption in

some cases [14]. In contrast, the schemes for transmission rate compression [18][19] can

decrease the total communication energy cost during the transaction (see Fig. 1.1). There-

fore, compressing the transmission rate using spatio-temporal correlation is preferred in

this work.

The reduction of the transmission rate leads to a decrease of the reconstruction quality

for the monitored system. The problem is how to compress the transmission rate of the

sensor nodes as much as possible, while reconstructing the system state with the highest

accuracy.

2



1.2 Main Contribution

1.2 Main Contribution

This work addresses the above mentioned problem and proposes a communication ratio

compression scheme utilizing spatio-temporal correlation for cluster-based WSNs. The

main contribution are as follows:

• It provides the optimal reconstruction solution based on the compressed informa-

tion of a single node for a linear system. The proposed approach, termed as PKF,

combines a k-step ahead Kalman predictor with a Kalman filter (KF) to suppress

the communication between the leaf node and the cluster head, while reconstruct-

ing the system state in the best manner. It achieves data filtering, state estimation,

data compression and reconstruction within one KF framework and allows the re-

constructed signal based on the compressed transmission to be even more precise

than transmitting all of the raw measurements without processing.

• It provides an in-depth mathematical analysis of PKF, which is helpful to under-

stand the underlying process of the scheme and to find the effect of the system

parameters on its performance. The transmission rate and reconstruction quality

using PKF are calculated with the aid of multivariate normal (MVN) distribution.

The transmission of the node not only tells the current optimal estimate of the

system state, but also indicates the range and the transmission probability of the

k-step ahead prediction of the cluster head. Besides, one of the prominent results is

an explicit expression for the covariance of the doubly truncated MVN. We believe

this is the first work that calculates it using the Hessian matrix of the probability

density function (PDF) of an MVN distribution, which improves the traditional

methods using moment generating function and has generality. This contribution is

important for WSNs, but also for other domains, e.g., statistics and economics.

• It extends PKF to use spatial correlation in multi-nodes systems without intra-

communication based on the above analysis. The optimal reconstruction solution

is obtained, called Rand-ST, when the cluster head uses the incomplete information

by taking the transmission of each node as random. Rand-ST actually solves the KF

fusion problem with colored and randomly transmitted observations, which is the

first work that addresses this problem to the best of our knowledge. It proves the

KF with state augment method is more accurate than the measurement differencing

approach in this scenario. The suboptimality of Rand-ST by neglecting the useful

information is analyzed, when the transmission of each node is controlled by PKF.

3
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The heuristic methods are proposed based on Rand-ST, called EPKF-simp, EPKF-

norm and EPKF-mix, to utilize the complete information, while solving the nonlinear

problem through linear approximations. The reconstruction quality can be improved

by using EPKF methods, which is equivalent to further reduce the transmission rate

under the guaranteed quality.

• It implements the proposed approaches in the WSN Openmotes. The transmission

rate reduction using PKF and the reconstruction quality improvement by further

using EPKF are obtained in an arbitrary formed network. The computation energy

consumption of PKF and the communication energy consumption are compared by

visualizing the current profile on an oscilloscope. Considering the overall per-day

current consumption of the leaf node and using the obtained transmission rate, the

lifetime improvements are obtained.

1.3 Publications

The related publications of this work include [20, 14, 21, 22, 23, 24, 25] as shown below:

Journal Articles

• Yanqiu Huang, Wanli Yu, Christof Osewold, and Alberto Garcia-Ortiz. Analysis of

PKF: A communication cost reduction scheme for wireless sensor networks. IEEE

Transactions on Wireless Communications, 15(2):843–856, Feb 2016.

• Yanqiu Huang, Wanli Yu, and Alberto Garcia-ortiz. Accurate energy-aware work-

load distribution for wireless sensor networks using a detailed communication energy

cost model. Journal of Low Power Electronics, 10(2):183–193(11), June 2014.

• Yanqiu Huang, Wanli Yu, and Alberto Garcia-Ortiz. EPKF: transmission rate

compression based on Kalman filter using spatio-temporal correlation for WSNs.

Submitted to IEEE Transactions on Wireless Communications.

• Wanli Yu, Yanqiu Huang, and Alberto Garcia-Ortiz. An On-line Optimal Dis-

tributed Workload Scheduling Algorithm for Wireless Sensor Networks. Submitted

to IEEE Sensors Journal.
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Conference Proceedings

• Yanqiu Huang, Wanli Yu, and Alberto Garcia-Ortiz. PKF-ST: A communication

cost reduction scheme using spatial and temporal correlation for wireless sensor net-

works. In Proceedings of the 2016 International Conference on Embedded Wireless

Systems and Networks (EWSN), pages 47–52, 2016.

• Wanli Yu, Yanqiu Huang, and Alberto Garcia-Ortiz. Modeling optimal dynamic

scheduling for energy-aware workload distribution in wireless sensor networks. In

2016 International Conference on Distributed Computing in Sensor Systems (DCOSS),

pages 116–118, May 2016.

• Wolfgang Buter, Yanqiu Huang, Daniel Gregorek, and Alberto Garcia-Ortiz. A

decentralised, autonomous, and congestion-aware thermal monitoring infrastructure

for photonic network-on-chip. In Reconfigurable Communication-centric Systems-

on-Chip (ReCoSoC), 2015 10th International Symposium on, pages 1–8, June 2015.

• Wanli Yu, Yanqiu Huang, and Alberto Garcia-Ortiz. An altruistic compression-

scheduling scheme for cluster-based wireless sensor networks. In Sensing, Commu-

nication, and Networking (SECON), 2015 12th Annual IEEE International Confer-

ence on, pages 73–81, Seattle, USA, June 2015.

• Yanqiu Huang, Wanli Yu, and Alberto Garcia-Ortiz. PKF: A communication

cost reduction schema based on kalman filter and data prediction for wireless sensor

networks. In Proceedings of the 26th IEEE International system-on-chip conference,

pages 73–78. CAS, Sep. 2013.

1.4 Dissertation Structure

The dissertation is organized in the classical form of three main parts: an introduction

where the state of the art and related background are stated, a central core where the

proposed methods are developed, and a final part with the validation of the approaches

and the conclusion.

I. Introduction: Chapter 2 and Chapter 3 introduce the state of the art and the

background.

The dissertation starts with a detailed discussion of existing data compression tech-

niques in Chapter 2. It concludes the advantages and disadvantages of each approach

5
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and motivates the use of KF for data compression. Chapter 3 introduces the state-

space model of a system and how to estimate the system state using KF. It deeply

studies the optimality of KF from Bayesian estimation and presents the variants of

KF with correlated noise and colored noise. This chapter provides the solid theoret-

ical foundations for our proposed approaches in the following chapters.

II. Core: the proposed approaches are presented in Chapters 4 and 5.

Chapter 4 proposes our PKF approach using temporal correlation that combines a

k-step ahed KF predictor and a KF to compress the transmission rate for cluster-

based WSNs. For understanding the underlying process of PKF and finding the effect

of the system parameters on its performance, an in-depth mathematical analysis is

studied in this chapter. Based on this analysis, Chapter 5 extends PKF to further

exploit spatial correlation. The nonlinear reconstruction problem is solved from the

linear approximations using different methods.

III. Conclusion: the validation of the methods and the final conclusion are described

in the last two chapters.

The performance of the proposed approaches PKF and EPKF are estimated using

real WSN signals. To measure the energy consumption and lifetime improvement

by using the proposed approaches, the algorithms are implemented in Openmotes.

Finally, we conclude our work and present the future research directions in Chapter 7.
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2 Review and Comparison of Data

Compression Techniques

2.1 Introduction

The WSN nodes are typically powered by batteries, which are with limited energy budget.

It is hard or impossible to recharge or replace the battery due to the large quantities or the

harsh environments. Besides, the WSN applications often require the network last for long

time. Therefore, how to achieve the energy efficiency is alway concerned by the research or

industrial communities. Since the communication process is much more costly in terms of

energy use than the data computation, most of the research focuses on developing energy

efficient schemes for reducing the communication cost. In general, the existing techniques

are mainly devoted to either regulating the communication across the whole network (e.g.,

the design of routing and clustering protocols [26], as well as scheduling strategies [14]) or

reducing the amount of transmission information for each node by data processing (e.g.,

data aggregation [27] and data compression [2]). Data compression is very attractive due

to the inherent existence of spatial and temporal correlation in the physical phenomena.

It can be combined with the network-based strategies to improve the lifetime [28], [29].

The data compression approaches are classified into two categories: data packet size

compression approach and transmission rate compression approach in Section 2.2. The

detailed descriptions of related approaches are presented in Section 2.3 and 2.4, respec-

tively. Section 2.5 critically evaluates these approaches based on energy conservation and

reconstruction quality. The gaps in previous research are outlined, which motivates our

approach in Chapters 4 and 5. A summary of the chapter is presented in Section 2.6.

2.2 Taxonomy of Data Compression Approaches

In this work, we classify the data compression approaches used in WSNs into two cate-

gories: data packet size compression and transmission rate compression.

7
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• data packet size compression, which refers to approaches that compress the volume of

the data packet at each transmitted time to reduce the communication energy cost.

The related work can be broadly classified into four main classes [2, 30, 31]: dic-

tionary based compression, distributed source coding, transform based compression

and compressed sensing (also known as compressive sensing, compressive sampling,

or sparse sampling).

• transmission rate compression, which refers to approaches that compress the trans-

mission frequency to achieve the energy reduction. This category mainly includes:

time series forecasting, stochastic based approach and compressed sensing [2, 30].

Data
Compression

Data Packet Size 
Compression

Transmission Rate 
Compression

Dictionary based 
Compression

Distributed 
Source Coding

Transform based 
Compression

Compressed
Sensing

Time Series
Forecasting

Stochastic based
Compression

Compressed
Sensing

Figure 2.1: Taxonomy of data compression approaches used in WSNs.

The detailed description of each approach in these two categories are introduced in Sec-

tions 2.3 and 2.4.
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2.3 Data Packet Size Compression

This section presents an overview of algorithms in the data packet size compression cat-

egory. The critical analysis and comparison of these algorithms will be discussed in Sec-

tion 2.5. According to Section 2.2, we mainly focus on the algorithms of the dictionary

based, distributed source coding, transform based and compressed sensing.

Dictionary Based Compression

Dictionary based compression aims to build a list of commonly occurring patterns, named

dictionary, and encode these patterns by transmitting their index in the list. The decoder

maintains the same predefined dictionary to recover the information. Although dictionary

based algorithms can be used to compress all kinds of data, traditional algorithms are not

suitable for WSNs due to the large requirements of processing and memory [32].

S-LZW for sensor node, is developed in [16] by balancing the dictionary size, the size

of the data to be compressed and the protocol to follow when the dictionary fails. When

it is applied to several datasets of real WSN applications, the energy consumption can

be reduced up to a factor of 4.5X. Authors in [33] propose a simple lossless entropy com-

pression (LEC) scheme. The LEC algorithm is similar to the baseline JPEG algorithm

for compressing the DC coefficients. Compared with S-LZW, LEC requires lower com-

putation power and uses smaller dictionary. The size of the dictionary is determined by

the resolution of the analog-to-digital converter. An adaptive lossless data compression

(ALDC) algorithm has been designed in [34]. It firstly partitions the data sequence that

needs to be transmitted into blocks, then compresses the block of data using two adaptive

lossless entropy compression (ALEC) code options: 2-Huffman Table and 3-Huffman Ta-

ble ALEC. Since the compression is allowed to dynamically adjust to a changing source,

ALDC outperforms LEC and S-LZW. The extension of LEC, GA-LEC and FA-LEC [35],

are proposed to achieve the adaptive compression. These two schemes implement the

adaptation based on the concept of appropriately rotating the prefix-free table. Shorter

prefix-free codes for a larger percentage of samples are used in both GA-LEC and FA-LEC.

Distributed Source Coding

Distributed source coding approaches are very popular for data compression in WSNs.

They typically compress the data inside the network based on the Slepian and Wolf

theorem [36], which involves coding of two or more dependent sources with separate
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encoders and a joint decoder. Fig. 2.2 shows one example with two correlated data

streams X and Y . If the encoder and the decoder processes of two sources are executed

independently, the coding rates, R1 and R2, have to be larger than or equal to the entropies

of two sources, H(X) and H(Y ), respectively, to achieve lossless compression. Although

joint encoding can reduce the coding rates from H(X) + H(Y ) to H(X, Y ), it requires

intra-communication between two sources. By using the Slepian and Wolf theorem, two

sources can be independently encoded, while the coding rates can be reduced using a joint

decoder as depicted in Fig. 2.2. The theoretical bound for lossless coding rates of two

sources subject to R1 ≥ H(X|Y ), R2 ≥ H(Y |X), R1 + R2 ≥ H(X, Y ), according to the

Slepian and Wolf theorem.

Encoder X

Encoder Y

Decoder 
Rate R1

Rate R2

X

Y

X'

Y'

Figure 2.2: Spelain and Wolf theorem: independent encoding and joint decoding of two
correlated data streams X and Y.

The work of [37] proposes a compression method by exploiting existing correlations

in sensor data based on distributed source coding principles. The decoder collects the

correlations among the sensor nodes and broadcasts to them. Each node encodes the

observations according to the received corrections. A clustered Slepian and Wolf coding

(CSWC) is designed in [38], combing with inter-cluster explicit entropy coding to compress

the data based on the spatial correlations. Similar approaches based on the distributed

source coding can be found in the survey papers [2, 30].

Transform Coding

The transform coding is widely used in image or video compression algorithms. Recently,

these approaches are adopted in wireless multimedia sensor networks (WMSNs). Wavelets

transform and cosine transform are two common approaches. In [39], this work firstly col-

lects N -samples signal in transform coding and then approximates the data by K-sparse

representation. The signal is represented in a basis expansion to be sparse using the

transform theory, e.g., wavelet transform, Fourier transform, etc. The K largest coeffi-

cients and the corresponding locations are encoded and transmitted. A modified version

of distributed wavelet transform is proposed in [40] to address the energy reduction prob-
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lem of WSN. A scheme named Set Partitioning in Hierarchical Trees [41] achieves high

compression ratio by setting a partition algorithm in wavelet transform. The power con-

sumption of the cosine transform approaches is usually larger than the wavelet transform

methods [42]. To reduce the complexity, an integer cosine transform is used in [43]. In

addition, [44] proposes an adaptive data compression approach based on Fuzzy transform

to minimize the memory space and communication cost.

Compressed Sensing

Compressed sensing (CS) has attracted the attention from various scientific research

communities. It promises a reconstruction of a sparse signal by using a sampling rate

significantly below the Nyquist rate [45]. Given a proper transformation basis Ψ =

[ψ1, ψ2, · · · , ψN ], the signal X can be transformed to a K-sparse representation S, i.e.,

X = ΨS. The theory of CS demonstrates that the signal X can be compressed as

Y = ΦX, with a M ×N (M ≤ N) sized measurement matrix Φ = [φ1, φ2, · · · , φN ] whose

row vectors are largely incoherent with Ψ. The recovery of X can be achieved by the ℓ1

minimization:

Ŝ = argmin ∥S∥ℓ1 subject to Y = ΦX = ΦΨS (2.1)

Current researches mainly apply CS in WMSNs to achieve data packet size compression.

A CS based video encoder is designed in [45] to compress the raw samples that the camera

captured by using the temporal correlations between consecutive video frames. A number

of works apply CS into ECG monitoring like [46, 47]. In such scenarios, the original ECG

signal is usually firstly represented by a linear transformation, then a sparse representation

is calculated to get the compressed signal which will be transmitted.

2.4 Transmission Rate Compression

This section presents an overview of algorithms in the transmission rate compression

category. Generally, the transmission rate compression category can be further classified

into: compressed sensing, time series forecasting and stochastic based compression as

shown in Fig. 2.1. Both temporal and spatial correlation can be exploited.

Time Series Forecasting

Exploiting the time series models, such as Moving Average (MA), Auto-Regressive (AR)

and Auto-Regressive Moving Average (ARMA) models, for transmission rate compression
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is simpler and has a good data quality in many practical cases [31]. For example, in [28] a

low-order AR model is built at each node to predict local readings. Nodes transmit these

local models to a sink node, by which the sink node predicts their values without directly

communicating with the nodes. When needed, nodes send information about outliers and

model updates to the sink. Unlike [28], the method presented in [29] models the physical

phenomenon as an AR model plus a linear trend during a time interval of a few hours

rather than during the full history. It detects the variations in the data distribution to

guarantee the accuracy of the system model. When the model is not accurate enough, a

model update phase is triggered. Besides single model schemes, an adaptive multi-model

selection mechanism is presented in [48], where all nodes save a set of models. At a given

instant only one of them is used for data prediction. If the error between sensed value

and prediction is higher than the allowed threshold, the current model is switched to the

one satisfying the requested accuracy and minimizing the cost of the update. A similar

method called DBP, derivative based prediction, uses a simple linear model to predict the

trends of the data measured by sensor nodes [49]. This work is based on the assumption

that the trends of sensed data in short and medium time intervals could be approximated

by using a linear model.

Spatial correlation can be exploited to further decrease the communication cost. Some

of the techniques require the intra-communication among nodes. For example, the node

intercepts the information from its neighbors to compress its own data in [24]. Similarly,

the node receives the model parameters from its neighbors to decide whether to transmit

its own parameters in [50]. To avoid this overhead, clustering the nodes and selecting a

part of them to be active in a period is one of the most popular approaches. An energy-

efficient data collection framework, EEDC, is proposed in [18]. Each node stores the latest

sampling values until its buffer is full and calculates the line segments approximating

the original time series. The transmission rate is reduced by only transmitting the end

points of every line segment. To further reduce communication cost, the cluster head

selects an appropriate number of nodes to be active. A similar approach is [51], where

a sensing framework using virtual sensors is proposed. It uses an autocorrelation based

transversal filter to predict data using temporal correlation and selects the active nodes

in the coordinator to minimize the energy consumption of the network and balance the

energy expenditure of nodes.
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Stochastic Based Compression

The stochastic based compression techniques vary according to the way that the model

is built, e.g., probabilistic models and state space models. The probabilistic models are

constructed by exploiting a characterization of the phenomenon in terms of a random

process time series. In other words, the physical phenomenon is considered as a random

process by means of a probability density function (PDF). For instance, in [52] a specific

model based on the PDF of time-varying multivariate Gaussian distribution is established

at the sink node with historical data. When the user queries e.g., if an attribute is located

in a given range, the cluster head uses this model to compute the probability rather than

communicating with the sensor node. This is a “pull-based” approach where the user

initiates the transaction. By contrast, a “push-based” approach is presented in [19], which

acquires data at a steady rate and proactively reports anomalies to the user. It uses a

pair of replicated probabilistic models synchronously running in both the leaf node and

the cluster head. With this model, the cluster head predicts the approximated data and

the leaf node follows this prediction to guarantee the prediction quality by transmitting

the inaccurate data. An extension of [19] is given in [53], where a dynamic probabilistic

model is exploited to enable real-time applications.

A state space representation of the phenomenon can be derived. It provides the dy-

namics as a set of coupled first-order differential equations in a set of internal variables

known as state variables, together with a set of algebraic equations that combine the

state variables into physical output variables [54]. With the help of filtering and pre-

diction techniques, the communication can be suppressed. In [55], the SIP method is

proposed to estimate the system state and compress the transmission between the leaf

node and the cluster head. It consists of three steps: data filtering, state estimation and,

data prediction and reconstruction. Each node firstly uses a filter, e.g., Exponentially

Weighted Moving Average (EWMA), LMS, NLMS or KF, to remove the measurement

noise in the collected raw data. Then the node provides an estimate of the system state

using either Piece-wise Linear Approximation (PLA) or Piece-wise Constant Approxima-

tion (PCA) from the smoothed data. The head predicts the system state based on its last

prediction with PLA or PCA. The leaf node follows the prediction of the cluster head and

compares it with its own estimation using the new collection. When the error between

the prediction and the local estimation exceeds a given threshold, the leaf node sends the

current state vector to the cluster head.

A sophisticated approach using dual KFs (DKF) is proposed in [56], where the system

model is constructed in accordance with a KF. DKF uses a pair of KFs in both leaf node

13



2 Review and Comparison of Data Compression Techniques

and cluster head to synchronously predict the raw data. When the data contains noise,

each node firstly uses an additional KF with a controllable process covariance to remove

the noise and provide the smoothed data. This data is treated as the measurement for the

second KF. When the prediction error using the second KF compared with the smoothed

data is bigger than a threshold, the smoothed data is transmitted to the cluster head.

The authors in [57] provide a method named CoGKDA, which combines the Grey

model and KF together. The leaf node collects the raw data zk at time k and predicts

xk+1 using the latest stored l samples in the actual data queue (ADQ). Besides, it follows

the prediction of the cluster head yk+1 using the latest stored l samples in the predicted

value queue (PVQ). If yk+1 − zk < ϵ and yk+1 − xk+1 < θ, the transmission can be

suppressed; otherwise, the current collected value zk is transmitted.

Compressed Sensing

Besides the use of CS [58] to compress the data size as introduced in Section 2.3, it can

also be used for transmission rate compression using both temporal and spatial correlation

[59, 60, 61, 62].

Distributed CS is applied in the network by [59]. Each node executes CS coding to

reduce the sampling rate and thus to decrease the number of transmitted packets, while the

reconstruction progress is executed in the sink node which does not have energy limitation.

In [60] and [61], temporal and spatial correlations are utilized in the CS decoder to achieve

more sampling reduction in the network. CS is also used for localization in WSNs [62],

comparing with traditional localization approaches that require a large number of sensor

nodes to transmit the received signal strength (RSS), using CS enables few RSS samples

since the authors claimed that the RSS vector can be sparsely represented. More relevant

researches can be found in a survey paper [63].

2.5 Critical Analysis

We compare the above classified methods from two metrics: energy conservation and

reconstruction quality. For the first comparison, the communication cost models are

reviewed. There are many studies available [14, 64, 65, 66, 67]. Basically, the total

communication energy consumption of a node consists of data packet transmission and

overhead cost: Ecmn = Eoverhead + Edata. The overhead activities involve radio startup,

channel accessing, control packets, turnaround, idle listening, overhearing, collision, etc.

Before transmitting the data packet, the sensor node needs to turn on the radio and tries
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to access the wireless channel. Some control packets may also be needed. After that,

the actual transaction commences and once finished, the radio is shut down. During this

period, the node may turn on its receiver prior to the actual reception because of the

unawareness of the destination active state (it is the so called idle listening) and may

receive some packets that are not intended for it (namely overhearing). Due to collision,

the packets may not be transmitted or received successfully which causes retransmission

and extra energy cost.

Based on the above model, we can conclude that the data packet size compression ap-

proaches focus on reducing the energy cost of data packet transmission Edata. In contrast,

the transmission rate compression aims to reduce the overall communication cost Ecmn.

As analyzed in [14], the overhead can dominate the total energy consumption of the sen-

sor nodes in some cases. Although many approaches are able to compress the data size

with a high compression ratio, e.g., 45-75% by LEC [33], up to 93% by CSWC [38], they

are incapable of reducing the overhead consumption in the communication. The trans-

mission rate can be compressed from 50-99% ranging from techniques and data types as

summarized in [68]. In this case, it is more efficient in reducing the communication cost.

Among transmission rate compression techniques, we compare their reconstruction

quality. Many techniques, based on time series modeling, probability modeling or even

compressive sensing, supply only the approximated data of the measurements. However,

the raw measurements are inevitably corrupted by noise in practical WSN scenarios [1, 69].

It makes the reconstructions using these schemes unable to reflect the true state of the

monitored environment. In this sense, the approaches based on the filtering techniques

could produce more accurate reconstructions by removing the noise.

Considering the state-space model provides a much richer description of the dynamic

phenomenon, the objective by using a WSN in the end becomes to reconstruct the state

information from the data supplied by the sensor nodes. From this point of view, the node

performing local state estimation and transmitting the estimated state when needed, may

provide more information and have better reconstruction in the cluster head. As the real

world systems are frequently able to be represented in terms of very simple models of

first- or second-order [70], transmitting a low-order state, typically a small proportion in

the data packet (taking the packet header into account), may not consume notable energy

cost. For a linear system, the best candidate for noise reduction and state estimation is

the KF, since it promises the optimal state estimate in the sense of minimum mean square

error (MMSE) [71]. It has been widely used in WSNs, such as target tracking [72], outlier

detection [73], [74]. KF-based data fusion is one of the most significant approaches to
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overcome sensor failures and spatial coverage problems [75], [76]. In order to fully utilize

the KF IP, we restrict ourselves to the techniques employing KF for transmission rate

compression in this work.

The existing methods using the KF for transmission rate compression still need to

be improved. They only exploit the partial functionality of KF in noise filtering but

not the essence in state estimation. For example, CoGKDA [57] uses the filtered value

by KF as a reference to compare with the prediction of the cluster head. When the

prediction error or the cumulative error exceeds the bounds, the raw data in the leaf

node is sent. However, once there is a missing point in the cluster head, i.e., the data

is intermittently transmitted, the reconstruction error starts to cumulate even with the

update of a new observation, since the past information is not contained in the current

measurement. Instead of transmitting the raw data, the leaf node should transmit the

current state estimate. It can calibrate the estimation of the cluster head and reset the

cumulative error. One of these methods is SIP [55]. It takes the KF as a candidate

for noise reduction in the leaf node and approximates the system state using PLA or

PLC methods from the smoothed data. However, it scarifies the computation cost by

separating data filtering, state estimation and prediction into different frameworks, while

providing only the approximations of the system state. DKF [56] removes the noise in the

raw data by setting a controllable covariance of the process noise to a KF. The second

KF treats the output of the first KF as the measurement for further prediction. In this

case, the optimal system model for the second KF should be the augmented model, rather

than the model with the same state transition matrix as the smoothing KF claimed by

the authors, due to the colored measurement noise.

The above analysis motivates our proposed approach, PKF, in Chapter 4 that uses a

KF for transmission rate compression. It takes the full advantage of the KF for data

filtering and state estimation, and aims to optimally reconstruct the state information for

a linear system characterized by a state-space model. To exploit the spatial correlation

without intra-communication and coordinator, the extension of PKF is further proposed

in Chapter 5.

