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Prof. Dr. Görschwin Fey

Secondary Reviewer
Prof. Dr. Alberto Garcia-Ortiz

October 7, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-LIB Dokumentserver - Staats und Universitätsbibliothek Bremen

https://core.ac.uk/display/81608105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




i

Acknowledgments

I want to thank everyone who supported me during my
time as a PhD student.
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Chapter 1

Introduction

1.1 Motivation

New technologies regularly facilitate smaller and faster transistors which in turn
enables more powerful systems that use more transistors. While some focus on
manufacturing or materials, others use new concepts like Memristors [28] to
enable more functionality on a single circuit. According to Moore’s Law [40],
the number of transistors in an integrated circuit doubles once every 18 months.
While Moore’s Law is only an estimation, it remained true from 1975 until
2012. Nowadays, the rate has slowed, but according to Intel [1], the number of
transistors will still double approximately every two and a half years until 2017.
As the size of transistors decreases, the size of the devices remains the same or
even shrinks.

The increase of transistors allows more powerful systems in almost every
area of our lives and increase our quality of life. In addition, the size of the
systems keeps decreasing allowing powerful computers that require less space
and enables devices like smart phones or advanced infotainment systems in cars.
As the devices become smaller, they require less electrical current to work and
thus safe energy which can be used to provide more computational power to
battery driven devices for more time. And the systems not only become more
powerful, smaller, and energy efficient, they even become cheaper as developers
often use existing off-the-shelf hard- or software instead of developing their own
specialized implementation.

The high number and small size of transistors provide a foundation for
powerful and energy efficient systems. However, this development not only
provides advantages, but leads to new challenges as well. As systems become
more complex, bugs during the development become more likely and smaller
parts are more susceptible to faults during production or from external sources
like cosmic radiation.

In short, systems must be constructed in a way that prevents errors. Errors
describe visible behavior of the system that is different from the specification.
Examples include freezing applications, erroneous output signals, or delayed
output values. The two major reasons for errors are bugs and faults.

Bugs describe differences between the implementation and the specification.
They can be caused by a mistake of the developer or can be inherited from used
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2 CHAPTER 1. INTRODUCTION

subsystems. Examples for bugs are implementations of functions that return
wrong results under certain circumstances. These bugs do not necessarily lead
to errors. It is possible that a bug is avoided as the corner case that would be
affected by the bug cannot happen in the system or the buggy output values are
checked and corrected within the system before they become visible.

To detect and remove bugs, testing or formal verification is applied. Both
approaches aim to detect possible executions of the system or parts of the system
under which a bug changes the visible or invisible behavior of the system. When
a buggy execution is detected, the corresponding bug needs to be localized within
the system and corrected. This can be a manual effort or can be done with the
help of tools that analyze the buggy execution trace and detect likely locations
of the bug.

Another cause for errors are faults. Faults are defects within the system
that are caused by external effects and can change the behavior of the system.
Faults can be permanent or transient. Permanent faults can have different
causes, e.g., process variation during production, aging, or radiation, and cause
a permanent change in the system that could cause errors. Just like permanent
faults, transient faults change the behavior of the system. However, this change
only lasts for a short time and disappears afterwards. Transient faults are
usually caused by radiation that causes ionized particles to hit the system and
can interact with the electronics.

As faults are not part of the implementation, they cannot be removed. Instead,
a system needs to be hardened against the relevant faults. Hardening is a process
to modify the system such that it is robust against certain faults. If a system is
robust against a fault, it can prevent that fault from causing an error. When
implementing a robust system, it needs to be shown that

1. the system fulfills its specifications and

2. the system is robust against the considered faults.

During the implementation of a robust system, development usually starts
with a non-robust model that is modified during multiple iterations. At some
iterations, the system is hardened against faults. To guarantee that the hardening
is successful, it needs to be shown, that the hardened system still fulfills the
requirements.

This can be done by showing that the hardened system behaves equivalently
to the previous non-robust iteration. However, proving equivalence can be
difficult, as the implementation of the system can change significantly even
though the system still acts the same from an external view. In addition, the
interface of the system can change during an iteration. In that case, it needs
to be shown that an execution on the previous system outputs the same values
as a corresponding execution on the new iteration of the system, even though
the inputs differ based upon the new interface. The modifications during the
iteration could even change the behavior of the system for non-reachable states.
As these states cannot be reached due to the implementation of the system,
the knowledge about reachable and non-reachable states needs to be generated
by or provided to a tool that is meant to show equivalence. Otherwise, these
non-reachable states could falsely be returned as counterexamples to disprove
equivalence. As such, an algorithm to prove equivalence needs to handle these
challenges to reach a correct decision about equivalence.
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Furthermore, it needs to be shown that the hardening provides the robustness
that it is meant to and the hardened system is robust against the considered faults.
There are different approaches to verify this. Usually, faults are injected into
the system. Depending on the model and abstraction level, this can be realized
in different ways. Testing or formal verification shows that the injected faults do
not change the output behavior of the system. Complications can arise when
the fault affects different internal parts of the system and changes their behavior
as the fault propagates through the system. Modeling these reconvergences in
formal approaches is especially complex as all possible behavior needs to be
included in the model.

Hardening can be done on different abstraction levels. For example, error
correcting codes can already be introduced on Electronic System Level (ESL).
Providing additional hardware to provide some redundancy is usually done
in a Hardware Description Language (HDL). Another option is to use bigger
transistors at critical locations as these are less likely to be affected by transient
faults due to radiation, which is done at the transistor level. As hardening can
be done on almost every abstraction level, techniques to verify that hardening is
implemented correctly is also needed on these different levels.

1.2 Contributions

This thesis contains two major contributions: an equivalence checker for C++
classes [59, 60] and a robustness checker to verify if a circuit is robust against a
Single Event Transient (SET) [58, 57].

The equivalence checker can be used to verify if a hardened and a non-
hardened system, described on ESL, behave equivalently in the absence of faults
and thus show that the hardened version fulfills its functional specifications.
Other applications, like verifying the equivalence of different versions of a system
during an iterative design process are also possible.

The equivalence checker uses an inductive approach to prove equivalence of
two hardware models, given as C++ classes. Using an inductive approach avoids
unrolling which requires high effort when long execution paths are considered.
However, while unrolling ensures that only reachable states are considered, this
information needs to be given or generated for an inductive approach. For this
reason, we use a candidate invariant, i.e., an approximation of reachable and
corresponding variable assignments of the two classes. This candidate invariant
is given by the developer. By providing a good candidate invariant, the developer
is able to provide his knowledge about the internal structure of the system and
the correspondence between the two checked models to significantly speed up
the equivalence check. If the current state of the two classes corresponds to the
candidate invariant and both classes execute the same functions, they need to
return equivalent output and reach variable assignments that are described by
the candidate invariant as well. If this can be shown by an underlying model
checker, the models are equivalent. Otherwise, the model checker returns a
counter example. If the counter example describes reachable and non-equivalent
behavior, we have proven that the models are not equivalent. If we could neither
prove equivalence nor non-equivalence, we use the counterexample to refine the
candidate invariant. As both classes usually consist of a huge amount of states,
blocking individual states that are provided by counterexamples does usually
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not suffice to finish the decision within feasible time. To handle and block
multiple states at the same time, multiple heuristics are used to generalize the
counterexample and extract additional information about non-reachable states.
This process is repeated until equivalence is decided.

While the initial candidate invariant allows a designer to provide his knowledge
about the system to the equivalence checker, the candidate invariant can also be
generated by third-party tools or set to “true”, which is the coarsest possible
overapproximation and would describe all pairs of states of the two models. The
initial candidate invariant is one of the advantages of our approach and enables
a developer to provide a significant speed up by providing additional knowledge
about the models.

We will describe two different versions of the equivalence checker, NSMC [59]
and EASY [60], that use different approaches to learn and adjust the candidate
invariant. In the experiments, we show the performance and scalability of both
approaches on some examples and show that a good hypothesis enables a decision
within a feasible time, even when considering complex examples.

The robustness checker verifies if a given gate level circuit is robust against an
SET. An SET describes that the output of a gate is negated for a short duration
within a single clock cycle. This can be used to prove that the hardening of a
system was successful and SETs do not affect the output of the system.

When we prove robustness of the circuit, we consider most effects that are
relevant for the behavior of the physical circuit. We include logical, timing, and
electrical masking in our model. In addition, we consider variability, meaning
that the behavior of the gates is uncertain to a very small degree due to process
variation. In this aspect, our approach is unique, as at this time no other
formal robustness checker considers variability. We describe variability by having
variable delays for each gate. Considering all these effects on the analog signals
within a circuit would require an extremely complicated model which is not
feasible. Thus, we need to abstract some details while still providing significant
results. For this reason, we did some conservative adjustments and use three-
valued logic for the signals within the circuit. Three valued-logic allows us to
consider a signal as unknown during specific times. We use these unknown
values to describe rising and falling flanks of a signal as the binary interpretation
is uncertain during that time. When the output of a gate becomes uncertain
depending on variability the output is also considered as unknown.

If the robustness checker decides that the circuit is robust against an SET,
this decision can be transferred to the final system as all our abstractions are
conservative. Otherwise, if the algorithm returns a counterexample that disproves
robustness of our model, it is possible that the counterexample cannot be applied
to the final system and the system is robust after all as our model is too abstract
in this case. Further analysis, e.g., spice simulation, can be used to verify whether
a generated counterexample is real or spurious.

The first version [58] of the robustness checker decides robustness by using a
monolithic approach. The behavior of the circuit under the SET is encoded as a
SAT formula. If the formula is satisfiable, the satisfying assignment provides a
counterexample against robustness. Otherwise, the circuit is robust against the
SET.

As signals can become extremely complex when the SET splits and re-
converges, the resulting SAT formula from our monolithic approach became
correspondingly complex. We used another approach to tackle the problem [57].
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This time, we use a hybrid approach that partitions the circuit into a front
and a back area. Only the front area is used to generate the SAT formula and
generated counterexamples are further verified by using simulation. When the
SAT solver generates a counterexample that does not affect the primary outputs
of the circuit, the detected counterexample is spurious and does not disprove
robustness. Instead, the SAT formula is modified to block the detected and
similar assignments and the SAT solver is run again until either the SAT formula
becomes unsatisfiable or a real counterexample is found.

The experiments with the robustness checkers show that both approaches
provide a significant speed up compared to spice simulations as spice simulation
to consider all possible variability takes hours, even on the smallest circuit c17
with 5 gates of the ISCAS-85 benchmark. In comparison, our checkers require
only seconds. Furthermore, we will show that the second version can decide
robustness significantly faster and provides an average speed up of 748 compared
to the first version.

1.3 Structure

The following Chapter 2 describes a common design flow for robust systems. We
highlight how verification is used during the design process to ensure that the
system fulfills its requirements during the iterations of development. In addition,
we present relevant fault models that should be considered when developing a
robust system as these models describe typical real world faults. Methods to
harden a system against these faults are presented as well as approaches to verify
the robustness of the system. In that chapter, we will also provide insight into
related work to our contributions and discuss the differences.

Chapter 3 shows our contributions for equivalence checking. After introducing
the required preliminaries and used data structures for our approaches, the initial
equivalence checker NSMC is presented. Next, the algorithm EASY is shown.
Experiments show the performance of both algorithms and compare them.

The robustness checkers are presented in Chapter 4. After providing some
preliminaries, the monolithic robustness checker is described. The hybrid ro-
bustness checker is shown as well. Experiments validate the correctness of the
algorithms, present their runtime, and show the effects of different parameters.

The final Chapter 5 gives an outlook for future work. Further expansions or
optimizations to the presented algorithms are sketched and ideas to combine the
equivalence checker and the robustness checker are given.
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Chapter 2

Developing Robust Systems

In this chapter, we describe a common design process to develop robust systems.
We start with a small example of the process. The general design flow that
originates from an informal description and continuously decreases the abstraction
level until the system is completed as a chip or similar hardware element is shown.
Next, we describe some fault models that can be used during the development
process. These fault models describe common faults that the system needs
to be robust against. Some general methods to provide this robustness are
introduced afterwards. We conclude this chapter with methods to analyze and
verify robustness.

2.1 Example: Developing a Counter

Let us consider an example for the development flow. In this example, the flow
will be applied to develop a counter. The process is sketched in Figure 2.1.

The process starts by defining the requirements of the system. In our case,
the counter should count from 0 to 3 and be robust against single SETs. For
this example, we will only focus on a small number of requirements. Usually,
additional requirements focus on different aspects of the system, e.g., required
space and power, used inputs and outputs, or the frequency of the system.
Even this small example shows some of the problems of natural language as
the behavior of the system is not completely defined. What happens when the
counter reaches 3? Does it need to be robust against the first SET or does it
need to handle SETs as long as there appears only one SET at a time?

Based upon the requirements, the system is defined by using a modeling
language. In our example, we describe the system with a class diagram in UML.
The diagram shows a class counter, that contains an integer value and a method
countUp. UML can be used to provide more details about the behavior of the
system by using Behavior Diagrams like Use Case Diagrams, but we will not use
these in our example.

When transforming the requirements into UML models, the developers need
to ensure that the models include the requirements. In our case, the requirement
of being able to count is meant to be realized by the method countUp. The
robustness is not yet modeled at this level.

Next, the UML description is used to implement the system at ESL. We

7
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The counter needs to count
from 0 to 3.

It needs to correct the effects
of a single SET.

Requirements in
natural language

Description in UML

uint8_t Counter::countUp() {
count = (count+1u) % 4u;
return count;

}

Implementation
in C++

process ( c l k )
begin

i f ( r i s i n g e d g e ( c l k ) ) then
va l <= ( va l + 1) mod 4 ;

end i f ;
end process ;

Implementation
in VHDL

Logical circuit
with TMR

Finished chip

Figure 2.1: Development flow of a counter

use the class diagram as model for a C++ class Counter and implement the
method countUp. The method increases the value by 1 and uses the modulo
operation to ensure that it remains between 0 and 3. With this implementation
we also defined what happens when the counter reaches its maximum value
of 3 as it is reset to 0 with the next execution of countUp. In addition, we
further specified the integer type. We use an unsigned 8-bit integer as this is
obviously sufficient to represent the numbers between 0 and 3. It can easily and
automatically be shown that the implementation in C++ is consistent with the
UML model since both use the same names for variables and methods.

Based upon the C++ implementation, we implement the system with an
HDL. In our case, we use VHDL. The shown process describes that the modulo
operation is executed whenever the clock rises, increasing the stored value every
clock cycle.

To check that both models of the counter are equivalent, we need to define
the correspondences between the models. Since the circuit counts up every
timestep, the method countUp corresponds to a rising edge of the clock. The
current value of the counter, which is also the return value of countUp, is stored
in signal val and is output in the primary outputs of the circuit. After the
correspondence between the primary outputs of the circuit and the return value
of countUp has been defined, we can use an equivalence checker to verify that
both models behave equivalently. Once the equivalence is shown, the logical
circuit is generated from the VHDL code.

So far, we did not include the requirement of robustness since an SET does
affect the circuit of the system. Since we are at gate level now, an SET can
easily be modeled, so we will harden the circuit in the next step. We use TMR
to provide robustness.
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Requirements in natural language

Description in modeling language

Implementation at ESL

Implementation in HDL

Concrete hardware model

Figure 2.2: Common Design Flow

After hardening the circuit, we need to verify that the hardened and the
unhardened circuits behave equivalently in the absence of faults and that the
hardened circuit is robust against SETs. The equivalence is easily and automat-
ically shown. However, the robustness check will show that the circuit is not
robust against all possible SETs. If an SET affects a gate within the original
part of the adder, i.e., a not- or an xor-gate, the fault will be corrected, but
when the voter, i.e., a nand-gate, is affected, the SET could result in an error.
We will not modify the circuit further, but will handle this problem at the next
abstraction level instead.

In the end, the circuit will be turned into a hardware chip. We need to place
and route the gates and include electrical components like batteries to create
the chip of the counter. To handle the vulnerability against SETs within the
voter, we decide to use bigger transistors for the nand-gates to harden these
against SETs.

After verifying that the chip behaves equivalently to the final circuit at gate
level and is robust against SETs, we can ensure that we have created a chip that
fulfills the initial requirements.

2.2 Design Flow

The design flow of robust systems is similar to the flow for regular systems. We
present a common development flow [49] that is sketched in Figure 2.2. The flow
starts with the highly abstract level of natural language and includes additional
details in multiple abstraction levels until the concrete system is described on
hardware level. Depending on the needs of the customer and developer this flow
can be modified to include additional abstraction levels or skip certain levels.

The development begins with a description of the system in natural language.
This description contains information about the features of the system. This
description is usually created by the developers together with the client who
orders the system. Common practices exist to structure this process, including
but not limited to formulating requirements [2]. This description is meant to
be understood by humans and can usually only be understood to a limited
degree by computers. Even though the understanding is limited, different
techniques [12, 26] exist to automatically interpret the natural language and can
support the developers in further steps of the development.
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After the system has been defined in natural language the description is
modeled by using modeling languages like UML. The resulting model of the
system describes the structure and main components of the system but omits most
finer details like the specific functionality of methods or processes. Unlike natural
language, the semantics of a modeling language provide increased precision and
less variation. However, the semantic is not unique as some details of the
language are not specified. Verification is already possible at this level and
requirements to the described structure can be verified. As the model is still an
abstract description of the system, requirements that refer to finer details of the
system need to be weakened and cannot be checked completely or are impossible
to be checked at this abstraction level.

Based upon the model in a modeling language, a next model is implemented
on ESL [5]. An ESL model is implemented with a high level programming
language like Java, C++, or SystemC. Most functions of the system can be
implemented at this level, but most programming languages on ESL omit details
like timing or required energy. In this regard SystemC is an exception as it
enables the developer to include more technical and hardware-specific details.
Thus, SystemC decreases the distance to further abstraction levels. As the ESL
model is implemented in a programming language, the resulting model can be
compiled and executed. On ESL, functions can be implemented in a way that is
not possible in the final hardware system. Implementing the functionality like
this quickly may still be useful, as the system can be executed early on and thus
can be tested and verified. In further iterations on ESL, the functionality can
be adjusted to be closer to a hardware implementation.

The next abstraction level is the Register Transfer Level (RTL) [61]. The
RTL describes how the contents of the registers change during the execution of
the system. Unlike ESL, descriptions on RTL are inherently parallel and much
closer to the real hardware. Some specifics can already be estimated at this level.
Nevertheless, RTL is not precise, as some effects like the exact position of gates
and the resulting delays caused by the interconnects are not modeled on RTL.
To define the RTL model, an HDL like VHDL or Verilog is used.

A gate level model can be extracted from the HDL description. This process
is called Logic Synthesis and is usually done automatically by tools like Design
Compiler from Synopsys. The gate level describes the interconnects between
logic gates and registers within the electrical circuits of the system.

The final step is Place and Route [31], where the hardware elements are put
to specific locations on the chip and are connected. During the Placement, a
developer decides the exact locations of the gates within the possible limited
space. During the Routing, the wires that connect the gates are defined. When
this step is done, the layout of the system is defined. This final model includes
all details of the system and can be used for final verification and as blueprint
to produce the system as hardware after the verification is done.

2.3 Verification during the Design Process

Testing or formal verification are methods to verify if the current description
of the system fulfills given requirements [22]. Both can be done on almost
every abstraction level. The requirements that can be checked depend on the
considered level. If the level of detail is not sufficient for a requirement, it needs
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to be checked after the required details have been included or can be checked
under certain assumptions.

Testing [44] usually runs a specific set of test cases on a system. Each test
case defines input values and expected output values. When a test case is
executed, the inputs of the system are set according to the definition of the test
case. After the system has generated output values, the real output values are
compared to the expected values. If the real values equal the expected values,
the test case holds. Otherwise, the test case fails. When all test cases hold, the
system is expected to fulfill its requirements. However, exhaustive testing, i.e.,
testing that considers all possible inputs, is usually not feasible and therefore
testing cannot prove the absence of errors. Nevertheless, testing can be used to
detect errors. In addition, when the executed tests fulfill certain coverages, it
can be assumed that the requirements hold in most situations.

On the other hand, Formal Verification [46] is a method to formally prove that
the system fulfills certain properties, e.g., its requirements. For this prove, the
system and the property are transformed into mathematical models or formulas,
e.g., finite state machines and boolean logic formulas. On the generated model,
a mathematical proof is done to show that the model always fulfills the property.
If formal verification is done successfully, it proves that the system fulfills the
requirements under all possible input values. If a property is not fulfilled, formal
verification usually generates a counterexample. The counterexample describes
an execution of the system that does not fulfill the requirement and can be used
to correct the system.

Equivalence checking is a special case of formal verification and verifies
whether two models behave equivalently and are functionally equivalent. This
method can be used to ensure that the functionality of the system did not change
during following iterations as these iterations are usually meant to bring the
system closer to the final product but are not meant to change the behavior. In
addition, when the previous iteration fulfilled the requirements of the system
and is equivalent to the next iteration, the next iteration fulfills the requirements
as well.

Two systems are functionally equivalent if and only if (iff) they generate
corresponding series of output values under corresponding series of input values.
If the interfaces of of both systems are the same, this correspondence is defined
straight forward as equality, i.e., inputs or outputs with the same name need to
produce equal values. However, if the interfaces are different, the correspondence
needs to be specifically defined. For example, in an early version at ESL a
number could be output as an integer. In further versions, this integer could be
split into multiple bits to describe the number. The correspondence can become
even more complicated if different abstraction levels are involved. Inputs to a
circuit need to be matched to method calls at ESL and it needs to be defined
where the return value of that method can be found within the circuit.

Among other uses, equivalence checking can be used to verify if the hardening
that has been done within an iteration did not change the nominal behavior of
the system.

Today, RTL-to-RTL equivalence checking is typically available in commercial
Electronic Design Automation (EDA) tools.

An approach to ESL-to-ESL equivalence checking is described in [6]. They
prove equivalence between an original program and the version of that program
that is optimized by a possibly not trustworthy compiler. To prove equivalence,
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the original and the optimized version of the program are turned into the Petri
net based Representation for Embedded Systems PRES+. The equivalence
between the PRES+ models is shown by verifying that for each path in one
model, a corresponding path exists in the second model. While their model
considers paths of a program, our equivalence checkers use an inductive approach
to prove equivalence of classes. Thus, we do consider an infinite execution of
methods of the given class, while the path based approach would require more
effort the more methods are executed.

Other approaches at ESL-to-ESL equivalence checking [53, 36] focus on fine
changes to a program and analyze the effects of that change.

Shashidhar et al. [53] decide equivalence when for-loops are restructured
or the data flow is changed by introducing or eliminating temporary variables
or changing operations by using algebraic properties. The verification is done
by generating an Array Data Dependence Graph (ADDG) and verifying that
the ADDGs are equivalent. The check is done by modifying the ADDGs by
using some algebraic transformation. Afterwards, a depth search is done for
each output node to guarantee that the some operations are executed on both
ADDGs. The programs that can be verified by this approach need to fulfill
certain restrictions, e.g., every memory location may only be written once.

Another approach to fine-grained changes [36] detects textual differences
between two C programs. Symbolic simulation and validity checking techniques
are used to show equivalence of the differences. If this is not successful, the
number of statements to be verified is incrementally increased by using the
dependency graphs of the programs.

As [53, 36] consider very similar programs with small differences, they consider
a different scenario than our equivalence checkers. Our checkers provides a higher
level of abstraction which allows two equivalent methods with very different
implementation as long as the output is equivalent.

For ESL-to-RTL equivalence checking, several solutions were suggested in
academia.

Bounded Model Checking [9] was used to show equivalence of a C program
and a Verilog design without focusing on timing. This is realized by extracting
a transition relation from both implementations and unwinding them. A SAT
solver is used to check if inconsistent, i.e., non equivalent, behavior is possible
and returns an according counterexample in that case. Otherwise, the transition
relations are further unwound until either the number of unwindings is sufficient
to prove equivalence or time or memory bounds are reached. The unrolling
does lead to high effort when long paths are considered. Due to our inductive
approach, our equivalence checkers can handle long paths with lower effort,
especially when a good candidate invariant is given.

