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In a Rayleigh distribution, We are interested in the estimation of the pa-
rameter and some reliability characteristics, as the reliability and the failure
rate functions. We used the Bayesian approach under different loss function
(squared loss and Linex loss) with a type II censored data. The prior law
of the parameter is non-informative prior then a natural conjugated prior.
The estimators of σ, S(t) and h(t) are obtained with the exact analytic ex-
pression, the posterior risks are calculated in each case. A simulation study
was carried out as well as real data analysis. A comparison between the
different estimators from there posterior risks leads us to conclude that the
best estimator is obtained under the Linex loss function.

keywords: Rayleigh distribution, Bayesian estimation, Posterior risk, Linex
loss function.

1 Introduction

Lord Rayleigh (1880) introduced the Rayleigh distribution in connection with a prob-
lem in the field of acoustics. Since then, extensive work has taken place related to this
distribution in different areas of science and technology. Its has some nice relations with
some of well known distribution like Weibull, Chi-square or extreme distributions. The
origin and other aspects of this distribution can be found in Siddiqui.
The Rayleigh distribution is a special case of the two parameter Weibull distribution and
a suitable model for life testing studies. Polovko, (1968), Dyer and Whisenand,(1973),
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demonstrated the importance of this distribution in electro vacuum devices and commu-
nication engineering.
The probability density function (pdf), the reliability function and the failure rate func-
tion, respectively are given by:

f(x, σ) =
x

σ2
exp(− x2

2σ2
), x > 0, σ > 0 (1)

S(x, σ) = exp(− x2

2σ2
) (2)

and
h(x, σ) =

x

σ2
(3)

Where σ > 0 is the parameter. An important characteristics of the Rayleigh distribution
is that its failure rate is an increasing linear function of time. This means that when
the failure times are distributed according to the Rayleigh law, an intense aging of the
equipment takes place. Then as time increases the reliability function decreases at a
much higher rate than in the case of exponential distribution.
Several authors have studied the Rayleigh distribution, Howlader and Hossain (1995)
studied the problem of the estimation of the parameter and the reliability function with
censored data and squared loss function. Dyer and Whisenand, (1973), provided the
best linear unbiased estimator of σ based on complete sample, censored sample and
selected order statistics. Bayesian estimation and prediction problems for the Rayleigh
distribution based on doubly censored sample have been considered by Balakrishnan,
(1989), Fernandez, (2000), Raqab and Madi, (2011). Bayesian estimation problems for
the Rayleigh distribution based on progressively censored sample have been considered
by Kim and Han, (2009), Raqab and Madi,(2011), and Dey and Dey, (2014).
In this paper, we study the Bayesian estimator of the parameter, reliability function and
the failure rate function under squared loss function and asymmetric loss function in
presence of censored type II sample with non-informative prior density and conjugate
prior.
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Notation

σ̂ML: Maximum likelihood estimator of the parameter σ.

σ̂SV : Bayesian estimator of the parameter σ under the squared loss function with a
vague prior.

R(σ̂SV ): Posterior risk of σ̂SV .

σ̂LV : Bayesian estimator of the parameter σ under the Linex loss function with a
vague prior.

R(σ̂LV ): Posterior risk of σ̂LV .

SML(t): Maximum likelihood estimator of the reliability function.

SSV (t): Bayesian estimator of the reliability function under the squared loss function
with a vague prior.

R(SML(t)): Posterior risk of SML(t).

SLV (t): Bayesian estimator of the reliability function under the Linex loss function
with a vague prior.

R(SLV (t)): Posterior risk of SLV (t).

hML(t): Maximum likelihood estimator of the failure rate function.

hSV (t): Bayesian estimator of the failure rate function under the squared loss function
with a vague prior.

R(hSV (t)): Posterior risk of hSV (t).

hLV (t): The Bayesian estimator of the failure rate function under the Linex loss
function with a vague prior.