2.6 Summary

This chapter has reviewed the literature relevant to data compression techniques used in

WSNs, summarizes their limitations by a critical analysis and motivates the use of the

KF in our proposed approaches. According to the compressed objects of the techniques,
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data size or transmission rate, we firstly classify the approaches into two categories: data

packet size compression and transmission rate compression. The detailed descriptions of

the related approaches in each category are then presented.

Compared with the data packet size compression, compressing the transmission rate

can save the overall energy communication cost in one transaction, including the overhead

and the cost for real data packet transmission. Due to the fact that the observations

collected by the sensor node are accompanied by the ubiquitous noise, reconstructing

the raw data with approximations provides inaccurate information for the monitored

system. It indicates that the local preprocessing in the node is needed. As the dynamic

phenomenon can be well described by a state-space model, the objective by using a WSN

is to reconstruct the state information by using the data of the sensor nodes. The node

performing local state estimation based on the obtained measurement and transmitting

the estimated state when needed, may provide better reconstruction in the cluster head,

since the estimation of the cluster head can be calibrated and the cumulative error can

be reset. For a linear system, which is the main focus of this work, the best candidate for

noise reduction and state estimation is the KF. However, the existing methods using KF

for transmission rate compression exploit only its partial functionality in noise filtering,

but not the essence in state estimation. This motivates us to take the full advantage of

the KF in our proposed approaches, combining data filtering, state estimation with data

prediction, to compress the transmission rate while reconstructing the state information.
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3.1 Introduction

The state vector contains all information about the system at a given time instant. It can

not be directly determined by the input and output of the system in most practical sce-

narios, because of the unknown disturbances, the partially observation and so on. Instead,

the internal state can only be estimated from a model and the available measurements

by using the state estimation methods. Kalman filter, as one of the estimation methods,

produces the optimal state estimates of the linear dynamic systems with Gaussian noise.

It is a recursive algorithm and combines the prediction from the previous time step with

the current measurement to produce an improved estimate of the current state [77].

This chapter firstly introduces the definition of a system. The two typical modeling

methods, difference equation and state space model, are compared in Section 3.2. The

general process of KF to estimate the inner state of the linear dynamic systems is intro-

duced in Section 3.3. Then we try to understand the optimality of KF from Bayesian

estimation in Section 3.4 including conditional expectation and maximum a posteriori

(MAP) estimation. The optimality study of KF is helpful to analyze our proposed ap-

proach in Chapter 4. Further on, the variants of KF for systems with correlated noise

and systems with colored measurement noise are presented in Section 3.5. These variants

are needed in Chapter 4 and Chapter 5.

3.2 State-space Model

“A system is considered to be an object in which different variables interact at all kinds

of time and space scales and that produces observable signals” [78]. There are five sets of

variables in a system, known as the input u, the system disturbance w, the state x, the

measurement disturbance v, and the output z. The input u represents the external forces

that are acting upon the system, which is measurable and can be manipulated directly

by the user. The disturbance w is indicated as system noise, which originates from the
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environment and directly affects the behavior of the system. It cannot be manipulated

and is considered as possibly structured uncertainty in the input u or in the relationship

between u and x [78]. The system state x stores all the effects of the past inputs u and

disturbances w to the system. When the state depends only on the current input and

disturbance, it is a static system; otherwise, the system exhibits dynamic behavior. The

number of the system states, n, is equal to the number of independent energy storage

elements (such as mass, spring, capacitor, inductance [79]) in the system [54]. The real-

world systems are frequently able to be represented in terms of very simple models of first-

or second-order [70]. The output disturbance v represents the uncertainty introduced in

the measurement process, which cannot be manipulated. The output z is the observable

behavior of the dynamic phenomenon that are of interest to the user. These variables

could be continuous or discrete functions of time. We are interested in the discrete-time

signals here. The continuous-time signals, such as electrical voltages produced by sound

or image recording instruments, can be converted to discrete-time signals by sampling

and quantization [80].

There are typically two methods to model a discrete-time dynamic system. One is to

directly relate the input u, the disturbance w and v to the output z in one difference

equation, such as:

zk = gk(zk−1, · · · zk−n, uk, · · · , uk−m, wk, · · · , wk−n, vk, · · · , vk−n) (3.1)

where gk(·) is an arbitrary and vector-valued function. This method only considers the

input-output characteristic. It can not provide any knowledge of the interior structure

and state information of the system.

An alternative solution is the so-called state-space model. Instead of viewing a system

simply as a relation between inputs and outputs, state space models consider this trans-

formation as taking place via the transformation of the internal state of the system [81].

By defining an n× 1 vector xk to indicate the internal state, the above n-order difference

equation Eq. (3.1) can be described as n first order difference equations:

xk = fk(xk−1, uk−1, wk−1) (3.2)

where fk(·) is a vector function with n components. The output of the system can be

calculated from the internal state xk, the input uk and the disturbance vk:

zk = hk(xk, uk, vk) (3.3)
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where hk(·) is a vector function with p components.

State space models are more akin to the classical mathematical models used in physics,

chemistry, and economics [81]. They offer a standardized way for defining the inner states

for both linear and nonlinear systems and are more adapted to computations with n first

order difference equations. When fk(·) and hk(·) are linear functions of x, u, w and v,

the system is a linear discrete dynamic system. It is the main focus of this work. In this

case, the process model of Eq. (3.2) written in the state-space form is:

xk = Ak−1xk−1 +Bk−1uk−1 + wk−1 (3.4)

where Ak is the transition matrix which relates the system state at time k to the state at

time k+1; Bk is the control-input matrix manipulating the effect of the control input on

the system state; uk is the known input vector (steering angle, throttle setting, braking

force); wk accounts for the inexactitudes of the model and is also known as the process

noise. The observation zk is mapped from xk by the observation matrix Hk and corrupted

with a measurement noise:

zk = Hkxk + vk (3.5)

The diagram of the state-space system model is shown in Fig. 3.1.

Figure 3.1: The diagram of the state-space model for a linear discrete dynamic system.

3.3 Kalman Filter

The internal state of a linear dynamic system can be estimated from the noisy observa-

tions by a KF. It combines the estimate from the previous time step with the current

measurement to produce an improved estimate of the current state [77]. It is a recursive

algorithm that produces the minimum mean square error of the estimation for a system

with Gaussian noise.
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In the standard KF, the process noise wk ∼ N (0, Qk) and the measurement noise vk ∼
N (0, Rk) are assumed to be Gaussian white noise with zero mean and known covariance,

namely,

E[wk] = 0 E[vk] = 0 (3.6)

E[wkw
T
j ] = Qkδkj E[vkv

T
j ] = Rkδkj (3.7)

where E[·] denotes expectation and δkj denotes the Kronecker delta function with δkj = 1

if k = j; otherwise, δkj = 0. Qk and Rk are covariance matrices of the process and

measurement noise, respectively. These two noise are mutual uncorrelated and also un-

correlated with the state, namely

E[wkv
T
j ] = 0 E[xkw

T
j ] = 0 E[xkv

T
j ] = 0 (3.8)

Figure 3.2: The diagram of the Kalman filter for discrete dynamical system.

The process of the KF involves two steps: prediction and update. The diagram is shown

in Fig. 3.2. In the prediction phase, the state estimate of the previous time step x̂k−1 is

used to generate an a priori estimate of the current state x̂−k .

x̂−k = Ak−1x̂k−1 +Bk−1uk−1 (3.9)

Let ê−k = x̂−k −xk denote the error between this a priori estimate and the true state. The

uncertainty of this prediction is measured by the covariance of the error. It is calculated

by:

P−
k = E

[
ê−k ê

−T
k

]
= Ak−1Pk−1A

T
k−1 +Qk−1 (3.10)

where Pk−1 is the a posteriori covariance of the last time step. It will be discussed

in more detail later in this section. In the update phase, the current measurement zk

is incorporated into the a priori prediction to produce an improved a posteriori state

estimate x̂k. For convenience, we call it optimal value in the following. The basic idea

22



3.4 Understand the Optimality of KF from Bayesian Estimation

behind this phase is to use a weighted average, with more weight Kk being given to the

a priori estimate with higher certainty. The weight, also known as the Kalman gain,

satisfies:

Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)

−1
(3.11)

The updated estimate of the system lies between the predicted and measured state, and

is given by:

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) (3.12)

Let êk = x̂k − xk denote the error of this optimal estimate. Its covariance indicates the

uncertainty of the final estimate, which is:

Pk = E
[
êk ê

T
k

]
= (I −KkHk)P

−
k (3.13)

In the time invariant systems, the KF typically enters a steady state after several steps,

where the Kalman gain and the covariance converge to constant values: Kk→∞ = K,

P−
k→∞ = P− and Pk→∞ = P . Then only Eqs. (3.9) and (3.12) are needed to predict the

future state.

3.4 Understand the Optimality of KF from Bayesian

Estimation

States

Observed

   Inputuk-1u1u0

Figure 3.3: Bayesian framework of a hidden Markov model.

In the recursive Bayesian estimation [82], the true state (x0, · · · , xk) is assumed to

be an unobserved Markov process, and the measurements (z1, · · · , zk) are the observed

state of a hidden Markov model (HMM) as shown in Fig. 3.3. The probability of the

current state and the measurement only depend on the state at last time step, i.e. p(xk |
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3 Kalman Filter and Optimality Study

xk−1, xk−2, · · · , x0, uk−1, · · · , u0) = p(xk | xk−1, uk−1) and p(zk | xk, xk−1, · · · , x0) = p(zk |
xk) because of the Markov assumption. Bayes estimator minimizes the posterior expected

value of a loss function and maximizes the posterior probability density function (PDF)

for state xk, given the observation set Zk = [zk, · · · , z1] and the control input Uk =

[uk−1, · · · , u0]. We obtain the equivalent estimators from conditional expectation and

maximum a posteriori (MAP) estimation in the following to illustrate the optimality of

KF.

3.4.1 Conditional Expectation

Given two random variables X and Y , the conditional expected value of Y given X = a,

E[Y |X = a], is a number that depends on a, i.e., it is a function of a. Thus, the conditional

expected value of Y given X, denoted as E[Y |X], is a random variable, which is a function

of X. It has been proved that E(Y |X) is closest to Y of all functions of X, in the sense

of minimum mean square error (MMSE) [83]. Thus, we aim to obtain the conditional

expectation of xk based on Zk and Uk, i.e., E[xk | (Zk,Uk)], in the following.

The following theorem is the basis for our derivation, which can be derived from the

Bayes’ rule as illustrated in [84, 85]. If two random vector X1 and X2 have joint Gaussian

distribution, such as: [
X1

X2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
then the distribution of X1 conditional on X2 = a is multivariate normal (X1|X2 = a) ∼
N (µ̄, Σ̄), where

µ̄ = µ1 + Σ12Σ
−1
22 (a− µ2)

Σ̄ = Σ11 − Σ12Σ
−1
22 Σ21

(3.14)

because of the Bayes’ rule [82]:

p(a|b) = p(a, b)

p(b)
(3.15)

The best prediction of xk based on Zk−1 and Uk is the conditional expectation E
[
xk |

Zk−1,Uk

]
, which can be calculated by:

x̂−k = E
[
xk | Zk−1,Uk

]
= E

[
Ak−1xk−1 +Bk−1uk−1 + wk−1 | Zk−1,Uk

]
= Ak−1x̂k−1 +Bk−1uk−1

(3.16)
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3.4 Understand the Optimality of KF from Bayesian Estimation

This is the a priori prediction of Kalman filter with the prediction covariance:

P−
k = E[(xk − x̂−k )(xk − x̂−k )

T ] = Ak−1Pk−1A
T
k +Qk (3.17)

Thus, the distribution of xk conditional on (Zk−1,Uk) has normal distribution, namely,

xk | (Zk−1,Uk) ∼ N (x̂−k , P
−
k ) (3.18)

The random variable zk conditional on (Zk−1,Uk) has the mean

E[zk | (Zk−1,Uk)] = E[Hkxk + vk | (Zk−1Uk)]

= HkE[xk | (Zk−1Uk)] = Hkx̂
−
k

and covariance

E[(zk −Hkx̂
−
k )(zk −Hkx̂

−
k )

T ] = E
[(
Hk(xk − x̂−k ) + vk

)(
Hk(xk − x̂−k ) + vk

)T]
= HkP

−
k Hk

T +Rk

Thus,

zk | (Zk−1,Uk) ∼ N (Hkx̂
−
k , HkP

−
k H

T
k +Rk) (3.19)

Observing Eqs. (3.18) and (3.19), the two random variables xk and zk conditional on

Zk−1 and Uk have jointly Gaussian distribution. The cross correlation between the two

variables Pxz = E[(xk − x̂−k )(zk −Hkx̂
−
k )] = P−

k H
T
k . Thus, the joint distribution of xk and

zk conditional on Zk−1 can be expressed as[
xk | Zk−1,Uk

zk | Zk−1,Uk

]
∼ N

([
x̂−k
Hkx̂

−
k

]
,

[
P−
k P−

k H
T
k

HkP
−
k HkP

−
k H

T
k +Rk

])
(3.20)

Then the distribution of (xk | Zk−1,Uk)
⏐⏐⏐(zk | Zk−1,Uk) is the conditional distribution of

xk conditional on Zk and Uk, i.e.,

xk | (Zk,Uk) = (xk | Zk−1,Uk)
⏐⏐⏐(zk | Zk−1,Uk) (3.21)

because of the Bayes’ rule:

p(a|b, c) = p(a, b|c)
p(b|c)

(3.22)
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Using Eq. (3.14), we can obtain the mean:

x̂k = x̂−k + P−
k Hk

T (HkP
−
k Hk

T +Rk)
−1(zk −Hkx̂

−
k )

= x̂−k +Kk(zk −Hkx̂
−
k )

(3.23)

and the covariance:

Pk = P−
k − P−

k Hk
T (HkP

−
k Hk

T +Rk)
−1HkP

−
k

= (I −KkHk)P
−
k

(3.24)

where

Kk = P−
k H

′
k(HkP

−
k H

′
k +Rk)

−1 (3.25)

The derived equations using conditional expectation, i.e., Eqs. (3.16), (3.17) and (3.23)

to (3.25), are exactly the same as the five Kalman filter equations.

3.4.2 Maximum a posteriori Estimation

This section derives the KF equations from MAP estimation [71]. It aims to find the

mode of posterior probability within a Bayesian framework.

From Bayes rule we have:

p(xk | Zk,Uk) =
p(xk,Zk,Uk)

p(Zk,Uk)

=
p(xk, zk,Zk−1,Uk)

p(zk,Zk−1,Uk)
(3.26)

where the joint PDF in the numerator can be further expressed by

p(xk, zk,Zk−1,Uk) = p(zk|xk,Zk−1,Uk)p(xk,Zk−1,Uk)

= p(zk|xk,Zk−1,Uk)p(xk|Zk−1,Uk)p(Zk−1,Uk)

= p(zk|xk)p(xk|Zk−1,Uk)p(Zk−1,Uk) (3.27)

The third equality is based on the fact that zk only depends on the current state xk, and

vk is independent of Zk−1 and Uk. Substituting Eq. (3.27) into Eq. (3.26), we can obtain

p(xk | Zk,Uk) =
p(zk|xk)p(xk|Zk−1,Uk)p(Zk−1,Uk)

p(zk,Zk−1,Uk)
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3.4 Understand the Optimality of KF from Bayesian Estimation

=
p(zk | xk)p(xk | Zk−1,Uk)p(Zk−1,Uk)

p(zk | Zk−1,Uk)p(Zk−1,Uk)

=
p(zk | xk)p(xk | Zk−1,Uk)

p(zk | Zk−1,Uk)
(3.28)

where the denominator p(zk | Zk−1,Uk) is the normalizing constant, denoted as a in the

following. Under the Gaussian assumption of process noise and measurement noise, the

mean and covariance of p(zk|xk) are:

E[zk|xk] = E[Hkxk + vk|xk] = Hkxk

E
[(
zk − E[zk | xk]

)(
zk − E[zk | xk]

)T]
= E[vkv

T
k ] = Rk

Thus,

p(zk | xk) =
1√

(2π)p|Rk|
exp
(
− 1

2
(zk −Hkxk)

TRk
−1(zk −Hkxk)

)
(3.29)

As obtained from Eqs. (3.16) and (3.17), the mean and covariance of xk | (Zk−1,Uk) are

x̂−k and P−
k , respectively. Then,

p(xk | Zk−1,Uk) =
1√

(2π)n|Σk|
exp
(
− 1

2
(xk − x̂−k )

TP
−(−1)
k (xk − x̂−k )

)
(3.30)

By substituting Eqs. (3.29) and (3.30) to Eq. (3.28), the posterior PDF p(xk | Zk,Uk)

satisfies:

p(xk | Zk,Uk) =
exp
(
− 1

2
(zk −Hkxk)

TRk
−1(zk −Hkxk)− 1

2
(xk − x̂−k )

TΣ−1
k (xk − x̂−k )

)
a
√
(2π)m+n|Rk||Σk|

(3.31)

The update step of Kalman filter is to maximize this posterior PDF. Let x̂MAP
k denote

the MAP estimate of the state, it then follows:

∂ log p(xk | Zk,Uk)

∂xk

⏐⏐⏐⏐⏐
xk=x̂MAP

k

= 0 (3.32)

Combining Eq. (3.31) and Eq. (3.32), we can derive that:

x̂MAP
k =

(
HT

k Rk
−1Hk + P

−(−1)
k

)−1(
Σ−1

k x̂−k +HT
k Rk

−1zk
)

(3.33)
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Thanks to the lemma of inverse matrix in [86] that

(P−1 +BTR−1B)−1 = P − PBT (BPBT +R)−1BP

(P−1 +BTR−1B)−1BTR−1 = PBT (BPBT +R)−1

we can simplify Eq. (3.33) as:

x̂MAP
k = x̂−k +Kk(zk −Hkx̂

−
k ) (3.34)

where Kk is the Kalman gain and satisfies

Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)

−1 (3.35)

The covariance of the MAP estimate follows:

Pk = E[(xk − x̂MAP
k )(xk − x̂MAP

k )T ] = (I −KkHk)P
−
k (3.36)

Thus, the equations derived from MAP estimation are consistent with KF.

3.5 Variants of Kalman Filter

In the standard KF derived in previous sections, the process noise and the measurement

noise are assumed to be white and uncorrelated with each other. However, in some

applications, they may have mutual correlations and have color. This section presents the

variants of KF coping with these problems.

3.5.1 Kalman Filter with Correlated Noise

When wk and vk are correlated, we present the derivation of KF using conditional distri-

bution of MVN in this section.

The system model and the measurement model still satisfy Eq. (3.4) and Eq. (3.5). The

only difference is that wk and vk are correlated, which is defined as1:

E[wkv
T
j ] =Mkδkj (3.37)

1The definition is consistent with Matlab system identification toolbox. There are also other definitions
of the correlation, e.g. E[wkv

T
j ] = Mkδ(k−1)j in [87]. The obtained equations are slightly different.
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3.5 Variants of Kalman Filter

We firstly calculate the distribution of xk conditional onZk−1 andUk, i.e., xk | (Zk−1,Uk).

It has the mean value:

E[xk | Zk−1,Uk] = E[Ak−1xk−1 +Bk−1uk−1 + wk−1 | Zk−1,Uk]

= E[Ak−1xk−1 | Zk−1,Uk] +Bk−1uk−1 + E[wk−1 | Zk−1,Uk]

= Ak−1x̂k−1 +Bk−1uk−1 + E[wk−1 | Zk−1,Uk]

(3.38)

In the standard KF, we have obtained E[wk−1 | Zk−1,Uk] = 0 because wk and vk are

uncorrelated. But when they are correlated, we use the conditional distribution of two

joint Gaussian vectors to calculate it, namely

wk−1 | (Zk−1,Uk) = (wk−1 | Zk−2,Uk)
⏐⏐⏐(zk−1 | Zk−2,Uk) (3.39)

The conditional distribution of the random vector zk | (Zk−1,Uk) is different from

Eq. (3.19). It has a new covariance

Σzz = E[(zk −Hkx̂
−
k )(zk −Hkx̂

−
k )

T ]

= E[(Hkxk −Hkx̂
−
k )(Hkxk −Hkx̂

−
k )

T ] + E[vk(Hkxk −Hkx̂
−
k )

T ]

+ E[(Hkxk −Hkx̂
−
k )v

T
k ] + E[vkv

T
k ]

= HkP
−
k H

T
k +Rk

(3.40)

Thus, when the process and measurement noise are correlated,

zk | (Zk−1,Uk) ∼ N (Hkx̂
−
k , HkP

−
k H

T
k +MT

k H
T
k +HkMk +Rk) (3.41)

The vector wk−1 | (Zk−2,Uk) ∼ N (0, Qk−1), since wk−1 is uncorrelated with vk−2. The

cross covariance between wk−1 | (Zk−2,Uk) and zk−1 | (Zk−2,Uk) is:

Σxz = E[wk−1(zk−1 −Hk−1x̂
−
k−1)

T ] = E[wk−1v
T
k−1] =Mk−1 (3.42)

Thus, according to Eq. (3.14) and Eq. (3.38), the a priori estimate of the state for the

noise correlated system is

x̂−k = E[xk | Zk−1,Uk] = Ak−1x̂k−1 +Bk−1uk−1 +Gk−1(zk−1 −Hk−1x̂
−
k−1) (3.43)
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with the a priori estimate covariance

P−
k = Ak−1Pk−1A

T
k−1 +Qk−1 −Mk−1K

T
k−1A

T
k−1 − Ak−1Kk−1M

T
k−1 −Gk−1M

T
k−1 (3.44)

where

Gk−1 =Mk−1(Hk−1P
−
k−1H

T
k−1 +Rk−1)

−1 (3.45)

We then calculate the distribution of xk | (Zk,Uk) = (xk | Zk−1,Uk)
⏐⏐⏐(zk | Zk−1,Uk).

The cross covariance between (xk | Zk−1,Uk) and (zk | Zk−1,Uk) is:

Pxz = E[(xk − x̂−k )(zk −Hkx̂
−
k )

T ]

= E[(xk − x̂−k )(Hkxk −Hkx̂
−
k )

T ] + E[(Ak−1xk−1 + wk−1 − x̂−k )v
T
k ]

= P−
k H

T
k

(3.46)

Thus, the update equations of KF according to Eq. (3.14) become:

x̂k = x̂−k +Kk(zk −Hkx̂
−
k ) (3.47)

with the a posteriori estimation covariance

Pk = (I −KkHk)P
−
k (3.48)

where

Kk = P−
k H

T
k (HkP

−
k H

T
k +Rk)

−1 (3.49)

In summary, when the process noise and system noise are correlated, the best estimate

can be obtained using KF with the equations Eqs. (3.43), (3.44) and (3.47) to (3.49),

which are derived from the conditional distribution of joint Gaussian.

3.5.2 Kalman Filter with Colored Measurement Noise

When the measurement noise has color, there are a couple of ways to obtain the optimal

estimate [88]. The approaches can be roughly categorized into two types. One is measure-

ment differencing [89] [90]. The idea is to obtain a new process model with the difference

of two time step measurements as an auxiliary signal to remove the correlation. The other

method is called state augment [91] [92]. It augments the system state vector to include

the colored measurement noise. We present two common methods in this section.

The process and observation models of the system with colored measurement noise
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remain Eqs. (3.4) and (3.5), while the measurement noise satisfies:

vk = ψk−1vk−1 + εk−1

εk ∼ N (0, Rk)

E[wkε
T
j ] = 0

E{vkvTk−1} = E[(ψk−1vk−1 + εk−1)v
T
k−1] = ψk−1E[vk−1v

T
k−1] (3.50)

Measurement differencing

The first method [89] is to define an auxiliary signal yk using measurement differencing

as follows:

yk = zk+1 − ψkzk

= (Hk+1xk+1 + vk+1)− ψk(Hkxk + vk)

= (Hk+1Ak − ψkHk)xk +Hk+1wk + vk+1 − ψkvk

= (Hk+1Ak − ψkHk)xk +Hk+1wk + εk

= H∗
kxk + v∗k

(3.51)

where H∗
k = Hk+1Ak+1 − ψkHk and v∗k = Hk+1wk + εk. Then, the new but equivalent

system can therefore be written as:

xk = Ak−1xk−1 +Bk−1uk−1 + wk−1

yk = H∗
kxk + v∗k

Rk
∗ = E[v∗kv

∗T
k ] = Hk+1QkH

T
k+1 +Rk

Mk = E[wkv
∗T
k ] = E

[
wk(Hk+1wk + εk)

T
]
= QkH

T
k+1

(3.52)

where Rk
∗ is the covariance of the new measurement noise and Mk is the cross covariance

between the process and measurement noise.

Using the KF equations Eqs. (3.43) and (3.47) for correlated noise with these new

models, we can obtain the estimate of the a priori and the a posteriori state estimates:

x̂−k = E[xk|y1, · · · yk−1]

x̂k = E[xk|y1, · · · yk] = x̂−k +Kk(yk −H∗
k x̂

−
k )

(3.53)

Since yk is based on zk+1, this means that x̂−k is the best estimate and x̂k is the single

state smoothing solution.

State augment
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Another method [91] is to augment the original system model as follows:[
xk

vk

]
=

[
Ak−1 0

0 ψk−1

][
xk−1

vk−1

]
+

[
Bk−1

0

]
uk−1 +

[
wk−1

εk−1

]
(3.54)

Then the measurement model becomes:

zk =
[
Hk I

] [xk
vk

]
+ 0 (3.55)

The covariance of the process noise is:

E

[(
wk

εk

)(
wT

k εTk

)]
=

[
Qk 0

0 Rk

]
(3.56)

and there is no measurement noise. The optimal estimate of this system can be obtained

using the standard KF equations Eqs. (3.9) to (3.13).

3.6 Summary

This chapter has introduced the two steps of KF for estimating the system state including

prediction and update phases. The diagram is summarized in Fig. 3.2 and there are

five key equations Eqs. (3.9) to (3.13) for the uncorrelated Gaussian noise systems. The

optimality of KF is deeply examined. The KF equations can be obtained from conditional

expectation and MAP estimation, which demonstrates that KF produces the optimal

estimate for the system with white noise.

When the process noise and the measurement noise are correlated, the best estimate

can be obtained using Eqs. (3.43), (3.44) and (3.47) to (3.49), which are derived from the

conditional distribution of joint Gaussian. These equations are useful in practical. For

example, when we try to find the system parameters using the Matlab system identifica-

tion toolbox, the process noise and the measurement noise are assumed to be the same

source, which are correlated.