A cycle-accurate data-flow graph [29] that combines an RTL and an ESL
description into a miter was suggested for equivalence checking. To create the
miter, both descriptions are turned into Data Flow Graphs (DFG) and the
resulting DFGs are combined. Functional equivalence checking can be used
on the miter utilizing reachability analysis or induction to detect equivalent
variables in the two descriptions. Instead of checking for reachability, Koelbl
et al. use k-induction due to its better scalability. In addition, they introduce
a constraint DFG, that describes input constraints, output don’t-cares, and
register mappings. While this allows the incorporation of external knowledge,
the provided information needs to be correct. In comparison, the provided
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candidate invariant for our equivalence checkers does not need to be a correct
invariant and will be adjusted if it is not.

In [29] a miter is generated from the RTL and the ESL descriptions. This
approach aims to check equivalence for descriptions that are very different and
only share few internal similarities. This difference increases the difficulty of the
check and is handled by partitioning all possible execution traces of the miter.
Then, a check is done for each partition of traces. This decreases the difficulty
of each individual check enough to decrease the overall effort of the equivalence
check.

Moreover, Leung et al. [32] propose a translation validation technique for
C to Verilog that verifies the equivalence between a C implementation and its
Verilog counterpart that has been generated by a High-Level Synthesis tool.
They find a bisimulation relation by checking the Verilog code for potential state
changes. To speed up the verification process, likely invariants are detected by
using Daikon [16]. While Leung et al. formally check whether the generated
likely invariants are correct invariants, they cannot correct or adjust them, if
the likely invariants are no invariants after all like our equivalence checkers do.
In a worst case, the likely invariants are not enough to prove post-conditions
and the algorithm will fail on equivalent models.

A semi-formal approach for equivalence checking between circuits at lower
abstraction levels is provided in [50]. They compare a circuit model described in
Simulink with the corresponding circuit model in SPICE, which contains more
details. Simulation data is collected through a number of simulation runs and
compared. The difference between the outputs of both models is used to optimize
the parameters like voltage of the models until the difference is below a given
threshold, as the analog signals of the models usually are not exactly the same.

Gao et al. [21] provide an approach to check if loops in an ESL implementation
are executed equivalently in an RTL environment with pipelining. Their approach
uses induction and symbolic simulation to handle loops with a large number of
iterations. In addition, they check loops for resource conflicts, which easily show
that loops are not equivalent with and without pipelining.

As an optimization, equivalence-point detection [17, 3, 18, 62] has been
proposed. Equivalence-points are used to separate the execution trace of the two
checked models into smaller intervals. If the models are in equivalent states and
execute an interval, both models reach an equivalence-point. At this equivalence
point, the models need to be in equivalent states if the models are equivalent.
These intervals are then used to partition the verification process as only the
parts between two equivalence-points need to be checked each run. If all parts
are verified to be equivalent, the models can only reach equivalent states after
each interval of the execution trace and behave equivalently during the interval.
Thus, the models are proven to be equivalent. Otherwise, a single non-equivalent
part suffices to prove that the systems are not equivalent.

Instead of using equivalence points, [41] uses trace partitioning to split all
possible traces into multiple subsets. This aims to prove equivalence between
ESL and RTL for very different implementations. In these cases, equivalence
points are rare and do not help to speed up the process. On the other hand,
trace partitioning allows to split the complex proof of equivalence into smaller
sub-proofs that are solved individually. If all sub-proofs are executed successfully,
the models are equivalent. Otherwise, a counterexample to a single sub-proof
suffices to disprove equivalence.
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2.4 Fault Models

There is a number of causes that lead to faults within a finished system. During
fabrication, manufacturing defects can make unwanted changes to an integrated
circuit and change its behavior. Some wires may not be connected or an additional
and unwanted connection may occur. Another effect during fabrication is process
variation [38], which especially affects smaller transistors. It describes naturally
occurring variation in the attributes of transistors may cause faults.

Aging affects the system later on during its life cycle [55]. As transistors
degrade over time, faults can occur. The performance of transistors decreases in
time, which can lead to increased delays, or existing connection may break.

Another source for faults is radiation [25]. Ionized radiation can give a charge
to parts of the system. This charge can, depending on its energy, temporarily
change the behavior of that part or even cause permanent faults up to complete
destruction. These effects are especially relevant in outer space or aviation
where cosmic radiation has a significantly higher effect than on ground level
as the atmosphere of Earth absorbs most radiation, but with the decreasing
size of transistors the charge that can cause a fault decreases and the effects
of cosmic radiation become more relevant on ground level. Nuclear reactors
or other sources for ionized radiation can cause similar effects. Thus, when a
system is meant to be used in a radiation rich environment, it needs to handle
the corresponding faults.

Finally, system can be affected by physical harm. Extreme heat or cold
can cause harm to the system, friction or other external forces can damage the
system, and so on. These effects can cause faults by breaking parts of the system
or cause interactions by unfortunately modifying the system and, for example,
causing connections that should not exist.

When developing a system, the requirements define which kind of faults
need to be handled by the system. The planned level of robustness depends on
different factors. It needs to be considered in which environment the system will
be used and how critical the system itself is. While it is unfortunate when a
gaming console breaks due to errors, no lives are put at risk. The effect of errors
on safety critical systems like cars and planes are far more severe and can in a
worst case scenario cause the loss of life.

One way to check the robustness of a system is applying the causes for faults
to a prototype of the system. For example, satellites are tested thoroughly
before they are sent to space [4]. Shakers ensure that the satellite can handle
the vibration during launch, drop tests show that the satellite can survive brief
shocks, proton beams are used to analyze the effects of radiation, and so on.

While these approaches provide a very realistic environment for the system,
they require a working prototype. Thus, they can only be applied at late stages
of the development. Furthermore, these tests are time-consuming and costly.
Finally, these tests will not produce all possible scenarios that can effect the
system and are as such not extensive.

To analyze the effects of faults earlier within the development cycle and enable
easier and automated testing or verification, fault models are used. Fault models
can describe the effects of faults on the system at different abstraction levels
without requiring to considering the the exact causes of the fault. Thus, when a
system is deemed robust against the considered fault models, it is assumed to
be robust against the corresponding real faults as well.
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Figure 2.3: SETs affecting a signal

Fault models describe permanent or transient faults. Once a permanent
fault affects the system, its effect remains indefinitely. A prominent example
for permanent faults are stuck-at faults [35]. A stuck-at fault assumes that a
signal within the circuit is fixed at a specific value and cannot be affected by the
corresponding inputs. The output of an or-gate that is stuck-at-0 would always
produce a 0 even if inputs of the or-gate are set to 1 and the correct output
of the gate would be 1 as well. This fault model is mostly used to describe
manufacturing defects. Test sets are applied to each produced system to show
that the system is not affected by stuck-at faults and is usable. Other examples
for permanent faults are bridging faults [14], that describe additional wires within
the system that connect parts that should not be connected, or delay faults [55],
which describe delays of gates within the system that could change the behavior
of the system.

On the other hand, transient faults affect the system only for a limited time.
While the fault itself only shortly affects the system, the effects of the fault can
become permanent, e.g., a signal that is changed for a short duration can still
lead to an error that permanently affects the system by changing the systems
state. Most transient faults are caused by radiation. The faults that can arise
due to radiation are categorized as different Single Event Effects (SEE) [47].
An SEE models the effects of a single energetic particle. The particle releases
its charge within the system and causes a voltage glitch within the system.
Depending on the location, this glitch can have different effects on the system.
While most SEEs are transient, it is also possible that an SEE is a permanent
fault.

Single Event Upsets (SEU) [43, 56] describe the effect when an SEE affects
the registers of the system and changes the current state. As the system is in a
faulty state afterwards, its behavior may be different than it should be.
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An Single Event Transient (SET) [20] on the other hand affects the combina-
torical part of the system and changes the output of a gate within the circuit for
a short time. An SET can traverse through the circuit. If it affects a primary
output, it causes an error, and if it affects a register, the system will assume a
faulty state which can lead to errors later on. Some examples for SETs with
different particle energies are shown in Figure 2.3. The figure shows how the
nominal value of the affected signal is changed for a short duration. The green
lines present changes from 0 to 1 while the red lines show a change from 1 to
0. The value does not change instantly as the increasing of voltage takes some
time and especially the return to 0 after an SET changed the signal value to
1 requires more time as the additional energy is released again. If the values
within the circuit are considered as binary, the interpretation during this time is
uncertain.

Single Event Latchups (SEL) can latch systems that use thyristors into a
high current state. This arises due to the SEE affecting the inner-transistor
junctions. If the charge is too high, an SEL can harm the system irreversible.
Otherwise, the effects of the SEL can be removed by resetting the device.

While SEUs, SETs, and SELs are the most prominent SEEs, there are
others. A Single Event Snapback (SES) is similar to an SEL but is caused by an
SEE in the drain junction of a N-channel Metal–Oxide–Semiconductor (MOS)
transistor and results in a high current state. A Single Event Burnout (SEB)
describes that a device draws high current and burns out. Single Event Gate
Ruptures (SEGR) destroys a gate in a power Metal–Oxide–Semiconductor Field-
Effect Transistor (MOSFET). Finally, a Single Event Functional Interrupt (SEFI)
describes a corrupted control path due to an upset.

2.5 Hardening Methods to Provide Robustness

As the system needs to be robust against certain faults, the system needs to
be hardened accordingly. Depending on the considered faults, a developer can
choose from multiple techniques to harden the system. Unfortunately, hardening
always causes overhead in one way or another.

The usual approach to harden a system is redundancy. If some redundant
element is affected by a fault, this fault is meant to be corrected or detected due
to the additional elements. If fault detection is used, the system usually reverts
back into a safe state after a fault has been detected and redoes the previously
faulty operation. Redundancy can be split into different categories: hardware,
timing, information, and software.

Hardware redundancy describes that more hardware elements are used to
provide redundancy. These multiple elements all provide the same functionality
and therefore can detect or even correct faults. To handle permanent faults,
some elements may be offline and are only activated when needed due to other
elements failing. A common hardening from this category is Triple Modular
Redundancy (TMR) [34], which means that a system is triplicated and a voter
decides the primary outputs. If one copy of the system is faulty, the other copies
correct that fault.

If timing redundancy is used, the redundancy is achieved by providing the
system additional time to execute operations. For example, a primary output
could be computed multiple times with some delay between each computation.
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Afterwards, a voter decides over the final value. Timed TMR (TTMR) [42]
describes this process for three differently delayed output times. As timing
redundancy usually uses the same hardware to execute the values over time, it is
meant to handle transient faults. Permanent faults cannot be handled by pure
timing redundancy.

Fault-detecting or -correcting codes [27] like Hamming-Code are examples
for information redundancy. Additional data is stored and can be used to either
detect or even correct a fault within the date.

The idea of software redundancy [48] is similar to hardware redundancy but
is applied on a different level. Different teams develop the same subsystem in
respect to the same requirements but use different approaches. Like hardware
redundancy, the multiple versions of the subsystem can be used to correct or
detect faults. In addition, if all versions are affected by the same fault, each
copy handles the fault differently and it is possible that the fault can still be
handled. And if faults remain within the implementation of the versions, these
faults can be corrected as long as the implementation faults within the different
versions do not overlap.

2.6 Analyzing Robustness

After hardening has been applied to the system, it needs to be verified that the
hardening protects the system against the considered faults and thus provides
robustness. Robustness can be checked by using testing or formal verification.

In case of using testing [30], a certain set of test cases is run on the system.
This is done similarly to regular testing approaches. In addition, a fault is
injected in each test case, that follows the restrictions from the fault model. The
fault can be random or given with the test case. If the output of the system
remains correct and is not changed by the injected fault for all test cases, the
system is assumed to be robust. However, as extensive testing is only feasible
for very small systems, it usually cannot guarantee robustness.

A common method to analyze the robustness of a system is Monte Carlo
Simulation [39]. In this approach, the developer defines a set of possible input
values, including faults. From this set, a number of evenly distributed test cases
is randomly generated and executed on the system. While this approach cannot
prove the absence of errors, it can usually estimate the probability of an error
very close to the real probability.

Formal verification can prove the absence of faults by modeling all possible
executions of the system or a subsystem with all possible input values and faults
corresponding to the considered fault model. The downside of this approach is
that models can become very complex if the detailed behavior of bigger systems
is considered. If the models are too complex, a solver cannot handle them within
a feasible time. The complexity can be reduced by focussing on certain parts of
the system only or by abstracting some details. If details are abstracted, it is
important that the results gained from the abstract model are still applicable to
the real system.

Different work about the formal verification of transient faults exists and
focuses on different aspects. Several techniques focus only on logical masking
[19, 24, 33, 52] which leads to quick decisions as the abstraction levels like register
or gate level can easily be decided but exclude finer details about the behavior
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of the circuit.
Frehse et al. [19] use an approach based upon bounded model checking. For

each gate within the circuit they compute whether the gate is robust, non-robust,
or dangerous. If the gate is robust, a fault within that gate is corrected and the
primary outputs are not affected and after a number of clock cycles the system
reaches the same state as it would without the fault. A gate is also categorized
as robust if a fault signal is set within the circuit if a fault affects that gate.
Faults in non-robust gates affect the primary outputs after a number of clock
cycles without triggering the fault signal. If a fault in a gate does not affect the
primary outputs but can permanently cause a faulty state of the system, it is
deemed dangerous unless the fault signal is set.

Leveugle [33] uses controlled generation to produce a mutant of a circuit
given in VHDL. The mutant inserts additional signals that can be used to insert
faults. In a next step, formal property checking is used to check if the properties
for the original circuit hold on the mutant as well. If the properties hold, the
circuit executes correctly, even under all possible injectable faults. Otherwise,
the property check generates a counterexample that can be used to guide the
further hardening of the circuit.

Similarly to [33], Seshia et al. [52] check if the properties of the original
circuit hold under faults as well. They generate one formal model for each latch
that can be affected by an SEU. The formal model describes the behavior of the
circuit under an SEU in the corresponding latch. If an SEU in a latch leads to an
error, the latch needs to be hardened. In the end, the circuit is synthesized with
all problematic latches hardened. If the estimations of power, performance, and
other circuit parameters are sufficient, the process is finished. If the parameters
are not sufficient, a designer needs to adjust the circuit manually and execute
the verification again.

In [24], a probabilistic model is suggested, that can be used to compute the
probability that faults cause an error. In this model, every gate has a probability
to be affected by a fault and each primary input has a certain probability to be.
Different fault models like SETs or stuck-at faults can be described by using
different probability functions for the output of a gate. Using these probabilities
of inputs and faults, it is possible to compute the probability that a primary
output returns an erroneous value.

Shazli et al. [54] use a SAT-based approach to determine the probability for
an error. They consider the system at RTL and construct a SAT instance that
is satisfied under an error. They use a solver to determine all solutions for the
instance and determine the probability as the number of solutions divided by
the number of possible assignments.

Other work emphasizes the effects of timing masking under delay faults
[51, 11] and does not only consider logical masking but timing masking as well.

Sauer et al. [51] use waveforms to describe the change of each signal within a
circuit over time. They provide a tool that generates a test case that can observe
a given Small Delay Fault (SDF). An SDF describes that the delay of a specific
gate is increased by a certain duration. The tool generates a SAT instance that
requires that a fault is observable, i.e., turns into an error. Then, a SAT solver
is used to find a solution, which corresponds to a test case to observe the given
SDF. If the SAT instance is not satisfiable, the SDF is not observable.

The opposite scenario of [51] is described in [11]. They start from a failed test
case and detect a minimal set of SDFs that can cause the described erroneous
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Approach Masking effects result
logical timing electrical

[19] � decide robustness
[33] � decide robustness
[52] � hardened circuit
[24] � probability of error
[54] � probability of error
[51] � � create test case
[11] � � minimal set of SDFs
[45] � probability of error
[23] � � probability of error
[37] � � � probability of error

our algorithms � � � decide robustness

Table 2.1: Approaches to analyze robustness

output. In this scenario, the primary inputs and outputs of the circuit are set
according to the test case. In addition to the original circuit model, an additional
signal is added for each gate, that is set if the gate is affected by an SDF. The
number of these signals that can be set is limited by an upper threshold. A SAT
solver detects a set of SDFs that can cause the described error or proves that
a number of SDFs given by the threshold cannot cause the error. To detect a
minimal set of SDFs, the threshold is initially set to 1 and increased whenever
no solution is detected.

So far, the related work analyzed logical and timing masking, but electrical
masking was not considered. The following contributions [45, 23, 37] do consider
these masking effects.

In [45] only electrical masking is considered. They define a model that
describes if a transient fault can propagate through a gate. The propagation
does only consider the voltage and the duration of a glitch to estimate the
probability for the fault to reach the primary outputs. While their approach is
not precise, it is significantly faster than spice simulation while providing 90%
accuracy compared to spice.

The probability of an error is estimated in [23] by evaluating an SMT formula
that describes the propagation of an SET in a combinatorical circuit. They
consider logical as well as electrical masking. They do not consider the effects of
reconverging signals and avoid the corresponding complexity.

Miskov-Zivanov [37] compute the probability of an error under multiple
transient faults within a circuit due to a particle strike. To determine gates that
can be affected at the same time, a neighborhood relation is defined. The model
considers logical, timing, and electrical masking and describes the effects of the
transient fault and its propagation by using Binary Decision Diagrams (BDDs)
and Algebraic Decision Diagrams (ADDs).

Table 2.1 summarizes the presented related work and compares them against
our algorithms for robustness checking. Beside the differences shown in the table,
our algorithms are currently the only formal approaches to consider variability
when analyzing the robustness of a circuit against SETs.
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Chapter 3

System Level Equivalence
Checking

ESL design methodologies focus on the description of the functionality of an entire
system on a high level of abstraction. In contrast to traditional RTL descriptions,
an ESL description captures the behavior of a system while neglecting low-level
details like hardware/software partitioning, timing, or power consumption. This
allows designers to focus on behavioral characteristics of the system and enables
functional verification and validation in early design phases. ESL descriptions
are often formulated in abstract programming languages like SystemC or general-
purpose programming languages like Java or C++.

In this chapter, we introduce, NSMC and EASY1, two algorithms for func-
tional equivalence checking on the ESL. Both algorithms take as input two ESL
descriptions to be checked for functional equivalence, corresponding mappings
between the initial states and operations of the two descriptions, and option-
ally a candidate invariant. In essence, the algorithms systematically learn and
improve an invariant that characterizes the reachable states of a miter of the
two ESL descriptions, until either an inductive correctness proof succeeds or a
counterexample has been found that disproves functional equivalence. While
NSMC advances the given candidate invariant, EASY uses a property-directed
reachability (PDR) [7, 13] approach refine the invariant. On termination, the
learned invariant serves as a certificate for functional equivalence, whereas a
counterexample can be used for debugging the ESL descriptions. The corre-
spondence mappings are necessary to match the two ESL descriptions if they
are structurally different. Optionally, a candidate invariant can be provided
to approximate the reachable states of the miter of the two ESL descriptions;
underapproximation as well as overapproximations are supported. The candidate
invariant is a simple way to incorporate knowledge a priori known by the designer
into the verification process to speed up reasoning. If the provided candidate
invariant indeed is inductive, the algorithm terminates quickly as equivalence can
be shown easily. Otherwise, in an attempt to prove functional equivalence, the
algorithms iteratively refines the candidate invariant utilizing counterexamples
when functional equivalence checking fails. A counterexample is either spurious,
i.e., unreachable from the initial states, then those states can safely be excluded

1pronounced as the two letters E.C.
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from the candidate invariant, or a counterexample is real, such that a mismatch
of the behavior of the two ESL descriptions has been revealed.

Compared to the previous work described in Chapter 2.3, our algorithms are
the only ones that exploit designer knowledge for a formal equivalence check.
Closest to our approach, [32] uses potential invariants to detect cutpoints in the
execution traces and speeding up the decision. Moreover, the formal approaches
used by the previous work are either bounded model checking or k-induction to
prove equivalence while EASY uses the concepts of PDR.

Contribution. This chapter makes the following contributions.

1. We describe a light-weight design and verification methodology for em-
bedded systems on the ESL. The behavior of the system is described on
a high abstraction level utilizing C++ as flexible modeling language. A
system is described as a C++ class — the member variables describe the
system’s state, whereas the methods describe operations that manipulate
the state. The C++ code serves as an executable, functional specification
of an embedded system neglecting low-level design details.

2. We present two algorithms, NSMC and EASY, state-of-the-art algorithms
to prove or disprove functional equivalence of ESL descriptions that follows
the described design methodology and especially allows to incorporate
designer knowledge to speed up the reasoning process. On termination,
the algorithms produce a certificate in terms of an inductive invariant if
the two ESL descriptions are functionally equivalent or a counterexample
if functional equivalence was disproved.

3. We provide an implementation of both algorithms that instruments the
given C++ classes with a simple assertion checking scheme and uses
CBMC [8] as model checker.

4. In our experiments, we compare NSMC and EASY against each other and
show the advantages of each algorithm. The experiments show that EASY
usually decides equivalence faster than NSMC and can decide equivalence
within a feasible time for more cases than NSMC. We also show that a
good hypothesis enables a decision on more complex examples.

The remainder of the chapter is structured as follows: first, we present
preliminaries and our deduced models in Section 3.1. Then, the core algorithms
are proposed. Section 3.2 shows the initial algorithm NSMC and Section 3.3
shows the PDR-based algorithm EASY. Lastly, we present our experiments with
three examples in Section 3.4. Section 3.5 concludes.

3.1 Preliminaries and Used Models

In this section, we introduce a variant of Mealy transducers [63] to model
hardware modules and characterize the functional equivalence of two Mealy
transducers based on their input/output behavior. Furthermore, we will describe
how the hardware modules on ESL are modeled and what data structures we
use to support the equivalence check. In Section 3.1.1, we will show how the
hardware modules given as C++ classes are described as Mealy Transducers.
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Section 3.1.2 will introduce lockstep machines, which are used to combine two
Mealy transducers into a single new Mealy transducer, and in Section 3.1.3 we
will show how logical formulas are used to reason over subsets of states.

Definition 1. A Mealy transducer M = (S, S0, X, Y, φ, ψ) is a tuple, where S
is a finite non-empty set of states, S0 ⊆ S is the finite subset of initial states, X
is the input alphabet, Y is the output alphabet, φ : S ×X → S is the transition
function, and ψ : S ×X → Y is the output function.

For an input x = x0x1 . . . xn ∈ X∗, we say that y = y0y1 . . . yn ∈ Y ∗ is
an output of M if there exists a state sequence s0s1 . . . sn+1 ∈ S∗, such that
∀i ∈ N0, i ≤ n : φ(si, xi) = si+1 ∧ ψ(si, xi) = yi , i.e.,

s0 →x0/y0 s1 →x1/y1 . . .→xn/yn sn+1,

where s0 ∈ S0 and si ∈ S for 0 ≤ i ≤ n+ 1. We write y ∈M(x), where M(x) is
the set of all outputs produced by M for input word x.

In contrast to the standard definition of [63], our definition of Mealy trans-
ducers does not define any accepting or final states, but assumes that all states
are accepting.

Definition 2. Two Mealy transducers M and M ′ are functionally equivalent iff
they produce the same output words for all input words, i.e., M(x) =M ′(x) for
all x ∈ X∗.

3.1.1 Modeling Hardware Modules

We model hardware modules on system level as C++ classes. We utilize the
Mealy transducers from [63] to describe the behavior of a C++ class. The
member variables of a class define the state of the hardware module, whereas
the public methods of the class with its arguments define terminating operations
that can be executed to change the state and describe the inputs of the according
Mealy transducer. In our model, each possible argument of a method defines a
different input to the Mealy transducer. However, in our checks, we will consider
the arguments nondeterministically. Note that we are not interested in modeling
the interior behavior of a method but consider only the states when entering
and leaving the method. Thus a method is seen as one atomic and terminating
operation.