R(hLV (t)): Posterior risk of hLV (t).

σ̂CS : Bayesian estimator of the parameter σ under the squared loss function with a
natural conjugated prior.

R(σ̂CS): Posterior risk of σ̂CS .

σ̂CL: Bayesian estimator of the parameter σ under the Linex loss function with natural
conjugated prior.

R(σ̂CL): Posterior risk of σ̂CL.

SCS(t): Bayesian estimator of the reliability function under squared loss function with
natural conjugated prior.

R(SCS(t)): Posterior risk of SCS(t).

SCL(t): Bayesian estimator of the reliability function under the Linex loss function
with natural conjugated prior.

R(SCL(t)): Posterior risk of SCL(t).

hCS(t): Bayesian estimator of the failure rate function under Linex loss function with
natural conjugated prior.

R(hCS(t)): Posterior risk of hCS(t).

hCL(t): Bayesian estimator of the failure rate function under the Linex loss function
with natural conjugated prior.

R(hCL(t)): Posterior risk of hCL(t).
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2 Bayesian estimation with non-informative prior

Let (X(1), X(2), ..., X(r), ..., X(n)) a sample of size n censored in X(r) The likelihood writes:

L(x | σ) ∝ 1

σ2r
exp(− Tr

2σ2
)

or

Tr =
r∑
i=1

x2
i + (n− r)x2

r

In the Bayesian context, when we have few or no information of the parameter, we use
vague priors. The most popular is due to Jeffreys et al. defined as follows:

π1(σ) = |I1(σ)|
1
2 = | − E∂

2lnf

∂σ2
| ∝ 1

σ

The posterior density is then:

π1(σ|x) =
L(x|σ)π1(σ)∫∞

0 L(x|σ)π1(σ)dσ
=

(Tr)
r

Γ(r)

1

2r−1
σ−2r−1exp(− Tr

2σ2
)

Or x is the vector of observations.

2.1 Loss functions

2.1.1 Squared loss function

Let θ̂ the estimator of θ, the squared loss function defined by L1(θ, θ̂) = (θ − θ̂)2 is
proposed by Legendre (1805) and Gauss (1810), it is widely used in literature. The
Bayesien estimator of θ is then the posterior mean, let θ̂B = E(θ|x).

2.1.2 Linex loss function

The Linex (Linear Exponential) loss function is dominantly and widely used because it
is a natural extension of squared loss function. It was originally introduced by Varian
Varian, (1975), and got a lot of popularity due to Zellner Zellner, (1986).

The mathematical form of Linex loss function may simply be expressed by:

L(∆) ∝ ea∆ − a∆− 1 , a 6= 0.

Where ∆ = (θ̂ − θ), θ̂ is an estimate of θ.
Consider the following convex loss function:

L(∆) ∝ ea∆ − a∆− 1, a 6= 0 (4)

The signe of a and its absolute magnitude represent the direction and the degree of
asymmetry. For a → 0, we find the squared loss function. Varian (1975) considered
the loss function in (4) for ∆1 = θ̂ − θ; the function L(∆1) is called the Linex loss
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function. Let Ep(L(∆1)) the posterior expectation of L(∆1), the Bayesian estimator of

θ under this loss function is denoted θ̂LB it corresponds to the value of θ̂ that minimizes
Ep(L(∆1)). (Ep is the mean with respect to the posterior density).