Moreover, for the system with colored measurement noise, which means the noise is time

correlated, we have presented two common methods to deal with this problem including

time differencing and state augment. The first one obtains a new measurement model by

using the difference of two time step measurements to reduce the correlation. It needs to

further use the solution for dealing with correlated noise, since the new measurement noise
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is correlated with the process noise. The second method augments the original system

model to include the process of the colored measurement noise. There is no measurement

noise in the new observation model, which is equivalent to say that the measurement

noise is white with a mean of zero and a covariance of zero. The optimal estimate can be

obtained using the stand KF equations.
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4 PKF: Transmission Rate Compression

Based on KF Using Temporal

Correlation

4.1 Introduction

As concluded in Chapter 2, radio communication is one of the most energy-intensive

processes in WSNs and an efficient way to reduce it is to suppress the transmission rate

of sensor nodes. This chapter presents our compression scheme, called PKF (predictor

combined with KF), for cluster based WSNs. Different from previous methods, PKF aims

to optimally reconstruct the system state from the compressed information as illustrated

in Section 4.2.1. To estimate the reconstruction of PKF and find the effect of the system

parameters, Section 4.2.2 employs artificial systems, where the real states are known. The

reconstructed signal of PKF is compared with the raw data, the KF-optimal and the real

state. The transmission rate and the corresponding reconstruction quality are numerically

examined under different system parameters.

In order to understand the underlying process of PKF and estimate the effect of the

system parameters, we formulate the trade-off between energy efficiency and reconstruc-

tion quality through an in-depth mathematical analysis in Section 4.3. The distribution

of the prediction error is studied in Section 4.3.1. Based on this analysis, Section 4.3.2

models the process of PKF as a Markov chain and obtains the transmission rate as a func-

tion of the system parameters. The reconstruction accuracy of PKF is estimated by the

covariance of the reconstruction error. It is formulated in Section 4.3.3 with the help of

truncated MVN (MVN) distribution and we further reduce the computation complexity

by an approximated uniform distribution. The mathematical analysis is validated in Sec-

tion 4.3.4 by comparing the theoretical results with the simulated results in Section 4.2.2.

This study is important for understanding PKF but also vital for extending it to further

exploit spatial correlation in Chapter 5.

35



4 PKF: Transmission Rate Compression Based on KF Using Temporal Correlation

4.2 Functionality of the PKF Approach

4.2.1 Compression Strategy and Reconstruction Solution

In this section, we describe our PKF scheme. As shown in Fig. 4.1, we assume that sensor

nodes have already formed sets of clusters, according to a certain clustering algorithm,

such as LEACH [64], Directed Diffusion [93] or CAG [94]. The leaf nodes are in charge of

collecting information about surrounding environment and transmitting the data packets

to the cluster heads. The cluster heads then forward the information to the sink node.

The goal of a WSN is to understand the monitoring system from the observations of the

sensor nodes. The objective of PKF is to suppress the communication between a leaf node

and a cluster head, while optimally reconstructing the system state with a guaranteed

quality using the compressed information.

Sink Node

Cluster3 Cluster2

Cluster5
Cluster4

Leaf Node

Cluster Head

b

a

Cluster 1

Figure 4.1: A cluster-based WSN.

To achieve communication compression, each node can intermittently transmit either

the raw data or the preprocessed data based on some suppression schemes. Since the

observations of the leaf nodes are usually corrupted by noise, the latter method would

produce more accurate reconstructions. There are different methods to remove the noise

of the raw data, such as EWMA filter, LMS filter, NLMS filter, KF and so on. Among

them, KF can not only remove the noise but also provide the optimal estimate of the

system state as introduced in Chapter 3. This coincides exactly with the objective of the

WSNs. Thus, each leaf node is required to firstly execute a KF to filter noise and produce

the optimal estimate of the system state. When a transmission is needed, the current

optimal state is transmitted instead of the raw data, which calibrates the estimation of

the cluster head to the optimal one and resets the cumulative error. Now we examine the

suppression strategy and the optimal reconstruction scheme from Bayesian estimation.
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Let X̂k = [x̂1, · · · x̂k] collect all the local estimates of a leaf node from time 1 to time

k. A suppression strategy specifies which estimates in X̂k would be transmitted to the

cluster head in the k time instants duration. Under different strategies, X̂k changes.

While in any case, it is a subset of X̂k and we define it as X̂k s. The last element of X̂k s

is the latest transmitted data x̂j. For example, considering the transmitted data from

time 1 to time 5 are x̂1 and x̂3, then X̂5 s = [x̂1, x̂3] ⊂ X̂5 = [x̂1, x̂2, x̂3, x̂4, x̂5]. Then

the best estimator of xk based on X̂k s, denoted as x̃k, is the conditional expectation

E[xk|X̂k s]. Since X̂k s ⊂ X̂k, it can be simplified using the tower property [95] of the

conditional expectation:

x̃k = E[xk|X̂k s] = E[E(xk|X̂k)|X̂k s] = E[x̂k|X̂k s] (4.1)

The equation implies that the best estimator of xk based on the received data sequence

X̂k s is equivalent to the best estimator of x̂k using X̂k s. Since the state estimate of

KF contains all the past information, i.e., x̂k = E[xk | Zk,Uk], as derived in Chapter 3,

we can derive that E[x̂k|X̂k s] is only related with the last received data. Assuming

the last received data is x̂k, then x̃k = E[x̂k|X̂k s] = E[x̂k | x̂k] = x̂k. If the last

received data is x̂k−1, then E[x̂k|X̂k s] = E[x̂k | x̂k−1] = Ak−1x̂k−1 + Bk−1uk−1 = x̂−k ,

which is the 1-step ahead KF predictor. For a general case, assuming x̂j (j ≤ k) is the

last element in X̂k s, then the best estimator is the k-step ahead KF predictor, namely

x̃k = E[x̂k|X̂k s] = E[x̂k|x̂j] =
(∏k−1

i=j Ai

)
x̂j +

∑k−1
i=j

(∏i+1
m=k−1Am

)
Biui. In the time

invariant system model, Ak = A, E[x̂k|x̂j] = Ak−jx̂j +
∑k−1

i=j

(∏i+1
m=k−1A

)
Biui. Thus, the

best estimator based on the received data sequence written in a recursive form is a linear

predictor:

x̃k = Ak−1x̃k−1 +Bk−1uk−1 (4.2)

It uses the received optimal value to replace the current prediction and further predict

the states of the next several time instants, which is equivalent to the k-step ahead KF

predictor. Once the cluster head receives x̂k, all the past information of the observation

is also obtained, which is more accurate than transmitting the raw data zk that only

contains the current information.

Depending on different suppression strategies, the received data sequence X̂k s changes

and the reconstruction quality varies. To guarantee the reconstruction accuracy, the

predicted observation, z̃k = Hkx̃k, should be as close to the ideal observation Hkxk as

possible. This implies that a threshold to restrict the prediction error is needed. Since xk

is unknown to each node, we can use x̂k instead to calculate the error ϵk = Hk(x̃k − x̂k)
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4 PKF: Transmission Rate Compression Based on KF Using Temporal Correlation

because of Eq. (4.1). Then each node needs to follow the prediction of the cluster head

and keeps the prediction error ϵk within the threshold interval. When the absolute value

of the error is larger than the threshold, the current optimal value is transmitted. Note

that, in this case, X̂i
k s consists of two components. One is the transmitted data sequence.

Each element is a Gaussian random variable. The other is the accuracy indication of the

prediction, which can be treated as a Boolean indicator. It equals 0, when the cluster

head receives the optimal value and indicates the prediction is inaccurate; otherwise, it

equals 1 indicating that the prediction of the untransmitted state is accurate enough. The

reconstruction problem in Eq. (4.1) is actually nonlinear. Even so, the linear predictor is

still surprisingly the optimal estimator.

Taking cluster 1 in Fig. 4.1 as an example, we present the whole process of PKF in the

following. The leaf node a firstly performs a KF to reduce the measurement noise and

obtain the optimal estimate of the state, x̂k, using Eqs. (3.9) to (3.13). The cluster head

b uses Eq. (4.2) to obtain the best estimation of the current state based on the received

information. To guarantee the reconstruction quality, the node a follows the estimation

of the cluster head b by synchronously executing the same predictor and calculates the

prediction error ϵk. When the absolute value of ϵk exceeds a given threshold τ , the optimal

value x̂k, is transmitted to head b. The current prediction x̃k, of both node a and head b

are replaced by x̂k. Thus, the final reconstructed value of the cluster head b is z̄k = Hkx̄k,

where

x̄k =

⎧⎨⎩x̃k, if ||ϵk|| ≤ τ

x̂k, otherwise
(4.3)

Note that PKF allows multiple sensor types to be encoded in a single state vector.

When the node has many sensors to measure different kinds of data, the observation zk is

a vector and correspondingly ϵk is a vector. We compare the norm of ϵk with the constant

threshold τ , which depends on the requirement of a specific application. The diagram

of PKF is shown in Fig. 4.2, where Pkf denotes the k-step ahead Kalman predictor.

Accordingly, Algorithm 1 and Algorithm 2 depict the process of PKF performed by the

leaf node and the cluster head, respectively, where Algorithm 2 is executed by the cluster

head for each leaf node.

In addition, PKF is suitable for both time variant and invariant systems in accordance

with the KF. Without loss of generality, the system parameters in the algorithms, e.g. Ak,

Bk and Hk, are denoted to be time variant, which does not affect the underline process

of PKF. For time invariant systems, these parameters can be found offline by analyzing

the historical data as done in Chapter 6, while for time variant systems, they can be
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Figure 4.2: The block diagram of PKF.

Algorithm 1 PKF algorithm performed by the leaf node

1: Initialize x̂0, P̂0 and x̃0
2: for each zk do
3: Calculate x̂k using Eqs. (3.9) to (3.13)
4: Follow the prediction of the cluster head x̃k using Eq. (4.2)
5: Calculate the prediction error ϵk = Hk(x̃k − x̂k)
6: if ||ϵk|| > τ then
7: Send the current optimal value x̂k
8: Replace the current prediction by the optimal value x̃k = x̂k
9: end if

10: end for

Algorithm 2 PKF algorithm performed by the cluster head

1: Initialize x̃0
2: for each prediction time do
3: if the update x̂k is available then
4: x̃k = x̂k
5: else
6: Predict x̃k using Eq. (4.2)
7: end if
8: Obtain the current reconstructed state x̄k = x̃k
9: Obtain the current reconstructed observation z̄k = Hkx̄k

10: end for

updated using offline or online methods. For example, we can obtain the evolution of these

parameters as functions of time offline using historical data and store these functions in

leaf node and cluster head to update their models during the running time as illustrated in

Section 6.2. The model update process can also be done online using an approach similar

to [29]. When the transmission rate is higher than an expected value, the update phase is

triggered in the cluster head. The analyzed parameters are transmitted to the leaf node to

synchronize the model. The precise schemes to find the optimal online modeling method
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4 PKF: Transmission Rate Compression Based on KF Using Temporal Correlation

are beyond the scope of this work.

In summary, PKF achieves data filtering, state estimation, data compression and recon-

struction within one KF framework. It provides the optimal reconstructions based on the

compressed information, which have the restricted error bound compared with the ideal

observation.

4.2.2 The Reconstruction of PKF Using Simulated Systems

In this section, we use artificial systems to estimate the reconstructions of PKF. Since

the real states are known in this case, the comparisons can be done precisely. We firstly

generate an arbitrary system and set up a threshold to examine the reconstructed signal

of PKF. Then various thresholds and different covariances of measurement noise are used

to find the effect on the performance of PKF.

Model State:
Measurement:

PKF
Threshold:

Signal
TX Rate

Covariance

Figure 4.3: The procedure of the first experiment.

The procedure of the first experiment is depicted in Fig. 4.3. We firstly generate a

system using a model including the state and measurement. Then assign a threshold to

execute PKF. A section of the reconstructed signals is presented, and the transmission

rate and the covariance of the reconstruction errors are compared. The parameters of

the system and the threshold are listed in Table 4.1. There are total 216 data points in

our simulation and the pseudo-random values of the noise are drawn from the standard

normal distribution.

Table 4.1: System parameters and the threshold for estimating the reconstruction of PKF.

System and user parameters

A B H Q x0 R τ
0.9 0 1 0.01 0 0.25 0.1

Fig. 4.4 depicts a section of the reconstructed signal of PKF in comparison with the

raw data, the optimal estimate of KF (KF-optimal) and the real state. There are 21
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4.2 Functionality of the PKF Approach

out of 100 transmitted points during this time. Obviously, the KF successfully removes

the noise of the raw data and the estimates are closer to the real state. PKF follows the

estimate of KF pretty well and replaces the inaccurate prediction as shown in Fig. 4.4.

The reconstructed signal is even closer to the real state compared with transmitting all

of the raw data.

In the following, we use the numbers of transmission rate and covariance of reconstruc-

tion errors to measure the performance of PKF, instead of presenting the signals. The

obtained transmission rate using PKF is 19.75% under this setup. The covariance of the

reconstruction errors compared with the real state is 0.03, which is around 7 times smaller

than the measurement noise R. Fig. 4.5 compares the distributions of the measurement

noise, and the errors between KF-optimal and the real state. Most errors of KF-optimal

are located in the range of [−0.5 0.5], while the measurement noise is relatively larger

and located in the range [−1.5 1.5]. The reconstruction errors of PKF compared with

the KF-optimal are bounded in the interval of [−0.1 0.1] as depicted in the Fig. 4.6b.

The variance is much smaller than the variance of raw data w.r.t. KF-optimal as shown

in Fig. 4.6a. Compared with the real state, the covariance of reconstruction errors of PKF

is much smaller than the variance of the measurement noise as shown in Fig. 4.7.

In the second experiment, the system states and measurements are kept unchanged,

while the threshold is tuned from 0 to 0.22 to find the effect on the performance of PKF.

As shown in Fig. 4.8a and Fig. 4.8b (see the magenta lines), as the threshold increases,

the transmission rate dramatically decreases and the covariance of reconstruction errors

w.r.t. the KF-optimal increases. Combining the results of transmission rate and recon-

struction quality, we obtain the trade-off between them as shown in Fig. 4.9a. There is no

doubt that for a high reconstruction quality (small covariance of reconstruction errors),

more transmission rate is required. The same trend holds for the trade-off between the

transmission rate and the covariance of the reconstruction error w.r.t. the real state as

shown in Fig. 4.9b, where the covaraince of reconstruction errors of PKF is compared with

the covariance of measurement noise of raw data R. Surprisingly, the reconstruction of

PKF with very few transmission could be even more accurate than always transmitting

the raw data in this system.

One advantage of PKF is the use of KF that provides the optimal estimation of the

state from the noisy measurements. In order to find how the measurement noise affects

the gain of PKF, we performed an additional experiment. Here, we keep the system states

unchanged and adjust the covariance R to obtain two more different measurement sets.

The setup is equivalent to have three nodes to measuring the same system, but with
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Figure 4.5: The error distribution of (a) the raw data and (b) the KF-optimal compared
with real state.
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Figure 4.6: The error of (a) the raw data and (b) the PKF reconstruction compared with
KF-optimal.
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Figure 4.7: The error of (a) the raw data and (b) the PKF reconstruction compared with
real state.
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different measurement noises. The covariances of the measurement noise are listed in

Table 4.2.

Table 4.2: The covariance of measurement noise of three nodes.

Node ID 1 2 3
R 0.01 0.25 1
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Figure 4.8: (a) Threshold vs. transmission rate; (b) Threshold vs. covariance of recon-
struction errors w.r.t. KF-optimal, in node 1, node 2 and node 3, respectively.
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Figure 4.9: Trade-off between transmission rate and covariance of reconstruction errors
(a) w.r.t. KF-optimal; (b) w.r.t. real state, in node 1, node 2 and node 3,
respectively.

The basic relationships among the threshold, the transmission rate and the covari-

ance of reconstruction errors, for node 2 still hold for node 1 and node 3 as shown in
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Fig. 4.8a and Fig. 4.8b. As the threshold increases, the node requires less transmission

rate, while producing higher reconstruction errors. The trade-offs between them are de-

picted in Fig. 4.9a. Under the same transmission rate, the higher measurement noise the

node has, the smaller covariance of reconstruction errors (w.r.t. the KF-optimal) PKF

produces. This is because the deviation between the a priori prediction and the KF-

optimal decreases, as the measurement noise increases for a given process model. The KF

trusts more on the a priori prediction than the noisy measurements. It indicates that

the advantage by using PKF versus no compression increases as the measurement noise

increases. The more obvious evidence is reported in Fig. 4.9b. It compares the covariance

of reconstruction errors of PKF with the covariance of measurement noise of raw data as

the transmission rate decreases. When R = 0.01 in node 1, PKF needs around 21.69%

transmission to achieve the same reconstruction quality as transmitting all of the raw

data. As R increases to 0.25 in node 2, the reconstruction quality of PKF using 21.69%

transmission can be increased by around 6 times compared with transmitting all of the

raw data. The improvement is even larger when R increases to 1 in node 3. In other

words, the superiority of the reconstruction quality of PKF compared with the raw data

becomes larger, as the measurement noise increases.

4.3 Mathematical Analysis of PKF

For a given node, the value of the threshold τ affects not only the communication energy

cost but also the reconstruction accuracy. As the threshold increases, the node needs

to transmit fewer packets, whereas the reconstruction quality decreases. For different

nodes with different measurement noises, the communication rate and the reconstruction

quality of PKF vary under a given threshold. The bigger the measurement noise is, the

higher superiority PKF achieves. In the following, we aim to mathematically quantify the

relationship among those quantities to evaluate the performance of PKF. For the sake of

conciseness, we use a time invariant system here.

4.3.1 Distribution of the Prediction Error

In this section, we analyze the distribution of the single step ahead prediction error and

find the joint distribution of the sequence of errors produced by different step ahead

predictions, based on the theory from Chapter 3. It is the basis for the analysis in

Section 4.3.2 and Section 4.3.3.
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Given an initial value, x̃0 = x̂0, we can obtain the k-step ahead prediction, x̃k = Akx̃0

using Eq. (4.2). The k-step ahead prediction error is equivalent to the prediction error at

time instant k, ϵk = H(x̃k− x̂k). However, considering the inaccurate prediction at a time

instant could be replaced by the optimal value, these two errors could be different. For

example, assuming we have a sequence of reconstructions x̃1, x̂2, x̃3, · · · , the prediction

errors at time instant 1 is also the 1-step ahead prediction error evolving from x̂0, while

the prediction error at time instant 3 becomes the 1-step ahead prediction error coming

from x̂2. We firstly illustrate that the errors from k-step ahead prediction have the same

distribution, no matter of the starting time instant. In this example, we are going to prove

that ϵ1 and ϵ3 have the same distribution under the assumption that KF has converged.

Because of the Gaussian assumption of KF, the prediction error at each time instant is

a random variable that satisfies a normal distribution. Thus we can calculate the mean

and the covariance of ϵ1 and ϵ3 to validate our assumption. By using Eqs. (3.4), (3.5),

(3.9) and (3.12), we can obtain that:

ϵ1 = H(x̃1 − x̂1)

= H(Ax̂0 − (I −K1H)Ax̂0 −K1HAx0 −K1Hw0 −K1v1)

= H
(
K1HA(x̂0 − x0)−K1Hw0 −K1v1

)
ϵ3 = H(x̃3 − x̂3)

= H(Ax̂2 − (I −K3H)Ax̂2 −K3HAx2 −K3Hw2 −K3v3)

= H
(
K3HA(x̂2 − x2)−K3Hw2 −K3v3

)
(4.4)

The mean of them can be calculated by:

E[ϵ1] = E[H
(
K1HA(x̂0 − x0)−K1Hw0 −K1v1

)
]

= HK1HA(E[x̂0]− E[x0])

= HK1HA(x̂0 − x̂0) = 0

E[ϵ3] = E[H
(
K3HA(x̂2 − x2)−K3Hw2 −K3v3

)
]

= HK3HA(E[x̂2]− E[x2])

= HK3HA(x̂2 − x̂2) = 0

since the mean values of vk and wk are zero and the mean of xk is x̂k as introduced in
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Chapter 3. The covariance of them are:

E[ϵ1ϵ
T
1 ] = HK1H(AP0A

T +Q0)H
TKT

1 H
T +HK1R1K

T
1 H

T

= HK1(HP
−
1 H

T +R1)K
T
1 H

T = HP−
1 H

TKT
1 H

T

E[ϵ3ϵ
T
3 ] = HK3H(AP2A

T +Q2)H
TKT

3 H
T +HK3R3K

T
3 H

T

= HK3(HP
−
3 H

T +R3)K
T
3 H

T = HP−
3 H

TKT
3 H

T (4.5)

When KF has converged, P−
k = P and Kk = K. Thus, we can obtain:

E[ϵ1ϵ
T
1 ] = E[ϵ3ϵ

T
3 ] = HP−H ′K ′H ′

Then the 1-step ahead prediction error evolving from x̂0, ϵ1 and the 1-step ahead prediction

error coming from x̂2, ϵ3 have the same normal distribution. Thus, we can conclude that

the errors of k-step ahead prediction, no matter starting from which time point, have the

same distribution. We use the notation εk to denote the k-step ahead prediction error.

In this example, both ϵ1 and ϵ3 are the 1-step ahead prediction error ε1.

Without loss of generality, we can use ϵk to find the distribution of εk assuming that

the head continues predicting without replacement. As k increases, it is too complex to

obtain an explicit equation for εk using the iteration method used in Eq. (4.4). In the

following, we aim to describe it in a recursive way.

Let ek = x̃k − x̂k denote the prediction error of the state w.r.t. the KF-optimal,

êk = x̂k − xk is the a posteriori estimate error of KF, and ẽk = x̃k − xk represents the

prediction error with respect to the true state. The diagram of the notations is shown in

Fig. 4.10. Then, ek = ẽk − êk and the k-step ahead prediction error can be recalculated

as:

εk = ϵk = Hek = H[−I I][êk ẽk]
T = H[−I I] eek (4.6)

where eek = [êk ẽk]
T . Initially, we have x̃0 = x̂0, thus ẽ0 = ê0 and ee0 = [ê0 ê0]

T . From

Eqs. (3.4), (3.5), (3.9), (3.12) and (4.2), the errors, êk and ẽk, can be formulated in a

recursive way:

êk = (I −KH)Aêk−1 + (KH − I)wk−1 +Kvk

ẽk = Aẽk−1 − wk−1 (4.7)

Thus, the error vector and the k-step ahead error satisfy:
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Figure 4.10: The schematic diagram of the error definitions.

eek = βeek−1 + Cwwk−1 + Cvvk

εk = ϵk = Hek = H[−I I]eek = H[−I I](βeek−1 + Cwwk + Cvvk) (4.8)

where β =

[
(I −KH)A 0

0 A

]
, Cw =

[
KH − I −I

]T
and Cv =

[
K 0

]T
.

The mean of εk using Eqs. (3.4) and (4.2) can be calculated by:

E[εk] = E[ϵk] = E[H(x̃k − xk)] + E[H(xk − x̂k)]

= E[H(x̃k − xk)]

= H(Akx̂0 − Akx̂0) = 0 (4.9)

The covariance of εk, denoted as σ2
k, where σk is the standard deviation, can be obtained

by calculating the covariance of eek. From Eqs. (3.10) and (3.13), the covariance of êk is

Pk = P . Let us denote the covariance of ẽk and the covariance between these two errors

as P̃k and P̈k, respectively. From Eq. (4.7), we can obtain that:

P̃k = E[ẽk ẽ
T
k ] = AP̃k−1A

T +Q

= AkP (Ak)T +
k−1∑
i=0

AiQ(Ai)T

P̈k = E[êk ẽ
T
k ] = (I −KH)(AP̈k−1A

T +Q)

= Pk = P (4.10)

Then the covariance of eek is:

Peek = E
[
eek ee

T
k

]
= E

[ [
êk ẽk

]T [
êTk ẽTk

] ]
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=

[
Pk P̈k

P̈k P̃k

]
=

[
P P

P P̃k

]
(4.11)

Thus, the covariance of ek is P̃k −P , which indicates that there is no correlation between

ek and êk. It is consistent with Eq. (4.1). The best prediction of the real state is the best

prediction of the KF estimate. Combining Eq. (4.8), the covariance of εk is:

σ2
k = H

[
−1 1

]
Peek

[
−1 1

]T
HT

= H(P̃k − P )HT

= HθkH
T (4.12)

where θk = P̃k−P = AkP (Ak)T−P+
∑k−1

i=0 A
iQ(Ai)T . When k = 1, θ1 = APAT+Q−P =

P−− (I−KH)P− = KHP−, then σ2
1 = HKHP−HT , which is consistent with Eq. (4.5).

Therefore, the k-step ahead prediction error, εk, has a normal distribution, i.e., εk ∼
N (0, σ2

k). The probability density function is:

ϕεk(χ) =
1√
2πσ2

k

e
− χ2

2σ2
k

To illustrate our above analysis, we obtain the prediction errors in our original system

generated in Section 4.2.2. In this example, the covariance matrix of the a posteriori

estimation of KF is P = 0.15. As shown in Fig. 4.11, the covariance of the prediction error

increases1 from 0 to 0.0222 when k increases from 1 to 100 and converges to 0.0222. The

experimental obtained covariance fit quite well with the theoretical values calculated by

Eq. (4.12). Moreover, the histogram of the k-step (k = 1, 2, 20, 24) ahead prediction error

in Fig. 4.12) from the experiment satisfies a normal distribution, which is consistent with

the analysis. The curve becomes shorter and wider as the standard deviation σk increases

and remains similar when σk converges. Each normal curve satisfies the empirical rule

[96] that around 68% of errors are within one σk away from the mean; around 95% of the

errors lie within two σk; and about 99.7% are within three σk.