Consider the counter example from Section 2.1. In Section 2.1 we only con-
sidered a single model at ESL. This time, let us assume an iterative development
process with multiple ESL models. Figure 3.1 shows two implementations of the
counter modeled in C++: Figure 3.1a declares the interface of the counter as a
class. The class has one member variable counter which stores the actual state
of the counter and is initialized to 0 and one method countUp to increase its
value. The two implementations in Figure 3.1b and Figure 3.1c use the standard
binary encoding of unsigned integers to represent the counter value but differ in
the approach to reset the value when the counter increases beyond its 2-bit range.
The first implementation uses a modulo operator to stay within the counting
range when counting up, whereas the latter uses a conditional statement to reset
the counter to 0 when the value 3 is increased.
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class Counter {
public:
uint8_t countUp();

private:
uint8_t count = 0u;

};

(a) Interface

uint8_t Counter::countUp() {
count = (count+1u) % 4u;
return count;

}

(b) Implementation #1

uint8_t Counter::countUp() {
if ( count == 3u )

count = 0u;
else

count = count+1u;
return count;

}

(c) Implementation #2

Figure 3.1: Interface and different implementations of a modulo-4 counter

Example 1. Suppose that Intk = {0, 1, . . . , k − 1}. The Mealy transducer
Mmod = (Int256, {0}, {countUp}, Int4, φmod, ψmod) and the Mealy transducerMif =
(Int256, {0}, {countUp}, Int256 \ {4}, φif , ψif) model the input/output behavior of
the two implementations in Figure 3.1b and Figure 3.1c, respectively, where for
i ∈ Int256

ψmod(countUp, i) = (i+ 1)%4 and

ψif(countUp, i) = countif(i) with

countif(i) =

{
0, i = 3

i+ 1, else.

Finally, the next-state function and the output function are equal, i.e.,
ψmod = φmod and ψif = φif .

The state spaces and transition functions of the two counter implementations
are visualized in Figure 3.2 (Mmod on the top and Mif on the bottom). Each
node in the figure corresponds to a possible state and each edge from u to v
indicates that state v is reached when the method countUp is executed in state u.
The initial nodes are marked with an additional incoming edge. The output
produced in each state is identical with the counter value in the reached state.
Both implementations behave equivalently within the states reachable from
their initial states and thus Mmod and Mif are intuitively functionally equivalent
according to Definition 2.
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0 1 2 3 4 5 . . .

0 1 2 3 4 5 . . .

Reachable states

Figure 3.2: Visualized state spaces and transition functions of Mmod (top) and
Mif (bottom).

3.1.2 Lockstep Machine

We use a lockstep machine to describe the parallel execution of methods on the
two considered hardware modules as we want to check if both modules behave
in the same way when methods that should be equivalent are called.

Definition 3. Consider the Mealy transducers M1 = (S1, S01 , X1, Y1, φ1, ψ1)
and M2 = (S2, S02 , X2, Y2, φ2, ψ2). A lockstep machine of M1 and M2 is a tuple
M∗ = (S∗ = S1 × S2, S0∗ = S01 × S02 , X∗ = X1 × X2, Y∗ = Y1 × Y2, φ∗, ψ∗),
where

φ∗ : S∗ ×X∗ → S∗,
((

s′

s′′

)
,

(
x′

x′′

))
�→

(
φ1(s

′, x′)
φ2(s′′, x′′)

)
and

ψ∗ : S∗ ×X∗ → Y∗,
((

s′

s′′

)
,

(
x′

x′′

))
�→

(
ψ1(s

′, x′)
ψ2(s′′, x′′)

)
.

Definition 4. Suppose thatM∗ = (S∗, S0∗ , X∗, Y∗, φ∗, ψ∗) is a lockstep machine
of the Mealy transducers M1 and M2. Then the pair (δ ⊆ S0∗ ,Δ ⊆ X∗) is called
a correspondence mapping.

The set δ describes initial states that are meant to be equivalent and is called
a state mapping while Δ is a method mapping that describes which methods of
M1 and M2 are meant to be equivalent.

A state s = (s′, s′′) ∈ S∗ is called safe under Δ iff ψ1(s
′, x′) = ψ2(s

′′, x′′) for
all (x′, x′′) ∈ Δ and unsafe otherwise.

Moreover, M∗ is called equivalent under (δ,Δ) iff for all finite sequences
x = x1x2 . . . xn ∈ Δn of methods and all initial states s0 ∈ δ, M∗ the sequence
s0s1 . . . sn ∈ Sn+1

∗ reaches a safe state sn, where si = φ∗(si−1, xi) for 1 ≤ i ≤ n.

Lemma 1. M∗ is equivalent under (δ,Δ) with Δ = {(x′, x′)|x′ ∈ X1 ∩X2} iff
M1 and M2 are functionally equivalent for every (s′0, s

′′
0) ∈ δ.

Proof. 1. Let Δ = {(x′, x′)|x′ ∈ X1 ∩ X2} and let M∗ be equivalent under
(δ,Δ). Consider any initial state s0 = (s′0, s

′′
0) ∈ δ and any finite sequence

x = x1x2 . . . xn ∈ (X1 ∩ X2)
∗. Let M1(s

′
0) = y′1y

′
2 . . . y

′
n and M2(s

′′
0) =

y′′1 y
′′
2 . . . y

′′
n. To prove that M1 and M2 are functionally equivalent for s0,

we need to show that

∀i ∈ N0, i ≤ n : y′i = y′′i
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After the finite sequence (x′1, x
′
1)(x

′
2, x

′
2) . . . (x

′
i−1, x

′
i−1) ∈ Δi−1 of method

calls for any i ∈ N with i ≤ n, M∗ reaches a safe state (s′, s′′) from s0
since M∗ is equivalent under (δ,Δ). Therefore,

∃ỹ ∈ Y1 ∩ Y2 : ψ((s′, s′′), (x′i, x
′
i)) = (ỹ, ỹ)

⇒ y′i = y′′i = ỹ

Since the output sequences of M1 and M2 are equal, they are functionally
equivalent for all s0 ∈ δ when M∗ is equivalent under (δ,Δ).

2. Let the Mealy transducers M1 and M2 be functionally equivalent for
every (s′0, s

′′
0) ∈ δ. Consider any finite sequence x = x1x2 . . . xn =

(x′1, x
′
1)(x

′
2x

′
2) . . . (x

′
nx

′
n) ∈ Δn with x′i ∈ X1 ∩ X2 for 1 ≤ i ≤ n and

any initial state (s′0, s
′′
0) ∈ δ.

Let the state of M1 after the sequence x′ = x′1x
′
2 . . . x

′
n in s′0 be s′ and the

state of M2 after the method sequence x′ in s′′0 be s′′. Then M∗ will be in
the state (s′, s′′) after the method sequence x due to its construction.

We need to show that (s′, s′′) is safe. Consider any (x̃, x̃) ∈ Δ and the
path x · (x̃, x̃) = (x′1, x

′
1)(x

′
2, x

′
2) . . . (x

′
n, x

′
n)(x̃, x̃). The sequence x′ · x̃ will

lead to the same output in M1 and M2 due to them being functionally
equivalent, i.e., M1(s

′
0, x

′ · x̃) = M2(s
′′
0 , x

′ · x̃) = y′1y
′
2 . . . y

′
nỹ. Since the

sequence x leads M∗ from (s′0, s
′′
0) to (s′, s′′), ψ∗((s′, s′′), (x̃, x̃)) = (ỹ, ỹ).

Since ỹ = ỹ, the state (s′, s′′) is safe and therefore M∗ is equivalent under
(δ,Δ) when M1 and M2 are functionally equivalent for every (s′0, s

′′
0) ∈ δ.

In addition, EASY enables us to define correspondences between different
numbers of methods, e.g., the call of one method in an abstract model corresponds
to the call of multiple methods in the detailed model. All future checks will work
equivalently in these cases even though we will assume a one-to-one mapping in
our explanations.

3.1.3 Candidate Invariant and Learned Clauses

The states in our lockstep machines describe complete assignments of all member
variables of the currently checked models. The evaluation of a formula f under
the assignment that is described by a state s is written as f(s). We say that a
state s fulfills a formula f if f(s) = true.

A logical formula f defines a set Sf of states. The set Sf contains exactly
all states that fulfill f .

We use a model checker for individual steps during our equivalence check. A
call to the model checker uses a pre- and a post-hypothesis. These hypotheses
are formulas over the variables of the checked models and are usually the
candidate invariant or a subformula of the candidate. A modelcheck with
such a pair of hypotheses checks if all states that fulfill the pre-hypothesis are
safe and reach a state that fulfills the post-hypothesis after the execution of
any method m ∈ Δ. When doing a modelcheck, we verify the existence of a
counterexample for each method separately but consider all possible arguments
of that method nondeterministically. A call to the model checker is given as
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Check(hpre, hpost,M1,M2,Δ). The call creates a miter for each pair of methods
in Δ our underlying model checker and returns a counterexample or ⊥ if no
counterexample exists.

Definition 5. A counterexample is a triple cex = (o, r,m) and depends on a
lockstep machine M∗ = (S∗, S0∗ , X∗, Y∗, φ∗, ψ∗), a pre- and a post-hypothesis
hpre and hpost, and a method mapping Δ. A counterexample describes an
originating state o ∈ S∗ that fulfills hpre. When the method m ∈ Δ is called in o,
the state r ∈ S∗ is reached, i.e., φ∗(o,m) = r. In the counterexample the method
returns non-equivalent output, i.e., ∃(y′, y′′) ∈ Y∗ : y′ = y′′ ∧ ψ∗(s,m) = (y′, y′′),
or the reached state does not fulfill the post-hypothesis, i.e., the assignment of
variables given by r does not satisfy hpost.

As we cannot directly know if a counterexample describes a non-safe state
or a reachable state that does not fulfill the post-hypothesis, we can use the
post-hypothesis “true” to specifically check for non-safe states without utilizing
another interface.

When using EASY, we do not consider a single candidate invariant at a
time, but utilize multiple sets of states that overapproximate states reachable in
certain numbers of steps similar to PDR.

Definition 6. Consider a lockstep machine M∗ = (S∗, S0∗ , X∗, Y∗, φ∗, ψ∗) and
an according correspondance mapping (δ,Δ). A state vector with highest index

N is a sequence of sets of states
−→
S = S0S1 . . . SN ∈ SN+1

∗ . Each set Si is an
overapproximation of all states that are reachable within i or less steps from a
state of δ and is called the i-th frame. The set S0 is a special case and contains
all initial states from δ and as such S0 = δ. Different from the other sets, S0

is an exact representation of all states that are reachable within 0 steps and
will not be changed during the algorithm while the other sets will be refined if
needed to prove or disprove equivalence.

When running the algorithm, the sequence S0S1 . . . SN needs to fulfill two
properties:

∀i ∈ {0, 1, . . . , N − 1}∀s ∈ Si : s is safe (3.1)

∀i ∈ {0, 1, . . . , N − 1}∀s ∈ Si∀m ∈ Δ : φ∗(s,m) ∈ Si+1 (3.2)

Property 3.1 states that all sets of states from the state vector except for SN

only contain safe states. As such, we must ensure that all SN also only contains
safe states before increasing N .

The second property 3.2 describes, that for all i ∈ {0, 1, . . . , N − 1}, when
any method m ∈ Δ is called in a state s ∈ Si, the state that is reached after the
execution of m must be contained in Si+1. As S0 = δ, property 3.2 ensures that
each set Si is an overapproximation of states that are reachable within i steps.

During the algorithm we will start with N = 1 and increase N whenever SN

only contains safe states. Initially S1 will contain all states that that fulfill the
candidate invariant.
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Definition 7. A clause vector
−→
F = F0F1 . . . FN with highest index N is a

vector, where each Fi is a set of clauses, i.e., logic formulas, and defines a state

vector
−→
S under the lockstep machine M∗ = (S∗, S0∗ , X∗, Y∗, φ∗, ψ∗).

We define a combined formula Fi ↑ as a conjunction over all clauses of
Fi, Fi+1, . . . , FN , i.e.,

Fi↑ =
∧

j∈{i,i+1,...,N}

∧
c∈Fj

c.

The state vector
−→
S = S0S1 . . . SN that corresponds to

−→
F is defined such that

for every i ∈ {0, 1, . . . , N}

Si = {s ∈ S∗|Fi↑ (s) = true}
For better readability, we sometimes use a set of clauses to describe a formula.

In this case, the described formula is a conjunction of all clauses within the
set. In addition, sets of states and formulas are sometimes used interchangeably.
When a formula is used in place of a set of states, the set contains exactly all
states that fulfill the formula. In the other case, when a set of states is used to
describe a formula, the resulting formula is fulfilled for a state iff that state is
within the set.

3.2 Our initial algorithm NSMC

We present an algorithm that does an equivalence check between two high-level
models of a hardware system described in C++. The algorithm is sketched
in Figure 3.3. The inputs for the algorithm are the two models M1 and M2,
the candidate invariant c, and a correspondence mapping (δ,Δ). Initially, the
candidate invariant is modified to include all initial states. This is required for
further steps to properly detect if states of the lockstep automata are reachable.
Next, c is modified by excluding unsafe states as well as part of their predecessors
from the candidate invariant.

If an initial state s0 ∈ δ was removed during this step, ¬c ∧ δ is satisfiable
and the models M1 and M2 are not equivalent under (δ,Δ). Otherwise, we check
if the candidate invariant is inductive. If there are no more counterexamples
against c being inductive, the models are proven to be equivalent. Otherwise, a
counterexample (o, r,m) exists that disproves equivalence. As all unsafe states
have already been removed from the candidate invariant, the state r does not
fulfill the candidate invariant. A formula preds is generated that describes o
and its predecessors. If preds does not describe any initial states o and all other
states in preds are not reachable. In this case, δ ∧ preds is unsatisfiable and
we can safely remove preds from the candidate invariant and check if there are
further counterexamples. Otherwise, we know that r is reachable. We check if r
is a safe state. If not, we have disproven equivalence. Otherwise, we modify c by
adding r to the candidate invariant and check for more counterexamples.

The following sections explain our algorithm in higher detail. Section 3.2.1
presents our top level algorithm. Sections 3.2.2, and 3.2.3 present underlying
functions of our algorithm and provide an even higher grade of detail. Finally,
in Section 3.2.4, we sketch why NSMC always terminates and decides correctly.
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c := c ∨ δ

Remove unsafe states and predecessors from c

¬c ∧ δ SAT?

Countereexample (o, r,m)?

preds := formula describing o and predecessors

δ ∧ preds SAT?

r safe?

c := c ∧ ¬preds

c := c ∨ r

equivalent

not equivalent

not equivalent

M1, M2, c, (δ,Δ)

no

yes

yes

no

yes

no

yes

no

Figure 3.3: Checking equivalence between M1 and M2 under (δ,Δ)
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Algorithm 1: NSMC

input : two Mealy transducers M1 and M2 of C++ classes, a
correspondance mapping (δ,Δ), and a candidate invariant c

output : An invariant if the models are equivalent and ⊥ otherwise
1 c := c ∨ δ
2 c := c ∧ ¬PRED-STATES(M1,M2,Δ, c, true)
3 if δ → ¬c then return ⊥
4 while (cex := Check(c, c,M1,M2,Δ)) = ⊥ do
5 preds := PRED-STATES(M1,M2,Δ, c,¬cex.r)
6 if δ → preds then
7 if Check(cex.r, true,M1,M2,Δ) = ⊥ then
8 return ⊥
9 else

10 reach := cex.r
11 while (cex′ := Check(reach, c ∨ reach,M1,M2,Δ)) = ⊥ do
12 if Check(cex′.r, true,M1,M2,Δ) = ⊥ then
13 return ⊥
14 end
15 reach := reach ∨ cex′.r
16 end
17 c := c ∨ reach

18 end

19 else
20 c := c ∧ ¬preds
21 end

22 end
23 return c

3.2.1 The Algorithm NSMC

Algorithm 1 shows the pseudo code of our main algorithm NSMC. The inputs of
this algorithm are the two Mealy transducers M1 and M2 of the C++ classes, a
correspondance mapping (δ,Δ) of M1 and M2, and an initial candidate invariant
c. After execution, the algorithm will either return an invariant that enabled an
inductive proof of equivalence or ⊥ if the models are not equivalent.

In line 1, we slightly modify the initial candidate invariant to ensure that
it is fulfilled for all initial states. With this change, we can be sure that if the
candidate invariant is not fulfilled for an initial state, it is due to a modification
that we did and a detected counterexample is reachable.

We exclude non-equivalent states and their predecessors from the candidate
invariant in line 2. If any unsafe state is reachable, the two models are not
equivalent. If one such state is reachable, calling a pair of methods from Δ in a
reachable state would return different results. This step is realized by calling the
function PRED-STATES with the initial candidate invariant as pre-hypothesis
and “true” as the post-hypothesis. The function will return a formula that
describes all originating states of counterexamples under the given hypotheses
as well as their predecessors that fulfill the pre-hypothesis. The post-hypothesis
“true” is valid for all states. This means that counterexamples due to reached



3.2. OUR INITIAL ALGORITHM NSMC 31

states that do not fulfill the post-hypothesis do not exist and every generated
counterexample is generated due to non-equivalent output.

If an initial state s0 ∈ δ is excluded from the candidate invariant in this step,
an unsafe state is reachable and the models are proved to be not equivalent
which is returned in line 3.

In the following loop that starts in line 4 the remaining counterexamples are
handled. Each of these counterexamples arises from a reached state that does
not fulfill the candidate invariant because counterexamples due to non-equivalent
output were already removed from the candidate invariant in the previous step.

With such a counterexample cex = (o, r,m), we generate the formula preds
which describes all predecessors of r that fulfill the hypothesis in line 5. This
is realized by calling PRED-STATES with the current candidate invariant as
pre-hypothesis and the post-hypothesis ¬r. Thus all states that fulfill preds are
predecessors of r.

If an initial state s0 ∈ δ fulfills preds, r is reachable but does not fulfill the
candidate invariant. This is checked in line 6. Since r does currently not fulfill
the candidate invariant, it needs to be checked if it is an unsafe state. If r is an
unsafe state, the models are not equivalent because an unsafe state is reachable
which is returned in line 8. Otherwise, the candidate invariant is modified to
fulfill r and possible descendants of r that do not fulfill c. This is realized by
generating a formula reach in line 10 that initially describes the assignment of r.
If a state r′ exists, that can be reached from any state that fulfills reach, but does
fulfill neither c nor reach, it is checked in line 12 if that state is safe. If it is unsafe,
M1 and M2 are not equivalent which is returned in line 13. Otherwise, reach is
modified in line 15 to fulfill r′. Once we cannot find any more reachable states
that do not fulfill the candidate invariant, we modify the candidate invariant in
line 17 to include all these reachable states. This modification does not allow
any unsafe states in c as all states that fulfill reach have been checked and are
guaranteed to be safe.

If the initial state does not fulfill preds, we can safely remove preds from the
candidate invariant in line 20.

This loop from line 4 to 22 is repeated until no counterexamples remain.
When the equivalence was not disproved until the end of the loop, the models
are equivalent since no counterexamples remain to invalidate the equivalence
which is returned in line 23. The final candidate invariant is an invariant of the
lockstep machine that enabled an inductive proof and can be used to speed up
further verification.

3.2.2 The Algorithm PRED-STATES

An essential function that is used by our algorithm is PRED-STATES. Its inputs
are two Mealy transducers M1 and M2, a method mapping Δ, and a pre- and
post-hypothesis hpre and hpost. It returns a formula that describes all originating
states of counterexamples for the given models and hypotheses as well as a subset
of their predecessors. The subset contains all predecessors p where a path from p
to an originating state of a counterexample exists that only contains states that
fulfill the pre-hypothesis. Algorithm 2 shows the pseudo code of PRED-STATES.

The return value pred of PRED-STATES is initialized with “false” in line 1,
which describes the empty set of states. The loop that starts in line 2 continues
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Algorithm 2: PRED-STATES

input : two Mealy transducers M1 and M2 of C++ classes, a method
mapping Δ, and two hypotheses hpre and hpost

output : a logic formula pred that describes all starting states of
counterexamples and their predecessors that fulfill hpre

1 pred := false;
2 while (cex := Check(hpre ∧ ¬pred, hpost ∧ ¬pred,M1,M2,Δ)) = ⊥ do
3 gen := generalize(cex,M1,M2,Δ, hpre, hpost);
4 pred := pred ∨ gen;

5 end
6 return pred

Algorithm 3: GENERALIZE

input : a clause c that is a negation of an assignment to all variables and
two hypotheses hpre and hpost

output : a formula that describes the generalized clause c
1 c′ := REMOVE-DC(c, hpre, hpost)
2 C := {c′} ∪ CHECK-EQUALS(c′, hpre, hpost)
3 C := C ∪ CHECK-INTERVALS(c′, hpre ∧ C, hpost)
4 return

∧
c̃∈C c̃

while counterexamples still exist. If there are still counterexamples to the pre-
hypothesis hpre ∧ ¬pred and the post-hypothesis hpost ∧ ¬pred, one is generated
in line 2. The used pre-hypothesis enables us to prevent counterexamples with
originating states that are already described by pred. The post-hypothesis is
not fulfilled for states in pred. Thus, predecessors of states that fulfill pred will
be detected as originating states of counterexamples and enable us to detect
all predecessors of counterexamples. After detecting a counterexample, it is
generalized in line 4 by calling generalize. This function allows us in each step
to consider multiple similar states instead of only a single counterexample. The
result of generalize is a formula that describes similar originating states of
counterexamples to the given pre- and post-hypothesis. The generalized formula
is added to pred in line 4. Now, pred is fulfilled for all detected originating states
of counterexamples. The loop is repeated until no counterexamples remain.
Finally, pred is returned in line 6.

3.2.3 The algorithm GENERALIZE

Algorithm 3 shows the pseudo code of the algorithm GENERALIZE. It is used to
generalize a counterexample, so similar assignments can be considered at the
same time. The algorithm receives a clause c as input. The clause c is a negated
assignment of values to all variables of the two models. Furthermore, the pre-
and post-hypothesis hpre and hpost that were used to generate the assignment
are given as well. The return value is a set of clauses C that describes the
generalized clauses based on c.

In a first step in line 1, c is modified by removing all irrelevant assignments.
The remaining assignments suffice to cause a counterexample under hpre and
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Algorithm 4: REMOVE-DC

input : a clause c that is a negated assignment to all variables and two
hypotheses hpre and hpost

output : a generalized clause c′

1 V := Variables(M1) ∪ Variables(M2)
2 J := ∅
3 a := ¬c
4 foreach v ∈ V do
5 S := V \ (J ∪ {v})
6 a′ :=

∧
v̂∈S v̂ ≡ a(v̂)

7 if CheckCex(hpre ∧ a′, hpost,M1,M2,Δ) = ⊥ then
8 J := J ∪ {v}
9 end

10 end
11 return ¬∧

v∈V \J v ≡ a(v)

hpost, no matter which values are assigned to the remaining variables.
Next, we check if variables that still have assignments and are different in

the counterexample always need to be equal in line 2. If variables are different
in a counterexample, the counterexample could be caused by the difference of
the variables, meaning that these variables need to be equal. According clauses
that describe the equality are added to C.

The last used heuristic checks if variables can be restricted to a certain
interval. The clauses that describe a new lower or upper bound are added to C
in line 3. Finally, C is returned in line 4.

This specific order of generalization was chosen as each step lessens the effort
of the next one. When we remove all irrelevant assignments before checking for
equal pairs of variables, we only consider the relevant variables. Checking for
irrelevant variables would not generalize further as the value of the irrelevant
variables do not matter. Furthermore, when we detect equal variables before
checking for intervals, we can use this information for better initial upper or
lower bounds as equal variables share the same interval.

During generalization, the function CheckCex is regularly called. This function
receives the same inputs as Check, but checks if all states that fulfill the pre-
hypothesis cause a counterexample for at least one possible method call, i.e.,
either reach a state that does not fulfill the post-hypothesis or generate different
outputs.