Ep(L(∆1)) = expa(θ̂)Ep(exp(−aθ)) + aEp(θ)− aθ̂ − 1 (5)

We derive the above expression with respect to θ̂ and we equal to zero

∂Ep(L(∆1))

∂θ̂
= a(exp(aθ̂))Ep(exp(−aθ))− a = 0

The solution of this equation is:

θ̂LB = −1

a
ln(Ep(e

−aθ))

Consider the loss function L(∆2); or ∆2 = ( θ̂θ )2 − 1; this loss function has been used by
several authors whose Zellner (2006) and (2009). We minimize the posterior expectation
Ep(L(∆2)):

Ep(L(∆2)) = Ep[exp((
θ̂

θ
)2 − 1)− a((

θ̂

θ
)2 − 1)− 1]

= exp(−a)Ep(exp(
θ̂

θ
)2)− a(

θ̂

θ
)2 − 1

We derive Ep(L(∆2)) with respect to θ̂ and we equal to zero, we obtain the Bayesian

estimator θ̂LB of θ under the loss function L(∆2)

∂Ep(L(∆2))

∂θ̂
= 2a(exp(−a))Ep(

θ̂

θ2
exp(a(

θ̂

θ
)2))− 2aEp(

θ̂

θ2
) = 0

θ̂LB is then the solution of the equation

Ep[
1

θ2
exp(a(

θ̂LB
θ2

))] = exp(a)Ep(
1

θ2
) (6)

2.2 Estimation of the parameter σ

The maximum likelihood estimator denoted σ̂ML is obtained by solving the equation
∂lnL(x,σ)

∂σ = 0; then:

σ̂ML =

√
Tr
2r

(7)

With respect to the squared loss function, and with a vague prior on σ; the estimator of
σ denoted σ̂SW is obtained with calculate its expectation with respect to the posterior
density:

σ̂SV =

∫ ∞
0

σπ(σ|x)dσ =
(Tr)

r

Γ(r)

1

2r−1

∫ ∞
0

σ−2rexp(− Tr
2σ2

)dσ =
Γ(r − 1

2)

Γ(r)
(
Tr
2

)
1
2 (8)
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The posterior risk of the parameter σ is given by

R(σ̂V Q) = (
Tr
2

)(
Γ(r − 1)

Γ(r)
−

Γ2(r − 1
2)

Γ2(r)
). (9)

With respect to squared loss function L(∆2) and the vague prior, the estimator of σ
denoted σ̂LV is the solution of equation given in (5) or:

Ep[
σ̂LV
σ2

exp(a(
σ̂2
LV

σ2
))] =

(Tr)
r

Γ(r)

σ̂LV
2r−1

∫ ∞
0

1

σ2r+3
exp(− 1

2σ2
(Tr − 2aσ̂2

LV ))dσ

and

exp(a)Ep(
σ̂LV
σ2

) =
(Tr)

r

Γ(r)

σ̂LV
2r−1

∫ ∞
0

1

σ2r+3
exp(− 1

2σ2(Tr)
)dσ

After some algebraic manipulations, we obtain:

σ̂LV = [
Tr
2a

(1− exp(− a

r + 1
))]

1
2 (10)

the posterior risk of the parameter σ under the Linex loss function is given by:

R(σ̂LV ) = a(σ̂SV − σ̂LV ). (11)

2.3 Estimation of the reliability function

for obtain the estimator SML(t) of the reliability S(t), we replace σ with σ̂ML in the
expression of S(t), then

SML(t) = exp(−rt
2

Tr
) (12)

The Bayesien estimator of S(t) with respect to the squared loss function and the vague
prior is SSV (t)

SSV (t) =

∫ ∞
0

S(t)π1(σ|x)dσ = (
Tr

Tr + t2
)r (13)

The posterior risk of the reliability function under the squared loss function is given by:

R(SSV (t)) = (
Tr

Tr + 2t2
)r − (

Tr
Tr + t2

)2r (14)

The Bayesian estimator of S(t) with respect to the Linex loss function is denoted SLV (t),

for calculate, we make the following change of variable: S(t) = exp(− t2

2σ2 ) = γ ⇒ σ =

(− t2

2lnγ )
1
2 ; we write the posterior density according to γ

π1(γ|x) =
(Tr)

r

Γ(r)

1

2r−1

1

2
(− t2

2lnγ
)
1
2 (

t2

2γ(lnγ)2
)(− t2

2lnγ
)−r−

1
2 (γ)