Then we analyze the distribution of the vector of k steps ahead prediction errors,

vεk = [ε1, ε2, · · · , εk]T ∈ Rk. From Eqs. (4.6) and (4.8), we can see that εk are linear

functions of the errors from different step ahead, i.e., εk−1, εk−2, · · · , ε1. Then every linear

combination of the components in vεk is still normally distributed. It indicates that the

vector of k steps ahead prediction errors vεk satisfies a MVN distribution [97]. The mean

1Note that in some examples, σk may decrease then converge depending on the value of P and Q.
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Figure 4.11: The comparison of the experimental measured and mathematical analysis of
the covariance of different step ahead prediction errors

of vεk is a zero vector. The covariance matrix is denoted as Sk. The diagonal elements

of Sk are the covariance of each random variable, σ2
1, σ

2
2, · · · , σ2

k. The (i, j) entry of Sk

is the covariance between εi and εj. When i > j, it can be calculated using Eqs. (4.6)

and (4.8) to (4.12) as:

E
[
εiε

T
j

]
= E

[
ϵiϵ

T
j

]
= E

[
H[−I I]

(
βi−jeej + f(w, v, i, j)

)
eeTj [−I I]THT

]
= E

[
H[−I I]βi−jPeej [−I I]THT

]
= HAi−jθjH

T

where f(w, v, i, j) =
∑i

m=j+1 β
i−m
(
Cwwm + Cvvm

)
. It is independent of eej. The (j, i)

entry of Sk is the transpose of the (i, j) entry.

Thus, the covariance matrix Sk is:

Sk =

⎛⎜⎜⎝
Hθ1H

T · · · Hθ1(A
k−1)THT

...
. . .

...

HAk−1θ1H
T · · · HθkH

T

⎞⎟⎟⎠ (4.13)

Given a fixed i in Eq. (4.13), as j increases, the (i, j) entry of Sk gets smaller and

smaller (because the eigenvalue of A is smaller than 1) and the jth diagonal element of

Sk increases and converges to a constant as analyzed before. It means the correlation

between the prediction errors from different steps ahead becomes lower, as the distance

between them gets larger. The correlation can be characterized by Pearson’s correlation
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Figure 4.12: The probability density distribution of 1, 2, 20, 24-step ahead prediction
error

coefficient [98], which is calculated by:

ρi,j = Sk(i, j)/
√
Sk(i, i)Sk(j, j)

As an illustration, we depict the joint distribution of ε1 and ε2, and ε1 and ε20 in

Fig. 4.13. As expected, each pair of them has a bivariate normal distribution. The corre-

lation between them can be viewed from the equidensity contours. The 1-step ahead pre-

diction error ε1 has a higher correlation with ε2 (ρ1,2 = 0.6686) than ε20 (ρ1,20 = 0.0632).

It is consistent with the covariance matrix Eq. (4.13), where the theoretical correlation

coefficients between ε1 and ε2, and ε1 and ε20 are 0.6690 and 0.0593, respectively.

In summary, a single step ahead prediction error, εk, has a normal distribution with

zero mean and covariance σ2
k, i.e., εk ∼ N (0, σ2

k). The covariance converges to a constant

as k increases. The vector of k steps ahead prediction errors from 1-step ahead to k-step
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Figure 4.13: Joint normal distribution of different step ahead prediction errors

ahead, vεk = [ε1, ε2, · · · , εk]T , satisfies a MVN distribution, i.e, vεk ∼ N (0,Sk). The

further two prediction errors are, the lower correlation they have. The probability density

function (PDF) of vεk is:

ϕvεk(χ) = ϕvεk(χ1, · · · , χk) =
1√

(2π)k|Sk|
exp

(
− 1

2
χTSk

−1χ
)

where χ is a real k-dimensional column vector.
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4.3 Mathematical Analysis of PKF

4.3.2 Threshold vs. Transmission Rate

The process of PKF can be modeled as a Markov chain with the help of the previous anal-

ysis of prediction error distribution. We then obtain the transmission rate as a function

of the threshold using the steady state equation of the chain in this section.

0 1 2 . . .

1-
1-

1-

Figure 4.14: Description of PKF using success-runs Markov chain.

The sequence of reconstructions of PKF, x̄1, x̄2, x̄3, · · · , is a random process [99]. Each

random variable x̄k could be either the prediction or the optimal value, which is inde-

pendent of others. Supposing the outcome of the reconstruction at time k is x̂k, it does

not affect the likelihood of getting x̂k+1 or x̃k+1 at time k + 1. Each random variable

x̄k results in either success or failure: if the outcome is the prediction, it corresponds to

a success ; otherwise, it is a failure. From Eq. (4.3) we know that the reconstruction is

the prediction, when the prediction error at this time instant lies within the threshold

interval [−τ τ ]. Assuming the prediction error at time instant k, ϵk, is the i-step ahead

prediction error, εi, then the probability of the kth trial to have a success is actually

Pr(−τ ≤ εi ≤ τ) = Pr(−τ ≤ εi ≤ τ), the probability of the i-step ahead prediction error

falling in the interval [−τ τ ]. The failure probability of each trial is correspondingly

1− Pr(τ ≤ εi ≤ τ).

Let Υn denote the number of most recent consecutive successes that have been observed

at the nth trial [100]. If the nth trial is a failure, then Υn = 0; if trial numbers n, n −
1, n−2, · · · , n−m+1 are all successes but trial number n−m is a failure, then Υn = m.

The collection of {Υ1, Υ2, Υ3, · · · } is thereby a stochastic process, each of which is a

random variable. Assuming Υn = k at the nth trial, then Υn+1 will equal either k + 1 or

0 at the next trial regardless of the values Υ1, · · · ,Υn−1. It means the random process

satisfies the Markov property [101] and can be modeled as a discrete-time Markov chain

[102].

The state space [103] of the Markov chain should be N, which is the set of all possible

values of Υn. The transition probability of going from state k at time n to the next state

k + 1 at time n + 1 should be Pr(Υn+1 = k + 1|Υn = k, · · · ,Υ1 = 1) = Pr(Υn+1 = k +

1|Υn = k). The number of consecutive successes is k indicating that all the k steps ahead

prediction errors are within the threshold intervals, i.e., |ε1| ≤ τ, |ε2| ≤ τ, · · · , |εk| ≤ τ .
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4 PKF: Transmission Rate Compression Based on KF Using Temporal Correlation

For conciseness, we define Rk(τ ) =
{
χi = χ(i) ∈ Rk : |χi| ≤ τ, i = 1 · · · k

}
as the region

of k-dimensional space that each variable, εi, lies within the interval of the threshold

[−τ τ ]. Then the transition probability from state k to state k+1 is independent of the

time n and can be represented as:

pk,k+1 = Pr(Υn+1 = k + 1|Υn = k)

= Pr(Υn = k + 1|Υn−1 = k)

= Pr
(
|εk+1| ≤ τ

⏐⏐⏐|εk| ≤ τ, · · · , |ε1| ≤ τ
)

= Pr
(
|εk+1| ≤ τ

⏐⏐⏐vεk ∈ Rk(τ )
)

Using the Bayes’ theorem, it can be calculated by

pk,k+1 =
Pr
(
vεk+1 ∈ Rk+1(τ )

)
Pr
(
vεk ∈ Rk(τ )

)
= Φvεk+1

(τ)/Φvεk(τ) (4.14)

where

Φvεk(τ) = Pr
(
vεk ∈ Rk(τ )

)
=

∫
Rk(τ)

ϕvεk(χ) dχ (4.15)

It is the probability of vεk locating inside the region Rk(τ ). When k = 0, Φ0(τ) = 1,

since all errors in state 0 are 0. The transition probability of going from state k to the

state 0 has the probability pk,0 = 1− pk,k+1. Thus, the transition matrix of the chain is:

P =

⎛⎜⎜⎜⎜⎜⎝
1− p0,1 p0,1 · · · 0 0 · · ·

...
...

. . .
...

...
. . .

1− pk,k+1 0 · · · pk,k+1 0 · · ·
...

...
. . .

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠
It is a time-homogeneous Markov chain [100]. The distribution over states can be written

as a stochastic row vector π =
[
p0, p1, · · ·

]T
with non-negative entries that add up to one

[104]. The probability of the random variable Υn in the state k is Pr(Υn = k) = π(k) = pk.

The distribution in state 0, p0, is actually the transmission rate of the leaf node. According

to the steady state equation, Pπ = π, and Eq. (4.14), the distribution over the state k
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4.3 Mathematical Analysis of PKF

when k > 0 is:

pk = pk−1 pk−1,k = p0

k∏
i=1

pi−1,i = p0Φvεk(τ) (4.16)

Since the total probability in all states equals one, i.e.,
∞∑
k=0

pk = p0

(
1 +

∞∑
k=1

Φvεk(τ)
)
= 1,

the transmission probability p0 is:

p0 =
1

1 +
∞∑
k=1

Φvεk(τ)
(4.17)

It is a function of the threshold τ .

4.3.3 Threshold vs. Reconstruction Accuracy

We calculate the covariance of the reconstruction errors of PKF w.r.t. KF in the following.

Compared with the real state, the covariance only needs to be added by the a posteriori

covariance of KF as analyzed in Section 4.3.1. The total error covariance compared

with the KF, denoted as ¯̄σ2, is the summation of the covariance of reconstruction errors

generated in each state. According to the law of total probability [105], it can be calculated

by:

¯̄σ2 =
∞∑
k=1

pkσ̄
2
k (4.18)

where σ̄2
k is the covaraince of the reconstruction error produced by state k. The goal of

obtaining ¯̄σ2 gets reduced to calculate σ̄2
k. It is addressed in the following paragraphs.

As analyzed in Section 4.3.1, the joint distribution of k steps ahead prediction errors vεk

has a MVN distribution. Then vεk conditional on vεk ∈ Rk(τ ), have a truncated MVN

distribution [106]. Its probability density function, f , for τ ≤ χ1 ≤ τ, · · · , τ ≤ χk ≤ τ , is

given by:

f(χ, τ) =
ϕvεk(χ)

Φvεk(τ)
(4.19)

It is indeed the density of the joint distribution of k states reconstruction errors, vεk|vεk ∈
Rk(τ ). The kth random variable, εk

⏐⏐vεk ∈ Rk(τ ), is the reconstruction error generated

in state k. Its covariance, σ̄2
k, can be calculated by:

σ̄2
k =

∫
Rk(τ)

χ2
kϕvεk(χ) dχ

Φvεk(τ)
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=
Ψvεk(τ)

Φvεk(τ)
(4.20)

where

Ψvεk(τ) =

∫
Rk(τ)

χ2
kϕvεk(χ) dχ (4.21)

It is the unnormalized covariance of the reconstruction error in state k. Then the final

covariance of the reconstruction errors in Eq. (4.18), combining Eqs. (4.16) and (4.20),

can be recalculated as:

¯̄σ2 =
∞∑
k=1

pkσ̄
2
k =

∞∑
k=1

p0Φvεk(τ)Ψvεk(τ)/Φvεk(τ)

= p0

∞∑
k=1

Ψvεk(τ) (4.22)

As k increases, it is hard to obtain Ψvεk(τ), because once the error in the former states

are truncated, the distribution of the error in the current state is not normal anymore.

Although in [107], they use moment generation to calculate this truncated covariance, the

formula is hard to use. To the best of our knowledge, this is the first work that shows

how to use the Hessian matrix [108] of the PDF of MVN to obtain the doubly truncated

covariance and the code can be realized in Matlab.

The idea is to truncate all the errors at the same time. Then the problem to obtain

Ψvεk(τ) can be solved by calculating S̄k, which is the covariance matrix of the doubly

truncated MVN distribution truncated over the region Rk(τ ) and satisfies:

S̄k =

∫
Rk(τ)

χχTϕvεk(χ) dχ

Φvεk(τ)
=

S̃k

Φvεk(τ)

where

S̃k =

∫
Rk(τ)

χχTϕvεk(χ) dχ (4.23)

It is the numerator of S̄k and denotes the unnormalized covariance of the doubly truncated

MVN distribution. Then Ψvεk(τ) is the (k, k) entry of the S̃k, namely,

Ψvεk(τ) = S̃k(k, k) (4.24)
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According to [108], the Hessian matrix of ϕvεk(χ) is given by:

Hvεk(χ) =

⎛⎜⎜⎝
∂2ϕvεk

(χ)

∂2χ1
,

∂2ϕvεk
(χ)

∂χ1∂χ2
, · · · ∂2ϕvεk

(χ)

∂χ1∂χk
...

...
. . .

...
∂2ϕvεk

(χ)

∂χk∂χ1
,

∂2ϕvεk
(χ)

∂χk∂χ2
, · · · ∂2ϕvεk

(χ)

∂2χk

⎞⎟⎟⎠
=
∂2ϕvεk(χ)

∂2χ
=
∂▽ϕvεk(χ)

∂χ

=
∂
(
− χTSk

−1ϕvεk(χ)
)

∂χ

= (Sk
−1χχTSk

−1 − Sk
−1)ϕvεk(χ) (4.25)

where ▽ϕvεk(χ) is the gradient of ϕvεk(χ) and satisfies

▽ϕvεk(χ) =
[
∂ϕvεk

(χ)

∂χ1
,

∂ϕvεk
(χ)

∂χ2
, · · · , ∂ϕvεk

(χ)

∂χk

]
= −χTSk

−1ϕvεk(χ) (4.26)

It is easy to obtain χχTϕvεk(χ) = SkHvεk(χ)Sk + ϕvεk(χ)Sk by multiplying both sides

of Eq. (4.25) by Sk twice. Then integrating the result over the region Rk(τ ), we obtain:

S̃k =

∫
Rk(τ)

χχTϕvεk(χ) dχ =

∫
Rk(τ)

SkHvεk(χ)Sk dχ+

∫
Rk(τ)

ϕvεk(χ)Sk dχ

= SkξkSk + SkΦvεk(τ) (4.27)

where ξk =
∫
Rk(τ)

Hvεk(χ) dχ. It is a k × k matrix.

In Eq. (4.27), only ξk is unknown. We calculate it in two steps: first the diagonal

elements and then the off-diagonal elements. The ith diagonal element of ξk is ξk(i, i)

and holds:

ξk(i, i) =

∫
Rk(τ)

∂2ϕvεk(χ)

∂2χi

dχ

=

∫
Rk−1(τ)

∂ϕvεk(χ−i, χi)

∂χi

⏐⏐⏐τ
χi=−τ

dχ−i

= 2

∫
Rk−1(τ)

∂ϕvεk(χ−i, χi = τ)

∂τ
dχ−i (4.28)

where χ−i denotes the elimination of χi from χ.

To obtain
∂ϕvεk

(χ−i,χi=τ)

∂τ
, we first calculate

∂ϕvεk
(χ)

∂χi
. It can be obtained from the gradient
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of ϕvεk(χ). For computation convenience, the gradient equation Eq. (4.26) is rearranged

as: [
∂ϕvεk

(χ)

∂χ−i

∂ϕvεk
(χ)

∂χi

]
= −[χ−i χi]Σk

−1ϕvεk(χ) (4.29)

where χ and Sk are rearranged into (χ−i, χi) and Σk, respectively. The rearranged

covariance matrix Σk follows:

Σk =

[
Σ11 Σ12

Σ21 Σ22

]

where Σ11 is constructed by dropping the row and column of the ith element in Sk;

Σ12 = Sk(j, i), j ̸= i. It is the column of the ith element except its row in Sk; Σ21 =

Σ12
T = Sk(i, j), j ̸= i; Σ22 = Sk(i, i). It is the row and the column of the ith element in

Sk. For example when k = 4 and i = 3, the rearranged Σk is shown in Fig. 4.15 with

Σ11 =

⎡⎢⎣S4(1, 1) S4(1, 2) S4(1, 4)

S4(2, 1) S4(2, 2) S4(2, 4)

S4(4, 1) S4(4, 2) S4(4, 4)

⎤⎥⎦ Σ22 =
[
S4(3, 3)

]
Σ21 =

[
S4(3, 1) S4(3, 2) S4(3, 4)

]
Σ12 = Σ21

T

Multiplying both sides of the rearranged gradient equation Eq. (4.29) by Σk results in:[
∂ϕvεk

(χ)

∂χ−i

∂ϕvεk
(χ)

∂χi

]
Σk = −[χ−i χi]ϕvεk(χ)

Then, extracting the second column of the equation,

Σ11 Σ11

Σ11 Σ11

Σ12

Σ21

Σ12

Σ21Σ22

Figure 4.15: One example of the rearranged Σ4 when i = 3 and k = 4.
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∂ϕvεk(χ)

∂χ−i

Σ12 +
∂ϕvεk(χ)

∂χi

Σ22 = −χiϕvεk(χ)

the formula for
∂ϕvεk

(χ)

∂χi
is:

∂ϕvεk(χ)

∂χi

= −
(
χiϕvεk(χ) +

∂ϕvεk(χ)

∂χ−i

Σ12

)
Σ−1

22

Plugging it into Eq. (4.28), we can obtain that

ξk(i, i) = 2

∫
Rk−1(τ)

∂ϕvεk(χ−i, χi = τ)

∂τ
dχ−i

= −2

∫
Rk−1(τ)

τϕvεk(χ−i, χi = τ)Σ−1
22 dχ−i

− 2

∫
Rk−1(τ)

∂ϕvεk(χ−i, χi = τ)

∂χ−i

Σ12Σ
−1
22 dχ−i

= −2τF+
i (τ)Σ−1

22 − 2
(
F++
i,j (τ)− F+−

i,j (τ)
)
j ̸=i

Σ12Σ
−1
22 (4.30)

where

F+
i (τ) =

∫
Rk−1(τ)

ϕvεk(χ−i, χi = τ) dχ−i (4.31)

F++
i,j (τ) =

∫
Rk−2(τ)

ϕvεk(χ−i,j, χi = τ, χj = τ) dχ−i,j (4.32)

F+−
i,j (τ) =

∫
Rk−2(τ)

ϕvεk(χ−i,j, χi = τ, χj = −τ) dχ−i,j (4.33)

where χ−i,j denotes the elimination of χi and χj from χ. The results of these three

equations can be obtained by the conditional MVN distribution. According to Bayes’s

theorem, ϕvεk(χ−i, χi = τ) = ϕvεk−i
(χ−i|χi = τ)ϕεi(χi = τ). As we known from Chap-

ter 3, the distribution of vεk−i conditional on εi = τ satisfies a MVN with mean value

µ̃ and covariance matrix Σ̃, i.e., (vεk−i|εi = τ) ∼ N(µ̃, Σ̃), where µ̃ = Σ12Σ
−1
22 τ is a

constant, and Σ̃ = Σ11 − Σ12Σ
−1
22 Σ21. The probability of vεk−i located in the region

Rk−1(τ ) conditional εi = τ is denoted as Φvεk−i
(τ). Thus, Eq. (4.31) can be calculated

by:

F+
i (τ) = Φvεk−i

(τ)ϕεi(τ) (4.34)
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This expression can be easily obtained by Matlab using standard functions. When

1 < i < k, the complexity of this equation can be further reduced as illustrated in

Section 8.1. It can be reduced from a (k − 1) dimensional integral to the multiplication

of one (i− 1) and one (k − i) dimensional integral, namely,

F+
i (τ) = Φvεi−1

(τ)Φvεk−i
(τ)ϕεi(τ) (4.35)

Similarly, the formula for F++
i,j (τ) and F+−

i,j (τ) can be simplified with the conditional

distribution. The vector of the random variables is separated as vεk−i,j and [εi, εj]. Then

(vεk−i,j | [εi, εj] = [τ, τ ]T ) satisfies N(µ̃3, Σ̃3). The mean µ̃3 and the covariance Σ̃3

can still be calculated using Eq. (3.14) with the rearranged matrix. An example of the

rearranged matrix is shown in Fig. 4.16. Then Eqs. (4.32) and (4.33) can be calculated

by:

F++
i,j (τ) = Φvεk−i,j

(τ)ϕεi,εj(τ, τ) (4.36)

F+−
i,j (τ) = Φvεk−i,j

(τ)ϕεi,εj(τ,−τ) (4.37)

Depending on the position of i and j, the complexity of these two formulas can be reduced

similarly to F+
i (τ). For the sake of conciseness, the detailed discussion is not presented

here. Plugging Eqs. (4.36), (4.37) and (4.34) into Eq. (4.30), we can obtain ξk(i, i).

Σ11 Σ12

Σ21 Σ22

Figure 4.16: The rearranged Σ4 when i = 3 and j = 4.

Next, we calculate the (i, j) entry of ξk. It can be obtained by:

ξk(i, j) =

∫
Rk(τ)

∂2ϕvεk(χ)

∂χi∂χj

dχ
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4.3 Mathematical Analysis of PKF

=

∫
Rk−1(τ)

∂ϕvεk(χ−i, χi = τ)

∂χj

dχ−i −
∫
Rk−1(τ)

∂ϕvεk(χ−i, χi = −τ)
∂χj

dχ−i

= 2
(
F++
i,j (τ)− F+−

i,j (τ)
)

(4.38)

where F++
i,j (τ) and F+−

i,j (τ) can be calculated using Eqs. (4.36) and (4.37). After calcu-

lating ξk using Eqs. (4.30) and (4.38), we can obtain S̃k and Ψvεk(τ) using Eqs. (4.24)

and (4.27).

The complexity for computing ¯̄σ2 can be reduced, since in practical scenarios, the

threshold is much smaller than the standard deviation of the prediction errors in each

state2, i.e., τ ≪ σk. The distribution of the error in state k can be approximated as a uni-

form distribution: f(τ) = 1
2τ
. Then the covariance, σ̄2

k in Eq. (4.20), can be approximated

as:

σ̄2
k ≈

∫ τ

−τ

χ2
k

1

2τ
dχk =

τ 2

3
(4.39)

The total covariance of reconstruction errors of N states in Eq. (4.22) is close to:

¯̄σ2 ≈ τ 2

3

∞∑
k=1

pk =
τ 2

3
(1− p0) (4.40)

As the threshold τ increases, the error increases due to the approximation.

4.3.4 Validation of the Mathematical Analysis

In this section, we validate our mathematical analysis by comparing the theoretical re-

sults with the simulated results in Section 4.2.2. As shown in Figs. 4.17 to 4.19, the

mathematical analysis using Eqs. (4.17) and (4.22) precisely follow the experimental mea-

sured transmission rate and the covariance for these three nodes. The trade-offs between

transmission rate and covariance of reconstruction errors, w.r.t. KF-optimal and real

state, are depicted in Figs. 4.20 to 4.22. As the threshold increases, each node requires

less transmission. Under the same threshold, the bigger the measurement noise of the

leaf node is, the less transmission rate is required. This is due to that the reconstruction

quality of the node with smaller measurement noise is more accurate. As expected, the

approximated covariance of reconstruction errors using Eq. (4.40) becomes inaccurate as

the threshold increases. Taking node 1 for example, when τ = 1.1σ1, the inaccuracy is

3.19% compared to the experimental measurements.

2Before truncated, the prediction error in state k is actually χk

⏐⏐χk−1 ∈ Rk−1(τ ). It can be approxi-
mated as the k-step ahead prediction error χk ∼ (0, σ2

k) when τ is small.
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Figure 4.17: Comparisons of (a) transmission rates (b) covariance of reconstruction errors
w.r.t. KF optimal between experimental measurements and mathematical
analysis in node 1;
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Figure 4.18: Comparisons of (a) transmission rates (b) covariance of reconstruction errors
w.r.t. KF optimal between experimental measurements and mathematical
analysis in node 2;
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Figure 4.19: Comparisons of (a) transmission rates (b) covariance of reconstruction errors
w.r.t. KF optimal between experimental measurements and mathematical
analysis in node 3.
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Figure 4.20: Comparisons of trade-off between transmission rate and covariance of recon-
struction errors w.r.t. (a) KF-optimal; (b) real state between experimental
measurements and mathematical analysis in node 1;
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Figure 4.21: Comparisons of trade-off between transmission rate and covariance of recon-
struction errors w.r.t. (a) KF-optimal; (b) real state between experimental
measurements and mathematical analysis in node 2;
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Figure 4.22: Comparisons of trade-off between transmission rate and covariance of recon-
struction errors w.r.t. (a) KF-optimal; (b) real state between experimental
measurements and mathematical analysis in node 3.
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4 PKF: Transmission Rate Compression Based on KF Using Temporal Correlation

Due to the limitation of Matlab functions, the maximum state, N , is set to 25 in

Eq. (4.22). As the threshold increases, there exists more than 25 states. This makes

that the analysis of the transmission rate is slightly larger and the covariance of the

reconstruction errors is slightly smaller than the experimental measurements. However,

it does not significantly affect the accuracy of the analysis, since the probability in state

k is smaller and smaller as k increases. For example, when R = 0.25 and τ = 0.1 (the

original system), there are total 45 states from the simulation result. The probabilities in

the first 25 states are depicted in Fig. 4.23a. It decays and gradually converges to zero.

The larger probabilities are in the first several states. Fig. 4.23b shows the covariance

of reconstruction errors in each state. It has some fluctuations, but is relatively stable.

The distribution of the reconstruction errors w.r.t. the KF-optimal in state 1, 2 and 5 are

depicted in Figs. 4.24a, 4.25a and 4.26a. The errors are truncated at the threshold interval

form -0.1 to 0.1. The distribution of the errors from all state as depicted in Fig. 4.6b is

the combination of the error from each state. The reconstruction errors w.r.t. the real

state in state 1, 5 and 10 have the distribution shown in Figs. 4.24b, 4.25b and 4.26b.

They do not have a normal distribution any more. Fig. 4.7b is actually the combination

of many non-Gaussian noise from different states.
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Figure 4.23: The probability and the covariance of each state in node 2 when τ = 0.1.

4.4 Summary

In this chapter, we present our PKF scheme. It combines a KF and a k-step ahead KF-

predictor to suppress the communication between the leaf node and the cluster head,

while reconstructing the system state with the compressed information in the best way.
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Figure 4.24: The distribution of the reconstruction errors (a) w.r.t. the KF-optimal (b)
w.r.t. the real state at state 1, in node 2 when τ = 0.1;
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Figure 4.25: The distribution of the reconstruction errors (a) w.r.t. the KF-optimal (b)
w.r.t. the real state at state 2, in node 2 when τ = 0.1;
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Figure 4.26: The distribution of the reconstruction errors (a) w.r.t. the KF-optimal (b)
w.r.t. the real state at state 5, in node 2 when τ = 0.1;
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4 PKF: Transmission Rate Compression Based on KF Using Temporal Correlation

PKF allows multiple sensor types to be encoded in a single state vector and achieves data

filtering, state estimation, data compression and reconstruction within one KF framework.