Removing Don’t-Care Assignments

In the algorithm REMOVE-DC, shown in Algorithm 4, we try to remove assign-
ments to don’t-care variables from c as these are not relevant for the counterex-
ample and thus consider similar assignments as well. The input c is a negated
counterexample and as such a negated assignment to all variables. In lines 1 – 3,
we initialze the set V with all variables of the two models M1 and M2, the set J
as empty set, and the formula a as a negation of c. The set J will be used to
store all irrelevant variables later on. The formula a describes the assignment
that is negated in c.
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Algorithm 5: CHECK-EQUALS

input : a clause c ∈ C that provides a negated partial assignment to
variables, and two hypotheses hpre and hpost

output : a set C of clauses
1 V1 := Variables(M1)
2 V2 := Variables(M2)
3 a := ¬c
4 C := ∅
5 foreach (v1, v2) ∈ V1 × V2 do
6 if a(v1) = a(v2) then continue
7 if a(v1) = ⊥ or a(v2) = ⊥ then continue
8 if δ(v1) = δ(v2) then continue
9 e := (v1 ≡ v2)

10 if Check(hpre ∧ e, e,M1,M2,Δ) = ⊥ then
11 C := C ∪ {e}
12 continue

13 end
14 if CheckCex(hpre ∧ e, hpost,M1,M2,Δ) = ⊥ then
15 C := C ∪ {e}
16 end

17 end
18 return C

In the loop from lines 4 to 10, we check for each variable v ∈ V if v is relevant
for the counterexample. Initially, we prepare the set S = V \ (J ∪ {v}). As
such, S does not contain the variables that have already shown to be irrelevant
and does not contain v as well. This enables us to check if the assignments
of all other variables suffice to cause a counterexample. We then prepare an
according assignment a′ in line 6. If a′ together with hpre suffices to always
cause a counterexample, v is added to J in line 8.

As this is a greedy approach, it does not guarantee a minimal set of relevant
variables. However, it only takes linear time to compute a usually sufficient
solution. This process could be speed up by analyzing the proof that generated
the original counterexample like it is done in IC3 [13], an implementation of PDR.
They analyze the proof that generated the counterexample and can directly
categorize variables that were not used in the proof as don’t care. In our case,
this would entwine our algorithm further with the underlying model checker and
would decrease the ability of our algorithm to easily exchange the model checker.

Finally, we return a new negated assignment in line 11, that contains all
variables, that are not in J .

Detecting Equal Variables

Algorithm 5 shows the algorithm CHECK-EQUALS. It checks for variables within
the two models that may be required to be equal. As the input, we get a clause
c which is the result from Algorithm 4 and as such a negated partial assignment,
and finally the hypotheses hpre and hpost. In this algorithm, we want to find
clauses that state equality between variables to block more counterexamples.
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In lines 1 and 2 we get the sets V1 and V2 that contain all variables from
the first and the second model, respectively. In line 3, we negate c to get the
non-negated assignment a. We initialize the set of clauses C as empty set in
line 4.

Next, we check for each pair of variables (v1, v2) ∈ V1 × V2 if the counterex-
ample could be caused by the inequality of v1 and v2. First, we check for some
requirements in lines 6 – 9 before we consider equality. If the variables are
equal in the counterexample, the counterexample cannot be caused by their
inequality. If v1 or v2 is not assigned in a, it was detected as irrelevant for the
counterexample by the previously executed algorithm REMOVE-DC and as such
the inequality is also not relevant. This allows us to skip all checks for equality
that contain irrelevant variables and focus our algorithm only on pairs of relevant
variables. Finally, when the variables are not equal in the initial state, we cannot
add equality to C as the variables are obviously not equal in all reachable states.

Next, we initialize the formula e which states that v1 and v2 are equal in
line 10. The check in line 11 verifies, if all states that fulfill the hpre ∧ e can only
reach states where v1 ≡ v2. In that case, we can safely add e to C and check
for the next pair of variables. Otherwise, we check if all states that fulfill the
pre-hypothesis but have different values for v1 and v2 cause counterexamples. In
this case, we can also add e to C as we only block states that are unsafe or can
break the post-hypothesis.

Finally, in line 19, we return the modified set C.

Limiting Variables to Intervals

The algorithm CHECK-INTERVALS is used to limit variables to certain intervals
instead of blocking single values and is shown in Algorithm 6. As in Algorithm
5, we get a negated partial assignment c and two hypotheses hpre and hpost as
inputs. As output, we return a set of clauses that limits variables to certain
intervals to block additional counterexamples.

Initially, we get the assignment a that is negated in c in line 1. For each
integer variable v that is assigned in a, we determine the upper bound u and
lower bound l according to the pre-hypothesis in lines 5 and 6. The upper and
lower bounds are detected by looking for terms within the pre-hypothesis that
limit v or variables that are equal to v. While this does not guarantee the
optimal bounds that could be deduced from the hypothesis, it is done quickly
and suffices for our approach as we merely use these bounds as starting points.
Moreover, when new bounds are learned from this algorithm, they are detected
in further iterations.

We try to decrease u by replacing it with a(v). The value a(v) must be less
than u because the assignment of a needs to fulfill the pre-hypothesis. The
decrease is valid if all assignments to v outside of the interval between l and val
would lead to counterexamples, as checked in lines 8 – 10, or the value of v in the
initial state is within the interval and the value of v remains within the interval
from any state fulfilling the pre-hypothesis after calling any function, as checked
in lines 11 – 13. In a next step, we try to increase the lower bound analogously.
This preparatory step is done to consider cases where a(v) lies outside of an
optimal interval for v, which is one possibility for a counterexample. In these
cases, the interval can be shrinked by a significant amount with only few checks.
Otherwise, these checks will only increase the runtime slightly.
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Algorithm 6: CHECK-INTERVALS

input : a clause c which is a negated partial assignment and two
hypotheses hpre and hpost

output : a set C of clauses
1 a := ¬c
2 V := {v|a(v) = ⊥}
3 C := ∅
4 foreach v ∈ V do
5 l := lowerBound(v, hpre)
6 u := upperBound(v, hpre)
7 decreaseUp = false
8 if CheckCex(hpre ∧ (v ≥ a(v)), hpost,M1,M2,Δ) = ⊥ then
9 decreaseUp = true

10 end
11 if Check(hpre ∧ (v < a(v), hpost ∧ (v < a(v)),M1,M2,Δ) = ⊥ then
12 if δ → (v < a(v)) then decreaseUp = true
13 end
14 if decreaseUp then u := a(v)
15 //Analogous process for lower bound
16 . . .
17 if increaseLow then l := a(v)
18 stop = false
19 while ¬stop do
20 s := 1
21 decreaseUp = false
22 if CheckCex(hpre ∧ (v ≥ (u− s)), hpost,M1,M2,Δ) = ⊥ then
23 decreaseUp = true
24 end
25 pre := hpre ∧ (l < v < (u− s))
26 post := hpost ∧ (l < v < (u− s))
27 if (δ → (v < (u− s))) ∧ Check(pre, post,M1,M2,Δ) = ⊥ then
28 decreaseUp = true
29 end
30 if decreaseUp then
31 u := u− s
32 s := 2s

33 else
34 if s = 1 then
35 s := s

2
36 else
37 stop = true
38 C := C ∪ {v < u}
39 hpre = hpre ∧ (v < u)

40 end

41 end

42 end
43 stop = false
44 //Analogous process for lower bound
45 . . .

46 end
47 return C
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After using this coarse approach for some initial shrinking of the interval, we
try to shrink the intervals even further by decreasing the detected upper bound
of the interval and increasing the lower bound. For decreasing the upper bound,
we initialize a step size s with 1 in line 20. Then, we check if it is possible to
decrease u by s in lines 21 – 29. We use the same checks as before, i.e., checking
if all values outside the new interval are counterexamples or it is impossible to
leave the interval. When this is possible, we decrease u by s and double s in
lines 31 and 32 and check again with the new values. We double s to decrease
the interval within logarithmic instead of linear time. When the decrease is not
possible and s is not 1, we halve s in line 35 and check again. Otherwise, s is
1, meaning u is a valid upper bound, but u− 1 is not. Thus, we have detected
an optimal upper bound for v, stop the loop in line 37, and add (v < u) to C
and the pre-hypothesis in lines 38 and 39. After decreasing u, l is increased
analogously. The idea behind starting with small step sizes is to quickly refine
existing intervals that are slightly off. For example, if an existing interval is off
by one, this is quickly detected by the first decrease.

3.2.4 Sketching correctness

In this section, we will sketch why NSMC does always terminate and decides
equivalence correctly. The only requirement for this property is that the under-
lying model checker also always terminates and decides correctly which we will
assume for the remainder of this section. Based upon this sketch, a full proof is
possible. But as it needs to consider multiple corner cases it is too long for this
section.

For the proof, the two Mealy transducers M1 = (S1, S01 , X1, Y1, φ1, ψ1) and
M2 = (S2, S02 , X2, Y2, φ2, ψ2) describe the analyzed systems. The resulting
lockstep machine of M1 and M2 is M∗ = (S∗, S0∗ , X∗, Y∗, φ∗, ψ∗) and (δ,Δ) is
any correspondence mapping of M∗. When paths are discussed during this proof,
we only consider paths under inputs from Δ. Let U ⊆ S∗ describe all unsafe
states in M∗ and C ⊆ S∗ describe all states that fulfill the current candidate
invariant c.

First, we will argument why NSMC always decides equivalence correctly, i.e.,
decides that M1 and M2 are equivalent under (δ,Δ) iff there exists no path from
any s0 ∈ δ to a state u ∈ U . Algorithm 1 has four possibilities to terminate
in line 3, line 8, line 13, and line 23. In line 3, the algorithm decides that the
models are not equivalent if δ → ¬c, i.e., δ \ C = ∅. As the first line adds all
initial states to the candidate invariant, δ \ C = ∅ holds after that line. Thus,
δ \ C = ∅ is only possible in line 3 if an initial state s0 ∈ δ was excluded from
the candidate invariant in line 2. This would mean, that s0 is a predecessor from
a state u ∈ U or s0 ∈ U . In both cases the models are not equivalent as a path
from s0 to an unsafe state exists which the algorithm decides correctly.

The return-statements in line 8 and 13 are both contained within an if-block
from line 6 which states that δ → preds. The formula preds was generated before
and contains predecessors that fulfill the candidate invariant of the reached state
cex.r that does not fulfill the candidate invariant. Thus, cex.r /∈ C. Let preds
define the set P = {s ∈ S∗|preds(s)}. Since δ → preds, δ ∩ P = ∅ and therefore
the state cex.r is reachable. In line 7, we check if cex.r is a safe state and return
⊥ if it is not. As cex.r ∈ U and cex.r is reachable, a path from an initial state
s0 ∈ δ to cex.r ∈ U exists and the decision that the models are not equivalent
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is correct. Similarly, in line 13, we check if a state that is reachable from cex.r
is unsafe and return ⊥ in that case. Since a path from cex.r to an unsafe state
u ∈ U exists, there also exists a path s0, . . . , cex.r, . . . , u from an initial state
s0 ∈ δ to u. Thus, deciding that the models are not equivalence is correct.

The final possibility for NSMC to terminate is in line 23 when the current
candidate invariant is returned, meaning the models are equivalent and c is an
inductive invariant. This is correct as line 23 can only be reached if the while-loop
from line 4 to 22 terminates which means that there exists no counterexample.
Thus, every transition from a state in s1 ∈ C leads to a state s2 ∈ C. Furthermore,
C contains no unsafe states, i.e., C ∩ U = ∅. In addition, δ ⊆ C, as initial states
cannot be removed after line 2 and the algorithm would have returned ⊥ in line
3 if δ ⊆ C. Thus, states within C can only reach states in C. Since δ ⊆ C, all
initial states in δ can only reach states in C. Since C ∩U = ∅, initial states from
δ cannot reach unsafe states in U , meaning the models are equivalent and the
candidate invariant c that defines C is an inductive invariant as returned by the
algorithm.

While we have argued that NSMC does always decide correctly when it
terminates, we still need to show that the algorithm always terminates. The
main obstacle that could prevent termination of the algorithm is the while-loop
from line 4 to 22. In this loop, the candidate invariant c and therefore the set C
is modified to consider counterexamples of states that do not fulfill the candidate
invariant but are reachable from states that fulfill the candidate invariant.

If the algorithm does not terminate during an iteration of the loop execution,
the candidate invariant is changed afterwards to either include more states in
line 17 or exclude some states in line 20. In addition, if a state s̃ was added
to C in line 17, it was reachable from an initial state s0 ∈ δ through a path
s0, s1, . . . , sn, s̃, where s0, s1, . . . , sn ∈ C. If s̃ was to be removed in a later
iteration of the loop, it needs to be in the set P = {s ∈ S∗|preds(s)} in line
5. However, as the path s0, s1, . . . , sn, s̃ exists, s0, s1, . . . , sn ∈ P as sn is a
predecessor of s̃ and each si is a predecessor of si+1 for 0 ≤ i < n. As such,
δ ∩ P = ∅ and δ → preds is fulfilled. Thus, s̃ cannot be removed from C after is
was added in a previous iteration of the loop. As such, each state s ∈ S∗ can at
most be added once to C and therefore also be removed at most once. Thus,
the number of modifications that can be done to the candidate invariant within
the loop is at most 2|S∗|. As S∗ is a finite set, the algorithm needs to terminate.

As we have discussed that NSMC always terminates and always decides
correctly, it is always able to decide equivalence.

3.3 Using PDR in our algorithm EASY

As PDR [7, 13] has been shown to be an effective model checking technique, it
could support the equivalence check done in NSMC. As equivalence checking is
a specific case of model checking, the techniques used by PDR can be utilized
for an equivalence check as well. However, as we use logical formulas over the
member variables of C++ classes instead of boolean variables only, our model is
different but can be used in a PDR-like algorithm. This idea is implemented in
the algorithm EASY, which will be able to decide equivalence within a much
shorter time in some cases where the PDR-like implementation supports the
equivalence check and generates only a small overhead in those cases where it
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Figure 3.4: Checking equivalence between M1 and M2 under (δ,Δ)
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does not. Especially underapproximations profit from PDR as we can easily drop
clauses that are not fulfilled for all reachable states while still keeping the other
detected or given clauses. On the other hand, we keep the strengths of NSMC
like the ability to provide a candidate invariant or generalizing counterexamples.
Thus, we use the basic construct of PDR but include additional features. Like
NSMC, a candidate invariant can be used to speed up the equivalence check.
The generalization of counterexamples uses additional heuristics to compute
equal variables and intervals for integer variables. As NSMC and EASY consider
different types of variables and consider relations that are specific to those types,
e.g., upper and lower bounds of integer variables, we can generate additional
helpful clauses compared to PDR that only computes don’t-care bits. Therefore,
our algorithms can handle all kinds of clauses while PDR solely focuses on cubes,
i.e., partial assignment of the boolean bits.

Beside the use of a PDR-like approach, EASY also uses a new algorithm to
determine the intervals of variables during generalization, which allows shorter
runtimes.

The algorithm EASY decides for two models, their correspondence mapping,
and a candidate invariant. The candidate invariant can be “true” which would
provide the algorithm no additional knowledge about the models. It can be
given manually by the developer, who should have detailed knowledge, or can
be generated by third-party-tools.

The basic algorithm is sketched in Figure 3.4. We start by checking if the
initial states δ of the lockstep machine are safe. If they are not safe, the models
are not equivalent.

If they are safe, we check if the candidate invariant H overapproximates all
states that are reachable in one step by executing methods from Δ. If this is
not the case, we adjust H and remove clauses that are not fulfilled by all states
that are reachable in one step. This adjustment is important to ensure, that the

initial clause vector
−→
F = [δ,H] fulfills property 3.2. Finally, we initialize N with

1, as this is currently the index of the last element of
−→
F . Next, we check if all

states in FN are safe.
Unless all states in FN are safe, there exists a counterexample cex that

describes an unsafe state. We try to block cex and similar assignments by adding

according clauses to
−→
F without breaking property 3.2. If this is not successful, the

detected unsafe state is reachable and the models are not equivalent. Otherwise
we check again, if all states in FN are safe.

If they are, we increase the length of
−→
F by 1 and try to propagate the clauses

as far towards FN as possible. This is done by checking for each clause c in a set
Fi if that clause is still fulfilled when calling any method in a state that fulfills Fi↑.
In that case, we can safely move c from Fi to Fi+1 without breaking property 3.1.
If there exists an Fi within the clause vector that is empty afterwards, we have
proven equivalence and the algorithm terminates. Since Fi is empty, Fi↑= Fi+1↑.
As all states within Fi↑ can only reach states that fulfill Fi+1↑= Fi↑ by property
3.2, Fi↑ is an invariant. By property 3.1, all states within Fi↑ are safe and thus
all reachable states are safe and the models are equivalent. If there is no empty
set, we check again if the newly generated FN describes safe states by checking
if all states within FN are safe. This is repeated until the algorithm terminates
by deciding equivalence.
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Example 2. Consider the counters from Example 1. Both counters are initialized
with 0, i.e., δ = {(0, 0)}, and both counters use the function countUp, i.e.,
Δ = {countUp, countUp}. We want to provide a candidate invariant to speed
up the process. We try to provide an upper limit for the counter, but chose
faulty values. In addition, we do not add equality to the candidate invariant.
This results in the bad candidate invariant i = mod ≤ 2 ∧ if ≤ 2, where mod
and if denote the member variables count of two counter implementations,
respectively. This results in two clauses for the set H: mod ≤ 2 and if ≤ 2.

When we start the algorithm, we check if all initial states in δ are safe. As
both counters return 1 when countUp is called in the initial state, they are safe.

Next, we check if all states that are reachable within one step fulfill the
candidate invariant. As the counter can only count up to 1 within one step, the

candidate invariant holds in these states and we do not modify H . Then,
−→
F and

N are initialized and we check if all states in FN are safe. This is not the case
and we find a counterexample with an originating state cex = (mod ≡ 1∧ if ≡ 2).
As cex is not reachable from the initial state, we can add ¬cex to F1 or generalize
cex and add (if ≡ mod) such that

F1 = {mod ≤ 2, if ≤ 2,¬(mod ≡ 1 ∧ if ≡ 2), if ≡ mod}.

When checking again, we realize that FN is safe now and increase N by 1.
We then try to propagate clauses. Executing countUp in a state that fulfills F1↑
leads to a state where both counters are equal and the detected counterexample
is not fulfilled. Thus, we can move (mod ≡ if) and ¬(mod ≡ 1 ∧ if ≡ 2) to F2.
However, we cannot move mod ≤ 2 and if ≤ 2 as we can reach counter values
above 2.

When we check if the states within FN = F2 are safe, we find the originating
state cex = (mod ≡ 6 ∧ if ≡ 6) of a counterexample. Since we already know that
the values are equal, we can safely remove one assignment from the counterex-
ample, resulting in cex = (mod ≡ 6). We cannot reach a state that fulfills cex
from a state that fulfills F1↑. Thus, we can add ¬cex to F2. In addition, we
generalize cex and can even add mod ≤ 3 to F2, resulting in

F2 = {¬(mod ≡ 1 ∧ if ≡ 2),mod ≡ if,¬(mod ≡ 6),mod ≤ 3}.

Now, F2 describes exactly all reachable states of the lockstep machine. We
find out that all states within FN are safe and try to propagate clauses. Since
for each clause c in F2, that clause is fulfilled after calling any function from
a state that fulfills F2↑, we can move c from F2 to F3. Since we can move all
clauses, F2 = ∅ afterwards and we return that the models are equivalent under
the invariant F2↑.

In the following Sections 3.3.1 to 3.3.4, we will describe the algorithm, starting
at the top level and decreasing the level of abstraction with each section. In the
final Section 3.3.5, we will discuss features of the algorithm.

3.3.1 Top Level Algorithm

The top level algorithm of EASY is shown in Algorithm 7. It decides if two
C++ classes given as Mealy transducers M1 and M2 are equivalent under a
correspondence mapping (δ,Δ). To speed up the algorithm, a candidate invariant
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Algorithm 7: EASY-PDR

input : two Mealy transducers M1 and M2 of C++ classes, a
correspondence mapping (δ,Δ), and a set of expressions H that
describes the candidate invariant

output : an invariant if M1 and M2 are equivalent under (δ,Δ) or ⊥
otherwise

1 //Check if initial states are safe
2 if Check(δ, true,M1,M2,Δ) = ⊥ then
3 return ⊥
4 end
5 //Check candidate invariant for first step
6 cex := Check(δ,H,M1,M2,Δ)
7 while cex = ⊥ do
8 //Weaken candidate invariant if needed
9 H := H \ {c ∈ H | c blocks cex}

10 cex := Check(δ,H,M1,M2,Δ)

11 end
12 //F0 are the initial states

13
−→
F . push(δ)

14 //F1 is the candidate invariant

15
−→
F . push(H)

16 N := 1
17 while true do
18 //Check for unsafe states
19 cex := Check(FN , true,M1,M2,Δ)
20 if cex = ⊥ then
21 //Recursively block the counterexample

22 if ¬BLOCK(TClause(¬cex.o,N),
−→
F ) then

23 return ⊥
24 end

25 else
26 //A new frame and propagating clauses

27
−→
F . push(∅)

28 N := N + 1

29
−→
F := PROPAGATE(

−→
F ,N)

30 if ∃i < N : Fi = ∅ then
31 return Fi↑
32 end

33 end

34 end
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is given as input as well. If the models are equivalent, an invariant is returned.
Otherwise, the algorithm returns ⊥. In this case, FN contains a reachable

counterexample and
−→
F describes a way to reach that counterexample.

In the beginning of the algorithm, we check if the initial states δ given by
the correspondence mapping are safe. This is done in line 2 by using Check
from Section 3.2.3. If a non-safe initial state exists in δ, the models cannot be
equivalent and ⊥ is returned in line 3.

In lines 5 – 11, it is checked if the candidate invariant overapproximates
all states that are reachable from an initial state by executing a single pair of
functions from Δ. If a counterexample cex is found, we weaken the candidate
invariant by removing all clauses that are not fulfilled for the detected assignment
cex.

After these initial checks, we initialize the vector
−→
F by pushing the initial

states from δ as F0 in line 13 and afterwards the eventually weakened candidate
invariant H as F1 in line 15. In line 16 we initialize N with 1. N describes the

last index of
−→
F .

The following loop in lines 17 – 33 will refine the candidate invariant until
equivalence is proven or a real counterexample to equivalence is found.

First, we check if the current approximation FN↑ contains only safe states in
lines 19 and 20. If an unsafe counterexample cex exists, we try to recursively
block the detected assignment by calling the algorithm BLOCK which is described
in Section 3.3.2. The input of BLOCK is timed claues TClause that contains
information about the clause that needs to be blocked as well as the frame in which
it needs to be blocked. In this case, the clause is the negated counterexample
and the frame is N since we detected the unsafe state in FN If BLOCK does
not succeed in blocking, cex describes a reachable non-safe state and M1 and
M2 are not equivalent. This is returned in line 23. Otherwise, cex and similar
assignments are blocked in FN and will not trigger again.

If no unsafe states exist in FN , we have proven, that no safe state is reachable
in N steps. We add another frame to consider states that are reachable in N + 1

steps. For this additional frame, we push an empty set to
−→
F and increase N

by 1 in lines 27 and 28. Next, the algorithm PROPAGATE described in Section

3.3.3 is used to move clauses within
−→
F as close to FN as possible.

If an empty set Fi with i < N exists after the propagation, the models are
equivalent because Fi↑= Fi+1↑. By definition, all states that fulfill Fi↑ can
only reach states that fulfill Fi+1↑= Fi↑, so Fi↑ is an overapproximation of all
reachable states. In addition, Fi only contains safe states as i < N . Thus, the
models M1 and M2 are equivalent and Fi↑ is returned as invariant in line 31.