Tr
t2

= (
Tr
t2

)r
1

Γ(r)
(γ)

Tr
t2
−1(−lnγ)r−1; 0 ≤ γ ≤ 1
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We used the loss function L(∆1), The Bayesian estimator γLV of γ, is

γLV = −1

a
lnEp(exp(−aγ)) = −1

a
ln[(

Tr
t2

)r
1

Γ(r)

∫ ∞
0

exp(−aγ)(γ)
Tr
t2
−1(−lnγ)r−1dγ]

= −1

a
ln[

k∑
j=0

(−a)j

j!
(1 + j

t2

Tr
)−r] (15)

The last result is obtained by using a development of (exp(−aγ)) to order k in a neigh-
borhood of zero and making the change variable u = (−lnγ) to the calculation of this
integral.
The posterior risk of the reliability function under the Linex loss function is given by

R(SLV (t)) = a(SSV (t)− SLV (t)) (16)

2.4 Estimation of the failure rate function

The maximum likelihood estimator of h(t) denoted hML(t) is obtained when we replace
σ with σ̂ML in the expression of h(t), then:

hML(t) = 2r
t

Tr
(17)

With respect to the squared loss function and a vague prior of σ, the Bayesian estimator
of h(t) denoted hSV (t) is:

hSV (t) =

∫ ∞
0

h(t)π1(σ|x)dσ =
(Tr)

r

Γ(r)

t

2r−1

∫ ∞
0

σ−2r−3exp(− Tr
2σ2

)dσ

hSV (t) = 2r
t

Tr
(18)

The posterior risk of the failure rate function under the squared loss function is:

R(hSV (t)) =
4t2Γ(r + 2)

Γ(r)
(Tr)

−2 − (2r)2 t2

(Tr)2
(19)

Remark : The estimator of h(t) obtained by maximum likelihood estimation and with
the Bayesian approach with the non-informative prior and squared loss function are
identical.
The asymmetric loss functions L(∆1) and L(∆2) are not appropriate for a simple analytic
form of a Bayesian estimator h(t); that is why, we define ∆ = ( θ

θ̂
− 1) and we replace in

the loss function given by (4), then we take the posterior expectation, we drift and we
equal to zero to find the value of θ denoted θ̂LV which minimizes

Ep(L(∆)) = Ep(exp(a(
θ

θ̂
− 1)))− aEp(

θ

θ̂
− 1)− 1
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∂Ep(L(∆))

∂θ̂
= exp(−a)Ep(−a

θ

θ̂2
exp(

θ

θ̂
)) + aEp(

θ

θ̂

2

) = 0

The Bayesian estimator θ̂LV with respect to the loss function L(∆) is then the solution
of the equation:

exp(−a)Ep(θexp(a(
θ

θ̂ V L
))) = Ep(θ) (20)

We place h(t) = θ, let t
σ2 = θ ⇒ σ = ( tθ )

1
2 , we write the posterior density according to

θ:

π1(θ|x) =
(Tr)

r

Γ(r)

1

2r−1
(
t

θ
)−r−

1
2 exp(−Tr

2t
θ)

1

2
(
t

θ
)−

1
2 (
t

θ2
)

= (
Tr
2t

)r
1

Γ(r)
θr−1exp(−Tr

2t
θ); θ ≥ 0.

We remark that the posterior law of θ is a gamma G(r, Tr2t ).