The reconstructed signal of PKF with 19.75% transmission is much closer to the real state

compared with transmitting all of the raw data in an arbitrary simulated system. In

this case, the covariance of the reconstruction error is only 0.03, while the covaraince of

the measurement noise is 0.25. As the measurement noise of the system increases, the

superiority of the reconstruction quality of PKF compared with the raw data becomes

even larger.

In order to quantify the gain of PKF in different scenarios, an in depth mathematical

analysis is carried out. It is important to understand the underlying process of PKF but

also vital for extending it to exploit spatial correlation. A single step ahead prediction

error is proved to have a normal distribution with zero mean. The covariance is calculated

from the system parameters and converges to a constant as k increases. The vector of k

steps ahead prediction errors from 1-step ahead to k-step ahead satisfies a MVN distribu-

tion with zero mean vector and a covariance matrix which is from the system parameters.

The further between two prediction errors, the lower correlation they have. Based on the

analysis of error distribution, PKF is modeled as a Markov chain. The transmission rate

is obtained with the help of the CDF of the MVN. The covariance of the reconstruction

errors is obtained by calculating the covariance of the doubly truncated MVN distribu-

tion. We use the Hessian matrix of the PDF of a MVN distribution for this calculation,

which improves the traditional methods using moments and has generality. The result

is important for WSNs, but also for other domains, e.g., statistic, economics, etc. The

calculation complexity is further reduced by an approximated computation, where the

distribution of the error in each state is approximated as a uniform distribution when

the threshold is much less than the covariance. Using the same simulated systems, the

theoretical results of the mathematical analysis including transmission rate and recon-

struction accuracy follow the simulated results precisely. As expected, the approximated

covariance becomes less accurate as the threshold increases.
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5 Extension of PKF Using Spatial

Correlation

5.1 Introduction

In Chapter 4, we have presented our PKF approach. The cluster head optimally re-

constructs the state from the transmitted data of an individual node using temporal

correlation. However, when there are many sensor nodes, the spatial correlation could

be further exploited to improve the reconstruction quality. This chapter extends PKF to

exploit spatial correlation.

We firstly find the suppression strategy and formulate the reconstruction problem for a

multi-nodes system using Bayesian estimation in Section 5.2. The problem is non-linear

and requires intensive computation in the cluster head. A linear reconstruction solu-

tion, termed as Rand-ST, is proposed using the incomplete information in Section 5.3.1.

The feasibility of Rand-ST is estimated using the simulated system in Section 5.3.2 and

analyzed from the mathematical point of view in Section 5.3.3.

In order to utilize the complete information while still solving the problem through

linear approximations based on the above proposed approach Rand-ST, Section 5.4.1 pro-

poses three different heuristic methods, EPKF-simp, EPKF-norm and EPKF-mix depending

on different scenarios. The reconstructions of them are estimated and compared using

simulated systems in Section 5.4.2.

5.2 Compression Strategy and Nonlinear Reconstruction

Problem for Multi-nodes Systems

In Section 4.2.1, we have illustrated that the k-step ahead KF-predictor provides the best

reconstruction using the information of a single node and the transmission of the local

estimates are suppressed when the prediction is accurate enough. This section aims to

67



5 Extension of PKF Using Spatial Correlation

find the compression strategy and the reconstruction solution when there are many nodes

in the system.

When the system is monitored by m (m ∈ Z+,m > 1) nodes, we add the superscript i

to the symbols related with the node ID to differentiate each node. Then zik denotes the

observation of node i at time k; the corresponding observation matrix is H i
k; the measure-

ment noise is vik that satisfies a Gaussian distribution with zero mean and covariance Ri
k,

vik ∼ N(0, Ri
k); the measurement sequence of node i till time k is Zi

k = [zi1, z
i
2, · · · , zik].

The direct use of PKF needs an ideal component that knows the measurement sequence

of each node. It executes KF to remove the measurement noise of each node and provides

the optimal estimate at time k, x̂k = E[xk|Z1
k, · · · ,Zm

k ]. The cluster head then uses

the linear predictor Eq. (4.2) to estimate xk based on a subset of X̂k = [x̂1, · · · , x̂k].
The ideal component follows the prediction of the cluster head using the same predictor

Eq. (4.2) to guarantee the prediction quality and transmits the optimal value when the

prediction is inaccurate. However, this is impractical in reality, since each node needs to

firstly transmit their observations to a center to obtain x̂k, which significantly reduces

the energy savings. Instead, each leaf node could process its own data independently. It

removes the measurement noise and provides the local estimate x̂ik = E[xk|Zi
k] based on

its own observations. The collection of the local estimates of node i till time k is X̂i
k =

[x̂i1, · · · , x̂ik]. Under a suppression strategy, a subset X̂i
k s ⊂ X̂i

k would be transmitted to

the cluster head. Then the best reconstruction in the head is E[xk|X̂1
k s, · · · , X̂m

k s]. To

guarantee the prediction accuracy, each leaf node should run the same predictor. However,

it is impossible without intra-communication because of the absence of the neighbors’

estimates.

To avoid extra communication, each leaf node could execute PKF independently. A

subset of the local estimates of each node X̂i
k s is transmitted to the cluster head under

the control of PKF, which is the compression strategy for each node. Then the best

reconstruction of xk in the cluster head based on the received local estimates from all

nodes is:

¯̄xk = E[xk|X̂1
k s, · · · , X̂

m
k s] (5.1)

and the corresponding estimated observation for node i at time k is:

¯̄zik = H i
k
¯̄xk (5.2)

Note that X̂i
k s consists of two components. One is the transmitted data sequence. Each

element is a Gaussian random variable. The other is the accuracy indication of the

68



5.3 Rand-ST: Linear Reconstruction Solution Using Incomplete Information

prediction, which can be treated as a Boolean indicator. It equals 0, when the cluster

head receives the optimal value and indicates the prediction is inaccurate; otherwise, it

equals 1. Thus, the reconstruction problem in Eq. (5.1) is nonlinear. It requires intensive

computation in the cluster head. In the following, we aim to find the linear reconstruction

solution.

5.3 Rand-ST: Linear Reconstruction Solution Using

Incomplete Information

From the above analysis, when the Boolean indicator is neglected in the received data,

the nonlinear problem Eq. (5.1) can be converted to a linear estimation. We aim to

find the optimal reconstruction solution in this case and examine the feasibility from the

simulation results and the mathematical analysis in this section.

5.3.1 Optimal Reconstruction Method Under the Random

Transmission Scheme

Without using the Boolean indicator, the compression strategy is actually switched from

transmitting at the time points that the predictions are inaccurate to the random trans-

mission. Each local KF estimate has a probability ptx to be transmitted. The transmitted

data sequence of node i till time k is X̂i
k s. The best estimate of the cluster head based

on the received information from a single node is E[xk|X̂i
k]. It is exactly the same as the

linear predictor Eq. (4.2) in PKF, while the received data sequence of the cluster head is

different because of the unguaranteed transmission. The cluster head predicts the future

states using Eq. (4.2) and replaces the current prediction when it receives the data from

the leaf node. This approach is called Rand-idp and the diagram is depicted in Fig. 5.1.

Since the transmitted data of each node is a Gaussian random variable in this case, KF

provides the optimal reconstruction solution based on the transmitted data sequence of

m nodes in Eq. (5.1). Although [109] and [110] have addressed the problems using KF

with intermittent observations for the systems with one and multi-nodes, the problem

addressed here is more complex and we can not directly apply the solutions here. Since

the observations for the KF are the transmitted local estimates, we need to find a new

observation model to map x̂ik from the system state.

Combing Eqs. (3.4), (3.5), (3.9) and (3.12), the local estimate of node i at time k, x̂ik,
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Figure 5.1: The diagram of Rand-idp: the leaf node runs a KF and randomly transmits
the KF estimate with a probability ptx; the cluster head predicts the state
using the predictor and replaces the current prediction when it receives data
from the leaf node.

can be described as a function of the system state:

x̂ik = Ki
kH

i
kAk−1xk−1 + (I −Ki

kH
i
k)Ak−1x̂

i
k−1 +Ki

kH
i
kwk−1 +Ki

kv
i
k +Bk−1uk−1 (5.3)

It has colored measurement noise:

∆xik = x̂ik − xk = (I −Ki
kH

i
k)Ak−1∆x

i
k−1 + (Ki

kH
i
k − I)wk−1 +Ki

kv
i
k (5.4)

This can be solved using the modified KF with either measurement differencing [89] or

state augment methods [91] as introduced in Section 3.5.2. The new system obtained

by using measurement differencing is derived in Appendix A, where the system model

remains the original model Eq. (3.4) and the observation model with the auxiliary signal
¯̂xik to remove the correlation becomes:

¯̂xik−1 = x̂ik − (I −Ki
kH

i
k)Ak−1x̂

i
k−1

= Ki
kH

i
kAk−1xk−1 +Ki

kH
i
kwk−1 +Ki

kv
i
k +Bk−1uk−1 (5.5)

The cluster head can use a KF with the original system model Eq. (3.4) and this new

observation model Eq. (5.5) for reconstruction based on the randomly and intermittently

received local estimates. This solution is called Rand-ST-dec. More specifically, in Rand-

ST-dec, each node randomly transmits the local KF estimates with a probability pitx;

the cluster head decolors the received data and executes a KF with the original process

model and new observation model to improve the local estimation by exploiting spatial

correlation. The diagram is shown in Fig. 5.2, where mo is the original process model

Eq. (3.4) and observation model Eq. (3.5), md is the original process model Eq. (3.4)
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KF CH
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... ...

dec

KF
mo

dec
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Figure 5.2: The diagram of Rand-ST-dec: each leaf node runs a KF with mo (the origi-
nal system model Eq. (3.4) and observation model Eq. (3.5)) and randomly
transmits the local KF estimates with a probability pitx; the cluster head decol-
ors the received data and executes a KF with md (the original process model
Eq. (3.4) and new observation model Eq. (5.5)) to improve the local estimation
by exploiting spatial correlation.

and new observation model Eq. (5.5). Comparing Eqs. (5.3) and (5.5), x̂ik = E[xk|Zi
k]

contains all the past information of the measurements, while ¯̂xik−1 only has the information

of the raw data at time k. When each node continuously transmits, there is no difference

between using ¯̂xik and x̂ik. However, when each node intermittently transmits, a part of

information is lost after decolor and using x̂ik can produce more accurate reconstructions.

Moreover, to obtain ¯̂xik, the local estimates of two consecutive estimates are needed, which

increases the transmission in reality.

To avoid the loss of useful information and extra transmission, the state augment

method can be used in the cluster head to include the colored measurement noise into the

state vector. Then the state is expanded as Xk = [xk, x̂
1
k, · · · , x̂mk ]T . Combining Eqs. (3.4)

and (5.3), the system model is correspondingly expanded as:

Xk = Fk−1Xk−1 +Gk−1Uk−1 +Wk−1 (5.6)

where Fk is the expanded transition matrix with the corresponding transition coefficients

from the past Xk−1 to the current state Xk, Gk−1 is the expanded control input matrix,

Uk−1 the expanded control input,Wk−1 is the combined system noise matrix. They satisfy:

Fk =

⎡⎢⎢⎢⎢⎣
Ak−1 0 0 · · · 0

K1
kH

1
kAk−1 (I −K1

kH
1
k)Ak−1 0 · · · 0

...
...

...
. . .

...

Km
k H

m
k Ak−1 0 0 · · · (I −Km

k H
m
k )Ak−1

⎤⎥⎥⎥⎥⎦
Gk = [Bk−1, · · · , Bk−1]

T
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Uk−1 = [uk−1, · · · , uk−1]

Wk−1 =
[
wk−1, K1

kH
1
kwk−1 +K1

kv
1
k, · · · , Km

k H
m
k wk−1 +Km

k v
m
k

]T
Since x̂ik is the measurement, the expanded observation model satisfies:

Yk = DkXk (5.7)

where Yk collects the transmitted local estimates of the leaf nodes at time k, which is

[x̂1k, · · · , x̂mk ]T or a subset of it; Dk is the observation matrix, which varies from time to

time depending on the transmission state of each node. For example when m = 2, there

are two nodes in the system. The augmented state is Xk = [xk, x̂
1
k, x̂

2
k]

T . Assuming at

time k, only node 1 transmits its local estimate x̂1k, then Yk = x̂1k and Dk = [0, I, 0]. The

KF in the head updates all states using the received data by changing the corresponding

observation matrix and provides the best estimation for the expanded state vector X̃k =

E[Xk|Y1, · · · , Yk] = E[Xk|X̂1
ks, · · · , X̂m

ks]. When no data is received, the best estimate is

X̃−
k = E[Xk|Y1, · · · , Yk−1] = Fk−1X̂k−1+Gk−1Uk−1, namely, the a priori prediction of KF

for the expanded state vector. The final estimation of the real state is the first element

in the expanded state vector:

¯̄xk = SlX̃k (5.8)

where Sl =
[
I 0

]
and I is the identity matrix to select the estimation of the original

state and 0 is an all zero matrix with the same number of columns as [x̂1k, · · · , x̂mk ]. The
reconstructed observation for each node can be calculated using Eq. (5.2).

The solution that the cluster head uses KF with the state augment method to recon-

struct the state based on the randomly and intermittently transmitted local estimates is

called Rand-ST. The diagram is shown in Fig. 5.3. Each leaf node runs a KF with the orig-

inal system model mo and randomly transmits the local estimates x̂ik with a probability

pitx; the cluster head executes a KF with mc (the expanded process model Eq. (5.6) and

the expanded observation model Eq. (5.7)) to improve the local estimation by exploiting

spatial correlation.

5.3.2 The Reconstruction of Rand-ST Using Simulated Systems

In this section, we keep using the simulated systems in Section 4.2.2 to examine the

reconstruction of Rand-ST. There are three nodes in the system and they have different

measurement noise as introduced in Section 4.2.2. We compare the trad-off between
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KF CH
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... ...KF

KF
mo

...
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Figure 5.3: The diagram of Rand-ST: each leaf node runs a KF with the original sys-
tem model mo (the original system model Eq. (3.4) and observation model
Eq. (3.5)) and randomly transmits the local estimates x̂ik with a probability
pitx; the cluster head executes a KF with mc (the expanded process model
Eq. (5.6) and the expanded observation model Eq. (5.7)) to improve the local
estimation by exploiting spatial correlation. .

transmission rate and reconstruction quality of Rand-idp, Rand-ST-dec and Rand-ST, when

each node randomly transmits the local estimates. Then the performance of Rand-ST is

further examined, when the transmission of each node is controlled by PKF.

Each node randomly transmits the local estimates with various transmission proba-

bility from 100% to less than 10% as shown in Fig. 5.4a, Fig. 5.5a and Fig. 5.6a. The

transmission rates of Rand-idp and Rand-ST are the same, since the cluster head uses the

transmitted local estimates in Rand-ST for reconstruction. While to remove the colored

noise in the local estimates, Rand-ST-dec requires more transmission. The two consecutive

estimates are needed to obtain the new observation, which means if the estimates at time

k, x̂ik is transmitted, the leaf node also needs to transmit x̂ik−1 to obtain ¯̂xik−1, if it has

not been transmitted.

The corresponding covariances of reconstruction errors w.r.t. the real state are depicted

in in Fig. 5.4b, Fig. 5.5b and Fig. 5.6b. The reconstruction quality is further improved

by using spatial correlation. Both Rand-ST-dec and Rand-ST produce smaller covariances

of reconstruction error compared with Rand-idp. The best reconstruction quality can be

achieved in the cluster head, when each node continuously transmits the local estimates.

In this case, Rand-ST-dec produces the same covariance of reconstruction errors 0.0058 as

Rand-ST. While when each node intermittently transmits, Rand-ST-dec has larger covari-

ance than Rand-ST-dec due to the loss of useful information, which is consistent with our

former analysis. When the measurement noise is smaller, the local estimation is closer to

the best estimation using spatial correlation. E.g., the covariance of the local estimation

error in node 1 is 0.006 which is very close to 0.0058, while the covariances of node 2 and

node 3 are around 5.4 and 7.3 times as large as the covariance of the best estimation.
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Figure 5.4: Comparison of transmission rate and covariance of reconstruction errors w.r.t.
real state among Rand-idp, Rand-ST-dec and Rand-ST in node 1.
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Figure 5.5: Comparison of transmission rate and covariance of reconstruction errors w.r.t.
real state among Rand-idp, Rand-ST-dec and Rand-ST in node 2.
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Figure 5.6: Comparison of transmission rate and covariance of reconstruction errors w.r.t.
real state among Rand-idp, Rand-ST-dec and Rand-ST in node 3.
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Figure 5.7: Comparison of the trade-off between transmission rate and covariance of recon-
struction errors w.r.t. real state in node 1. (a) among Rand-idp, Rand-ST-dec,
Rand-ST; (b) between Rand-ST and PKF.
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Figure 5.8: Comparison of the trade-off between transmission rate and covariance of recon-
struction errors w.r.t. real state in node 1. (a) among Rand-idp, Rand-ST-dec,
Rand-ST; (b) between Rand-ST and PKF.
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Figure 5.9: Comparison of the trade-off between transmission rate and covariance of recon-
struction errors w.r.t. real state in node 1. (a) among Rand-idp, Rand-ST-dec,
Rand-ST; (b) between Rand-ST and PKF.
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5 Extension of PKF Using Spatial Correlation

The bigger the measurement noise is, the larger improvement can be achieved by using

spatial correlation. There is no big improvement in node 1 by further using neighbors’

information, while the improvement becomes more obvious for node 2 and node 3 as the

measurement noise increases.

The trade-off between the transmission rate and the reconstruction quality for these

three nodes are shown in Fig. 5.7a, Fig. 5.8a and Fig. 5.9a. Due to the extra transmis-

sion and small improvement on reconstruction quality, Rand-ST-dec even underperforms

Rand-idp in node 1. To achieve the same quality as the raw data, Rand-idp needs 68.46%

transmission, while Rand-ST-dec requires about 20% more. Rand-ST reduces the transmis-

sion rate to 64% by using spatial correlation. In node 2 and node 3, the improvement on

reconstruction quality becomes more obvious. Under the same transmission rate, Rand-

ST-dec produces less error than Rand-idp. Rand-ST only requires 10% and 5% transmission

rate to achieve the same reconstruction quality as Rand-idp with 100% transmission for

node 2 and node 3, respectively.

Thus, we conclude that when each node randomly transmits the local estimates, Rand-

ST is the best reconstruction solution that can always improve the reconstruction quality

by further exploiting spatial correlation and the improvement compared with only using

temporal correlation increases as the measurement noise increases.

Now we estimate the performance of Rand-ST when each node transmits the local es-

timates using PKF. By assigning appropriate thresholds, the transmission rates of each

node are the same as random transmission. As shown in Fig. 5.7b, Fig. 5.8b and Fig. 5.9b,

using the transmitted data controlled by PKF, Rand-ST can further improve the recon-

struction quality for node 2 and node 3 under a given transmission rate, while it decreases

the reconstruction quality for node 1 when the transmission rate is lower than 68.67%. It

implies that Rand-ST is suboptimal when the transmission is controlled by PKF. We aim

to analyze the reason in the next section.

5.3.3 Suboptimality Study of Rand-ST Under the PKF Controlled

Compression Scheme

From the simulation results, we have found Rand-ST is the optimal reconstruction so-

lution when the local estimates are transmitted randomly, while it is inefficient when

the transmission is controlled by PKF. We have analyzed the reconstruction quality and

the transmission rate of PKF in Section 4.3. Here we analyze the trade-off of Rand-idp to

understand the suboptimality of Rand-ST method in PKF controlled transmission scheme.
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5.3 Rand-ST: Linear Reconstruction Solution Using Incomplete Information
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Figure 5.10: State graph of the success-runs chain for random transmission.

The reconstruction of the cluster head at time k, denoted as x̄k, using Rand-idp is a

random variable. It could be either the prediction x̃k or the optimal value x̂k, which is

independent of others. Suppose the outcome of the reconstruction at time k is x̂k, it does

not affect the likelihood of getting x̂k+1 or x̃k+1 at time k + 1. The random variable x̄k

results in either success or failure: if the outcome is the prediction x̃k, it corresponds

to a success ; otherwise, it is a failure. Different from PKF that the success probability

depends on the prediction accuracy, in this case the probability of success is the same p

every time the experiment is conducted. In other words, each variable x̄k is associated with

a Bernoulli trial [111]. Thus, the sequence of independent random variables x̄1, x̄2, x̄3, · · ·
is a Bernoulli process[112].

Let Γn denote the number of most recent consecutive successes that have been observed

at the nth trial [100]. If the nth trial is a failure, then Γn = 0; if trial numbers n, n−1, n−
2, · · · , n−m+ 1 are all successes but trial number n−m is a failure, then Γn = m. The

collection of {Γ1, Γ2, Γ3, · · · } is thereby a stochastic process, each of which is a random

variable. Assuming Γn = k at the nth trial, then Γn+1 will equal either k + 1 or 0 at the

next trial regardless of the values Γ1, · · · ,Γn−1. It means the random process satisfies the

Markov property [101] and can be modeled as a discrete-time Markov chain [102].

The state space [103] of the Markov chain should be N, which is the set of possible

values of Γn. The transition probability of going from state k at time n to the next state

k+1 at time n+1 should be Pr(Γn+1 = k+1|Γn = k, · · · ,Γ1 = 1) = Pr(Γn+1 = k+1|Γn =

k) = 1 − p. Since the number of consecutive successes is independent of the time n, we

can discard the time and obtain the transition probability from state k to state k + 1 is:

pk,k+1 = Pr(Yn+1 = k + 1|Yn = k)

= Pr(Yn = k + 1|Yn−1 = k)

= 1− p

The transition probability from state k to the state 0 has the probability pk,0 = p. Thus,

the transition matrix of the chain is:
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5 Extension of PKF Using Spatial Correlation

P =

⎛⎜⎜⎜⎜⎜⎝
p 1− p · · · 0 0 · · ·
...

...
. . .

...
...

. . .

p 0 · · · 1− p 0 · · ·
...

...
. . .

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠
It is a time-homogeneous Markov chain [100]. The distribution over states can be written

as a stochastic column vector π =
[
p0, p1, · · ·

]T
with non-negative entries that add up

to one [104]. The probability of the random variable Γn in the state k is Pr(Γn = k) =

π(k) = pk. The distribution in state 0, p0, is actually the transmission rate of the leaf

node. According to the steady state equation, Pπ = π, and Eq. (4.14), p0 = p and the

distribution over the state k when k > 0 is

pk = pk−1(1− p) = p(1− p)k (5.9)

The reconstruction quality of Rand-idp is measured by the covariance of the recon-

struction errors w.r.t. the optimal estimate of the local KF. The total covariance is the

summation of the covariance of reconstruction errors generated in each state. Compared

with the KF-optimal, the error in each state is the k-step ahead prediction error εk, which

has the normal distribution εk ∼ N (0, σ2
k) as analyzed in Section 4.3.1. Thus, according

to the law of total probability, the final reconstruction covariance of the errors w.r.t. the

optimal estimate of the local KF is:

σ2
rand =

∞∑
k=0

pkσ
2
k (5.10)

Note that, in the simulated systems that the real state is known, the reconstruction

quality can be measured by the covariance of the reconstruction error w.r.t. the real state.

The reconstruction error at state k compared with the real state is Hkẽk (see Eq. (4.6)).

It has the normal distribution with the covariance σ̃2
k = HkP̃kH

T
k from Eq. (4.10). Then

the total covariance of the reconstruction error w.r.t. the real state of Rand-idp is:

σ̃2
rand =

∞∑
k=0

pkσ̃
2
k (5.11)

Taking node 2 for example, when the transmission probability equals 19.75%, there are

total 39 states in this experiment. The probability and the covariance of reconstruction
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Figure 5.11: The probability and the covariance of each state in node 2 when it randomly
transmits the local estimates with transmission probability 19.75%.

errors w.r.t. the optimal estimate of the local KF of each state are shown in Fig. 5.11a

and Fig. 5.11b. Most of the samples are in the first 15 states. The analyzed probability

fits quite well with the experiment measurement. There are some deviations between

the measured and analyzed covariance when the state gets bigger, since the number of

samples becomes smaller. Compared with Fig. 4.23b, the covariance of Rand-idp at each

state is 10 times larger than that of PKF. The probability density distribution of the

reconstruction errors in state 1, 2 and 5 w.r.t. the optimal estimate of the local KF

are shown in Fig. 5.12a, Fig. 5.13a and Fig. 5.14a. They have the normal distribution.

Comparing Fig. 5.12a with Fig. 4.12a, and Fig. 5.13a with Fig. 4.12b, they are exactly the

same. Thus, we can conclude that when the node randomly transmits the local estimates,

the reconstruction error w.r.t. the KF-optimal in state k is the k-step ahead prediction

errors εk.

Now we examine how far is the probability density distribution of the reconstructed

error of PKF at each state from the analyzed normal distribution by considering a random

transmission. When each node transmits the local estimates under the control of PKF,

we have depicted the error distribution at state 1, 2 and 5 in Fig. 4.24a, Fig. 4.25a and

Fig. 4.26a. The probability density distribution of them are far away from the analyzed

normal distribution as shown in Figs. 5.12b, 5.13b and 5.14b. This deviation degenerates

the performance of Rand-ST when each node transmits under the control of PKF.