3.3.2 Blocking Unsafe States Recursively

The algorithm BLOCK is used to block a detected counterexample in
−→
F . The

counterexample is given as a TClause c0, that contains a clause c0.clause and a
frame number c0.frame. The clause c0.clause describes the negated assignment

of the counterexample and the number c0.frame describes the element of
−→
F

where c0.clause needs to be blocked. The algorithm returns “true” iff the
counterexample was successfully blocked and all states that are reachable within
c0.frame steps fulfill c0.clause.
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Algorithm 8: BLOCK

input : a TClause c0 that contains a clause c0.clause and a number
c0.frame where c0.clause needs to be fulfilled in c0.frame and a

clause vector
−→
F

output : a Boolean value that is true iff the counterexample was blocked
1 PrioQ<TClause>Q
2 Q .add(c0)
3 while Q. size() > 0 do
4 c := Q .popMin()
5 f := c.frame, cl := c.clause
6 //Detected a real counterexample?
7 if f = 0 then return false
8 if ¬ follows(c,Ff↑) then
9 C := GENERALIZE(cl, Ff↑, Ff+1↑)

10 //Is C following from the previous frame?
11 cex := Check(Ff−1↑, C,M1,M2,Δ)
12 if cex = ⊥ then
13 Ff := Ff ∪ C
14 else
15 //cex and C need to be checked
16 Q .add(TClause(¬cex.o, f − 1))
17 foreach c′ ∈ C do
18 Q .add(TClause(c′, f))
19 end

20 end

21 end

22 end
23 return true
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The algorithm uses a priority queue Q that is initialized in line 1. In line 2,
we add c0 to the queue. While Q is not empty, we pop one element c of Q with
the lowest frame number c.frame in line 4 and initialize the variables f and cl
as c.frame and c.clause, respectively in line 5. If c.frame is 0, we have detected
a reachable counterexample, as the generated clauses describe a path that leads
from an initial state to a state that fulfills c0.clause and we return “false” in
line 7.

Otherwise, we check if c follows from the clauses of its current frame Ff↑.
This is the case if c.clause follows from Ff ↑. If c follows, we do not need to
analyze it further as we know that states that are reachable in f steps fulfill
c.clause. If c does not follow, we generalize c to also consider similar assignments
in line 9 and get a set C of clausesby using the algorithm GENERALIZE described
in Section 3.2.3.

Next, we check if C follows from the previous frame f − 1 in line 11. If all
executions of methods in states that fulfill Ff−1↑ lead to states that fulfill C, all
states that are reachable within f steps must fulfill C. Otherwise, we need to
check if the detected counterexample is blocked in the previous frame f − 1 and
add the according TClause to Q in line 16. As we did not show that states that
are reachable in f steps fulfill C, we need to put the according TClauses back
on Q in lines 17 – 19 to check them again after ensuring that cex is blocked.

When Q is empty, the loop terminates. The vector
−→
F has been modified to

ensure that all states that are reachable within c0.frame steps fulfill c0.clause
and the algorithm returns “true”.

3.3.3 Propagating Clauses

Algorithm 9: PROPAGATE

input : a clause vector
−→
F and a number N that describes the size of

−→
F

output : a clause vector
−→
F with propagated clauses

1 foreach i := 1, . . . , N − 1 do
2 foreach c ∈ Fi do
3 if Check(Fi↑, c,M1,M2,Δ) = ⊥ then
4 Fi+1 := Fi+1 ∪ {c}
5 Fi := Fi \ {c}
6 end

7 end

8 end

9 return
−→
F
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The algorithm PROPAGATE modifies
−→
F by moving clauses within the sets as

far towards FN as possible while keeping property 3.2. The algorithm is shown
in Algorithm 9.

The outer loop is executed for each Fi except for F0 because this is the
special case of initial states and the last set FN as a clause cannot be moved
further than FN . Starting with i = 1, we check for each clause c ∈ Fi, if we
can move c to Fi+1 in line 3. The clause c can be moved, if all states that are
reachable in a single step under the pre-hypothesis Fi↑ fulfill c. This is done
in lines 4 and 5. Since c has been moved to Fi+1, it is possible to move c even
further as Fi+1 is checked in the next iteration of the loop.

Finally, the modified vector
−→
F is returned in line 9.

3.3.4 New Determination of Intervals

Beside the change of structure into a PDR-like form, EASY also uses a new
implementation to determine the intervals of variables, used during generalization.
The algorithm is shown in Algorithm 10. The experiments show that this
implementation reduces the runtime on our examples. The interface to this
function is identical to the version of NSMC. Thus, the inputs are a negated
assignment of a counterexample and a pre- and post-hypothesis. The algorithm
returns a set of clauses that describes upper and lower bounds for variables.

The algorithm starts by initializing a as the non-negated assignment of c in
line 1 and then determines the set V of all variables that have assigned values in
a in line 2. Next, the set C is initialized as empty set in line 3.

We check for each variable v ∈ V if we can limit the variable to a certain
interval. We start by getting the current upper and lower bound of v from hpre,
if there is any. In the following line 7 we initialize a formula up that states that
the pre-hypothesis is fulfilled and v is exactly at its current upper bound. If all
states that fulfill up lead to counterexamples, we can decrease the upper bound
by at least 1 and start searching for an optimal upper bound.

In contrast to the method of NSMC, we use binary search to find an optimal
upper bound. We prepare the search, by initializing the lower detected and the
upper detected value for the new upper bound ld and ud in lines 9 and 10 with
the current upper and lower bound. Next, we compute their average u′ as the
potential new upper bound and finally initialize a Boolean variable done with
“false”.

While done is not set, we keep searching for an optimal upper bound for v.
We prepare two formulas up1 and up2 in lines 14 and 15. The formula up1 states
that the pre-hypothesis is fulfilled and v is not smaller than u′. If all states in
up1 would cause counterexamples, u′ would be a possible upper bound. The
second formula up2 is similar, but states that v is not smaller than u′ − 1. In the
lines 16 and 17, we check if all states within up1 and up2 cause counterexamples,
respectively. If all states in up1 cause counterexamples, but those in up2 do
not, we found an optimal upper bound, which is checked in line 18. We add the
formula (v < u′) to C, set the upper limit u to u′, and set done to “true” as we
are done with the search for an upper bound.

If up1 and up2 both only contain states that cause counterexamples, which
is checked in line 23, u′ is a possible upper bound, but can be further decreased.
Since we know that u′ is a valid upper bound, we set ud to u′ in line 24 and
compute u′ as the new average of ud and ld in line 25.
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Algorithm 10: CHECK-INTERVALS

input : a clause c which is a negated partial assignment and two
hypotheses hpre and hpost

output : a set C of clauses
1 a := ¬c
2 V := {v|a(v) = ⊥}
3 C := ∅
4 foreach v ∈ V do
5 l := lowerBound(v, hpre)
6 u := upperBound(v, hpre)
7 up := hpre ∧ (v ≡ u)
8 if CheckCex(up, hpost,M1,M2,Δ) = ⊥ then
9 ld := l

10 ud := u
11 u′ := (ld+ ud)/2
12 done := false
13 while ¬done do
14 up1 := hpre ∧ ¬(v ≤ u′)
15 up2 := hpre ∧ ¬(v ≤ u′ − 1)
16 c1 := CheckCex(up1, hpost,M1,M2,Δ)
17 c2 := CheckCex(up2, hpost,M1,M2,Δ)
18 if (c1 = ⊥) ∧ (c2 = ⊥) then
19 C := C ∪ {(v ≤ u′)}
20 u := u′

21 done := true

22 end
23 if (c1 = ⊥) ∧ (c2 = ⊥) then
24 ud := u′

25 u′ := (ud+ ld)/2

26 end
27 if (c1 = ⊥) then
28 ld := ud
29 u′ := (ud+ ld)/2

30 end

31 end

32 end
33 low := hpre ∧ (v ≡ l)
34 if CheckCex(low, hpost,M1,M2,Δ) = ⊥ then
35 //Same checks for lower bound
36 . . .

37 end

38 end
39 return C
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Otherwise, if up1 does not only contain counterexamples, an optimal upper
bound is higher than u′. Similarly to the previous case, we increase ld by setting
it to u′ and compute the new average of ud and ld.

After we determined an upper bound for v, we do the analogous checks to
determine a lower bound for v and finally return C in line 39.

3.3.5 Discussion

The described algorithm can easily learn new clauses by using the provided
heuristics in the algorithm GENERALIZE. In the current implementation, equality
of variables or certain intervals can easily be detected and speed up the decision
if these kind of clauses can describe an optimal invariant, i.e., an invariant that
suffices to show equivalence inductively.

Furthermore, if there are faulty clauses in the initial candidate invariant,
these are left within the sets with lower index during propagation and are easily
dropped from the final invariant.

Compared to NSMC, we do not consider a single logical formula, but handle
a set of clauses. This allows a finer control over the current candidate invariant
and enables actions like dropping problematic clauses, which is not possible in
NSMC, where the algorithm would need to learn all problematic states instead,
which causes a significant overhead up to non-feasible runtimes. To handle the
clauses, the algorithm is structured like PDR.

Like PDR, we create an empty set in Fi when we have successfully detected
an inductive invariant as PROPAGATE and BLOCK are similar to PDR with
some adjustments to C++ setting and the initial candidate invariant. However,
the algorithm GENERALIZE is different from PDR as we use different heuristics
to generate insight into the modules while PDR generates cubes that describe
partial assignment to the boolean variables. On the other hand, EASY considers
different types of variables and considers relations that are specific to those types,
e.g., upper and lower bounds of integer variables.

As further optimization, PROPAGATE, BLOCK, and GENERALIZE could
easily be parallelized similar to PDR.

3.4 Experiments

In this section, we present our experiments with three examples and compare
the performance of NSMC and EASY. The first example attempts to check
functional equivalence of two counter designs similar to Example 1. The second
example is dedicated to equivalence checking of an arithmetic unit. The third and
final example is the most complex one and considers two models of processors,
including arithmetic operations, reading from and writing to memory, as well as
jump operations.

The experiments were conducted on a Lenovo T430 with an Intel Core i5-
3320M CPU with 2.6GHz and 8GB of RAM running Windows 7 Professional
32bit. As model checker, we use CBMC v4.9 [8] and the logic formulas are
represented as SMT2 formulas in Z3 v4.4.1 [10]. We consider a time limit of
6 hours for finding an inductive invariant and report T/O if no such invariant is
found within this time limit.
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3.4.1 Counter

Unlike the counters from Example 1, we use integer variables and increase
the maximum value of the counter to 9,999,999 instead of 3. In addition, we
also consider up to 10 parallel counters in each model that can be accessed
individually. The increased maximum value directly increases the number of
reachable states as well as the diameter of the corresponding Mealy transducer.
The parallel counters will be used to show the scalability of our algorithms.

For the experiments on the counters, we consider different initial candidate
invariants. The first candidate invariant optimal describes exactly all reachable
states with

optimal =
∧

i∈{1,...,#counters}
(modi ≡ ifi) ∧ 0 ≤ modi ≤ 9, 999, 999

where modi and ifi describe the i-th counter of the modulo- and if-counter,
respectively. The first part of optimal describes that corresponding counter
variables should have equal values. This is intuitively true, as these values are
given as output and need to be equal for the output to be equal. The second
part of the candidate describes that the counter values always range between
0 and 9,999,999, which is true as a counter is reset to 0 when it would reach
10,000,000. And since the counter always counts upwards, it is impossible to
reach negative values.

The second candidate invariant is “true” which is the weakest possible
overapproximation. This candidate is fulfilled for all possible states. Since the
counters behave differently outside of the reachable range and cause faulty output
if the counters store different values, the algorithms need to adjust this invariant
to be true only for reachable states.

The final candidate invariant boundTooLow is similar to optimal but contains
the faulty maximum value of 300 and thus underapproximates the reachable
states:

boundTooLow =
∧

i∈{1,...,#counters}
(modi ≡ ifi) ∧ 0 ≤ modi ≤ 300

While this candidate invariant is false for all non-reachable states, it is also
false for most reachable states. As such, the algorithms need to loosen the
candidate invariant to include all reachable states.

The experimental results in Figure 3.5 show, that equivalence can be shown
within seconds when the candidate invariant optimal is used. However, EASY is
slightly slower in these cases as some overhead is caused by moving all clauses
from F1 to F2 to conclude the proof. This overhead increases with the number
of parallel counters since the candidate invariant contains more clauses with
more counters. However, the overhead is marginal in all cases and affects the
runtime only slightly

In the next experiment, the candidate invariant is “true”. As an invariant
needs to be generated by the algorithm, these experiments require more time.
For 10 parallel counters, EASY takes 69 seconds and NSMC 131 seconds. EASY
is faster in these cases. But this speed up does not arise from the PDR-like
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Figure 3.5: Runtimes of NSMC and EASY on the counter models

implementation but from the different implementations to check for intervals. In
this example, the binary search of EASY is superior to the implementation of
NSMC. For one parallel counter, EASY needs 134 of 165 of its calls to CBMC
to find the optimal interval while NSMC requires 253 of its 260 calls.

The final experiment shows a case where EASY is significantly better than
NSMC. The candidate invariant boundTooLow is an underapproximation of the
reachable states. Both algorithms handle this problem quite differently and
NSMC times out in all cases. NSMC will detect a counterexample that does
not fulfill the candidate invariant after executing a method. Then, it will try
to remove all predecessors of that counterexample from the candidate invariant,
but will detect, that the initial state is a predecessor. Thus, the algorithm will
add the counterexample and all its successors to the candidate invariant. Adding
these predecessors and successors almost one by one causes a timeout. EASY
will check if the candidate invariant describes safe states only, which is the case.
Then, it will propagate clauses from F1 to F2. The clauses modi ≤ 300 will not
be moved, as we can easily show that states that fulfill boundTooLow can reach
states that do not fulfill these clauses. Afterwards, the correct upper limit will
be learned due to unsafe states. After propagating all clauses from F2 to F3,
equivalence is proven.

The experiments on the counter have shown an example where the runtime
is feasible even for bad initial candidate invariants. While the PDR approach of
EASY can cause a neglectable overhead, it allows us to decide equivalence in
cases that NSMC cannot handle.

3.4.2 Arithmetic Unit

For the models of the Arithmetic Logic Unit (ALU), we described a pipeline of
length 3. The ALU has 4 registers that can store 3-bit values. It can handle
three operations: ADD, SUB and NOP. The operations ADD and SUB add or
subtract the values of two input registers and store the result in a target register.
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Load inputs Compute result Writeback

(a) Detailed implementation

Nothing Nothing Do all

(b) Abstract implementation

Figure 3.6: Sketch of an implemented processors

The operation NOP does nothing. The implementations provide getter-methods
for all registers and a nextStep-method to load a new operation that is given as
input and execute one step of the pipeline.

Like sketched in Figure 3.6, the more detailed implementation loads the
values of the input registers in the first step and stores them in special registers
in1 and in2 that do not exist in the abstract model. Afterwards, the result of the
operation is computed in the second step and the result is stored in a register
result which also does not exist in the abstract model. The operation uses the
values that are stored in in1 and in2. Finally, the content of result is written
into the target register in the third step.

The abstract implementation executes an operation completely in its third
step and acts as a queue. It does not load input values before or stores the result,
but uses the values directly from the registers and writes them back immediately.

To ensure that these models behave equivalently, we block new operations
that could lead to conflicts, i.e., use input or output registers that are currently
used by other operations on the pipeline. When such an operation is used as
input for nextStep, we put the operation NOP in the pipeline instead. Preventing
conflicts is important as conflicts would cause different behavior in the two models
due to their different implementation. Similarly, when an invalid operation is
given, NOP is put in the pipeline instead.

An optimal candidate invariant for this example contains the following
information:

1. Corresponding registers and pipeline operations need to be equal in both
models.

2. All registers need to be 3-bit values, i.e., between 0 and 7.

3. All operations in the pipeline need to be valid.

4. There are no conflicts in the pipeline.

5. The registers in1, in2, and result in the detailed model need to be correct.

Splitting the described candidate invariant into clauses leads to 95 clauses.
For the experiments, we modify the optimal candidate invariant alu-optimal by

1. Removing the equality of 1 ≤ i ≤ 4 registers: i-regNotEqual

2. Removing the correctness of the result in the detailed model: noResult

3. Adding a faulty equality of an input of the second operation and the output
of the third operation: wrongPipeEqual
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Candidate Invariant NSMC EASY

Time #Calls Time #Calls
[s] [-] [s] [-]

alu-optimal 0.4 3 0.8 4
1-regNotEqual 10.0 62 12.4 50
2-regNotEqual 16.0 101 25.1 96
3-regNotEqual 31.0 175 33.7 142
4-regNotEqual 35.0 201 44.4 188

noResult T/O - T/O -
wrongPipeEqual T/O - 25.3 104

Table 3.1: Runtimes and CBMC calls on the processor models

The candidate invariant alu-optimal describes exactly all reachable states and
therefore should support the equivalence check significantly. For the candidates
i-regNotEqual, the algorithms need to detect the equality of the corresponding
registers.

Removing the correctness of the result from the candidate invariant is a lot
harder than removing equality of registers as the correctness of the result is very
complex to describe. It depends on the operation in the third step as well as the
values of the registers. The result needs to contain the sum or the difference of
the values in the input registers of the operation and is therefore dependent on
seven different variables: the four registers, the two input registers of the third
operation, and the type of the third operation.

Table 3.1 shows the runtime and the number of CBMC calls of NSMC and
EASY for the different candidate invariants.

Proving correctness for alu-optimal and the candidate invariants i-regNotEqual
takes longer with EASY compared to NSMC due to overhead like moving the
clauses from F1 to F2. Using a PDR-like implementation does not speed up
the equivalence check in these cases, similar to the experiment with the optimal
invariant and the counters. Even though EASY requires a smaller amount of
CBMC calls for the candidate invariants i-regNotEqual, the total runtime is
higher than NSMC as the specific checks like checking whether all clauses can
be moved take more effort than the calls during generalization that are not
done by EASY due to low level optimization. The larger number of initial and
learned clauses compared to the example with the counters lead to an increased
overhead.

On the other hand, the underapproximation wrongPipeEqual timed out when
run by NSMC but is decided within 25.3 seconds by EASY as EASY can easily
detect the wrong clause and will not propagate it.

However, both equivalence checkers cannot decide equivalence when more
complicated parts of the candidate invariant are missing, like shown in the
experiments with noResult. The currently used heuristics cannot learn this
behavior but instead remove single assignments that cause unsafe states. As
the number of those assignments is too large to remove them one by one, the
algorithms time out.

The experiments with the simple processor models confirm the observation
from Section 3.4.1. Both algorithms are able to handle the models with a good
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hypothesis. The hypothesis does not need to be optimal, but a bad hypothesis
leads to a timeout for both algorithms. While EASY can cause neglectable
overhead, it can also decide equivalence for candidate invariants that NSMC
cannot handle.

3.4.3 Processor

In the final experiments, we will show, that our algorithms are able to handle
bigger examples as well as long as the candidate invariant is good. For these
experiments, we use a model for a processor. The processor has 8 3-bit registers.
In addition, the processor has a 192-bit memory, that is separated into 64 3-bit
words, a program counter that refers to the next executed operation within the
memory, and a zero flag that is set after an arithmetic operations computes 0
and reset if an arithmetic operations computes a result that is not 0.

Each operation is coded by four 3-bit words. The first word refers to one of
eight possible operation types and the remaining three words are used to code
the arguments of the operation.

The eight operation types are

1. NOP: Does nothing, the three argument words need to be 0

2. STORE: Store the content of a register in the memory, the first two
argument words refer to the position in the memory and the third one
refers to the register

3. LOAD: Loads a word from the memory into a register, like STORE, the
first two argument words refer to the memory address and the third one
to the register in which the word is stored

4. ADD: Adds the content of two registers and stores it in a register, the first
two argument words refer to the summands and the sum is stored in the
register referenced by the third argument word

5. SUB: Subtracts the content of two registers and stores it in a register, the
first argument word refers to the minuend, the second argument word to
the subtrahend, and the difference is stored in the register referenced by
the third argument word

6. JUMP: Change the program pointer to the memory location that is ref-
erenced by the first two argument words, the third argument word must
be 0

7. JUMPZ: Change the program pointer to the memory location that is
referenced by the first two argument words if the zero flag is set, the third
argument word must be 0

8. EXIT: Stop the execution of the program, the argument words need to
be 0

Whenever an invalid operation is read, e.g., a NOP with an argument word
that is not 0, the operation is interpreted as EXIT instead. Similarly, when
the program pointer refers to an operation that is not completely within the
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memory, e.g., position 63 that would need argument words that are not within
the memory, the operation is considered as EXIT as well.

The models have getter methods to read the registers, a method loadMemory
that resets the model and loads the given content into the memory, and a method
nextStep, that computes the next timestep of the processor execution.

Again, we use one model with pipelining and one without. The model with
pipelining has a pipeline with 4 steps. The levels are similar to the ones in
Section 3.4.2. In addition, the operation is read within a first step. Afterwards,
the inputs are loaded, the result is computed, and written back. When an
arithmetic operation is affected by a write-read conflict, the result is not written
back. Similarly, when a STORE operation would write into an operation that is
currently in the pipeline, the value is not written.

When a JUMP or JUMPZ operation is executed, the content of the pipeline
is flushed and replaced with NOPs.

To handle the pipeline, the model needs additional variables to store the
operations within the pipeline, the loaded inputs, and the computed result.
It also uses a flag that is set after an EXIT operation and stops the further
execution.

In comparison, the model without pipeline just executes the operation at the
current program pointer in one go and increases the programpointer afterwards.
To remain equivalent to the model with pipelining, this model also blocks
operations that would cause a write-read conflict for the pipeline or write into a
loaded operation. Even though this is not needed for a model without pipelining,
these adjustments are needed for equivalence between the models. In addition,
the model without pipelining has a wait variable. When wait is not 0 and
nextStep is called, wait is reduced by 1 and nothing else is done. This is needed
for equivalent behavior when the pipelined model needs to fill its pipeline in the
beginning of the execution or after a jump. Thus, wait is initially and after a
jump set to 3.

An optimal candidate invariant for these models is complex, as it needs to
describe all the relations between the different implementations. It needs to
contain

1. equality of registers, memory, and zeroflag

2. correct intervals for all variables

3. the program pointers correspond to each other such that when an operation
leaves the pipeline it is executed by the model without pipelining

4. If wait is not 0, the pipeline contains the corresponding number of NOPs

5. The operations within the pipeline correspond to the operations within
the memory

6. The exit-flag of the pipeline model is only set if it should be

7. Loaded inputs and computed result within the pipelining model are correct

This candidate invariant consists of 399 clauses.
As the computer that was used for the previous experiments failed to execute

the NSMC call due to memory overflow, this experiment was instead run on
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a Dual-Core AMD Opteron Processor 2222 SE with 3 GHz and 64 GB main
memory.

Using the described optimal candidate invariant, the decision that the models
are equivalent took EASY 8017 seconds and used the full 64 GB of memory.
Weakening the candidate invariant only slightly, e.g., by removing the equality
of two corresponding registers, will produce a miter during the execution of the
algorithm, that leads to a memory overflow during the CBMC call.

This experiment has shown, that our algorithms can handle more complex
models but comes close to the limits of our underlying model checker and requires
an optimal candidate invariant.

In summary of the experiments, EASY has additional overhead that is not
needed in some cases and equivalence can be decided faster by the “lighter”
NSMC. However, EASY can decide equivalence in cases that NSMC cannot
decide within the time limit. This is especially true when underapproximations
are used as candidate invariants, that usually lead to a timeout in NSMC.

3.5 Conclusion

In this chapter, we presented two algorithms to prove functional equivalence of
two hardware description on the system level. The presented algorithm uses
a hypothesis that is stepwisely refined to approximate the set of all equivalent
states of the two designs. The hypothesis allows to use the expert knowledge
of a designer to speed up verification. Preliminary experimental results for
two case studies, a scale parallel counter and a processor model, show that the
runtime can be significantly reduced, even for complex designs, when the “right”
hypothesis has been chosen.