We solve the equation (20), or θ̂LV is the estimator of the failure rate h(t) and we denoted
hLV (t)

exp(−a)(
Tr
2t

)r
1

[Tr2t −
a

hV L(t) ]r+1
=

2t

Tr

hLV (t) = a
2t

Tr
[1− exp(− a

r + 1
)]−1 (21)

The posterior risk of the failure rate function under the Linex loss function is given by:

R(hLV (t)) = a(hLV (t)− hSV (t)) (22)

3 Bayesian estimation with a natural conjugated prior

The naturel conjugated prior is defined as:

π2(σ) ∝ 1

σα+1
exp(− β

2σ2
); α, β > 0 (23)

The posterior law is then:

π2(σ|x) =
(Tr + β)r+

α
2

2r+
α
2
−1Γ(r + α

2 )

1

σ2r+α+1
exp(− 1

2σ2
(Tr + β))

Remark

For α = 0 and β = 0, we obtain the case of non-informative prior.
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3.1 Estimation of the parameter σ

Always with respect to the squared loss function but with a natural conjugated prior of
σ; the estimator of σ denoted σ̂CS is obtained when we calculate its expectation with
respect to the posterior density:

σ̂CS =

∫ ∞
0

σπ2(σ|x)dx =

√
Tr + β

2

Γ(r + α
2 −

1
2)

Γ(r + α
2 )

(24)

The posterior risk of the parameter σ is given by the following formula:

R(σ̂CS) =
Tr + β

2
(
Γ(r + α

2 − 1)

Γ(r + α
2 )

−
Γ2(r − α

2 −
1
2)

Γ2(r − α
2 )

) (25)

The Bayesian estimator of σ with respect to L(∆2) and the natural conjugated prior of
σ, σ denoted σ̂CL is the solution of the equation:

Ep[
σ̂CL
σ2

exp(a(
σ̂2
CL

σ2
))] = 2r+

α
2 σ̂CL[

Γ(r + α
2 + 1)

(Tr + β − 2aσ̂2
CL)r+

α
2

+1
]

exp(a)Ep(
σ̂CL
σ2

) = σ̂CLe
a Γ(r + α

2 + 1)

(Tr + β)r+
α
2

+1

σ̂CL = [
Tr + β

2a
(1− exp(− a

r + α
2 + 1

))]
1
2 (26)

The posterior risk of the parameter σ under the Linex loss function is given by:

R(σ̂CL) = a(σ̂CS − σ̂CL) (27)

3.2 Estimation of the reliability function

The Bayesian estimator of S(t) with respect to the squared loss function and the natural
conjugated prior is SCS(t)

SCS(t) =

∫ ∞
0

S(t)π2(σ|x)dσ = (
Tr + β

Tr + β + t2
)r+

α
2

SCS(t) = (
Tr + β

Tr + β + t2
)r+

α
2 (28)

The posterior risk of the reliability function under the squared loss function is given by:

R(SCS(t)) = (
Tr + β

Tr + β + 2t2
)r+

α
2 − (

Tr + β

Tr + β + t2
)2r+α (29)

with a natural conjugated prior, the Bayesian estimator with respect to the Linex loss
function is denoted SCL(t), for calculate, we use the following variable change: S(t) =

exp(− t2

2σ2 ) = γ ⇒ σ = (− t2

2lnγ )
1
2 ; we write the posterior density according to γ.

γCQ =
−1

a
lnEp(exp(−aγ))
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=
−1

a
ln[

(Tr + β)r+
α
2

Γ(r + α
2 )

1

(t2)r+
α
2

∫ ∞
0

exp(−aγ)(γ)
Tr+β

t2
−1(−lnγ)r+

α
2
−1dγ]

= −1

a
ln[

k∑
0

(−a)j

j!
(1 +

jt2

Tr + β
)(−r−α

2
)] (30)

The posterior risk of the reliability function under the Linex loss function is given by

R(SCL(t)) = a(SCS(t)− SCL(t)) (31)

3.3 Estimation of the failure rate function

with respect to the squared loss function, the Bayesian estimator is given by:

hCS(t) =

∫
h(t, σ)π2(σ|t)dt =

2(r + α
2 )

Tr + β
t (32)

The posterior risk of the failure rate function is given by:

R(hCS(t)) = (
t

2
)2 Γ(r + α

2 + 2)

Γ(r + α
2 )

(Tr + β)−2 − hCS(t)2 (33)

Under the Linex loss function, the Bayesian estimator of the failure rate function is given
by the following formula:

hCL(t) = a
2t

Tr + β
[1− exp(− a

r + α
2 + 1

)]−1 (34)

The posterior risk of the failure rate function under the Linex loss function is:

R(hCL(t)) = a(hCS(t)− hCL(t)) (35)

4 Simulations

In this section, we propose to study the performance of the Bayesian estimators of the
reliability function and the parameter under some various loss functions with respect
to the MLE. An exhaustive Monte Carlo comparative study is performed using the loss
functions given in the previous sections.