The analyzed trad-off between transmission rate and covariance of the reconstruction

errors w.r.t. the KF-optimal using Eq. (5.10) follows pretty well with the experiment

measurements of Rand-idp for these three nodes as shown in Fig. 5.15a, Fig. 5.16a and
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Figure 5.12: Probability density distribution of reconstruction errors w.r.t. KF-optimal
when Ptx = 19.75% in node 2 at state 1: (a) Rand-idp vs. analysis of Rand-idp;
(b) PKF vs. analysis of Rand-idp.
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Figure 5.13: Probability density distribution of reconstruction errors w.r.t. KF-optimal
when Ptx = 19.75% in node 2 at state 2: (a) Rand-idp vs. analysis of Rand-idp;
(b) PKF vs. analysis of Rand-idp.
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Figure 5.14: Probability density distribution of reconstruction errors w.r.t. KF-optimal
when Ptx = 19.75% in node 2 at state 5: (a) Rand-idp vs. analysis of Rand-idp;
(b) PKF vs. analysis of Rand-idp.
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Figure 5.15: Comparison of the trad-off between transmission rate and covariance of the
reconstruction error among PKF, Rand-idp and the analysis of Rand-idp in
node 1 (a) w.r.t. KF-optimal; (b) w.r.t. real state.
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Figure 5.16: Comparison of the trad-off between transmission rate and covariance of the
reconstruction error among PKF, Rand-idp and the analysis of Rand-idp in
node 2 (a) w.r.t. KF-optimal; (b) w.r.t. real state.
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Figure 5.17: Comparison of the trad-off between transmission rate and covariance of the
reconstruction error among PKF, Rand-idp and the analysis of Rand-idp in
node 3 (a) w.r.t. KF-optimal; (b) w.r.t. real state.
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5 Extension of PKF Using Spatial Correlation

Fig. 5.17a. Compared with PKF, the covariance produced by Rand-idp is bigger under the

same transmission rate. It increases from 2.05 times to 41.39 times as big as the covariance

of reconstruction errors produced by PKF for node 2, as the transmission rate increases

from 3.93% to 100%. The same trend holds for the trade-off between transmission rate

and covariance of the reconstruction errors w.r.t. the real state using Eq. (5.11) as shown

in Fig. 5.15b, Fig. 5.16b and Fig. 5.17b.

In summary, the above analysis and simulation results indicate that Rand-ST provides

the optimal reconstruction by using spatial correlation, when each node randomly trans-

mits the local estimates. The gain compared with only using temporal correlation in-

creases as the measurement noise increases. However, when the transmission is controlled

by PKF, the reconstruction error is much overestimated (e.g. 41 times in an example) by

Rand-ST by treating the data sequence as randomly transmitted. In the cases that the

local estimates are very accurate, Rand-ST using spatial correlation could produce even

worse reconstruction than PKF with only temporal correlation.

5.4 EPKF: Linear Reconstruction Solutions Using

Complete Information

We have presented a linear reconstruction solution for the nonlinear problem Eq. (5.1) in

Section 5.3.1, which is proved to be impractical by neglecting the useful information in the

received data sequence. In this section, we aim to utilize the complete information while

still solving the problem through linear approximations based on the above proposed

approach Rand-ST. There are three different heuristic methods depending on different

scenarios as introduced in Section 5.4.1. The reconstructions of them are estimated and

compared using simulated systems in Section 5.4.2.

5.4.1 Heuristic Reconstruction Methods

As known from Chapter 4, the untransmitted data of each leaf node indicates that the

prediction in the cluster head is close to the local KF estimates with a deviation ||ϵik|| ≤ τ ,

i.e., x̂ik = E[xk|X̂i
k] = E[xk|X̂i

k s] + ϵik = x̃ik + ϵik, where x̄
i
k is the reconstruction of PKF

of node i at time k. Thus, we can approximate the unknown local estimates of each

leaf node using this information. One possible solution is to take the deviation as zero.

The alternative way is to approximate the deviation as normal distributed noise. In both

cases, the nonlinear problem can be solved by the KF with the state augment method.
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5.4 EPKF: Linear Reconstruction Solutions Using Complete Information

We firstly present the simplest method EPKF-simp. It directly takes the reconstructions

of PKF as the optimal estimates of the local KF without any noise. This is motivated

from Fig. 4.5b, Fig. 4.6b and Fig. 4.7b. The distribution of the reconstruction error of

PKF compared with the real state in Fig. 4.7b is nearly the same as Fig. 4.5b, because

the reconstruction error of PKF compared with KF in Fig. 4.6b is too small. The un-

transmitted estimate of node i at time k can be approximated as the reconstruction of

PKF, i.e., x̂ik ≈ x̄ik. Then the collection of the local estimates of node i till time k satisfies

X̂i
k ≈ X̄i

k, where X̄i
k = [x̄i1, · · · , x̄ik] is the reconstruction sequence of the cluster head

using PKF for node i till time k. The problem in Eq. (5.1) can thereby be approximated

as:

¯̄xk ≈ E[xk|X̄m
k , · · · , X̄

1
k ] (5.12)

This is equivalent to assume that each node continuously transmits the local estimates.

The optimal reconstruction solution can be provided by the KF with the state augment

method as introduced in Section 5.3.1. The KF in the cluster head uses the expanded

process model Eq. (5.6) and the expanded process model Eq. (5.7) to improve the re-

construction quality of each node. Different from Rand-ST, the time variant observation

matrix Dk is always D = [0, I], where 0 is an all zero vector and I is an identity matrix

with the same columns as [x̂1k, · · · , x̂mk ]. The cluster head executes KF to firstly calcu-

late the a priori prediction X̃−
k = E[Xk|X̄1

k−1, · · · , X̄m
k−1] for the expanded state vector.

Then it takes the reconstructions [x̄1k, · · · , x̄mk ] for each node using PKF at time k as the

measurements for the KF to update the prediction and produces the a posteriori estimate

X̃k = E[Xk|X̄1
k , · · · , X̄m

k ].

The computation complexity in the head can be further reduced. When the measure-

ment has no noise, the a posteriori estimate of the state is actually the measurement.

Thus, there is no need to update the whole expanded state vector. Only the original

state needs to be updated and the other states can be filled with the reconstructions of

PKF. Let X̃−
k = [¯̄x−k , x̄

1−
k , · · · , x̄m−

k ]T denote the a priori prediction of the augmented

states using Eq. (3.9), the update equation for the whole expanded state should be

X̃k = X̃−
k + Kk

(
[x̄1k, · · · , x̄mk ]T − [x̄1−k , · · · , x̄m−

k ]T
)
= [¯̄xk, x̄

1
k, · · · , x̄mk ]. To update the

original state, it can be simplified as

¯̄xk = ¯̄x−k + C1
k(x̄

1
k − x̄1−k ) + · · ·+ Cm

k (x̄mk − x̄m−
k )

=
[
I, −C1

k , · · · , −Cm
k

]
X̃−

k +
[
C1

k , · · · , Cm
k

] [
x̄1k, · · · , x̄mk

]T
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=
[
I, −C1

k , · · · ,−Cm
k

]
Fk−1X̃k−1 +

m∑
i=1

Ci
kx̄

i
k

=
[
φ0
k, φ1

k, · · · , φm
k

]
X̃k−1 +

m∑
i=1

Ci
kx̄

i
k

= φ0
k
¯̄xk−1 +

m∑
i=1

φi
kx̄

i
k−1 +

m∑
i=1

Ci
kx̄

i
k (5.13)

where φi
k is the (i+ 1)th entry in the vector

[
I, −C1

k , · · · ,−Cm
k

]
Fk.

The coefficients Ci
k can be extracted from the calculation of the KF gain Kk using

Eqs. (3.10), (3.11) and (3.13). The a posteriori covariance of x̂ik in the augmented states

should be zero, since the local KF promises the optimal estimation. Assuming ρk is the

a posteriori estimation covariance of the original state at time k, then the covariance of

the augmented states Pk follows:

Pk =

[
ρk 0

0 0

]

Then the a priori estimation covariance using Eq. (3.10) with the model mc is:

P−
k =

[
p11 p12

p21 p22

]

where p11 = Ak−1ρkA
T
k−1+Qk−1 is the a priori estimation covariance of the original states;

p12 = [K1
kH

1
kp11, · · · , Km

k H
m
k p11]

T ; p12 = pT21; The ith diagonal elements of p22 is p22(i, i) =

Ki
kH

i
kp11H

iT
k K

iT
k +Ki

kR
i
kK

iT
k and the (i, j) entry is p22(i, j) = Ki

kH
i
kp11H

jT
k KjT

k . Because

of the special shape of the observation matrix D = [0 I] and the zero measurement

noise, the Kalman gain calculated by Eq. (3.11) is actually:

Kk =
[
p12 p22

]T
p−1
22

The required coefficients for updating the original state is thereby:[
C1

k · · · Cm
k

]
= p12p

−1
22 (5.14)

The diagram of EPKF-simp is shown in Fig. 5.18. Each leaf node runs a PKF-en inde-

pendently to transmit the local estimates x̂ik when the prediction of the cluster head is

inaccurate. The cluster head executes a PKF-de for each node to reconstruct the state
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Figure 5.18: The diagram of EPKF-simp: each leaf node runs a PKF-en independently to
transmit the local estimates x̂ik when the prediction of the cluster head is
inaccurate; the cluster head executes a PKF-de for each node to reconstruct
the state based on the transmitted data of a single node. It further takes the
reconstructions for each node x̄ik as the nodes’ local estimates and uses the
linear combination of them to further improve the estimation for each node.

based on the transmitted data of a single node. It further takes the reconstructions for

each node x̄ik as the nodes’ local estimates and uses the linear combination of them with

the coefficients Ci
k to further improve the estimation for each node. The approaches based

on the combined system model are not suitable for the fast change systems. The system

matrix Fk requires the local KF gains of each node Ki
k at each time step. It costs syn-

chronization overhead. However, for the time invariant system and the system undergoing

slow time variation, the implementation complexity can be much reduced. The KF gain

and the estimation covariance of the local KF converge after several steps for the time

invariant system. The combined system matrix F and the converged coefficients Ci are

thereby constants, which can be easily calculated offline. The head stores these param-

eters. It only needs to receive x̂ik and compute Eq. (5.13) online. For the system with

slow time variation, an additional synchronous process is needed to update the stored

parameters at the beginning of the new system.

Now, let us illustrate the philosophy of the EPKF-norm method with an example. It

approximates the reconstruction error of PKF w.r.t. the local estimates of KF as normal

distribution. Naively, we can approximate all the reconstruction errors together as a

normal distribution. When τ = 0.1 and τ = 0.2 in node 2, the entire errors approximations

are shown in Fig. 5.20a and Fig. 5.20b. The mean values of them are zero. The covarinces

are ¯̄σ2, namely the covariance of reconstructon errors of PKF w.r.t. the local estimates

of KF. They are 0.0022 and 0.0092, when τ equals 0.1 and 0.2, respectively. However, as

analyzed in Chapter 4, the reconstruction errors are composed of the errors generated at
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Figure 5.19: The diagram of EPKF-norm: each leaf node runs a PKF-en independently to
transmit the local estimates x̂ik when the prediction of the cluster head is
inaccurate. The cluster head executes a PKF-de for each node to reconstruct
the state based on the transmitted data of a single node. It distinguishes the
error distribution with an indicator ni

k to denote which state is the current
reconstruction from. Then it takes the reconstructions x̄ik as the measure-
ments with the corresponding normal distributed noise and remove the noise
by the KF with mt (the expanded process model Eq. (5.6) and the expanded
observation model with the time variant normal distributed noise Eq. (5.15)

different states with individual covariance and the probability in each state decreases as

the state number increases. In any cases, the error produced at state 0 is zero, because

the reconstructions are the received local estimates. The probability at this state is the

largest. The covariance generated at state 1 and state 2 are σ̄2
1 = 0.0024 and σ̄2

2 = 0.0027

when τ = 0.1; σ̄2
1 = 0.0043 and σ̄2

2 = 0.0072, when τ = 0.2. The probability density

distribution of them are shown in Figs. 5.21a to 5.21b. If we naively mix them together, the

most often appeared errors are incorrectly approximated. A more sophisticated method

should distinguish the errors produced in each state and approximate them separately.

For example, the individually approximated normal distributions of the errors at the

first two states are shown in Figs. 5.21a to 5.21b. Different from Rand-ST that the

covariance of the reconstruction error at state k is the covariance of the k-step ahead

prediction error σ2
k, the approximated normal distribution in EPKF-norm has the truncated

covariance σ̄2
k, namely the covariance of reconstruction errors of PKF generated in state k.

Then the untransmitted local estimates are approximated as the reconstruction of PKF

with a normal distributed noise, which depends on how many time steps ahead is the

reconstruction of PKF from. If the reconstruction of PKF at time k in node i is the j-step

ahead prediction, then the covariance of the error is σ̄2
j . After noise approximation, the

cluster head can utilize a KF with the state augment method to improve the reconstruction

of each node. The process model remains Eq. (5.6), while the observation model Eq. (5.2)
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becomes

Yk = DXk + Vk (5.15)

where D = [0, I]. Each leaf node continuously transmits the local estimates, which is the

same as EPKF-simp. The difference is that the measurement has a time variant normal

distributed noise and the covariance of the noise depends on the number of step ahead

that the reconstruction comes from in PKF.

The diagram of EPKF-norm is shown in Fig. 5.19, where mt is the expanded process

model Eq. (5.6) and the expanded observation model with the time variant normal dis-

tributed noise Eq. (5.15). Each leaf node runs a PKF-en to transmit the local estimates x̂ik
when the prediction of the cluster head is inaccurate. The cluster head executes a PKF-de

for each node to reconstruct the state based on the transmitted data of a single node.

It distinguishes the error distribution with an indicator ni
k to denote which state is the

current reconstruction from. Then it takes the reconstructions x̄ik as the measurements

with the normal distributed noise and remove the noise by the KF with mt.

Comparing the approximated distributions of node 2 when τ = 0.1 and τ = 0.2 in

Fig. 5.22, we can find that the error is distributed more close to the normal distribution

than zero valued noise when the threshold gets larger. The same trend holds also for node

1 and node 3 but with different threshold intervals. Through our exhaustive experiments,

we have found that when the transmission rate of each node is below about 15%, the

error distributions at the first several states are closer to normal distribution. When

the transmission rate is higher, there is no need to approximate the errors at each state

separately, which reduces the implementation complexity. Inspired from the above results,

we propose another method, called EPKF-mix. It switches the two approximation methods

of the error distribution depending on the transmission rate of each node. When the

transmission rate is higher than 15%, the reconstruction errors of PKF w.r.t. the estimates

of the local KF is approximated as zero; otherwise, the errors produced at each state is

approximated as a normal distribution with the truncated covariance σ̄2
k. After noise

approximation, the cluster head utilizes a KF with the state augment method to further

improve the reconstruction for each node. Compared with EPKF-norm, the process model

remains Eq. (5.6), while the noise vector Vk in observation model Eq. (5.15) are filled with

zero if the measurement noise of some nodes are approximated as zero. The diagram of

EPKF-mix is nearly the same as EPKF-norm in Fig. 5.19 and we do not present again. The

only difference is that for the node whose error is approximated as zero, the indicator ni
k

can be deleted.

Now we compare the implementation complexity among these three heuristic methods.
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Figure 5.20: Approximating the entire reconstruction errors of PKF w.r.t local KF esti-
mates as a normal distribution with zero mean and ¯̄σ2 covariance when (a)
τ = 0.1 (19.75%); (b) τ = 0.2 (5.18%).
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Figure 5.21: Approximating reconstruction errors of PKF w.r.t local KF estimates at state
1 as a normal distribution with zero mean and σ̄2

1 covariance when (a) τ = 0.1
(19.75%); (b) τ = 0.2 (5.18%).
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Figure 5.22: Approximating reconstruction errors of PKF w.r.t local KF estimates at state
2 as a normal distribution with zero mean and σ̄2

2 covariance when (a) τ = 0.1
(19.75%); (b) τ = 0.2 (5.18%).

88



5.4 EPKF: Linear Reconstruction Solutions Using Complete Information

EPKF-simp neglects the reconstruction errors of PKF w.r.t. the local estimates. It directly

takes the reconstructions of PKF as the estimates of the local KF without any noise. In this

case, the cluster head only needs to calculate a linear combination of the reconstructions

of each node, which has the simplest implementation complexity. An alternative method

is EPKF-norm. It approximates the deviation between the reconstructions of PKF and

the local estimates of KF as normal distributed noise and uses a KF with state augment

method to remove the noise. The covariance of the noise varies depending on which step

ahead the reconstruction comes from. Thus, it requires a indicator in the cluster head

to mark how many steps of the current reconstruction is from the last transmission and

dynamically changes the covariance of the measurement noise for the KF. The complexity

is increased compared with EPKF-simp. Due to the fact that the error at each state is

distributed closer to a normal distribution when the transmission rate gets lower, the

EPKF-mix is proposed to adjust the two approximation methods. When the transmission

rate is higher than 15%, the errors are approximated as zero; otherwise, the reconstruction

error generated at each step is approximated individually as a normal distribution with

zero mean and truncated covariance σ̄2
k. The cluster head then utilizes a KF with the state

augment method to further improve the reconstruction for each node. Compared with

EPKF-norm, the cluster head may not need the indicator ni
k and change the covariance of

the measurement noise any more for the node whose error is approximated as zero. Thus,

among these three methods, it has the intermediate implementation complexity.

In summary, we have proposed three heuristic methods for the cluster head to utilize the

complete information of the received data to solve the reconstruction problem Eq. (5.1) in

this section. Each leaf node transmits the estimates of the local KF when the prediction

is inaccurate under the control of PKF. The cluster head approximates the unreceived

estimates using the reconstruction of PKF. Among them EPKF-simp has the lowest imple-

mentation complexity by always taking the reconstructions of PKF as the estimates of the

local KF without any noise. EPKF-norm is the most complex method by approximating

the reconstruction error at each state individually as a normal distribution. EPKF-mix

adjusts the two approximation methods depending on the transmission rate of each node,

which has the intermediate implementation complexity.

5.4.2 The Reconstruction of EPKF Using Simulated Systems

This section aims to estimate the reconstruction quality of the above proposed EPKF

methods. The simulated system with three nodes in Section 4.2.2 is still used here to

present a fair comparison. We firstly estimate the improvements of EPKF methods com-
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pared with PKF approach and examine how far the reconstructed signal of EPKF is from

the real state. Then the trade-off between transmission rate and reconstruction quality is

studied to compare with the results in Section 5.3.2. At last, we aim to find a trade-off be-

tween the implementation complexity and the reconstruction quality among the proposed

approaches.

Table 5.1: The comparison of the covariance of reconstruction errors between using PKF
and EPKF methods when τ1 = 0.275, τ2 = 0.1 and τ3 = 0.132.

Method node 1 node 2 node3

TX rate (%) Any 5.72 19.75 5.18
Covariance of
reconstruction
errors w.r.t.
real state

PKF 0.0214 0.0333 0.0460
EPKF-simp 0.0204 0.0204 0.0204
EPKF-norm 0.0194 0.0194 0.0194
EPKF-mix 0.0193 0.0193 0.0193

In order to examine the improvement of EPKF compared with PKF, the threshold

for node 2 is still assigned to τ2 = 0.1 as in our first experiment in Section 4.2.2. The

transmission rate of node 2 using PKF is 19.75%. The thresholds for node 1 and node 3, τ1

and τ3 are arbitrary selected and are further adjusted to find the effect on the performance

of different EPKF methods. The results when τ1 = 0.275 and τ3 = 0.132 are listed in

Table 5.1. Under the control of PKF, the transmission rates of node 1 and node 3 are 5.72%

and 5.18%, respectively. These rates hold for any method, since each node executes PKF

independently to transmit its own estimate and the cluster head exploits the data from

all nodes to further implement EPKF methods. The covariances of reconstruction errors

of PKF w.r.t. the estimates of the local KF for each node are 0.0152, 0.0022 and 0.0034,

respectively. Comparing the covariance of reconstruction errors of EPKF methods with

that of PKF, the reconstruction quality for each node is further improved by exploiting

the spatial correlation in the head. The improvement increases as the measurement noise

increases. There is not too much improvement in node 1, no matter using which EPKF

technique. Because of its lowest measurement noise, the temporal reconstruction of PKF

is already the most accurate one among these three nodes. While the improvement for

node 2 and node 3 are very obvious. For example, using the simplest method EPKF-simp

that takes the reconstruction errors of each node as zero, the reconstruction quality are

improved by 38.74% and 55.65% for node 2 and node 3, respectively. By approximating

the reconstruction error of each node at each step as an individual normal distributed

noise, the improvements of EPKF-norm are even further: 41.74% for node 2 and 57.83%

for node 3. Different from EPKF-norm, EPKF-mix approximates the reconstruction error
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Table 5.2: The comparison of the covariance of reconstruction errors between using PKF
and EPKF methods when τ1 = 0.125, τ2 = 0.1 and τ3 = 0.06.

Method node 1 node 2 node3

TX rate (%) Any 24.31 19.75 23.30
Covariance
of reconstruction
errors w.r.t.
real state

PKF 0.0093 0.0333 0.0431
EPKF-simp 0.0090 0.0090 0.0090
EPKF-norm 0.0090 0.0090 0.0090
EPKF-mix 0.0090 0.0090 0.0090

of PKF for node 2 as zero valued noise, since its transmission rate are higher than 15%.

The covariance of the reconstruction errors w.r.t the real state is slightly reduced by

EPKF-mix compared with EPKF-norm; and the improvement w.r.t. PKF is increased to

9.81%, 42.04% and 58.04% for each node.

To examine the spatial effect, we keep the threshold for node 2 as τ2 = 0.1 and decrease

the thresholds for node 1 and node 3. The transmission rates of them are increased to

24.31% and 23.30% as listed in Table 5.2 when τ1 = 0.125 and τ3 = 0.06 as an example.

All of the EPKF methods produce the same covariance of reconstruction errors w.r.t. the

real state in this case. Since the transmission rate of each node is over 15%, there is no

doubt that EPKF-mix should produce the same results as EPKF-simp. The covariances of

reconstruction errors of PKF w.r.t. the estimates of the local KF for each node are 0.0033,

0.0022 and 0.0008, respectively. Compared with the a posteriori covariance of the local

KFs, 0.0060, 0.0304 and 0.0426, they are very small. The two methods for approximating

the very small noise do not affect a lot on the reconstruction quality. Thus, EPKF-norm

produce the same covariance of reconstruction errors as EPKF-simp as well. Considering

the implementation complexity of these three methods, EPKF-simp is the best solution

in this case. Compared with PKF, the reconstruction quality is improved to 72.97% by

using spatial correlation for node 2, because the temporal reconstructions of its neighbors

with higher transmission rate are more accurate than before. The reconstructed signal of

EPKF-simp is depicted in Fig. 5.23. Compared with the reconstruction of PKF, it is closer

to the real state. It is even more accurate than the estimates of its local KF, because

the KF in the cluster head trusts more on the less noisy data of node 1. When there are

more than one node in the system, the best estimate of the system state should be the

global KF-optimal, produced by a KF with all of the raw data from each node. It can be

treated as the reference to measure the reconstruction quality of each methods, when the

real state is absent. In Fig. 5.24a and Fig. 5.24b, we report the error distribution of PKF

and EPKF-simp w.r.t. global KF-optimal in this case. Most of the reconstruction errors of
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PKF are located in the interval [−0.5 0.5], while in EPKF-simp they are restricted in the

interval [−0.15 0.15]. The covariance of the reconstruction errors of EPKF-simp is 0.0032,

which is around 8 times smaller than that of PKF. The distribution of the reconstruction

errors w.r.t. the real state are depicted in Fig. 5.24a and Fig. 5.24b. Similarly, the

reconstruction errors of EPKF-simp are distributed more concentrated in a smaller range.
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Figure 5.24: Distribution of the reconstruction error w.r.t. global KF-optimal in node 2,
when the transmission rates of each node are 24.31%, 19.75%, and 23.30%,
receptively: (a) PKF; (b) EPKF-simp.
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Figure 5.25: Distribution of the reconstruction error w.r.t. real state in node 2, when the
transmission rates of each node are 24.31%, 19.75%, and 23.30%, receptively:
(a) PKF; (b) EPKF-simp.

Now we observe the trade-off between transmission rate and reconstruction quality.

The reconstruction qualities of PKF, Rand-ST and three EPKF methods are compared

w.r.t. both global KF-optimal and the real state under the same transmission rate. The

threshold of each node increases progressively as done in Section 4.2.2: node 1 from 0
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Figure 5.26: Comparison of trade-off between transmission rate and covariance of recon-
struction errors among PKF, Rand-ST and three EPKF methods in node 1
(a) w.r.t. global KF-optimal; (b) w.r.t. real state.
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Figure 5.27: Comparison of trade-off between transmission rate and covariance of recon-
struction errors among PKF, Rand-ST and three EPKF methods in node 2
(a) w.r.t. global KF-optimal; (b) w.r.t. real state.
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Figure 5.28: Comparison of trade-off between transmission rate and covariance of recon-
struction errors among PKF, Rand-ST and three EPKF methods in node 3
(a) w.r.t. global KF-optimal; (b) w.r.t. real state.
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to 0.275, node 2 from 0 to 0.22 and node 3 from 0 to 0.132. The transmission rate of

each node under every threshold has been reported in Figs. 4.17a, 4.18a and 4.19a in

Section 4.2.2. As the transmission rate decreases, the covariance of reconstruction error

increases as reported in Figs. 5.26a, 5.26b, 5.27a, 5.27b, 5.28a and 5.28b. When each

node continuously transmits the local estimates, the reconstruction in the cluster head

by using spatial correlation is the global KF-optimal. There is no difference at this point

among Rand-ST and three EPKF methods, and the improvement for each node compared

with the reconstruction of PKF increases as the measurement noise increases: 3.33 % for

node 1, 81.41% for node 2 and 86.29% for node 3. However, as the transmission rate

decreases, Rand-ST fails in node 1 as mentioned before. Whereas, the EPKF methods can

always improve the reconstruction quality of PKF by further exploiting spatial correlation

for these three nodes, although there is no big improvement in node 1. It is equivalent to

further reduce the transmission of each node with the guaranteed quality. For example, the

transmission rates of each node are reduced by 40 ∼ 95% under the same reconstruction

quality as PKF when each node continuously transmits. Both Rand-ST and EPKF-norm

approximate the errors as normal distribution. The former takes the covariance of k-

step ahead prediction errors σ2
k as the covariance, while the later uses the truncated

covariance of PKF σ̄2
k, which could be tens of times smaller than σ2

k. Among the three

EPKF methods, there is nearly no difference when the transmission rates of each node

are small. Since the reconstruction error in this scenario is very small compared to the

a posteriori covariance of the local KF, the two approximation methods have no obvious

impact on the reconstruction quality. As the transmission rates get lower, EPKF-mix

and EPKF-norm produce the same results, while the reconstruction quality of EPKF-simp

is slightly lower by approximating the error as zero. For example, at the last point in

Fig. 5.26a when the transmission rate of these three nodes are 5.72%, 3.85% and 5.18%,

respectively, the covariance produced by using EPKF-mix and EPKF-norm is 0.0205, while

it is 0.0209 by using EPKF-simp. Nevertheless, this small deviation can be neglected

compared with its lowest implementation complexity.