In this chapter, we presented NSMC and EASY, two algorithms for functional
equivalence checking of ESL description written in C++. The algorithms generate
an inductive invariant to prove equivalence or detects a reachable counterexample
that disproves equivalence. While NSMC uses a candidate invariant and advances
it with each discovered spurious counterexample, EASY uses a PDR-like approach
that can easily drop some clauses. If the models are not equivalent, the returned
counterexample can be used as a starting point for debugging and if they are
equivalent the algorithm returns an inductive invariant that can support future
equivalence checks. We proposed an implementation of NSMC and EASY on
top of the standard bounded model checker CBMC and presented experiments
with three examples to show the applicability of the approach.
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Chapter 4

Robustness Checking

While new technologies facilitate the creation of more advanced systems, the
systems become more susceptible to transient faults. External factors like cosmic
radiation may induce glitches in the system, which can lead to erroneous behavior.
A circuit needs to be analyzed to ensure that no erroneous output is produced
under transient faults, i.e., that the circuit is robust. Otherwise vulnerable gates
have to be determined. The effects of transient faults may be masked due to
logic, timing or electrical effects. During the analysis, variation in the gates’
parameters must be taken into account.

An easy way to get a basic idea of the robustness of a circuit are simulation
and testing. But these cannot prove the absence of possible errors except for
very small circuits.

Our formal approaches are the first to analyze a Single Event Transient (SET)
under logic, electrical, and timing masking including variation while considering
all possible input assignments. Moreover, the analysis is conservative, i.e., if our
approach decides that an SET may not cause an error this decision is safe under
the given constraints for variation. Technically, we model the behavior using
three-valued logic (0,1,X) where unknown values (X) conservatively approximate
variation effects. The decision engine is based on Boolean Satisfiability (SAT).
For brevity, we only consider combinational circuits. Along the lines of [19] the
extension to sequential circuits is straight-forward.

The downside of a SAT formula that models the circuit in high detail can
become very complex, especially if the signal that contains the SET reconverges.
While the described monolithic approach can handle most circuits of the ISCAS-
89 benchmarks, the number of variables to describe signals after a reconvergence
increases exponentially with the depth after the reconvergence.

To prevent this complication, we also present a hybrid approach that combines
simulation and formal verification to achieve scalability while keeping a detailed
technology model. We describe a circuit in high detail dependent on the used
technology. The resulting circuit is partitioned into a front and a back partition.
Different partitionings are possible. For our work, we put all gates that are
affected by reconvergence of the SET in the back partition. We can easily analyze
the front partition by using a SAT solver. Afterwards, we simulate detected
possible counterexamples on the whole circuit, generalize the counterexamples,
and modify the SAT formula until a robustness can be decided.

57
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As another advantage, the hybrid approach allows us to consider the delays
in higher detail, as we can easily differentiate between the different delays of a
gate depending on the input values during simulation.

In summary, the contributions of this chapter are two algorithms that

• consider logical, timing, and electrical masking,

• describe the gates in great detail, specific to the used technology and
considering variability,

• allow a monolithic approach to decide robustness, where the whole circuit
under an SET is described as SAT formula,

• allows a hybrid approach that uses SAT solving to check the front partition
and uses simulation to verify detected counterexamples on the complete
circuit, and

• can use composition as it partitions the circuit into two partitions to
prevent reconvergence in the front partition.

The following Section 4.1 introduces some preliminaries. Sections 4.2 and 4.3
describe our monolithic and hybrid algorithms for robustness, respectively. Exper-
iments with both algorithms are shown in Section 4.4 and Section 4.5 concludes
this chapter.

4.1 Preliminaries

Three-valued logic extends Boolean logic by a value X, meaning that it is
not known if that variable is 1 or 0. Operations on variables are extended
accordingly, e.g., 1 ∧ X = X and 0 ∧ X = 0. Three-valued logic allows us
to describe uncertainties within the circuit conservatively by setting uncertain
signals to X.

A circuit C consists of a set C.G of gates, a set C.I of input signals, and a
set C.O ⊆ C.G of outputs. To determine the connections between the gates, the
functions C.predecessors : G→ 2I∪G and C.successors : (G ∪ I) → 2G return the
direct predecessors or successors of a gate or input signal.

The set C.SO ⊆ C.O describes safe outputs and contains all outputs that
are secured, i.e., can correct the effects of an SET in this output, e.g., using
Razor [15].

As we want to model an SET in our circuit, consider Figure 4.1a which shows
SETs caused in a gate by an electron strike with constant energy but different
variation of the gate. On the one hand, we can see that the change from the
original value to the inverted value takes some time and the analog signal lies
somewhere in between during this time. On the other hand, the time when the
signal changes depends on the variability of the gate. As such, there is some
uncertainty in between, as we are not sure how the circuit interprets the signal
at these times, especially as they vary depending on the variability. To remain
conservative, we model the SET in three-valued logic as shown in Figure 4.1b
and consider the signal unknown during the described uncertainties.

An SET s that affects C is modeled by a number of parameters. The gate
s.g ∈ C.G describes the location where the SET strikes. The SET begins at
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Figure 4.2: A part from the robust counter with WaveSAT

the time s.b ∈ R and ends at s.e ∈ R. During an offset time at the beginning
s.ob ∈ R and at the end s.oe ∈ R, the signal becomes unknown. In between the
offsets, the signal is inverted.

Each gate g ∈ C.G is associated with an operation g.op : {0, 1, X}n →
{0, 1, X} that describes the output of the gate under given input values. The
function g.delay : {0, 1, X}n×{0, 1, X}n → R returns the delay of the gate when
the input changes, depending on the old and new input values. The values g.dmin

and g.dmax denote the minimal and maximal delay in g.delay, respectively.
For our algorithm, we only need to consider changes in the inputs where a

single input changes to X or was previously X due to the form of the SET that
always contains an X between two variables that are not X. When the signal of
the SET is propagated, the time when a signal is X will become longer in any
successor unless the SET is logically masked, due to our conservative handling
of the delays. We take the minimal possible delay with the given input values
when a signal changes to X and the maximal delay when it previously was X.
By handling delays in this way, a single delay value is sufficient for each change
from or to X without loosing any conservatism.

We introduce two models to describe the signals within the circuit. The first
model uses waveforms similar to [51]. The models uses timesteps and thus, all
functions that return time values, i.e., delays and the paramters of the SET,
need to be natural numbers. This is no hard restriction as the size of a timestep
can be scaled accordingly as these parameters are known beforehand. Each
gate is associated with a waveform and a timeshift value. The waveform is a
vector (v1, v2, . . . , vl) ∈ Varl that describes the changes of the output of the gate.
The timeshift describes an offset from timestep 0 for the first variable in the
waveform. The second variable models the following timestep and so on. The
logical value before and after the waveform remain identical to the first and last
variable, respectively. For example, a constant primary input i is described by
timeshift 0 and a waveform that contains only one element. An example that
describes a part of the counter circuit from Section 2.1 is given in Figure 4.2. In
this example, the variables are given explicit values for better readability. The
model itself uses variables that symbolically describe the behavior of the circuit
and provide a SAT formula later on.

To calculate the waveform of a gate g, the waveforms of the predecessor gates
are needed. All these waveforms need to be aligned to the same timeshift and
have the same length. To change the input’s waveforms to fulfill this condition,
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padding is used. The minimal timeshift tmin among the inputs is determined.
For an input with timeshift t, t− tmin copies of the first variable are added in
front of the waveform. This is feasible since the value does not change before t.
The function padfront : (N×Var∗)n → (N× Var∗)n performs this padding. The
natural number describes the timeshift and the variables describe the waveforms.
The value n is the number of predecessors of g and each waveform corresponds
to one predecessor. In Figure 4.2 this can be seen as the output of the not-gate
is padded with two 1 at the front to decrease the timeshift by 2 such that the
two inputs of the and-gate have the same timeshift.

Afterwards, all waveforms are extended to the same length. Given the
maximal length of the waveforms lmax, a waveform of length l is extended by
adding lmax − l copies of the last variable at the back to model the static value.
This padding is executed by the function padback : (N×Var∗)n → (N×Var∗)n.
In our example, this affects the first input of the and-gate. As the second input
has a length of 4, the first one needs to be padded accordingly and two 1 are
added at the back of the waveform.

After modifying the inputs and ensuring the same timeshift and length,
the waveform of g is determined. The waveform of g is as long as the padded
waveforms of the predecessors. The i-th variable is defined by using the operation
of the gate op(g) with the i-th variable of each waveform of the predecessors.
The timeshift of g is obtained by adding the delay of the gate to tmin

1. The
function applyop : V × (N×Varl)n → V ×N×Varl applies the gate’s operation
to the waveform with

applyop(g, (t, (v
1
1 , v

1
2 , . . . , v

1
l )), . . . , (t, (v

n
1 , v

n
2 , . . . , v

n
l ))) =

(g, t+ delaymin(g), (op(g)(v
1
1 , . . . v

n
1 ), . . . , op(g)(v

1
l , . . . , v

n
l ))

In Figure 4.2 this can be seen at both gates. At the and-gate, the and-
operation is applied pairwise to the inputs and the delay of the gate is added to
the timeshift of the inputs.

The complete process of padding and computing the new waveform is sum-
marized in the function wave : V × (N×Var∗)n → V × N× Var∗ where

wave(g, (t1, (v11 , v
1
2 , . . . , v

1
l1)), . . . , (t

n, (vn1 , v
n
2 , . . . , v

n
ln))) =

applyop(g, padback(padfront((t
1, (v11 , v

1
2 , . . . , v

1
l1)), . . . ,

(tn, (vn1 , v
n
2 , . . . , v

n
ln)))))

In our implementation of [51], we reuse the same variable for two timesteps t
and t+ 1 in a waveform if the input variables of the considered gate are equal at
both timesteps.

While this model can be used to describe timing analogously by choosing an
according size for the timesteps, when the circuit contains a high number of gates
with individual delays, an optimal stepsize that can exactly describe the timing
behavior is very small and leads to very long waveforms. These waveforms will
take a high effort to be handled and even with the reuse of variables lead to a
reduced performance of the algorithm.

1Here, we use the model of [51] with a fixed delay. The maximal delay is taken into account
in our approach in Section 4.2.
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Figure 4.3: A part from the robust counter with the second model

With these observations in mind, another model for the signals was developed
to avoid the described problems. In our second model, the output values of
the gate over time are similarly described by a vector g.wave ∈ Var∗ where the
set Var contains three valued variables. The vector g.switch ∈ R

g.wave. size()−1

contains the times when the output of the gate changes to the next variable. The
first variable in g.wave describes the signal before the SET affects g and the last
variable describes the signal after the effects of the SET have passed g. The vari-
ables in between describe value changes at the output of g due to the SET. The
time g.switchi defines when the signal changes from g.wavei to wavei+1. For bet-
ter readability, we combine the vectors g.wave = (v1, v2, . . . , vn) and g.switch =
(t1, t2, . . . , tn−1) to a single vector g.signal = (v1, t1, v2, t2, . . . , vn−1, tn−1, vn).
Thus, the signal of gate g is described by three vectors:

1. g.wave = (v1, v2, . . . , vn) describes the different values the gate outputs.

2. g.switch = (t1, t2, . . . , tn−1) describes the times when the output changes.

3. g.signal = (v1, t1, v2, t2, . . . , vn−1, tn−1, vn) combines g.wave and g.switch
into a single vector.

For example, a constant signal would only require a single variable and no switch
times and a gate g with g.wave = (v1, v2) and g.switch = (5) would change its
output at time 5 from v1 to v2. The according vector g.signal would be (v1, 5, v2).
While this model also uses a waveform to describe the output values of the gate,
the switch times allow a finer scaling, as we do not consider individual timesteps
but just use one element of the vector for any duration that the signal does not
change.

In Figure 4.3, this model is used to describe the circuit from Figure 4.2. Like
in Figure 4.2, the explicit values are merely for a better understanding as both
models use variables without needing explicit values.

When determining the wave g.wave and the switch times g.switch of a gate
g ∈ C.G, the signals of the predecessors p1, p2, . . . , pn need to be computed
already. We start by determining and sorting all existing switch times of the
predecessors and store them in a vector in-change. We refer to the i-th element
of a switch vector as si and define the length of pi.switch as li.

in-change = removeDouble(sort((p1.s1, . . . , p1.sl1 , . . . , pn.s1, . . . , pn.sln)))
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The function sort sorts the elements in the vector and the function removeDouble
removes values that are multiple times in the vector until only one such element
is left. With these switch times for g, we consider all changes within the
predecessor to consider them when computing the according variables. We can
see the computation of the switch times of the and-gate in Figure 4.3. The first
predecessor has one switch time of 1.0 and the second predecessor has a switch
time of 3.0, resulting in the in-change = (1.0, 3.0).

When we compute g.switch, we take every element from in-change and add
the minimal delay g.dmin, resulting in

g.switch = (in-change1 + g.dmin, . . . , in-change∑n
i=1 li + g.dmin)

The difference between the minimal and the maximal delay is considered in
further steps explained in Section 4.3.

For the output of the and-gate, both switch times are considered and increased
by 4.0, the delay of the and-gate. This results in the switch times 5.0 and 7.0 of
the and-gate.

To determine the variables that describe the output of g, we start by intro-
ducing the function varAt : C.G× R → Var. The variable varAt(g′, t) describes
the output of g′ at time t:

varAt(g′, t) = g′.wavei with (i = 1 ∨ g′.switchi < t)

∧(i = g′.switch. size() ∨ g′.switchi+1 ≥ t)

The formula (i = 1 ∨ g′.switchi ≤ t) describes the last time switch before t.
In the first possible case i equals 1 and refers to the first variable, which means
there is no time switch before t. Otherwise, the switch time g′.switchi needs to
be smaller or equal to t as it needs to describe the time before t. Similarly, the
second formula (i = g′.switch. size() ∨ g′.switchi+1 > t) describes that i either
refers to the last variable or the following switch time needs to be after t.

Using the function varAt, we can easily define the wave of g as a vector with
one element more than the switch time vector, i.e., a size of g.switch+ 1.

g.wavei =

{
g.op(varAt(p1, ti), . . . , varAt(pn, ti)) for i = g.wave. size()

g.op(varAt(p1, t̃+ 1), . . . , varAt(pn, t̃+ 1)) else

where ti = in-changei and t̃ = in-change∑n
j=1 lj

When using the function varAt exactly at a switch time, it returns the
variable that describes the signal before the switch. We use this to describe all
elements of g.wave except for the last one. For the last one, we add 1 to the last
switch time. This is obviously bigger than the last switch time and thus we get
the last variable from the wave of every predecessor.

The second model needs to handle a smaller number of elements compared
to the previous one even if every gate in the circuit has individual delays.
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Figure 4.4: Generating an SET in a gate

4.2 Monolithic Robustness Checking

Our first approach checks the possibility that any output value can change from
its nominal value during its sampling window due to a given SET. This algorithm
decides robustness by using a monolithic approach, i.e., the whole circuit under
the SET is formulated as SAT formula. A satisfactory assignment of the variables
would describe a counterexample to robustness as the SAT formula requires an
output signal that is not secured externally to behave erroneous.

If counterexamples exist, our algorithm returns one. Otherwise, the circuit is
guaranteed to be robust under the given SET, i.e., the given SET cannot affect
the output values for any assignment of input values.

To ensure conservativeness in our analysis we use X-values to model uncer-
tainties. For example, transitions caused by the original SET in Figure 4.1a
are approximated by X-values in the model of Figure 4.1b. For this approach,
we use the first model introduced to describe the values of the signals, i.e., the
model that uses timesteps.

Our algorithm decides the robustness in three steps:

1. Define the waveform for every gate iteratively by using the function propa-
gate

2. Compare the waveform of each output during its sampling window to the
nominal value

3. Return a counterexample or ”circuit is robust” if no counterexamples exist

The function propagate defines the waveform of a gate under the given inputs.
The execution of propagate corresponds to the call of multiple functions: The
function wave as introduced in the preliminaries describes the initial waveform
of the gate. The function varDelay describes the variable delay of the gate
due to variability and other factors. The SET is given by the function addSET
and electrical masking is considered in the function elecMask. Thus, we define
propagate : C.G × (N × Var∗)∗ → C.G × N × Var∗ as propagate = elecMask ◦
addSET ◦ varDelay ◦ wave. The individual functions used to compute propagate
are introduced in the following sections.

4.2.1 Generation

The function addSET : C.G× N× Var∗ → C.G× N× Var∗ induces the effects
of the SET s in the affected gate s.g. The inputs of addSET contain the current
gate, the waveform of the gate and its timeshift. If the gate equals s.g, the SET
is inserted into the waveform. Otherwise the inputs of this function are identical
to its outputs.
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In a first step, the algorithm ensures that the nominal behavior of the circuit
before and after the SET is modeled within the waveform. Padding extends
the waveform to start at timestep s.b− 1 and to end at s.e+ 1 by applying the
function padset : C.G× N× Var∗ → C.G× N× Var∗ with

padset(g, t, (v1, . . . , vl)) = (g,min(t, s.b− 1), (v1, . . . , v1︸ ︷︷ ︸
s.b−t+1

, v1, . . . , vl, vl, . . . , vl︸ ︷︷ ︸
s.e−t−l+2

))

where the function min returns the minimum value among the inputs. If s.b−t+1
or s.e− t− l + 2 are less than 0, no variables are added at the corresponding
location.

In a next step, the SET as seen in Figure 4.1b is inserted. The values in
the offset are replaced with cX which is set to X and the variables in between
are replaced with the negation of the variable at that location. The outputs of
addSET are the gate, the new waveform, and timeshift.

Inserting the SET is done by the function applyset : C.G × N × Varl →
C.G× N× Varl with

applyset(g, t, (v1, . . . , vl)) =

(g, t, (v1, . . . , vsset−t, cX , . . . , cX︸ ︷︷ ︸
s.ob times

,

¬vs.b+s.ob−t+1, . . . ,¬vs.e−s.oe−t+1,

cX , . . . , cX︸ ︷︷ ︸
s.oe times

, vs.e−t+2, . . . , vl))

With these functions, addSET is defined as:

addSET(g, t, (v1, . . . , vl)) ={
applyset(padset(g, t, (v1, . . . , vl))) if g = s.g

(g, t, (v1, . . . , vl)) otherwise

Example 3. Let us consider the counter in Figure 4.2. Note that for our
examples we use explicit values for better understandability, even though our
algorithm considers the variables symbolically. Let the primary input be a
constant 0, which corresponds to the waveform (0) and the timeshift 0. Let the
SET be (gnot, 1, 4, 1, 1), where gnot is the not-gate in the circuit. This means
the SET strikes in gnot at timestep 1 and lasts until timestep 4. The offset
during which the value of the signal becomes unknown is 1 at the front and
the end. The insertion of the SET is shown in Figure 4.4. Before the SET is
inserted, the regular waveform of gnot is computed. The resulting waveform is
(1) with timeshift 2. Afterwards, the waveform needs to be padded to include
the timestep before and the timestep after the SET. The SET starts at timestep
1 and ends at timestep 4. Therefore the waveform needs to include the timesteps
0 and 5. The padded waveform is (111111) with timeshift 0. Inserting the SET
sets the variables at the beginning and the end of the SET to X. The variables
in between are negated. When the SET is inserted, the waveform changes to
(1X00X1).
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Figure 4.5: Propagating a signal considering logical, timing, and electrical
masking as well as variability

4.2.2 Propagation

This section describes the propagation of values in the circuit by introducing
the waveforms for each gate and defining the relation between the variables.
The propagation considers the variable delays of the gates as well as electrical
masking.

The real delay of a gate at a certain time depends on different factors like
hardware variability, the input signals, or external influences. To approximate
this behavior without modeling all details that affect the delay of a gate, we
define a minimal and a maximal delay for each gate. If the output value of a
gate at a certain timestep differs for different possible delays, the output value
becomes unknown.

Let diff = g.dmax − g.dmin be the difference between the minimal and the
maximal delay of g. After generating the initial waveform, it is padded in the
back for diff variables to consider the latest possible output as well. This is
realized by the function paddelay : C.G× N× Var∗ → C.G× N×Var∗.

Example 4. Let us return to our example from Figure 4.2. In this example, we
consider the lower nand-gate that follows the not-gate from Example 3. The
gate is pictured in Figure 4.5. The nand-gate gnand has two predecessors with
the waveforms (1) from a not-gate that is not affected by the SET and (0X11X0)
from the not-gate from Example 3. The resulting initial waveform of gnand is
(0X11X0) with timeshift 4. Next, the variable delay is considered. The difference
diff between the maximal and the minimal delay is diff = dmax−dmin = 5−4 = 1.
Therefore, we use padding to add one variable at the back, which results in the
waveform (0X11X00).

For the variable delay, each variable in the waveform is compared to the diff
previous variables. If the values are equal, the output at that time is identical for
all applicable delays and remains the same. If the compared values are different,
the resulting output is set to X as different delays within the valid range cause
different output values. The function applydelay : C.G×N×Varl → C.G×N×Varl

with applydelay(g, t, (v1, . . . , vl)) = (g, t, (v′1, . . . , v
′
l)) describes this step. In this

function, the new variables v′i are defined as

v′i =

{
vi if vi−diff = · · · = vi

X otherwise

The complete process of adding the variable delay is summarized in the function
varDelay : C.G×N×Var∗ → C.G×N×Var∗ with varDelay = applydelay◦paddelay.
Example 5. In our example from Figure 4.5, we compare the value of each
variable to the value of the previous variable because diff = 1. If the values are
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equal, the variable is not changed, otherwise it is replaced with X. The first
variable has no previous variable and remains unchanged. The third variable
needs to be replaced with X because its value is 1 and the value of the previous
variable is X. The fourth variable remains unchanged, because the value of the
third and fourth variable are both 1. The resulting waveform is (0XX1XX0).

In a next step, the earlier described function addSET is used to induce the
SET, if g = s.g. In our example no SET is induced, as gnand = s.g. Afterwards,
electrical masking is applied. The application of electrical masking is done by
using the function elecMask : C.G × N × Varl → C.G × N × Varl presented in
Section 4.2.3.

Some low level optimizations were implemented to improve our algorithm by
efficiently reducing the amount of used variables.

When a waveform consists of a single variable, the according signal is constant.
If inputs of a gate g are constant, the output of g is also constant. We use
a waveform with a single variable for g. The single variable depends on the
input values and the operation of g. Due to the output of g being constant, the
timeshift is not relevant to define the output of g. The waveform with a single
variable can be padded towards any timestep if needed. Furthermore, variable
delays and electrical masking do not need to be considered for constant signals.

Within the fanout of the SET, waveforms usually consist of five blocks of
variables as long as the effects of the SET do not split and reconvergence. Either
all of these variables will have the same value or the values will still correspond
to the SET and have the form vX¬vXv. When computing the variable delay,
whenever different variables are compared, we use a variable from the second
or fourth block instead of introducing additional variables. If the values of all
variables are equal, it does not matter which variable is picked, and if the second
and fourth block’s value is X, the compared variables have different values and
the output of X in the modified waveform is correct.

4.2.3 Electrical Masking

Electrical properties of the gates mask short glitches. A glitch is a change
of a signal that lasts for a finite time and switches back to its original value
afterwards.

Let the threshold t be the maximal duration of glitches masked by gate g.
Every glitch shorter than or equal to t is removed by electrical masking. As
simplification, we set t to half the minimal delay of g. Let us assume, there are
two variables v1 and v2 with the same value val on the waveform and there are
t or less variables between them. In this case, the variables between v1 and v2
need to be set to the value val to remove the glitch. If multiple glitches exist in
the waveform, our process starts at the front and the processing of an earlier
glitch can remove a later glitch.

To prepare the decision of electrical masking on the waveform (v1, . . . , vl),
we introduce three vectors �v is0 = (vis01 , . . . vis0l ), �v is1 = (vis11 , . . . vis1l ), and
�v isX = (visX1 , . . . visXl ). A variable vis0i is 1 iff vi is equal to 0. The variables vis1i

and visXi are defined likewise for 1 and X, respectively.