Firstly, we take (α, β) = (1, 2) and we generate the natural conjugated prior of σ, given
by expression (23) and we deduce the values of σ (we obtain that σ = Γ(1

2) = 1.7724
the initial value of σ)

We generate N = 10000 sample size of n of the rayleigh distribution of the parameter
σ (we used the Inversion method) witch have the cumulative distribution function (CDF)

given by: F (x, σ) = 1−S(x, σ) = 1−exp(− x2

2σ2 ) , we take tree values of n (n = 20, 30, 50)
and two values of r (r = 10, 15) for get increasing censured rate.

We calculate the maximum likelihood estimators of σ, S(t) and h(t) (denoted ML),
then, we calculate the Bayesian estimators under the squared loss function (denoted S)
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and under the Linex loss function for three values of a (LI1 (a = −0.5), LI2 (a = −1),
LI3 (a = 1)).

For each estimator, we calculate mean squared error (MSE) given by the expression
below, φ considered σ, S(t), and h(t), φ̂ his estimator respectively

MSE(φ) =
1

N

N∑
i=1

(φ− φ̂)2.

The values of MSE are given between brackets in the first cologne of the table 1.
Tn the case of Bayesian estimators, we calculate the posterior risk (denoted PR) (the

expression analytic of PR are given by (9), (11), (14), (16), (19), (22), (25), (27), (29),
(31), (33), (35)).

In the following tables, we present the results of the Monte-Carlo study, in the first
table the prior law is a vague prior, but in the second table we consider the natural
conjugated prior.

Table 1: Bayesian estimators of the Rayleigh distribution with a vague prior

(n,r) φ ML(MSE) S(PR) LI1(PR) LI2(PR) LI3(PR)

(20,10) σ 1.7494(0.0005) 1.8187(0.0021) 1.6872(0.0072) 1.7084(0.0041) 1.6272(0.0210)

S(t) 0.9058(0.0048) 0.9063(0.0049) 0.8841(0.0023) 0.8402(0.0017) 0.6825(0.0235)

h(t) 0.2651(0.0006) 0.2651(0.0006) 0.2850(0.0021) 0.2791(0.0016) 0.3067(0.0046)

(30,10) σ 1.7513(0.0044) 1.8106(0.0023) 1.6990(0.0069) 1.7081(0.0041) 1.6310(0.0199)

S(t) 0.9059(0.0048) 0.9063(0.0049) 0.8841(0.0023) 0.8403(0.0002) 0.6827(0.0253)

h(t) 0.2652(0.0007) 0.2652(0.0007) 0.2859(0.0021) 0.2788(0.0016) 0.3048(0.0043)

(50,10) σ 1.7478(0.0006) 1.8170(0.0019) 1.6856(0.0075) 1.7090(0.0040) 1.6332(0.0193)

S(t) 0.9059(0.0006) 0.9065(0.0049) 0.8845(0.0023) 0.8398(1.46e-05) 0.6824(0.0235)

h(t) 0.2656(0.0007) 0.2656(0.0007) 0.2856(0.0021) 0.2780(0.0015) 0.3048(0.0043)

(20,15) σ 1.7557(0.0002) 1.8012(0.0008) 1.7157(0.0032) 1.7285(0.0019) 1.6760(0.0092)