5.5 Summary

We have extended PKF to further exploit spatial correlation for the multi-nodes system

in this chapter. Each leaf node executes a PKF independently. A subset of the local

KF-estimates is transmitted to the cluster head under the control of PKF. The cluster

head collects the data from each node and reconstructs the system state by using spatial
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correlation. The reconstruction problem is formulated using Bayesian estimation, which

is nonlinear and requires intensive computation. By using the incomplete information,

the problem can be converted to a linear estimation problem. In this case, the compres-

sion strategy is switched from transmitting at the time points that the predictions are

inaccurate to the random transmission. The KF can produce the optimal reconstruction.

Since the transmitted local estimates of each node have colored noise, the modified KF

with measurement differecing and state augment method are used, which corresponds to

our Rand-ST-dec and Rand-ST methods. Through the analysis and the simulation results,

Rand-ST is proved to be more accurate than Rand-ST-dec. It provides the optimal re-

constructions when each node randomly transmits the local estimates. The transmission

rate can be further reduced by 95% compared with only using temporal correctional for

a node because of the improved reconstruction quality. However, under the PKF con-

trolled transmission, the covariance of reconstruction errors produced by Rand-ST is 12%

larger than PKF with only spatial correlation. The suboptimality is analyzed through a

detailed analysis. The reconstruction error of PKF is much overestimated in Rand-ST due

to the neglect of the useful information, e.g., 2.05 times to 41.39 times for a node as the

transmission rate increases from 3.93% to 100%.

In order to utilize the complete information while solving the problem through linear

approximations, we have proposed three heuristic methods based on Rand-ST. Each leaf

node transmits the estimates of the local KF when the prediction is inaccurate under the

control of PKF. The cluster head approximates the unreceived estimates using the recon-

struction of PKF. The simplest method is EPKF-simp, which neglects the reconstruction

errors of PKF w.r.t. the local estimates. It directly takes the reconstructions of PKF

as the estimates of the local KF without any noise. In this case, the cluster head only

needs to calculate a linear combination of the reconstructions of each node, which has

the simplest implementation complexity. However, as the transmission rate decreases,

the error is distributed more close to a normal distribution than zero valued noise. An

alternative method EPKF-norm is proposed. It approximates the reconstruction errors of

PKF w.r.t. the local estimates of KF at each state individually as a normal distribution

and uses a KF with state augment method in the cluster head to remove the noise. It

requires high implementation complexity. The third method EPKF-mix is proposed to

adjust the two approximation methods. When the transmission rate is higher than 15%,

the errors are approximated as zero; otherwise, the reconstruction error generated at each

step is approximated individually as a normal distribution with zero mean and truncated

covariance σ̄2
k. The cluster head then utilizes a KF with the state augment method to
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further improve the reconstruction for each node. Among these three methods, it has the

intermediate implementation complexity.

The simulation results illustrate that EPKFmethods can further improve the reconstruc-

tion quality by using spatial correlation. The improvement increases as the measurement

noise increases. For example, the improvements w.r.t. to PKF are 3.33 %, 81.41%, and

86.29% as the covariance of the measurement noise increases from 0.01 to 1 in three nodes.

It is equivalent to further reduce the transmission of each node with the guaranteed qual-

ity. In this case, the transmission rates of each node are reduced by 40 ∼ 95%. For a

given node, the gain by using EPKF methods increases as the reconstruction quality of its

neighbors increase. Taking node 2 for example, the improvement of reconstruction quality

is increased from 41.74% to 72.97%, when the transmission rates of its neighbors increase

from 5.72% to 24.31%. Comparing these three methods, when all the nodes have high

transmission rate, the reconstruction qualities of them are the same. For example, when

the transmission rates of three nodes are 24.31%, 19.75% and 23.30%, respectively, the

covariances of reconstruction errors produced by three EPKF methods are the same 0.009.

Considering the implementation complexity, EPKF-simp is the best candidate. If all nodes

have very small transmission rate, EPKF-mix and EPKF-norm are the same. They have

better reconstruction quality than EPKF-simp. For instance, when the transmission rates

of three nodes are 5.72%, 3.85% and 5.18%, respectively, the covariance of reconstruction

errors produced EPKF-mix is 0.0205, which is the same as EPKF-norm; and EPKF-simp

has the covaraince 0.0209. Another case is that some nodes have much higher transmis-

sion rate than others, EPKF-mix produces the least reconstruction error. For example,

when the transmission rate of three nodes are 5.72%, 19.75% and 5.18%, the covariances

of reconstruction errors produced by EPKF-simp, EPKF-norm and EPKF-mix are 0.0204,

0.0194 and 0.0193, respectively.
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6.1 Introduction

In Chapter 4 and Chapter 5, we have provided the first look at the reconstructions of PKF

and EPKF from the arbitrary simulated systems. This section aims to evaluate the per-

formance of our techniques using the real world data and real hardware implementation.

The experimental evaluation is structured into two phases. We firstly use two kinds of real

temperature datasets taken from typical WSN scenarios with a single node to measure

the performance of PKF in Section 6.2. In order to demonstrate the superiority of PKF,

we compare it with DFK [56], SIP [55], PAQ [28], PLAMLiS [18] and CS [58]. Moreover,

to illustrate that PKF can work in time variant systems, a simple example is also pre-

sented. In Section 6.3, the robustness of our mathematical analysis of PKF is evaluated

using these datasets, by comparing with the experimental measured results. We further

estimate the performance of EPKF using the datasets with different sizes of the cluster

in Section 6.4. Besides the comparison among the PKF-based approaches, EPKF-simp,

Rand-ST, EPKF-norm and EPKF-mix, we compare them with other techniques using both

temporal and spatial correlations: EEDC [18] and CS [58].

In the second phase, to measure the energy consumption and lifetime improvement using

our proposed approaches, the algorithms are implemented in the WSN motes, Openmote

[113], running on Contiki OS [114] in Section 6.5. An arbitrary network is formed with

four leaf nodes and one master node to measure the transmission rate of each node and

the improvements on reconstruction quality by further implementing EPKF in the cluster

head. Then the current profile of the leaf node during each process is visualized on

an oscilloscope by measuring the voltage drop over a fixed resistor. The computation

energy consumption of PKF and the communication energy consumption are compared

to examine how much energy can be saved using PKF. At last, the lifetime improvement

using PKF is studied by considering the overall per-day current consumption of the leaf

node and using the obtained transmission rate of the leaf node.
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6.2 Estimation of PKF Using WSN Datasets

The quality of the reconstructed signal of PKF is evaluated by the covariance of recon-

struction errors with respect to the KF-optimal values, since the real state is absent when

using the real datasets and KF provides the optimal estimate of the system state. It is

compared with DKF [56], SIP [55], PAQ [28], PLAMLiS [18] and CS [58] approaches.

Both DKF [56] and SIP [55] exploit a KF for noise reduction from the raw data and

further reduce the transmission rate using different predictors based on the preprocessed

data. Whereas, PAQ [28], PLAMLiS [18] and CS [58] are the popular techniques without

KF to achieve this aim. The detailed introduction of the techniques can be found in

Chapter 2. To illustrate the ability of PKF working in time variant systems, we present

an example using offline stored models.

For these evaluations, we use two temperature datasets: dataset 1, 1024 values in

singlehop-indoor-moteid1 and dataset 2, 3600 values in singlehop-indoor-moteid2 presented

in [115]. The data is collected at intervals of 5 seconds from a simple single-hop WSN

deployment using TelosB mote. In order to find the effect of the underling system models

on the quality of the PKF approach, we establish two different models for each dataset

without control inputs: PKF-constant and PKF-linear. In the constant model, there is

only one variable in the state space, whereas in the linear model, the temperature value

is considered to vary with a velocity v̇k. The system parameters including A, H, R, Q are

obtained using Matlab system identification toolbox [116, 117] to fit the first 1024 data

points of each dataset.

In order to provide fair comparisons, the required parameters of each approach are

initialized to be consistent with PKF. The system parameters of the DKF [56] approach

are optimized by Matlab as well. According to the process of DKF, each leaf node performs

two KFs, where the first KF is to reduce noise. Here, we let it have the same parameters

as PKF-linear. Since the output of the first KF is treated as the measurements input for

the second KF and the state transition matrix is required unchanged, we further optimize

the new parameters H, R, Q for the second KF. In SIP [55], the same KF filter as PKF-

linear is selected to remove the noise, which is claimed to have the best reconstruction

quality using their approach. The leaf node uses piece-wise linear to estimate the state,

which consists of the current smoothed measurement and the deviation from the last

smoothed data. The cluster head also uses PLA to predict the current state with the

last received state. Two-order AR model of the raw data is obtained for PAQ [28]. The

cluster head stores these two coefficients and the past two data points for the current

prediction. For PLAMLiS [18], we assume the size of buffer is enough to store all values
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6.2 Estimation of PKF Using WSN Datasets

of dataset2. The leaf node calculates the line segment to approximate the raw data given

an error bound and transmits the end points of each line segment to the cluster head.

In order to implement CS [58], we exploit the discrete cosine transform (DCT) as the

representation basis, Ψ, for these two datasets, which can sparsify the original signals

sufficiently. An independent and identically distributed (i.i.d.) Gaussian matrix is used

for random projection, Φ, which is incoherent with Ψ. The signal is reconstructed by ℓ1

minimization method [118].

The trade-offs between transmission rate and reconstruction quality among these ap-

proaches are depicted in Fig. 6.1 and Fig. 6.2. As the number of transmission decreases,

the quality of the reconstruction degrades. The transmission rates of these approaches

gradually converge to a similar value but with different speed1.

PKF-linear outperforms PKF-constant. It indicates that the performance of PKF relies

on the accuracy of the system model, which is a common issue for the model-based

techniques. The more accurate the model is, the better performance PKF achieves.

Compared with the approaches that use the same linear KF for noise reduction, namely,

DKF [56] and SIP [55], PKF-linear requires the fewest transmission rate under the same

covariance of reconstruction errors. It is interesting to compare the reconstruction quality

with the covariance of measurement noise before KF filtering. As analyzed by the system

identification toolbox, the covariance of the measurement noise for dataset 1 and datase 2

are 0.33 and 0.41, respectively. Without data degradation, PKF-linear only needs 11.11%

and 11.91% transmission, which in turn saves the transmission of DKF by 23.11% and

13.93%, respectively. The second KF in DKF [56] uses the output of the first KF as

the measurements. Then the optimal reconstruction method should be that the cluster

head uses a KF with the combined system model mc, since the estimate of the first

KF contains colored noise as analyzed in Eqs. (5.3) and (5.4). When it receives the

update, it calculates the KF gain, conducts the a posteriori estimate and obtains the

a posteriori estimate covariance, which actually replaces the prediction by the update,

since the first KF promises the optimal estimate for a linear system. In other words,

the optimal reconstructions of KF in the head with the state augment method should be

the same as PKF when there is only one node. However, the state transition matrix is

required to be unchanged in DKF [56], which means the reconstructions produced by the

second KF is suboptimal. Thus, the reconstruction quality of DKF is worse than PKF.

SIP requires around 25.52% and 19.74% transmission to achieve the same reconstruction

1Here we only present the performance of CS with similar reconstruction quality as other techniques.
The transmission rate of CS converges to 10% when the covariance of reconstruction errors is larger
than 0.001◦C2.
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quality as the raw data, which are around 129.70% and 65.74% more transmission than

PKF-linear. After noise reduction using the same liner KF as PKF-linear, the system state

is estimated from another approximation method PLA in the leaf node instead of directly

using the optimal estimate of the KF. The cluster head then uses PLA to predict the

approximation of the state and the leaf node follows the prediction of the cluster head to

guarantee the reconstruction quality. These approximations degrades the reconstruction

quality.

Compared with the techniques without KF, the advantages of PKF are even more sig-

nificant because of the KF. Without quality degradation, PKF-linear decreases the trans-

mission rate of PAQ [28] by 37.98% and 29.08% for dataset 1 and dataset 2, respectively.

To achieve the same quality as the raw measurements, PLAMLiS [18] and CS [58] require

2.14 and 6.60 times as much transmission as PKF for dataset 1; and 2.06 and 6.56 times

for dataset 2, respectively. These approaches only provide the approximations of the raw

data. As the measurement noise increases, the superiority of PKF could become more

obvious.

We further illustrate how PKF can be used in time variant systems using real temper-

ature values. Since the above used datasets are collected over several hours, they are too

short to cause a change of the system model. Thus, another dataset from a typical WSN

testbed is selected as shown in Fig. 6.3a. It is collected by Tinynode at intervals of 30

seconds on 4th. Nov. 2006 from sensorscope-meteo44 in LUCE WSN testbed [119].

Assuming the system is invariant over the whole day, we can find the system model

miv with the aid of Matlab system identification toolbox. Under this model, the tradeoff

between transmission rate and reconstruction quality using PKF is shown in Fig. 6.3b.

As depicted in Fig. 6.3a, the measurements have larger noise during the day time, from

9 am to 17 pm. We can divide the data of the whole day into three parts: from 0 am to

9 am, 9 am to 17 pm and 17 pm to 0 am as shown in Fig. 6.3a. Each part has different

system parameters and we can obtain the corresponding system model, m1, m2 and m3.

Both the leaf node and cluster head store these models and update them in time. The

performance of PKF using these time variant models, is shown in Fig. 6.3b. Compared with

using the time invariant model, the reconstruction quality of PKF is slightly improved,

which is consistent with the above result that the more accurate the model is, the better

performance PKF achieves.
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Figure 6.1: Performance comparisons of PKF, DKF [56], PAQ [28], PLAMLiS [18], CS [58]
and SIP [55] using dataset 1.
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Figure 6.2: Performance comparisons of PKF, DKF [56], PAQ [28], PLAMLiS [18], CS [58]
and SIP [55] using dataset 2.
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Figure 6.3: (a) Raw data of a node collected in one day can be separated into three
segments according to the measurement noise with time variant models;
(b) Performance of PKF in the time variant system using offline stored system
parameters.

6.3 Estimation of Math Analysis Using WSN Datasets

We have validated our analysis using the simulated systems in Chapter 4. This section

evaluates the robustness of our mathematical analysis using dataset 1 and dataset 2.

The transmission rate decreases as the threshold increases. The analyzed results using

Eq. (4.17) for both PKF-constant and PKF-linear follow the experimental measurements

as shown in Fig. 6.4a and Fig. 6.4b using dataset 1. The similar results hold also when the

node using dataset 2 as shown in Fig. 6.7a and Fig. 6.7b. The comparison of the covari-

ance of reconstruction errors among experimental measurements, mathematical analysis

using Eq. (4.22), and approximation using Eq. (4.40) are depicted in Figs. 6.5a, 6.5b,

6.8a and 6.8b when the node executes PKF-constant and PKF-linear using dataset 1 and

dataset 2, respectively. As usual, the approximated covariance of reconstruction errors

using Eq. (4.40) becomes less accurate as the threshold increases. Combining the re-

sults of transmission rate and reconstruction quality, we obtain the trade-offs between

them. The comparison of experimental results and mathematical analysis are reported

in Figs. 6.6a, 6.6b, 6.9a and 6.9b. The node needs to spend more energy on commu-

nication for better reconstruction quality. Although there are some deviations between

the mathematical analysis and the experimental measurements, they are reasonable and

acceptable, because the system models are uncertain and the noise distribution may not

perfectly satisfy Gaussian distribution.
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Figure 6.4: Comparison of transmission rate between experimental measurements and
mathematical analysis Eq. (4.17) in (a) PKF-constant and (b) PKF-linear using
dataset 1.
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Figure 6.5: Comparison of covariance of reconstruction errors among experimental mea-
surements, mathematical analysis Eq. (4.22), and approximation Eq. (4.40) in
(a) PKF-constant and (b) PKF-linear using dataset 1.
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Figure 6.6: Comparison of the trad-off between transmission rate and covariance of re-
construction errors among experimental measurements, mathematical analy-
sis Eqs. (4.17) and (4.22), and approximation Eqs. (4.17) and (4.40) in (a)
PKF-constant and (b) PKF-linear using dataset 1.
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Figure 6.7: Comparison of transmission rate between experimental measurements and
mathematical analysis Eq. (4.17) in (a) PKF-constant and (b) PKF-linear using
dataset 2.
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Figure 6.8: Comparison of covariance of reconstruction errors among experimental mea-
surements, mathematical analysis Eq. (4.22), and approximation Eq. (4.40) in
(a) PKF-constant and (b) PKF-linear using dataset 2.
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Figure 6.9: Comparison of the trad-off between transmission rate and covariance of re-
construction errors among experimental measurements, mathematical analy-
sis Eqs. (4.17) and (4.22), and approximation Eqs. (4.17) and (4.40) in (a)
PKF-constant and (b) PKF-linear using dataset 2.
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6.4 Estimation of EPKF Using WSN Datasets

This section estimates the performance of EPKF using the real WSN datasets with different

sizes of the cluster. In addition to the comparison among the PKF-based approaches,

Rand-ST, EPKF-simp, EPKF-norm, EPKF-mix, we compare it with two popular techniques

using both temporal and spatial correlations: EEDC [18] and CS [58]. The former one

is a classical clustering approach that selects active nodes as representatives in a period

after using temporal correlation with PlAMLiS method; the later one based on the new

sampling theory is very popular as introduced in Chapter 2.

The datasets are taken from LUCEWSN testbed [119], which are collected by Shockfish

TinyNode at intervals of 30 seconds across the EPFL campus. We use the temperature and

humidity values as the data types and group the nodes into different clusters according

to the correlation coefficient. Two clusters with different sizes are presented here: the

first one consists of 4 nodes with 4 × 2103 temperature values and the second one has

15 nodes with 15 × 856 relative humidity values. To initiate PKF-based approaches, the

system model for each dataset is found by the Matlab system identification toolbox [116]

[117] as usual. The estimations of the global KF generated with all nodes measurements

are assumed to be the real state here. For EEDC [18], we assume the buffer size is big

enough to store all values, since it uses the PLAMLiS method in the temporal domain.

In order to implement CS [58], we exploit the discrete cosine transform (DCT) as the

representation basis, Ψ, for these two datasets, which can sparsify the original signals

sufficiently. An independent and identically distributed (i.i.d.) Gaussian matrix is used

for random projection, Φ, which is incoherent with Ψ. The signals are reconstructed using

ℓ1 minimization method [118].

Since there are too many nodes in the system, we present the average covariance of

reconstruction errors and the average transmission rate. The trade-offs between them

using each approach with two datasets are depicted in Fig. 6.10a and Fig. 6.11a, respec-

tively. EPKF-norm, EPKF-mix and EPKF-simp nearly have the same performance, which

could further reduce the transmission rate of the leaf node by more than 90% under the

same reconstruction quality as PKF. Rand-ST could degrade the reconstruction quality of

PKF, which is consistent with the results in the artificial system. Compared with other

techniques, the advantages of EPKF methods are more significant. Only 5% transmission

is required to achieve the same reconstruction quality as CS [58] using the full trans-

mission. The best reconstruction of EEDC, denoted as EEDC-max, appears when only

temporal correlation is used, namely using PLAMLiS method. Each node approximates

the raw data as the line segment and transmits the end points of each segment inde-
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Figure 6.10: Performance comparison of PKF, Rand-ST, EPKF-norm, EPKF-mix, EPKF-
simp, CS [58] and EEDC [18] using real dataset 1 with four leaf nodes.

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

covarianceFofFreconstructionFerrorsF[°C2]

tr
an

sm
is

si
on

Fr
at

e[
E

]

PKF
Rand−ST
EPKF−norm
EPKF−mix
EPKF−simp
CSF[58]
EEDC−maxF[18]
EEDCF[18]

Figure 6.11: Performance comparison of PKF, Rand-ST, EPKF-norm, EPKF-mix, EPKF-
simp, CS [58] and EEDC [18] using dataset 2 with 15 nodes.
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pendently without using any representative node. Consistent with the results in Fig. 6.1

and Fig. 6.2, the reconstruction quality of EEDC-max is worse than PKF as reported

in Fig. 6.10a and Fig. 6.11a under the same transmission rate. When it further uses

spatial correlation, where each node is uniformly selected as the representative node, the

performance of EEDC degenerates. The reconstruction error of EEDC is even dozens of

times more than EPKF. Note that, when the transmission rate is 100%, the advantage of

PKF-based approaches reflects the effort of KF. Using the filtered data produces better

results than directly using the noisy measurements.

6.5 Physical Implementation with Openmote

This section assesses the proposed algorithms using the hardware implementation. A sim-

ple WSN monitoring the indoor temperature is formed with four leaf nodes and 1 master

node to measure the transmission rate of the leaf node using PKF and the reconstruction

quality improvement by further exploiting EPKF methods in the master node. Then the

energy consumption of PKF and communication energy consumption of the leaf node are

compared to examine how much energy can be saved. The current profile is visualized on

an oscilloscope by measuring the voltage drop over a fixed resistor. Combining the overall

per-day current consumption of the node including sensing, computation, communication

and OS related activities, and the obtained transmission rate, the lifetime improvements

of each node using PKF are estimated.

OpenMote-CC2538 [113] is used as the hardware in our experiments as shown in

Fig. 6.12. It is based on the Ti CC2538 System on Chip (SoC) [120], which combines

a 32-bit ARM Cortex-M3 with an IEEE 802.15.4 compliant RF transceiver in one chip

[120]. It is connected to the OpenBattery board [121] as our leaf node, which is powered

by 2 AAA batteries. The mater node uses Openmote-CC2538 with the Openbase board

[122], which is connected to PC. The nodes run Contiki OS, which is an open source,

highly portable, multi-tasking operating system for memory-efficient networked embed-

ded systems and wireless sensor networks [114, 123]. The RIME communication stack is

used, which provides a set of custom lightweight communication primitives designed for

low-power wireless networks [124] [125]. The node accesses media under the control of

CSMA/CA scheme. To attain low-power operation of the radio, ContikiMAC [126] [127]

is used. The node is required to keep the radio off as much as possible and periodically

wake up to check for radio activity. The channel check rate (CCR) is given in Hz, spec-

ifying the number of channel checks per second, and the default CCR is 8 Hz. CCRs
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a

b c d
Figure 6.12: (a) Openmote-CC2538; (b) OpenBattery board; (c) AAA batteries; (d)

Openbase board.

are given in powers of two, and typical settings are 2, 4, 8, and 16 Hz [128]. If a packet

transmission is detected, the receiver stays awake to receive the next packet and sends

a link layer acknowledgment (ACK). To send a packet, the sender repeatedly sends the

same packet until a link layer ACK is received [126]. The leaf node collects the temper-

ature using SHT21 sensor every six seconds and transmits it to the master node using

single-hop unicast scheme.

Table 6.1: The reconstruction quality improvement using EPKF methods in the cluster
head w.r.t. PKF for each leaf node.

Methods
Improvement (%)

node 1 node 2 node 3 node 4
EPKF-simp 95.41 81.84 98.29 91.09
EPKF-norm 95.41 81.85 98.29 91.10
EPKF-mix 95.41 81.85 98.29 91.10

We randomly setup a wireless sensor network with four leaf nodes and 1 master node in

the laboratory to measure the transmission rate of each node running PKF. The positions

of each node are measured afterwords and depicted in Fig. 6.13. Each node firstly collects

the raw data for three days. We obtain the system model using these data offline with

the help of Matlab. Then each node runs PKF with these models online for one week.

The threshold of each node is set to 0.01◦C. The obtained transmission rates of each

node are 0.8%, 0.72%, 0.81% and 0.81%, respectively. Compared with the typical used
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Figure 6.13: The setup of a simple WSN with 4 leaf nodes and 1 master node in the Lab.

threshold 0.5◦C in the literatures, the reconstructions using PKF have very small errors.

The reconstruction quality of PKF in the leaf node is further improved using EPKF in

the cluster head as expected. The improvement for each node is listed in Table 6.1.

EPKF-norm and EPKF-mix have the same improvements, which are slightly higher than

EPKF-simp.

Now we measure the computation energy consumption of PKF, Epkf , and the commu-

nication energy consumption, Ecmn, of the leaf node to observe how much energy can be

saved. The general idea is to visualize the current profile on an oscilloscope by measuring

the voltage drop over a fixed resistor. The measurement setup is shown in Fig. 6.14.

Instead using the battery, the leaf node is powered by DC power supply with 3.0 V to

obtain more stable power input. The step-down DC-DC converter TPS62730 in the mote

regulates the input voltage down to 2.1 V in the regulated mode [129]. A 10 Ω resistor is

connected in series with the mote. The master node is powered by PC and communicates

with the leaf node through the RF radio. The oscilloscope provides a graphical represen-

tation of the voltage drop over the resistor, which is the same as the current consumed

by the system because of the Ohm’s Law. The detailed current profile of the node during

computation and communication when the CCR is 128, 32 and 8 Hz are depicted in the

Section 8.3 in Figs. 8.3 to 8.5. The corresponding current consumption and the duration

during each process are summarized in Tables 8.1 to 8.3. Here we present the final results.

Because the execution time of PKF is very small, the PKF algorithm is repeated 20
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Figure 6.14: Measurement setup for analyzing the power consumption of the leaf node
during each process.

times in the node. It costs 4.55 ms in total, which corresponds to 0.2275 ms for each

execution of PKF. The voltage is 101.76 mV and corresponds to 10.176 mA of the current

in the 10 Ω resistor. Thus the per-time current consumption2 by executing PKF is Cpkf =

10.176 ∗ 0.2275 = 2.315mAms. The corresponding energy consumption of PKF is the

product of the electric charge and the regulated voltage (2.1 V), i.e., Epkf = 2.315 ×
10−6 ∗ 2.1 = 4.86µJ .

To measure the energy consumption of the communication, Ecmn, the CCR of the leaf

node is assigned to 2 Hz to keep the radio sleep as much as possible and the CCR of

the master node is set to different values ranging from 2 to 128 Hz to obtain the current

profiles of the communication in different scenarios. From the observations, there are eight

processes involved in the radio activities: regular channel check, CSMA/CA, switch from

RX to TX, transmitting, switch from TX to RX, waiting for ACK, receiving ACK and

RF in RX to process ACK. The radio wakes up to firstly detect, if there is an incoming

transmission. Two successive clear channel assessments (CCA) are performed for this

purpose. Then a collision avoidance mechanism is conducted before data transmission,

2Also known as the electric charge with the unit coulomb C and 1C = 1A · 1S.
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Table 6.2: The communication energy consumption of the leaf node, when the CCR of
the master node increases from 2 to 128 Hz.