Example 6. Let us apply this step to our example from Figure 4.5. The
current waveform from gnand is (0XX1XX0). Since exactly the first and the
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last variable are equal to 0, the vector �v is0 = (1000001). The other vectors are
�v is1 = (0001000) and �v isX = (0110110).

The following explanation describes how electrical masking towards 0 is
handled. These operations are executed equivalently for 1 and X.

After calculating the vectors �v is0, �v is1, and �v isX, we check for each variable
vi on the waveform, if it could be changed to 0 due to electrical masking. If vj
and vk are the closest variables to vi that are equal to 0 and have a distance of
k − j ≤ t variables, vi could be changed to 0.

For every variable vi−t, . . . , vi−1, it is checked if that variable is the last
variable before vi that is equal to 0. A variable vj is such a variable iff it is equal
to 0 and all variables between vj and vi, i.e., vj+1, . . . , vi−1, are not equal to 0.
For this comparison, we use the prepared variables �v is0:

vlast-0j = vis0j ∧ ¬vis0j+1 ∧ · · · ∧ ¬vis0i−1

We check the t variables behind vi similarly for the first variable after vi that is
equal to 0. For vj after vi the variable vfirst-0j is defined:

vfirst-0j = vis0j ∧ ¬vis0j−1 ∧ · · · ∧ ¬vis0i+1

Example 7. The threshold for glitches t is half the minimal delay of g, i.e.,
in our example t = gnand.dmin

2 = 2. For our example, we consider the fourth
variable v4. The single 1 is a glitch that will be removed and replaced by X.
Since t = 2, we need to consider the two variables before and after v4. Let us
only consider electrical masking towards X. We need to compute the variables
vlast-X2 , vlast-X3 , vlast-X5 , and vlast-X6 . The variable vlast-X2 is 0 because there is
another X between v2 and v4, i.e., v3. Since v3 is equal to X and there are
no further variables between v3 and v4, v

last-X
3 = 1. Similarly, vlast-X5 = 1 and

vlast-X6 = 0 hold.

After determining the location of the closest variables to vi that are 0, we
can decide if it is possible, that vi is masked towards 0. If any two variables
vlast-0j and vlast-0k are equal to 1 and the difference between j and k is t or less,

vi could be changed to 0, which is presented by the variable vpotential-0i :

vpotential-0i =
∨

j∈{i−t,...,i−1}

∨
k∈{i+1,...,j+t+1}

vlast-0j ∧ vfirst-0k

Example 8. In our example, v4 will be masked towards X, so we will compute
vpotential-X4 :

vpotential-X4 =
∨

j∈{4−2,...,4−1}
(

∨
k∈{4+1,...,j+2+1}

(vlast-Xj ∧ vfirst-Xk ))

= (vlast-X2 ∧ vfirst-X5 ) ∨ (vlast-X3 ∧ vfirst-X5 ) ∨ (vlast-X3 ∧ vfirst-X6 )

= 1

In case vi could be changed into more than one value, we change vi according
to the earlier variable before vi.
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Deciding which potential change is executed is realized by checking all possible
combinations of variables:

vchange-0i = vpotential-0i ∧
(¬vpotential-1i ∨

∨
j∈{i−t,...,i−1}

(vlast-0j ∧ ¬
∨

k∈{i−t,...,j−1}
vfirst-1k ))∧

(¬vpotential-Xi ∨
∨

j∈{i−t,...,i−1}
(vlast-0j ∧ ¬

∨
k∈{i−t,...,j−1}

vfirst-Xk ))

Example 9. In the example, it can be shown that vpotential-04 = vpotential-14 = 0.

This leads to the conclusion, that vchange-X4 = 1. For every other variable than
v4, electrical masking will not change the value. The resulting waveform for g is
(0XXXXX0).

The function elecMask : C.G× N× Varl → C.G× N× Varl summarizes the
electrical masking with elecMask(g, t, (v1, . . . , vl)) = (g, t, (v′1, . . . , v

′
l)) where

v′i =

{
val if vchange-vali = 1, val ∈ {0, 1, X}
vi otherwise

When two variables on the waveform next to each other are equal, the
resulting variables from electrical masking will be equal as well. In those cases,
we can reuse the variable that describes electrical masking in the previous
timestep.

Additionally, we check the length of equal variables in a row before considering
electrical masking. If this variable block is longer than t, electrical masking
within that block is impossible and is not checked.

4.2.4 Observation of Erroneous Behavior

By executing the described steps for each gate, it is possible to represent the
whole circuit in form of a SAT formula using three-valued logic. This formula is
used to check if erroneous output in the sampling window is possible.

For the observation of an error, the nominal value of each gate is computed. If
any output differs from the nominal output in the given sampling window, an error
occurs. This check is realized by the function gate-error : G.O×N×Var∗ → Var
with

gate-error(g, t, (v1, . . . , vl)) = g /∈ G.SO ∧
∨

1≤i≤l

(vi ⊕ outputnom(g, in1, . . . , in|I|)

where the variable ini corresponds to the i-th input.
The given SET can possibly lead to erroneous behavior if at least one of

these checks returns 1. This is checked by or-operations over all these checks.
The final variable overall-error describes, if an error occurs under the given

SET:

overall-error =
∨

g∈C.O

gate-error(g, tg, �vg)

The variable tg describes the timeshift of an output gate g and �vg is its waveform.
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Partition circuit into front and back

f := CREATE SAT(front)

cex := SAT(f)?

SIMULATE(cex)?

Block GENERALIZE(cex) in f

robust

not robust

true

false

false

true

Figure 4.6: Sketch of the algorithm

To find a counterexample, the variable overall-error is set to 1. If the
resulting SAT formula is satisfiable, the solution corresponds to a counterexample.
Otherwise, the circuit is robust against the given SET since no assignment of
variables exists that can lead to erroneous output. This final decision is done
by a SAT solver that is used to find a solution for the SAT formula or proof its
unsatisfiability.

4.3 Hybrid Robustness Checking

The interface of the hybrid approach is identical to the monolithic one and
decides if a given circuit C is robust against a given SET s. If C is not robust, a
counterexample to the robustness is returned. A counterexample contains an
input assignment that leads to faulty behavior of C under s.

This approach partitions the circuit into two parts to prevent the high
complexity that the monolithic approach needs when handling the splitting and
reconverging of the SET. As the SAT formula only describes the behavior of the
front part, the complexity is significantly lower than the corresponding formula of
the monolithic approach. In return, during the hybrid approach each generated
counterexample needs to be simulated. If a counterexample is spurious, it is
used to refine the SAT formula. Thus, a usual run of the hybrid approach is a
back and forth between SAT solving and simulation until a decision is made. To
efficiently handle the different delays of each gate, the hybrid approach uses the
second model to describe the signal, i.e., the model with a vector of switch times.

The algorithm is sketched in Figure 4.6. In the first step, the circuit is
partitioned into a front and back partition. The partitioning is sketched in
Figure 4.7. Afterwards, a SAT formula f is created to describe the behavior
of the front partition under s. A satisfying assignment of f is an assignment
to the primary inputs under which the effects of the SET can reach the back
area. If f is not satisfiable, the circuit is guaranteed to be robust against s.
Otherwise, the detected assignment is a counterexample cex against robustness
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primary output

�

front
SAT formula

back
simulation

Figure 4.7: Partition in front and back

of the front partition. The assignment cex is simulated on the whole circuit. If
the primary outputs of C are affected by s under the assignment of cex, the
circuit is not robust and we call cex a real counterexample. Otherwise, cex is a
spurious counterexample, that is generalized and blocked in f . Afterwards, we
continue to check if the modified f is satisfiable until we can make a decision if
the circuit is robust.

In the following sections, we will explain the proposed algorithm in detail.
We start with the top level algorithm in Section 4.3.1 and describe the underlying
algorithms in the following sections.

4.3.1 The Algorithm ROBUST CHECK

Algorithm 11 implements the sketch of Figure 4.6. In the beginning we partition
the circuit into front and back partion. For the used partitioning, we want all
gates in which the SET reconverges to be in the back partition. This partitioning
leads to easy SAT formulas that can quickly be solved, To determine the gates in
the back partition we use an approach similar to breadth first search towards the
outputs starting in the gate s.g in lines 1 – 12. We also prepare the set Ofront

that contains all primary outputs as well as all gates in the front partition that
have successors in Gback in line 13.

After the circuit is partitioned into the front and back partition, we create a
SAT formula f to model the front partition. This SAT formula is satisfiable if
the SET can reach the back partition and there is a possible fault in the circuit.
Line 14 calls the respective algorithm CREATE SAT.

While f is satisfiable, potential counterexamples exist which show the SET
reaches the back partition. If f is satisfiable, we get an assignment a in line 16.
The input assignment ain of a is simulated on the complete circuit by calling
the algorithm SIMULATE in line 18 to check if the potential counterexample is
real. The simulation is very similar to the generation of the SAT formula, but
simulates delays for the given input values accurately using the delay maps of
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Algorithm 11: ROBUST CHECK

input : a circuit C and an SET s
output : an assignment that leads to faulty behavior in C under s or

“robust” if no such assignment exists
1 Gfound := ∅
2 Gback := ∅
3 Qsearch :=< s.g >
4 while Qsearch =<> do
5 g := Qsearch. pop()
6 if g ∈ Gfound then
7 Gback := Gback ∪ {g}
8 else
9 Gfound := Gfound ∪ {g}

10 end
11 foreach g′ ∈ C. successors(g) do Qsearch. push(g

′)
12 end
13 Ofront := {g ∈ G \Gback|(C. successors(g) ∩Gback) = ∅ ∨ g ∈ C.O}
14 f := CREATE SAT(C,G \Gback, Ofront, s)
15 while SAT(f) do
16 a := getAssignment(f)
17 ain := ain : C.I → {0, 1, X} with ain(i) = a(i)
18 (asim, real) := SIMULATE(ain, C, s, C.G)
19 if real then
20 return a
21 else
22 foreach o ∈ {g ∈ C.O \ C.SO|f.po-faultyg(a)} do
23 f.po-faultyo.addClause(¬GENERALIZE(o, asim, a, C, s))
24 end

25 end

26 end
27 return “robust”
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gates. If the counterexample is real, it proves that the circuit is not robust and
the corresponding assignment is returned in line 20.

When the counterexample is spurious and the SAT formula assumes for a
non-safe primary output o ∈ C.O \ C.SO that o is affected by the SET, i.e.,
f.po-faultyo is true, we determine a minimal assignment that prevents the SET
from reaching o by calling GENERALIZE. We add the generalized assignment
to f.po-faultyo which is meant to be true if the SET could reach o. Since
the assignment prevents o from being affected by the SET, we can modify
f.gate-faultyo accordingly in line 23.

The loop from lines 15 – 26 further modifies f until either a real counterex-
ample is found or f is not satisfiable any more. In the later case, the loop
terminates and the algorithm returns that C is robust in line 27.

4.3.2 The Algorithm CREATE SAT

The algorithm to create the SAT formula that describes the front partition starts
by initializing the SAT formula f with “true” in line 1 of Algorithm 12. We use
a queue to iteratively compute the waveform and switch times for each gate.
The queue Q is initialized with all successors of the primary inputs in lines 2 – 5.
While Q is not empty, we pop the front element g of the queue. If g still has
predecessors whose waveform is not defined yet, g is pushed to the back of Q as
seen in lines 8 – 9.

Otherwise, we determine the initial signal g.signal of g in line 11 by calling
COMPUTE WAVE. The signal is further modified by considering variable delays
in line 12 by calling VARIABLE DELAY, adding the SET in case g = s.g in line 13
by calling ADD SET, and finally considering electrical masking in line 14 by
calling ELECTRICAL MASKING.

After g.signal computed, we add all successors of g to the queue that have not
been added yet and are part of the front partition. This is done in lines 15 – 19.

After the loop is done, we require all inputs to be different from X in
lines 22 – 24. Thus, we have only boolean inputs as all nominal behavior of the
circuit is boolean as well and the value X can only be assigned due to the SET.

In a next step, we introduce a subformula f.fo-faultyfo of f for each non-safe
front output fo ∈ Ofront \ C.SO. This subformula evaluates to “true” or X if o
is affected by the SET, i.e., faulty. The output fo is faulty iff the signal of fo is
not constant. These subformulas are generated for each output in lines 25 – 28.

We initialize further subformulas f.po-faultypo for each non-safe primary
output po ∈ C.O \ C.SO. The formula f.po-faultypo estimates conservatively
if po is affected by the SET. Initially, the formula is true iff at least one front
output in the fanin of po is faulty. Later on, f.po-faultypo will be modified to
store the information about detected spurious counterexamples. The according
loop is in the lines 29 – 32.

The final subformula overall-faulty introduced in line 33 is true iff at least
one front output is faulty. The variable overall-faulty describes that there is a
potential error in the circuit. As we require counterexamples that describe such
faults, we require overall-faulty to be different from 0 by adding the according
clause to f in line 34.

The resulting SAT formula describes the behavior of the front partition and
is only satisfiable if there is a fault in the front partition that could reach a
primary output. It is returned in line 35.
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Algorithm 12: CREATE SAT

input : a circuit C, a set Gfront of gates without potential reconvergence
of the SET, a set Ofront ⊆ Gfront of output gates of the front
part, and an SET s

output : a SAT formula that is satisfiable iff there can be a fault in the
front output in our model of C under the SET s

1 f := true
2 Q :=<>
3 foreach g ∈ ⋃

i∈C.I C.succesors(i) do
4 Q. push(g)
5 end
6 while Q =<> do
7 g := Q. pop()
8 if ∃p ∈ C. predecessors(g) : p.wave = ⊥ then
9 Q. push(g)

10 else
11 COMPUTE SIGNAL(g, C, f)
12 VARIABLE DELAY(g)
13 if g = s.g then ADD SET(g, s, f)
14 ELECTRICAL MASKING(g)
15 foreach suc ∈ C. successors(g) do
16 if suc.wave = ⊥ ∧ ¬Q. contains(suc) ∧ suc ∈ Gfront then
17 Q. push(suc)
18 end

19 end

20 end

21 end
22 foreach i ∈ C.I do
23 f. addClause(i = X)
24 end
25 foreach fo ∈ Ofront \ C.SO do
26 w = fo.wave
27 f.fo-faultyfo := new SAT subformula of f :

a ¬(w0 = w1 ∧ · · · ∧ wn−1 = wn)

28 end
29 foreach po ∈ C.O \ C.SO do
30 w = po.wave
31 f.po-faultypo := new SAT subformula of f :

a
∨

fo∈fanin(po) f.fo-faultyfo
32 end
33 overall-faulty :=

∨
o∈C.O\C.SO f.po-faultyo

34 f. addClause(overall-faulty = 0)
35 return f
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4.3.3 The Algorithms to Compute the Signals

During the execution of CREATE SAT, the signals for each gate are computed.
This is realized by using the algorithms COMPUTE SIGNAL, VARIABLE DELAY,
ADD SET, and ELECTRICAL MASKING. The algorithm COMPUTE SIGNAL
computes the initial signal, VARIABLE DELAY adds consideration of variable
delays due to variability or different input values, ADD SET inserts the SET s into
the signal in case the gate under consideration is s.g, and ELECTRICAL MASKING
modifies the signal to consider electrical masking.

The Algorithm COMPUTE SIGNAL

Algorithm 13: COMPUTE SIGNAL

input : a gate g ∈ C.G, a circuit C, and a SAT formula f that is
currently constructed

1 n := |C. predecessors(g)|
2 {p0, . . . , pn} := C. predecessors(g)
3 (i0, . . . , in) := (0, . . . , 0)
4 current-in = (c0, . . . , cn) := (p0.wave0, . . . , pn.wave0)
5 wg := (w0)
6 sg := ()
7 f. addClause(w0 = g. op(current-in))
8 while ∃j ∈ {0, . . . , n} : ij < pj .switch. size() do
9 m := min(pj .switchij |j ∈ {0, . . . , n}})

10 j := indexOf(m)
11 current-in := (c0, . . . cj−1, pj .waveij+1, cj+1, . . . , cn)
12 ij := ij + 1
13 sg := sg ◦ (m+ g.dmin)
14 v := new Variable
15 wg := wg ◦ (v)
16 f. addClause(v = g. op(current-in))

17 end
18 g.wave := wg

19 g.switch := sg

The algorithm COMPUTE SIGNAL determines the waveform and switch
times of a gate g depending on the inputs and gates’ operation and is shown in
Algorithm 13.

We define an index for each predecessor of g that refers to a position in the
waveform of the predecessor. The current indices refer to the current inputs
and will increase while the algorithm moves forward in time. We also introduce
the current inputs current-in that depend on the current indexes. As a final
preparation, we define the first variable of g.wave. The preparations are done in
lines 1 – 7.

While there is still an index that refers to an existing switch time, we
determine the minimal switch time m and the corresponding index j in the
lines 9 and 10. We adjust the current inputs by using the next variable of the
j-th input in line 11 and increase the index ij by one in line 12. We add the next
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switch time which is the determined minimal switch time and the added minimal
delay of g, i.e., m+ g.dmin in line 13 and a new variable v to the waveform which
needs to be equal to the output of g with the changed inputs in the lines 14 – 16.

The Algorithm VARIABLE DELAY

Algorithm 14: VARIABLE DELAY

input : a gate g ∈ C.G
1 (t1, . . . , tn) := g.switch
2 for j := 2, 4, . . . , n do
3 tj := tj + (g.dmax − g.dmin)
4 end
5 g.switch := (t1, . . . , tn)

When considering the variable delay of g in the algorithm VARIABLE DELAY
shown in Algorithm 14, we exploit that there is no reconvergence in g as g is in
the front partition. This leaves three cases for the waveform:

1. The output is constant

2. The output has the form of the SET: vX¬vXv
3. The output has the form of the SET with the middle part removed: vXv

As the variables do not have assigned values at this time, it is impossible
to decide which case will hold, however we can do the following modification
in all cases. Since we will only modify the switch times in this algorithm, the
semantics of the output will not change if it is constant. Otherwise, we hold
the output at X as long as possible within the limits of the delays to remain
conservative. Since in a non-constant output every second variable is X, we
set the switch times at those locations to the maximum delay instead of the
minimum delay. Therefore we use the minimal delay when we change the output
to X and use the maximal delay when we change back to another value.

The Algorithm ADD SET

Algorithm 15: ADD SET

input : a gate g ∈ C.G, an SET s, and a SAT formula f
1 //Signal of g is constant before SET is induced
2 v := g.wave0
3 vX , vN := new Variable
4 g.wave := (v, vX , vN , vX , v)
5 g.switch := (s.b, s.b+ s.ob, s.e− s.oe, s.e)
6 f. addClause(vX = X ∧ vN = ¬v)

If we induce the SET s into a gate g, we use the algorithm ADD SET shown
in Algorithm 15. The waveform of g needs to be constant and only contain one
variable as only the SET leads to a change in the output of a gate. In line 4 we
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(x, 2, xX, 3, xN , 6, xX, 9, x)

(y)

�(z, 6, zX, 7, zN , 10, zX, 13, z)�(z, 6, zX, 8, zN , 10, zX, 14, z)�(z, 6, zX, 14, z)

dmin = 4
dmax = 5

Figure 4.8: Example for generation of waveform and switch times of a gate
considering variable delays and electrical masking depending on gate

generate a new waveform for g which corresponds to the SET and in line 5 we
set the switch times according to the parameters of the SET.

The Algorithm ELECTRICAL MASKING

Algorithm 16: ELECTRICAL MASKING

input : a gate g ∈ C.G
1 t := g.dmin

2
2 for j := 0, . . . , g.switch. size()− 2 do
3 for k := j + 1, . . . , g.switch. size()− 1 do
4 //Equal checks between variables check if the variables are equal,

not their values
5 if g.switchk − g.switchj ≤ t ∧ g.wavej = g.wavek+1 then
6 g.wave := (g.wave0, . . . , g.wavej−1,

a g.wavek+1, . . . , g.waveg.wave. size()−1)
7 g.switch := (g.switch0, . . . , g.switchj−1,

a g.switchk+1, . . . , g.switchg.switch. size()−1)

8 end

9 end

10 end

The final modification to the waveform is done by ELECTRICAL MASKING,
shown in Algorithm 16. The electrical properties of a gate remove short glitches,
i.e., changes of the value that last for a short time only. A common abbreviation
for this time is half the delay of gate. To remain conservative, we use half the
minimal delay and set the variable t for the threshold accordingly in line 1. In
the entwined loops from line 2 – 10, we check if two equal variables have a
distance of t or less between them. If so, the waveform and the according switch
times between the two variables describe a glitch that is removed. So we adjust
the waveform and switch times of g accordingly in lines 6 and 7.

The effects of these algorithms are shown in Figure 4.8 to handle the same
nand-gate that was handled in examples 4 to 9 for our monolithic approach.

4.3.4 The Algorithm GENERALIZE

The algorithm GENERALIZE shown in Algorithm 17 gets the assignment of a
spurious counterexample and a primary output o that is affected by the SET
according to the SAT formula. We use a greedy approach and return a SAT
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Algorithm 17: GENERALIZE

input : a gate o that is a primary output, an assignment
asim : (I ∪ C.G) → {0, 1, X}∗ of inputs and gate signals to values,
a partial assignment aSAT(I ∪C.G) → {0, 1, X}∗, a circuit C and
an SET s

output : a SAT formula f , when f is true, an eventual fault in o cannot
propagate to the outputs of C

1 FI := const-fanin(g, aSAT)
2 sortByDistance(FI, o)
3 agen := agen : FI → {0, 1, X} with agen(i) = asim(i)
4 foreach i ∈ {FI. size(), . . . , 1} do
5 agen(FIi) := X
6 (asim, real) := SIMULATE(agen, C, s, fanin(o))
7 if real then agen(FIi) := asim(FIi)

8 end
9 return

∧
{g∈FI|agen(g) �=X} g = agen(g)

formula that describes a generalized assignment that suffices to prevent the SET
from propagating towards o.

In line 1, we get the vector FI that contains the deepest constant signals
within the fanin of o. We stop the search for the fanin at the first constant signal
in the front partition according to aSAT as these are equal in the assignment of
the counterexample as well as the simulation because the different considerations
of delays do not matter for constant signals. By this, we can further generalize
the assignment. For example, in an xor-gate both inputs are relevant as a
change of any input changes the output. However, we do not necessarily care
about the exact inputs of the gate but only the output which can have different
possible input assignments.

Afterwards, in line 2, we sort the vector FI by the distance of the gates to
o. In this order, we can start to check gates that have a higher distance earlier
and eventually set their assignment to X before checking closer gates that often
have a higher impact on o. For example, an or-gate where one constant input
is 1 only needs that 1 for its output to remain 1 and can set all variables that
affect the other input to X.

In the loop from line 4 – 8, we try for each gate FIi, in order from high to low
distance to o, to set the assignment agen(FIi) to X in line 5 and simulate the
modified assignment in line 6. To avoid unnecessary overhead, we only simulate
the gates within the fanin of o. If the modified counterexample is real, i.e., o
evaluates to X or the SET propagates to o, the value of FIi is relevant for the
SET not propagating towards o and we need to reset agen(i) to its original value
a(i) in line 7.

The simulation is realized by an implementation similar to the algorithm
CREATE SAT. However, unlike CREATE SAT, we compute the specific outputs
under the given assignment. As only the output of o is relevant, we only
simulate the fanout of o. An additional advantage of SIMULATE compared to
CREATE SAT is that we can easily consider the individual delays based on input
values, as these values are known. Using this information in the SAT formula
would complicate the SAT formula significantly.
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Finally, in line 9 we return a formula that blocks the generalized counterex-
ample.

4.3.5 Discussion

The hybrid approach provides a good performance due to two main reasons. On
the one hand the generated SAT formula for the front partition is very simple
and quickly solved and on the other hand our generalization allows us to block a
high number of counterexamples after a single solver call.

When generating the SAT formula for the front partition, we can exploit
the absence of a reconverging SET. Thus, we can describe the output of each
gate with at most three variables as explained in Section 4.3.3. Additionally, no
further variables are needed for the variable delays or electrical masking because
it suffices to check for equal variables instead of equal values. The resulting SAT
formula can usually solved within seconds or less and we can easily use the solver
multiple times within a short time.