S(t) 0.9086(0.0052) 0.9089(0.0053) 0.8867(0.0025) 0.8105(10-05) 0.6838(0.0231)

h(t) 0.2565(0.0003) 0.2565(0.0003) 0.2684(0.0008) 0.2645(0.0006) 0.2812(0.0018)

(30,15) σ 1.7625(9e-05) 1.8082(0.0012) 1.7200(0.0027) 1.7238(0.0018) 1.6710(0.0102)

S(t) 0.9033(0.0053) 0.9096(0.0054) 0.8871(0.0026) 0.8426(4e-05) 0.6837(0.0231)

h(t) 0.2543(0.0002) 0.2543(0.0002) 0.2671(0.0008) 0.2642(0.0006) 0.2830(0.0019)

(50,15) σ 1.7551(0.0002) 1.8006(0.0007) 1.7119(0.0036) 1.7299(0.0018) 1.67421(0.0096)

S(t) 0.9085(0.0003) 0.9088(0.0052) 0.8864(0.0025) 0.8427(4e-05) 0.6838(0.0237)

h(t) 0.2566(0.0003) 0.2566(0.0003) 0.2693(0.0009) 0.2451(0.0006) 0.2818(0.0018)
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Table 2: Bayesian estimators Rayleigh with a natural conjugated prior

(n,r) φ S(PR) LI1(PR) LI2(PR) LI3(PR)

(20,10) σ 1.7846(0.0788) 1.6615(0.0805) 1.6831(0.0767) 1.6123(0.0891)

S(t) 0.9033(0.0054) 0.9011(0.0051) 0.8903(0.0037) 0.9640(0.0180)

h(t) 0.2740(0.0102) 0.2936(0.0133) 0.2858(0.0118) 0.3119(0.0172)

(30,15) σ 1.7867(0.0773) 1.6634(0.0787) 1.6824(0.0761) 1.6103(0.0900)

S(t) 0.9037(0.0055) 0.9014(0.0051) 0.8903(0.0037) 0.9636(0.0179)

h(t) 0.2729(0.0098) 0.2924(0.0128) 0.2859(0.0119) 0.3127(0.0174)

(50,10) σ 1.7879(0.0781) 1.6646(0.0791) 1.6823(0.0793) 1.6120(0.0889)

S(t) 0.9037(0.0055) 0.9015(0.0052) 0.8900(0.0037) 0.9640(0.0179)

h(t) 0.2729(0.01000) 0.2924(0.0131) 0.2868(0.0124) 0.3117(0.0168)

(20,15) σ 1.7856(0.0516) 1.7012(0.0518) 1.7074(0.0524) 1.6655(0.0576)

S(t) 0.9077(0.0056) 0.9053(0.0053) 0.8932(0.0037) 0.9691(0.0186)

h(t) 0.2599(0.0055) 0.2725(0.0067) 0.2707(0.0064) 0.2846(0.0028)

(30,15) σ 1.7856(0.0516) 1.7012(0.0518) 1.7074(0.0524) 1.6655(0.0576)

S(t) 0.9070(0.0055) 0.9046(0.0052) 0.8932(0.0037) 0.9689(0.0186)

h(t) 0.2620(0.0055) 0.2747(0.0068) 0.2706(0.0065) 0.2852(0.0081)

(50,15) σ 1.7782(0.0528) 1.6942(0.0540) 1.7113(0.0517) 1.6603(0.0574)

S(t) 0.9069(0.0056) 0.9045(0.0052) 0.8936(0.0038) 0.9686(0.0185)

h(t) 0.2423(0.0057) 0.2750(0.0069) 0.2695(0.0064) 0.2860(0.0081)

After this simulation study, we conclude that the estimator of the parameter has a
minimum risk when we used the squared loss function and the best estimator of the
reliability function is obtained with Linex loss function (a = −1).