CCR (Hz) 2 4 8 16 32 64 128
Ecmn (mJ) 19.27 7.44 4.45 2.02 0.92 0.58 0.58

where several successive CCAs are performed to check the availability of the channel. The

average currents consumed by the leaf node during these processes, under different CCRs

of the master node, are nearly the same. After that, the node starts to transmit the data

packet consisting of 39 Bytes packet headers and 4 Bytes temperature values. Then the

RF is switched from transmission to receive the ACK. Because the absence of ACK, the

radio is switched to transmission again to retransmit the data packet until it receives the

ACK after several times retransmission. The number of retransmissions increases as the

CCR of the master node decreases, since it can not promptly detect the communication

and respond the leaf node. For example, there are only 2 times retransmissions, when

the CCR of the master node is 128 Hz; the number increases to 5 and 38, when CCR

decreases to 32 Hz and 8 Hz, respectively.

Table 6.2 summarizes the decrease of the communication energy consumption of the

leaf node as the CCR of the master node increases from 2 to 128 Hz. Compared with the

computation energy consumption of PKF, the energy cost of communication is hundreds

or thousands of times larger than the computation energy as shown in Fig. 6.15a. For

example, when the master node uses the default CCR 8 Hz, it is 915.8 times larger than

the computation power consumption of PKF. Thus, PKF with very few computation cost

can significantly reduce the communication energy consumption of the node.

Then we examine the lifetime improvement using PKF method considering the overall

per-day current consumption of each node. Besides the communication and computation

current consumption, the node also spends current on sensing and OS related activities.

From the observation, it costs 65,09 ms and 11.364 mA to wait for MCU stable and

reading sensor from I2C. We call this electric charge Csens =739.65 mAms. The leaf node

checks the channel twice per second and each time consumes 14.98 mAms. Thus, it costs

179.76 mAms during each period of 6 s. This cost is named Ccca. Then the overall per-day

current consumption of a node without using PKF, Cno, can be calculated using Eq. (6.1),

where N is the number of transmissions. Using the obtained transmission rate Tr, the

overall per-day current consumption of the leaf node using PKF, Cwith, can be calculated
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Figure 6.15: The ratio between the communication and computation energy consumption
of the leaf node, when the CCR of the master node increases from 2 to 128 Hz.
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Figure 6.16: The lifetime improvement using PKF w.r.t. no PKF considering the overall
electric charge, when the CCR of the master node increases from 2 to 128 Hz.

114



6.6 Summary

Table 6.3: The total per-day current consumption of node 1 without and with PKF us-
ing the obtained transmission rate 0.8%, when the CCR of the master node
increases from 2 to 128 Hz.

CCR (Hz) 2 4 8 16 32 64 128
Cno (mAh) 40.38 17.85 12.16 7.53 5.42 4.79 4.79
Cwith (mAh) 3.98 3.80 3.75 3.72 3.70 3.69 3.69

using Eq. (6.2).

Cno = (Csen + Ccmn + Ccca) ∗N (6.1)

Cwith = (Csen + Cpkf + Ccca) ∗N + Ccmn ∗N ∗ Tr (6.2)

Table 6.3 summarizes the total per-day current consumption of node 1 without and with

PKF using the obtained transmission rate 0.8%. Cno and Cwith decrease as the CCR of the

master node increases and finally converges due to the fact that the current consumption

during sensing and CCA make more contribution to the overall cost of the leaf node. The

capacity of the battery, Cbat, is 800 mAh in our experiments. Then the corresponding

lifetime without and with PKF can be calculated as:

Tno = Cbat/Cno (6.3)

Twith = Cbat/Cwith (6.4)

The lifetime improvement using PKF compared with no PKF is calculated by Twith/Tno.

The comparison is shown in Fig. 6.16a. The improvement increases as the CCR of the

master node decreases, since the communication cost takes a greater proportion of the

overall cost and PKF can efficiently reduce this cost. When the CCR is 128 Hz, there are

no very big improvement, where the lifetime is extended from 167.01 days to 216.8 days.

While when the CCR of the master node decreases to default value 8 Hz, the lifetime is

extended from 65.79 days to 213.33 days with 323.80% improvement. In the best case

that CCR=2 Hz, the lifetime of the leaf node can be extended by 10.14 times.

6.6 Summary

This chapter evaluates the performance of PKF and EPKF using the real WSN datasets

and the hardware implementation in Openmotes. We firstly compare PKF with other

techniques using two kinds of real temperature datasets taken from typical WSN sce-
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narios with a single node. Two techniques with KF for transmission rate reduction are

selected, namely, DKF [56] and SIP [55]. Another three selected methods are PAQ [28],

PLAMLiS [18] and CS [58], which are the popular techniques without KF to achieve

transmission rate compression. Compared with DKF [56] and SIP [55], PKF requires

the fewest transmission rate under the same covariance of reconstruction errors. With-

out data degradation, PKF-linear only needs 11.11% and 11.91% transmission for dataset

1 and dataset 2, which in turn saves the transmission of DKF by 23.11% and 13.93%,

respectively. SIP requires around 37.5% and 29.25% transmission to achieve the same

reconstruction quality as the raw data, which are around 3 times as much as PKF. Com-

pared with the techniques without KF, the advantages of PKF are even more significant.

Without quality degradation, PKF-linear decreases the transmission rate of PAQ [28] by

37.98% and 29.08% for dataset 1 and dataset 2, respectively. To achieve the same quality

as the raw measurements, PLAMLiS [18] and CS [58] require 2.14 and 6.60 times as much

transmission as PKF for dataset 1; and 2.06 and 6.56 times for dataset 2, respectively. In

addition, we present one example to illustrate how to use PKF in time variant systems.

The model variations are stored in both leaf node and the cluster head. They update the

model in time. Compared with using the time invariant model, the reconstruction quality

of PKF is improved. The mathematical analyzed results of PKF follow the experimental

measurements. The small deviations between them are reasonable and acceptable, be-

cause the system model is uncertain and the noise distribution may not perfectly satisfy

Gaussian distribution.

To estimate the performance of EPKF methods, two WSN datasets are used with dif-

ferent sizes of the cluster. Besides the comparison among the PKF-based approaches,

Rand-ST, EPKF-norm, EPKF-mix and EPKF-simp, another two popular techniques using

both temporal and spatial correlations are compared, namely EEDC [18] and CS[58].

EEDC [18] uses PLAMLiS method in the temporal domain and selects active nodes as

representatives in the spatial domain. CS [58] is the popular method using the new sam-

pling theory in both time and spatial domain. Since there are too many nodes in the

system, we present the average covariance of reconstruction errors and the average trans-

mission rate. EPKF-norm, EPKF-mix and EPKF-simp nearly have the same performance,

which could further reduce the transmission rate of the leaf node by more than 90% un-

der the same reconstruction quality as PKF. Rand-ST could degrade the reconstruction

quality of PKF, which is consistent with the results in the artificial system. Compared

with other techniques, the advantages of EPKF methods are more significant. Only 5%

transmission is required to achieve the same reconstruction quality as CS [58] using the
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full transmission. The best reconstruction of EEDC, denoted as EEDC-max, appears

when only temporal correlation is used, namely using PLAMLiS method. Each node

approximates the raw data as the line segment and transmits the end points of each seg-

ment independently without using any representative node. The reconstruction quality

of EEDC-max is worse than PKF under the same transmission rate. When it further uses

spatial correlation, where each node is uniformly selected as the representative node, the

performance of EEDC degenerates. The reconstruction error of EEDC is even dozens of

times more than EPKF.

To measure the energy consumption and lifetime improvement using our proposed ap-

proaches, the algorithms are implemented in the WSN motes, Openmote [113], running

on Contiki OS [114]. An arbitrary network is formed with four leaf nodes and one master

node. Each node firstly collects the raw data for three days. We obtain the system model

using these data offline with the help of Matlab. Then each node runs PKF with the

model online for one week. The threshold of each node is set to 0.01◦C2. The obtained

transmission rates of each node are 0.8%, 0.72%, 0.81% and 0.81%, respectively. By using

EPKF methods in the cluster head, the reconstruction quality of PKF is further improved

by at least 81.84%. Then the energy consumption of PKF and communication energy con-

sumption of the leaf node are compared. The method is to visualize the current profile on

an oscilloscope by measuring the voltage drop over a fixed resistor. Compared with the

computation power consumption of PKF, 2.315 mAms, the energy consumption of com-

munication is hundreds or thousands of times more than the computation energy cost.

For example, when the master node uses the default CCR 8 Hz, it is 915.8 times as big

as the computation energy consumption of PKF. Thus, PKF with very few computation

energy consumption can significantly reduce the communication cost of the node. At last,

the lifetime improvement using PKF is studied. The total per-day current consumption

of the leaf node with and without PKF are calculated using the obtained transmission

rate. The smaller the CCR of the master node is, the higher lifetime improvement can

be achieved using PKF, since the communication cost takes a greater proportion of the

overall energy cost. In the default case that the CCR of the master node is 8 Hz, the

lifetime can be extended by 323.80%.
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The goal of a WSN is to monitor the physical system using the sensor nodes. Higher

sampling rate may provide better characterization of the system, while consuming more

power of the node. This dissertation has proposed the PKF approach to suppress the

transmission between the leaf node and the cluster head, while reconstructing the system

in the best way using the compressed information for a single node. It has been used for

leakage detection in pipelines [130] and thermal monitoring in photonic network-on-chip

[23]. Based on the thorough analysis of the approach, it is further extended to exploit

spatial correlation, when there are multi-nodes monitoring the system. The reduction of

communication energy cost and lifetime improvement by using the proposed approaches

are measured using the real hardware implementation. This chapter summarizes our con-

tribution to the state of the art in Section 7.1 and presents the future research directions

in Section 7.2.

7.1 Contribution to the State of the Art and Restrictions

of the Proposed Approaches

PKF aims to reconstruct the internal state of the system, instead of providing the ap-

proximations of the noisy raw data in most of the existing methods. It allows multiple

sensor types to be encoded in a single state vector and the reconstructed signal based

on the compressed transmission to be even more precise than transmitting all of the

raw measurements without processing. Compared with the techniques using KF for data

compression, PKF using a KF-predictor provides the optimal reconstruction solution. It

achieves data filtering, state estimation, data compression and reconstruction within one

KF framework.

The detailed mathematical analysis provides the solid theoretical support for the pro-

posed approach, which is absent in many techniques. It also supplies a common framework

to analyze the underlying process of prediction-based schemes. The obtained formulas de-

scribe how the system parameters affect the trade-off between energy consumption and
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reconstruction quality and could be used to estimate the gain by using PKF before the

physical implementation. The transmission of the leaf node using PKF not only deter-

mines the current optimal estimate of the system state, but also indicates the range and

the transmission probability of the k-step ahead prediction of the cluster head.

The extension of PKF exploits spatial correlation without any intra-communication or

a coordinator. Each leaf node executes a PKF independently. The reconstruction quality

is further improved by the cluster head using the received information, which is equivalent

to further reducing the transmission rate of the node under the guaranteed reconstruction

quality. Compared with the available techniques, EPKF methods not only ensure an error

bound of the reconstruction for each node, but also allow them to report the emergency

event in time, which avoids the loss of penitential important information.

The limitations of the proposed approaches are the assumptions that the system is

linear and the model is known in advance by the leaf node and the cluster head. How to

overcome these problems brings a new topic for the future work.

7.2 Outlook

The proposed approaches compress the transmission rate and reconstruct the system state

given a linear state-space model. Several directions for the future work can be foreseen

as presented in the following.

WSNs, as the bridge between the real world and the internet, play an important role

in Internet of things (IoT). With the expected deployment of trillions of wireless sensor

nodes and the expected millions of terabytes of traffic generated annually [131], IoT is

emerging as the next technology megatrend. It brings however, an unprecedented tech-

nical challenge: the vast amount of information and the associated energy consumption

produced by the IoT infrastructure. This data-overflow problem needs to be addressed

at all abstraction levels from cloud infrastructure to motes. Instead of processing and

analyzing the information mainly in the cloud, smart nodes should be created which can

understand data and process it into useful information. This will not only reduce the

amount of collected and transmitted data, but also the related energy consumption. To

achieve this, motes in IoT should become more intelligent and autonomous.

I. Model Learning and Update

In the PKF-based schemes, each node requires to know the state space model, whose

accuracy affects the energy consumption of the node. However, the environment and

even the requirements of the sensor nodes may change over time, it requires a model
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learning and update phase. Considering the energy constraint of the sensor nodes,

the algorithm should be light enough. For example, when the node realizes that

the radio is turned on more often, it can store enough samples and identify the new

system parameters with the fixed model structure as done in [29]. Alternatively, a

new model structure may need to be provided by the machine learning techniques

with low computation effort.

II. Autonomous Sensing

Although the original idea of PKF is to suppress the transmission of a leaf node at

a time step, it could be extended to further decrease the sensing rate and optimize

the network protocols based on its solid mathematical foundation. For example, the

sensing units are able to predict the error of k-step ahead based on the analysis of

the reconstruction error. They do not need to sense the data if the error is tolerable

and only wake up after the predicted maximum step. Moreover, we have extended

PKF to exploit spatial correlation. Nodes with fewer samples can be compensated by

using neighbors’ information. Combining with PKF and EPKF methods, the sensing

unit of the node can decide autonomously the optimal sampling rate and reduce the

energy consumption of sensing, processing and transmission simultaneously.

III. Autonomous Communication

The existing synchronous and asynchronous network protocols [132] waste significant

energy to ensure that the receiver of the cluster is turned on when a leaf node wants

to transmit data. This can also be concluded from our experimental results. The

channel check rate significantly affects the power consumption of the node. With

our approach, the cluster head is able to estimate the transmission probability of

each node. This grants PKF the ability to cooperate with the MAC protocols to

reduce the idle time of the radio. It is expected that the sender-initiated MAC

protocols are more efficient in these acyclic transmission cases by slightly configuring

the related parameters. Besides, the nodes with higher error bounds are expected

to have more residual energy since they transmit less. They should have higher

probability to become the cluster head in the next round to balance the network

energy consumption.

IV. Physical World Applications

After finishing the above three phases, the sensor node has the ability to understand

and interpret the monitored systems. Then physical implementations in the real

WSN applications are needed to estimate the performance.
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Here are the general ideas for the future research directions and I will investigate deeply

in my Postdoc project supported by the Central Research Development Fund of University

of Bremen.
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8 Appendix

8.1 Calculation Complexity Reduction of F+
i

This section reduces the calculation complexity of F+
i (τ), when 1 < i < k.

Σ11

Σ11'

Σ12

Σ21

Σ12'

Σ21'Σ22

Figure 8.1: One example of two independent MVN distributions of vε2 = [ε1, ε2]
T and ε4

when i = 3 and k = 4.

When 1 < i < k, the distribution of the first i − 1 variables in vεk, vεi−1 =

[ε1, · · · , εi−1]
T , and the last k − i variables, vεk−i = [εi+1, · · · , εk]T conditional on εi = τ

are independent. They have independent MVN distributions. One example with k = 4

and i = 3 is depicted in Fig. 8.1. The distribution of vε2 = [ε1, ε2]
T conditional on ε3 = τ

is independent of the distribution of ε4 conditional on ε3 = τ . The mean µ̃1 and the

covariance Σ̃1 of vεi−1 can be calculated using the first i× i elements in the covariance

matrix, Sk(1 : i, 1 : i); the mean µ̃2 and the covariance Σ̃2 of vεk−i can be calculated

using the last (k − i+ 1)× (k − i+ 1) elements in the covariance matrix , Sk(i : k, i : k).

The rearranged matrices of Sk(1 : i, 1 : i) and Sk(i : k, i : k) (see Fig. 8.1) are

Σi =

[
Σ11 Σ12

Σ21 Σ22

]
Σk−i+1 =

[
Σ11′ Σ12′

Σ21′ Σ22

]
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Then according to Eq. (3.14) we can obtain that

µ̃1 = Σ12Σ
−1
22 τ Σ̃1 = Σ11 −Σ12Σ

−1
22 Σ21

µ̃2 = Σ12′Σ−1
22 τ Σ̃2 = Σ11′ −Σ12′Σ−1

22 Σ21′

In this case, the calculation of F+
i (τ) can be reduced from a (k − 1) dimensional integral

to the multiplication of one (i− 1) and one (k − i) dimensional integral, namely,

F+
i (τ) = Φvεi−1

(τ)Φvεk−i
(τ)ϕεi(τ) (8.1)

�

8.2 Remove the Colored Noise of the KF Estimate

This section aims to decolor the noise of the estimates x̂k from the local KF using [89].

Combining Eqs. (3.4), (3.5), (3.9) and (3.12), the estimates of the KF is:

x̂k = (I −KkHk)Ak−1x̂k−1 +KkHkAk−1xk−1 +KkHkwk−1 +Kkvk +Bk−1uk−1 (8.2)

The estimate error is:

∆xk = x̂k − xk

= (I −KkHk)Ak−1∆xk−1 + (KkHk − I)wk−1 +Kkvk
(8.3)

We create an auxiliary signal yk to remove the correlation, such that

yk = x̂k+1 − ψkx̂k

= (xk+1 +∆xk+1)− ψk(xk +∆xk)

= Kk+1Hk+1Akxk +Bkuk +Kk+1Hk+1wk +Kk+1vk+1

= H∗
kxk +Bkuk + v∗k

where ψk = (I − Kk+1Hk+1)Ak, H
∗
k = Kk+1Hk+1Ak and v∗k = Kk+1Hk+1wk + Kk+1vk+1.

The new but equivalent system can therefore be written as:

xk = Ak−1xk−1 +Bk−1uk−1 + wk−1

yk = H∗
kxk +Bkuk + v∗k
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R∗
k = E[v∗kv

∗T
k ] = Kk+1Hk+1QkH

T
k+1K

T
k+1 +Kk+1Rk+1K

T
k+1

Mk = E[wkv
∗T
k ] = E

[
wk(Kk+1Hk+1wk +Kk+1vk+1)

′]
= QkH

T
k+1K

T
k+1

�

8.3 Current Profile of Computation and Communication

This section presents the detailed current profile of the leaf node during computation and

communication processes.

Figure 8.2 depicts the current profile of the leaf node executing 20 times PKF with

total 4.55 ms duration and 101.76 mV voltage drop over the 10 Ω resistor. Thus the per-

time current consumption by executing PKF is Cpkf = 10.176 ∗ 0.2275 = 2.315mAms =

2.315× 10−6C, where C is the unit of electric charge coulomb.

Figures 8.3 to 8.5 record the current consumption of the leaf node during communi-

cation, when the CCR of the master node is 128, 32 and 8 Hz, respectively. There are

eight processes involved in the radio activities: regular channel check, CSMA/CA, switch

from RX to TX, transmitting, switch from TX to RX, waiting for ACK, receiving ACK

and RF in RX to process ACK. The corresponding current consumption and the duration

during each process are summarized in Tables 8.1 to 8.3.

2.5ms

25mV

101.76 mV

Execute PKF 20 times

4.55 ms

Low power mode

CCA

Figure 8.2: Current profile of the leaf node running PKF 20 times.
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Figure 8.3: The current profile of the leaf node during communication, when the channel
check rate of the master node is 128 Hz.

Table 8.1: The current consumption and the duration spent on each process during com-
munication, when the channel check rate of the master node is 128 Hz.

Process Unit Opertation Description
Voltage

(mV)

Current

(mA)

Time

(ms)

# of

Units

Cost

(mA*ms)

0 Low power mode 0.002

1 CCA 241.55 24.155 0.31 9 67.39

2 CCA interval 98.62 9.862 0.50 8 39.45

3 Switch from RX to TX 118.23 11.823 0.20 3 7.09

4 Transmit data packet 250.31 25.031 1.61 3 120.90

5 Switch from TX to RX 154.16 15.416 0.10 3 4.63

6 Wait to receive ACK 240.74 24.074 0.35 2 16.85

7 Receive ACK 208.07 20.807 0.45 1 9.37

8 RF in RX and process ACK 240.74 24.074 0.51 1 12.28

277.96
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Figure 8.4: The current profile of the leaf node during communication, when the channel
check rate of the master node is 32 Hz.

Table 8.2: The current consumption and the duration spent on each process during com-
munication, when the channel check rate of the master node is 32 Hz.

Process Unit Opertation Description
Voltage

(mV)

Current

(mA)

Time

(ms)

# of

Units

Cost

(mA*ms)

0 Low power mode 0.002

1 CCA 241.55 24.155 0.31 9 67.39

2 CCA interval 98.62 9.862 0.50 8 39.45

3 Switch from RX to TX 118.23 11.823 0.20 6 14.19

4 Transmit data packet 250.31 25.031 1.61 6 241.80

5 Switch from TX to RX 154.16 15.416 0.10 6 9.25

6 Wait to receive ACK 240.74 24.074 0.35 5 42.13

7 Receive ACK 208.07 20.807 0.45 1 9.37

8 RF in RX and process ACK 240.74 24.074 0.51 1 12.28

435.86
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Figure 8.5: The current profile of the leaf node during communication, when the channel
check rate of the master node is 8 Hz.

Table 8.3: The current consumption and the duration spent on each process during com-
munication, when the channel check rate of the master node is 8 Hz.

Process Unit Opertation Description
Voltage

(mV)

Current

(mA)

Time

(ms)

# of

Units

Cost

(mA*ms)

0 Low power mode 0.002

1 CCA 241.55 24.155 0.31 9 67.39

2 CCA interval 98.62 9.862 0.50 8 39.45

3 Switch from RX to TX 118.23 11.823 0.20 38 89.85

4 Transmit data packet 250.31 25.031 1.61 38 1531.40

5 Switch from TX to RX 154.16 15.416 0.10 38 58.58

6 Wait to receive ACK 240.74 24.074 0.35 37 311.76

7 Receive ACK 208.07 20.807 0.45 1 9.37

8 RF in RX and process ACK 240.74 24.074 0.51 1 12.28

2120.08
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Notation

List of Notations and Acronyms

Notation

xk the system state at time instant k.

zk the observation at time instant k.

wk the system noise at time instant k.

vk the observation noise at time k.

Rk the covariance of the observation noise.

x̂−k the a priori estimate of the KF.

P−
k the covariance of the a priori estimate.

Kk the Kalman gain.

x̂k the a posteriori estimate of the KF.

Pk the covariance of the a posteriori estimate.

Zk the sequence of the measurements till time k.

Uk the sequence of the inputs from time 0 to time k − 1.

Hk the observation matrix at time k.

X̂k the sequence of the optimal estimates till time k.

X̂k s a subset of X̂k.

X̂i
k s the collection of the local estimates of node i till time k.

ϵk prediction error at time instant k.

εk k-step ahead prediction error.

êk a posteriori estimate of KF at time instant k.

ẽk state prediction error w.r.t. real state at time instant k.

σ2
k the covariance of the k-step ahead prediction error.

ek prediction error of the state w.r.t. the KF-optimal at time instant k.

ϕεk(χ) the probability distribution function of εk.

vεk the vector of k steps ahead prediction errors.

Sk the covariance of k steps ahead prediction errors.
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Acronym

ϕvεk(χ) the probability distribution function of vεk.

χ a real k-dimensional column vector.

Υn the number of most recent consecutive successes that have been observed

at the nth trial in the PKF process.

Rk(τ ) k-dimensional region.

Φvεk(τ) the probability of εk located in Rk(τ ).

Hvεk(χ) the Hessian matrix of ϕvεk(χ).

vεk−i extracting the i-step ahead error from vεk.

Φvεk−i
(τ) the probability of vεk−i located in Rk(τ ).

zik the observation of node i at time k.

H i
k the observation matrix of node i at time k.

Zi
k the collection of the observations of node i till time k.

x̂ik the local KF estimate of node i at time k.

X̂i
k the collection of the local estimates of node i till time k.

X̃k the aposteriori estimate of the KF for the expanded state vector in the

cluster..

X̃−
k the apriori estimate of the KF for the expanded state vector in the cluster..

Γn the number of most recent consecutive successes that have been observed

at the nth trial in the random transmission process.

X̄i
k the collection of the reconstructions in the cluster head using PKF for node

i till time k.

Epkf Computation energy cost of PKF..

Ecmn Communication energy cost..

Acronym

WSN wireless sensor network.

MVN multivariate normal.

WMSN wireless multimedia sensor network.

MMSE minimum mean square error.

MAP maximum a posteriori estimation.

PDF probability density function.

CDF cumulative density function.

CCR channel check rate.
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Abbreviation of Proposed Approach

ACK acknowledgment.

CCA clear channel access.

IoT Internet of things.

Abbreviation of Proposed Approach

PKF Optimal reconstruction solution using temporal correlation..

Rand-ST Reconstruction solution using spatial and temporal correlation under ran-

dom transmission..

EPKF Extensions of PKF using spatial correlation including EPKF-simp, EPKF-

norm and EPKF-mix..

EPKF-simp Reconstruction solution using spatial and temporal correlation by always

approximating the reconstruction of PKF as the optimal estimates of local

KF without noise..

EPKF-norm Reconstruction solution using spatial and temporal correlation by always

approximating the reconstruction of PKF as the optimal estimates of local

KF with normal distributed noise..

EPKF-mix Reconstruction solution using spatial and temporal correlation by approx-

imating the reconstruction of PKF as the optimal estimates of local KF

without noise if the reconstruction error is smaller than the a posteriori

estimation covariance; normal distributed noise, otherwise..

Rand-idp Reconstruction solution using spatial and temporal correlation under ran-

dom transmission..

Rand-ST-dec Reconstruction solution using spatial and temporal correlation under ran-

dom transmission..
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[48] Yann-Aël Le Borgne, Silvia Santini, and Gianluca Bontempi. Adaptive model

selection for time series prediction in wireless sensor networks. Signal Process.,

87(12):3010–3020, December 2007.

[49] U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and G. P. Picco. Practical data

prediction for real-world wireless sensor networks. IEEE Transactions on Knowledge

and Data Engineering, 27(8):2231–2244, Aug 2015.

[50] Carlos Carvalho, Danielo G. Gomes, Nazim Agoulmine, and José Neuman de Souza.
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