If we would block each spurious counterexample individually, the runtime
would not be feasible for most circuits as there is usually a very high number of
counterexamples. For this reason, we generalize counterexamples as shown in
Section 4.3.4. By generalizing detected counterexamples, we can block multiple
similar counterexamples with one SAT solver call. The degree of generalization
depends on the circuit but usually provides a significant speed up.

4.4 Experiments

For our experiments, we use the ISCAS-85 benchmarks. To apply our algorithms
to robust circuits, all circuits of the benchmarks have been modified into two
robust versions. One version uses TMR to handle SETs. The original circuit
is triplicated and a voter decides which output value is returned by using the
value of the majority. The other version uses Timed TMR (TTMR) similar to
[42]. The outputs of the original circuit are delayed by buffers. A voter decides
similarly to TMR by using the current values, the value delayed by δ buffers
and the value delayed by 2δ buffers. This method requires less overhead than
TMR but still provides robustness against SETs as long as their duration is
short enough.

We run the experiments on a Dual-Core AMD Opteron Processor 2222 SE
with 3 GHz and 64 GB main memory. The transistor-level simulation is done
with the tool Spectre from Cadence using a commercial 65nm technology.

The experiments are separated into three parts. In the first part, we com-
pare our monolithic approach against Spectre to show that the models of our
algorithms are correct and they conservatively check robustness. We also test
how the conservatism affects the gained results.

In the second part, we will run our algorithms on the ISCAS-85 benchmarks to
show their performance. Beside our two algorithms, we will also run experiments
with a monolithic approach that uses the second model for signals, i.e., the model
with switch times, to show that this model does speed up the algorithm.

Finally, we will analyze in high detail how the length of the SET and the
grade of variability affects the runtime of our hybrid approach.
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Figure 4.9: Output of c17 under a glitch in primary input G3

Assignments Spectre Our algorithm
G1 = 1, G3 = 1 82ps 30ps
G1 = 1, G3 = 0 111ps 60ps
G1 = 0, G3 = 1 107ps 60ps
G1 = 0, G3 = 0 76ps 60ps

Table 4.1: Minimal SET causing an error per input and method

4.4.1 Validation

To validate the accuracy and functionality of the monolithic approach we test
it against Spectre. We use c17 as a test case and perform a detailed Monte-
Carlo simulation including on-chip variability for each transistor. The effect
of the alpha particles is modeled as a double exponential current pulse with a
parameterizable energy, as done in [39]. When all the inputs are set to 1 and
an SET is induced into input G3 the effect is clearly visible in one output as
seen in the top graph in Figure 4.9. However, the effects on the other output
vary depending on the variability of the gates as seen on the lower graph. Unlike
previous symbolic tools that do not consider variability, our algorithms can
discover the possible error on the second output.

Furthermore, we validate that the results of the monolithic approach and
Spectre are consistent for any input combination. Because of the long simulation
time required by Spectre, we disabled the variability analysis. In this second
experiment we used c17 with TTMR, the SET is induced into G10, a nand-gate
directly behind the inputs. Different strengths of particle strikes are simulated
with Spectre for all possible input valuations. Due to the physical behavior
the minimal strength of the particle strike and therefore the length of the SET
that leads to an error differs depending on the inputs G1 and G3 of G10. The
results of our algorithm depend on the expected output value of G10. Since there
are two possible output values, we consider two different cases while Spectre
considers four different cases, one for each possible input of G10. We adjusted
our algorithm to return all counterexamples instead of one to check which
assignments of variables are counterexamples for a given SET. We used timesteps
of 5ps for our algorithm. The results of this experiment are shown in Table 4.1.
Since the Spectre simulations did not consider variability in this experiment,
we set dmin = dmax for all gates. The result of our algorithm is usually off by
50ps due to abstractions from the transistor level and conservative analysis of
electrical masking. Besides the different minimal lengths, our algorithm returned
exactly all counterexamples that were confirmed by Spectre to lead to an error.
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Figure 4.10: Runtime experiments comparing the monolithic approach (white),
the monolithic approach with the switch times model (light gray), and our hybrid
approach on ISCAS-85 circuits, using the normal (n), TMR (t), and TTMR (T)
version

circuit [58] SAT-based hybrid solver calls
c432 123.1s 2.8s 0.5s 2
c432-TMR 432.5s 35.1s 2.3s 5
c432-TTMR 5943.4s timeout 1534.1s 1342
c2670 67.8s 47s 0.4s 2
c2670-TMR 227.0s 588.9s 9.1s 3
c2670-TTMR 1758.2s timeout 573.2s 1025
c7552 5982.3s timeout 2.2s 1
c7552-TMR timeout timeout 70.7s 11
c7552-TTMR timeout timeout timeout 2227

Table 4.2: Runtimes of all approaches and number of solver calls for hybrid
approach on some circuits

The transistor-level simulation for all possible inputs and particle strikes on
c17 took a few hours while our algorithm took less than a minute, which is a
significant speedup in comparison to Spectre. As the model of the hybrid is
equivalent to the model of the monolithic approach, the gained results can also
be applied to the hybrid algorithm.

4.4.2 Runtime

In these experiments, we compare the runtimes our hybrid approach against our
monolithic approach. In addition, we also consider a modified monolithic version
that uses the second model for signals, i.e., the model with switch times. We use
the ISCAS-85 benchmarks. Each circuit is analyzed in its regular version and in
two fault tolerant variations. The first variation uses TMR and the second uses
TTMR.

For each circuit, we choose a random gate near the inputs as location for the
SET. An SET close to the inputs usually affects more gates and leads to a larger
number of gates where the SET overlaps to sufficiently compare the differences
between the algorithms.

The resulting runtimes are shown in Figure 4.10. In addition, a table with
the runtimes on a number of chosen circuits that presents all approaches as well
as the number of solver calls done by our hybrid approach is shown for some
circuits in Table 4.2.
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We can see that our hybrid approach is usually faster than the monolithic
approach unless both time out after six hours. The modified monolithic approach
often has a runtime between the two other approaches, showing that our model
also decreases the runtime.

Even on the bigger circuits the hybrid algorithm takes less than 2.5 seconds
to find a counterexample that disproves robustness for the normal non-robust
versions. The hybrid algorithm generates a simple SAT formula for the front and
finds counterexamples quickly. Since the circuits are not robust by themselves,
only few counterexamples need to be simulated until a real counterexample is
found. In comparison, the monolithic approach creates a complex SAT formula
for each circuit which takes more time to solve.

For the robust circuits, the hybrid approach needs to generalize the detected
counterexamples until robustness is proven. The generalization for the TMR
circuits is quickly done as for each primary output the outputs of the two copies
that are unaffected by the SET suffice to guarantee a correct value in the primary
output. In both TMR and TTMR, we exploit that the fault correction is applied
to each primary output individually and only need to analyze the relevant fanin.

In all TTMR circuits, the modified monolithic approach times out. Due to
the higher degree of detail for delays, the different switch times overlap and new
variables need to be introduced to describe the value in between. With increasing
depth of the circuit, this effect leads to an exponential growth of variables for
each gate which especially affects the TTMR circuits. This effect only occurs
when the SET reconverges in the front partition and therefore does not affect
our hybrid approach.

Only the circuits c880 and c5315 in the normal and TMR version are decided
faster by [58]. In these cases, the location of the SET leads to a very small back
partition. Thus, the resulting SAT formula for the front is only slightly easier to
solve than the one generated by [58]. As our implementation may need multiple
counterexamples even in non-robust circuits, our runtime is slightly higher in
these specific cases. However, over all experiments the hybrid approach provides
an average speedup of 748 compared to the monolithic approach.

Further experiments were done to check the significance of our optimizations.
In our experiments with the monolithic approach, the runtime decreased sig-
nificantly with each optimization, i.e., reusing variables, considering constant
signals, and exploiting the form of the SET. Especially the optimization to
consider constant signals provided an average speedup of 40.

We ran the experiments on c2670 with our hybrid approach again without
using generalization. In the non-robust circuit, the number of detected spurious
counterexamples only increased slightly as a real counterexample can easily be
found in a small number of tries. In the robust cases, we generated 86 times
more counterexamples and 340 times the previous runtime on average. These
numbers show that the generalization is relevant for the runtime as discussed in
Section 4.3.5.

As an alternative way to partition the circuit, we tried to put all gates within
the back partition that require more than k variables for different k from 10
until all gates were in the front part. This alternate partitioning did not provide
any significant speed up and took more time in most cases.
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4.4.3 Effects of Variability and SET Duration

In these experiments, we will show the effects of different SET durations and
variablility on the hybrid approach. As the monolithic approach is not that
precise when describing delays, we do not consider it here.

We focus on the circuit c432 from the ISCAS’85 benchmarks. The original
circuit c432 has 36 primary inputs, 7 primary outputs, and 160 gates. We
consider the modified TTMR-version of c432 where every primary output is
changed to handle short SETs. During our experiments with different parameters,
we measure the runtime and the number of generated counterexamples for each
run.

As location for the SET, we chose the gate U162 near the inputs. This choice
lengthens the path of the SET to the primary inputs and increases the rate of
reconvergence, increasing the effect of variability on the primary outputs. During
our experiments, we use different numbers n of buffers to delay the output values,
different grades of variability, and different durations of the SET. We run our
experiments with n = 1, 2, 3 and a variability between 0ns and 0.1ns. The grade
of variability describes the difference between minimum and maximum delay for
each gate and each possible change of inputs. The duration of the SET is chosen
depending on n, such that we show experiments near the critical duration where
the circuit changes between being robust and not robust. Outside of the shown
intervals, the runtime and number of counterexamples do not change any more,
except for extremely short SETs.

The results of our experiments are shown in Tables 4.3, 4.4, and 4.5. Each
table shows the experiments for a different number n of delaying buffers. Tables
4.3, 4.4, and 4.5 present the results for n = 1, n = 2, and n = 3, respectively. For
each experiment, we show if the algorithm decides whether the circuit is robust
or not, shown by the color. Red means that the circuit is not robust against the
given SET under the considered variability and green means that it is robust.
The first number shows the runtime of the experiment and the second one
describes the number of spurious counterexamples that were generated during
the run of the algorithm.

Since the initial SAT formula for the front area is almost identical for all exper-
iments, the number of spurious counterexamples is approximately proportional
to the runtime.

The critical duration of an SET, i.e., the shortest duration that can cause an
error in the circuit, depends on the variability. Higher variability will decrease
the critical duration as an error is more likely under high variation.

When increasing the duration of the SET above the highest or below the
lowest shown value, the number of counterexamples and the duration remain
the same. When the SET is long enough, it can propagate towards all primary
outputs it can reach and is not prevented by TTMR or electrical masking.
Choosing an even longer duration will only change the duration of an erroneous
output value but not the existence of it. Therefore, a real counterexample can
be found within a short runtime that does not depend upon the length of the
SET or the grade of variability as long as the SET is long enough.

On the other hand, when the SET is sufficiently short, it will be blocked by
TTMR at the same locations and the runtime will not change as long as the
SET is not extremely short. In that case, it will be blocked by electrical masking
alone and the runtime will decrease again.
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�����������
SET

Variability

0.1ns 0.05ns 0.025ns 0.01ns 0ns

3.3ns
1.46s
8cex

1.46s
8cex

1.48s
8cex

1.5s
8cex

1.52s
8cex

3.2ns
1.45s
8cex

1.51s
8cex

1.43s
8cex

6.69s
50cex

6.67s
50cex

3.1ns
1.45s
8cex

1.51s
8cex

1.99s
15cex

7.67s
52cex

7.61s
52cex

3ns
1.6s
8cex

2.11s
15cex

8.44s
15cex

8.36s
52cex

9.31s
55cex

2.9ns
1.48s
8cex

8.53s
62cex

7.86s
52cex

5.79s
54cex

5.75s
54cex

2.8ns
1.95s
15cex

7.08s
49cex

5.82s
56cex

6.08s
53cex

6.06s
53cex

2.7ns
2.01s
15cex

9.63s
62cex

6.07s
53cex

31.7s
150cex

31.69s
150cex

2.6ns
7.16s
49cex

6.89s
52cex

6.38s
55cex

137.87s
317cex

137.11s
317cex

2.5ns
9.34s
55cex

9.49s
76cex

382.89s
573cex

2.94s
21cex

156.27s
389cex

2.4ns
5.28s
46cex

23.05s
127cex

79.42s
244cex

87.28s
249cex

264.49s
512cex

2.3ns
10.04s
85cex

20.12s
117cex

2609.3s
1696cex

1637.73s
1368cex

1643.78s
1368cex

2.2ns
5.68s
46cex

7.22s
56cex

1571.19s
1409cex

1494.78s
1324cex

1488.91s
1324cex

2.1ns
5.54s
48cex

2291.56s
1628cex

1437.01s
1306cex

1464.18s
1325cex

1469.44s
1325cex

2ns
43.64s
196cex

1749.6s
1395cex

1443.78s
1265cex

1442.54s
1225cex

1444.62s
1225cex

1.9ns
24.99s
152cex

1427.54s
1296cex

1424.67s
1225cex

1432.54s
1225cex

1425.56s
1225cex

1.8ns
25.48s
152cex

1423.82s
1225cex

1429.58s
1225cex

1430.65s
1225cex

1432.03s
1225cex

1.7ns
2154.52s
1511cex

1435.44s
1225cex

1429.88s
1225cex

1431.15s
1225cex

1432.75s
1225cex

1.6ns
1526.2s
1335cex

1435.44s
1225cex

1429.88s
1225cex

1431.15s
1225cex

1432.75s
1225cex

1.5ns
1431.61s
1265cex

1435.44s
1225cex

1429.88s
1225cex

1431.15s
1225cex

1432.75s
1225cex

1.4ns
1436.94s
1225cex

1435.44s
1225cex

1429.88s
1225cex

1431.15s
1225cex

1432.75s
1225cex

Table 4.3: Experiments with c432-TTMR1 showing runtime, number of spurious
counterexamples and whether the circuit is robust (green) or not robust (red)
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�����������SET

Variability

0.1ns 0.05ns 0.025ns 0.01ns 0ns

6.3ns
1.59s
8cex

1.56s
8cex

1.6s
8cex

1.92s
8cex

1.56s
8cex

6.2ns
1.58s
8cex

1.58s
8cex

1.57s
8cex

7.01s
50cex

6.91s
50cex

6.1ns
1.62s
8cex

1.6s
8cex

2.1s
15cex

7.3s
49cex

9.38s
65cex

6ns
1.87s
8cex

2.53s
15cex

8.6s
51cex

10.49s
63cex

10.45s
63cex

5.9ns
1.62s
8cex

7.42s
51cex

9.38s
63cex

5.49s
51cex

5.55s
51cex

5.8ns
2.06s
15cex

9.05s
63cex

5.46s
51cex

6.28s
53cex

6.45s
53cex

5.7ns
2.04s
15cex

2.78s
25cex

6.37s
53cex

32.07s
150cex

32.63s
150cex

5.6ns
9.16s
63cex

3.35s
30cex

5.63s
46cex

140.11s
317cex

139.98s
317cex

5.5ns
4.92s
31cex

5.6s
46cex

77.29s
223cex

3.13s
21cex

3.03s
21cex

5.4ns
6.09s
42cex

12.29s
66cex

21.87s
113cex

159.96s
389cex

695.82s
856cex

5.3ns
2.67s
19cex

22.1s
113cex

3.11s
21cex

1605.97s
1376cex

1603.08s
1376cex

5.2ns
8.48s
51cex

3.11s
21cex

1639.44s
1358cex

1528.97s
1341cex

1534.24s
1341cex

5.1ns
16.6s
113cex

3.14s
21cex

1492.15s
1269cex

1142.26s
1306cex

1446.41s
1306cex

5ns
11.9s
71cex

1667.54s
1358cex

1472.64s
1306cex

1467.99s
1306cex

1471.21s
1306cex

4.9ns
3.04s
21cex

1533.06s
1341cex

1442.38s
1306cex

1443.93s
1306cex

1442.71s
1306cex

4.8ns
3.07s
21cex

1445.28s
1306cex

1448.15s
1306cex

1447.78s
1306cex

1449.84s
1306cex

4.7ns
3.19s
21cex

1445.28s
1306cex

1448.15s
1306cex

1447.78s
1306cex

1449.84s
1306cex

4.6ns
1444.49s
1306cex

1445.28s
1306cex

1448.15s
1306cex

1447.78s
1306cex

1449.84s
1306cex

4.5ns
1464.23s
1317cex

1445.28s
1306cex

1448.15s
1306cex

1447.78s
1306cex

1449.84s
1306cex

4.4ns
1449.39s
1306cex

1445.28s
1306cex

1448.15s
1306cex

1447.78s
1306cex

1449.84s
1306cex

4.3ns
1449.39s
1306cex

1445.28s
1306cex

1448.15s
1306cex

1447.78s
1306cex

1449.84s
1306cex

4.2ns
1449.39s
1306cex

1445.28s
1306cex

1448.15s
1306cex

1447.78s
1306cex

1449.84s
1306cex

Table 4.4: Experiments with c432-TTMR2
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�����������
SET

Variability

0.1ns 0.05ns 0.025ns 0.01ns 0ns

1.76s
8cex

1.77s
8cex

1.79s
8cex

1.77s
8cex

15.2ns
1.78s
8cex

1.76s
8cex

1.77s
8cex

1.79s
8cex

1.77s
8cex

15.1ns
1.79s
8cex

1.78s
8cex

1.76s
8cex

8.3s
51cex

8.27s
51cex

15ns
1.81s
8cex

1.81s
8cex

8.2s
51cex

10.37s
63cex

10.22s
63cex

14.9ns
1.77s
8cex

2.28s
15cex

9.95s
63cex

5.81s
51cex

5.71s
51cex

14.8ns
1.79s
8cex

10.36s
63cex

5.88s
51cex

6.97s
53cex

7s
53cex

14.7ns
2.27s
15cex

12.39s
78cex

6.12s
43cex

56.71s
185cex

56.06s
185cex

14.6ns
2.26s
15cex

7.87s
54cex

5.85s
42cex

45.04s
158cex

48.63s
171cex

14.5ns
5.55s
31cex

3.52s
21cex

279.7s
473cex

145.03s
317cex

144.17s
317cex

14.4ns
6.24s
41cex

11.22s
55cex

110.06s
262cex

165.24s
389cex

167.05s
389cex

14.3ns
2.85s
19cex

29.19s
124cex

3.53s
21cex

1636.99s
1376cex

1615.81s
1376cex

14.2ns
8.28s
45cex

11.14s
71cex

2030.54s
1543cex

1578.31s
1357cex

1578.8s
1357cex

14.1ns
18.06s
104cex

3.55s
21cex

1618.85s
1376cex

1487.12s
1342cex

1490.97s
1342cex

14ns
15.93s
101cex

1649.25s
1358cex

1558.4s
1357cex

1494.72s
1342cex

1494.28s
1342cex

13.9ns
10.82s
71cex

1505.97s
1270cex

1497.17s
1342cex

1491.71s
1342cex

1500.2s
1342cex

13.8ns
3.51s
21cex

1439.45s
1305cex

1494.52s
1342cex

1492.26s
1342cex

1502.66s
1342cex

13.7ns
3.49s
21cex

1495.61s
1342cex

1494.98s
1342cex

1498s
1342cex

1501.91s
1342cex

13.6ns
1942.93s
1473cex

1495.61s
1342cex

1494.98s
1342cex

1498s
1342cex

1501.91s
1342cex

13.5ns
1470.27s
1332cex

1495.61s
1342cex

1494.98s
1342cex

1498s
1342cex

1501.91s
1342cex

13.4ns
1499.71s
1342cex

1495.61s
1342cex

1494.98s
1342cex

1498s
1342cex

1501.91s
1342cex

Table 4.5: Experiments with c432-TTMR3
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The runtime usually increases the closer the duration of the SET is to the
critical duration and timing becomes very important. In the non-robust case,
the number of real counterexamples usually decreases. Thus, we detect more
spurious ones until a real counterexample is detected. Since the SAT formula
is more conservative than the simulation in respect to the timing, additional
spurious counterexamples exist. Detecting these spurious counterexamples will
increase the runtime.

However, in some experiments, the runtime decreases close to the critical
duration. It is possible that a SAT solver detects a real counterexample earlier
even though more spurious counterexamples exist due to its used heuristics. An-
other possibility can be signals that overlap in this specific setup and allow more
generalization or decrease the number of spurious counterexamples. So, while
the runtime usually increases close to the critical duration, some circumstances
can also decrease it.

Compared to simulative approaches, the described algorithm can handle
different grades of variability without a decrease in runtime by using three-
valued logic. On the other hand, simulative approaches need to do multiple
simulations to consider different variations in the delays. When the grade of
variation is changed for a simulative approach, the number of required simulation
runs increases exponentially to the grade of variation. As mentioned before,
analyzing the circuit c17 of ISCAS-85 with 5 gates under a small grade of
variability took hours while our algorithms could detect all real counterexamples
to robustness within seconds.

We tried to run the equivalent experiments with the modified monolithic
approach. When we consider the experiment on c432-TTMR3 with the duration
14.2ns of the SET and a grade 0.025ns of variability, the experiment took 2030s
with the hybrid approach, generating 1543 spurious counterexamples. The initial
SAT formula consisted of 6962 variables and grew to 904751 variables when we
blocked all spurious counterexamples. On the other hand, the SAT-only approach
was not even able to generate the complete SAT formula within six hours.

4.5 Conclusion

We presented two verification approaches considering SETs under logic, timing,
and electrical masking, including variation, and considering all possible input
assignments. Validation against transistor-level simulations shows the conser-
vativeness. Runtimes cannot directly be compared with previous techniques as
the approach has unique characteristics. However, the approach is significantly
faster compared to simulating individual input assignments.

We presented a monolithic and a hybrid algorithm to decide if a circuit is
robust against a given SET. The monolithic approach describes the whole circuit
including the SET as a SAT formula and runs a SAT solver to prove robustness
or return a counterexample that disproves robustness. The hybrid algorithm
partitions the circuit into a front and a back partition, uses SAT solving on the
front partition and analyzes detected counterexamples by simulation to refine
a SAT formula until robustness can be decided. The experiments showed that
dividing the problem this way can lead to a significant speed up.

Our approaches can be exploited for characterizing a design under variation
effects and can be complemented by expensive Spice simulations.
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Chapter 5

Outlook

While both contributed approaches are finished and can be used to solve the
corresponding problems, expansions to increase the performance or widen the
field of application are still possible.

A comparison between neighboring abstraction levels could provide further
possibilities of application. An equivalence check between ESL and a HDL would
allow further use of the equivalence checker as it could support the development
of hardware systems further along the development cycle. However, both levels
are quite different. While an execution on ESL coalues. Thus, the correspondence
mapping that defines which initial states and which methods correspond to each
other needs to be expanded. While defining corresponding initial states should
be straightforward, as we just need to define thnsists of the execution of multiple
methods, a system described in a HDL changes its state and outputs during
each clock cycle according to its current state and input ve initial assignment
of the registers in HDL, the function mapping needs to consider a number of
methods on ESL and specific input values over a certain number of clock cycles
for the HDL.

Enabling the equivalence check between ESL and HDL would also allow
the use of the equivalence checker together with the robustness checker. In
this scenario, a hardened iteration of the system at HDL can be checked for
correctness by comparing it to the golden model at ESL. In a next step, tools
can deduce the logical circuit from the HDL level and our robustness checker can
check that circuit for robustness. If the equivalence check and the robustness
check are successful, we have shown that the system at HDL is both correct and
robust.
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[59] Niels Thole, Heinz Riener, and Görschwin Fey. Equivalence checking on
system level using a priori knowledge. In Proceedings of the IEEE Interna-
tional Symposium on Design and Diagnostics of Electronic Circuits Systems,
pages 177–182, April 2015.

[60] Niels Thole, Heinz Riener, and Görschwin Fey. Equivalence checking on
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