5 Data Analysis

We apply the proposed methods to areal data set presented in Lawless. The data arose
in test on the endurance of deep-groove bearings and are originally discussed by Lieblein
and Zelen. They are the number of revolutions to failure for each of n = 23 bearings
in the life test. Raqab and Madi indicated that a one parameter Rayleigh distribution
acceptable for these data. Here we consider n = 23 deep-groove ball bearing failure
times. The 23 failure times are:

0.1788, 0.2892, 0.3300, 0.4152, 0.4212, 0.4560, 0.4848, 0.5184, 0.5196, 0.5412, 0.5556,
0.6780, 0.6864, 0.6864, 0.6888, 0.8412, 0.9312, 0.9864, 1.0512, 1.0584, 1.2792, 1.2804,
1.7304.

The maximum likelihood estimator of the parameter σ is equal to σ̂ML = 0.9175
For different values of t = 0.25, 0.5, 0.75, 1, we obtain the maximum likelihood estimators
of the reliability function that are SML(t) = 0.9635, 0.8620, 0.7160, 0.5521
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The maximum likelihood estimator of the failure rate function for different values of t
are: ĥML(t) = 0.2969, 0.5939, 0.8908, 1.1878
The Bayesian estimators of the parameters σ, the reliability function and the failure
rate function with a wave prior, then with a natural conjugated prior are given in the
following tables:

Table 3: Bayesian estimators of the Rayleigh distribution with a vague prior
and real data

t φ S(PR) LI1(PR) LI2(PR) LI3(PR)

0.25 σ 0.9451(0.0187) 0.9001(0.0449) 0.8921(0.0264) 0.8686(0.0765)

h(t) 0.5939(0.0271) 0.6170(0.0231) 0.6282(0.0171) 0.6170(0.0231)

0.75 S(t) 0.7190(0.0042) 0.7144(0.0045) 0.7189(2.14*10−5) 0.7378(0.0188)

h(t) 0.8908(0.0610) 0.9255(0.0346) 0.9423(0.0257) 0.9940(0.1031)

1 S(t) 0.5594(0.0078) 0.5603(0.0008) 0.5609(0.0007) 0.5628(0.0033)

h(t) 1.1878(0.1085) 1.2340(0.0462) 1.2564(0.0343) 1.3275(0.1375)

Table 4: Bayesian estimators of Rayleigh distribution with a natural conju-
gated prior and real data

t φ S(PR) LI1(PR) LI2(PR) LI3(PR)

0.25 σ 0.9473(0.0181) 0.6075(0.3397) 0.6051(0.1710) 0.5980(0.3493)

S(t) 0.9638(0.0654) 0.9065(0.0581) 0.9176(0.0231) 0.9852(0.0214)

h(t) 0.2949(0.0064) 0.3059(0.0110) 0.3113(0.0082) 0.3277(0.0328)

0.5 S(t) 0.8635(0.1843) 0.7124(0.1511) 0.7173(0.0731) 0.7124(0.1511)

h(t) 0.5898(0.0257) 0.6117(0.0220) 0.6226(0.0164) 0.6118(0.0220)

0.75 S(t) 0.7205(0.2371) 0.4772(0.2432) 0.4776(0.1214) 0.4783(0.2421)

h(t) 0.8847(0.0579) 0.9178(0.0331) 0.9339(0.0246) 0.9833(0.0986)

1 S(t) 0.5614(0.2015) 0.2731(0.2882) 0.2723(0.1445) 0.2697(0.2916)

h(t) 1.1796(0.1030) 1.2237(0.0441) 1.2452(0.0328) 1.3111(0.1315)

6 Conclusion

In this paper, we studied the problem of Bayesian parameter estimation, reliability func-
tion and failure rate function in Rayleigh model with typeII censored data. The interest
of this work is that the analytical expression of these different estimators and their pos-
teriori risks could be explicitly given under each loss function (Linex and quadratic).
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Data analysis and simulation lead to the conclusion that the estimators h(t) and R(t)
are better under a Linex loss function for t relatively large.
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