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In this paper, we study a smooth-abrupt change point model through two
testing procedures based on likelihood ratio test and Schwarz information cri-
terion under a normal distribution. Simulations are implemented to show the
performance of these two procedures. The proposed testing procedures are
applied to detect changes in gene expression patterns and in predator versus
prey population patterns of the Isle Royale National Park.
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1 Introduction

There has been a great interest in the statistical analysis of the change-point problem in
the past years because of its wide use in applications, such as biology, economics, finance,
geology, medicine, and so on. Many scholars have focused on parametric change point
models, in particular, the change point in the parameters of normal variables. Chernoff
and Zacks (1964) and Sen and Srivastava (1975) have discussed the change point in the
mean from a Bayesian point of view. In addition, Moreno et al. (2005) generalize the
Bayesian stopping rules and propose objective intrinsic prior distributions for the un-
known model parameters. Likelihood ratio test (LRT), as the most traditional method,
has been used to study change point problems under different parametric settings, such as
Srivastava and Worsley (1986), Hawkins (1977), Worsley (1986) and Gombay and Horvath
(1994) and
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Chen and Gupta (2011), to name a few. From the nonparametric aspect, detailed dis-
cussions and references on the nonparametric methods of detecting the change points are
given by Horváth and Csorgo (1997).

In this article, we consider a change-point model which is called a smooth-abrupt change-
point (SACP) model. That is, the mean of a sequence of independent normal random
variables remains constant until encountering an unknown point of time, where a linear
change in the mean occurs, and then the mean drops back abruptly to the original value
when reaching another unknown point. The left graph in Figure 1 shows the expectation
of the SACP model without random error. The right graph in Figure 1 displays the SACP
model with the initial mean 5, two change locations k1 = 14 and k2 = 29 and the sample
size n = 40 after standard normal random error is introduced.
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Figure 1: The left figure is the expected value of an SACP model; the right figure is an
example of an SACP model after random error is introduced.

SACP model has broad applications in many fields such as medical research and genetic
study. For example, monitoring and controlling the death rates during epidemics is often
a challenge in epidemiology, public health, pathology, ecology, medicine, etc. The SACP
model provides a basic option to study death rates of epidemics. For instance, death rates
of a disease are often the same before an outbreak, and after the outbreak, the death rate
increases until a cure is released to combat the disease. In addition to the change-point
approximation, the estimated slope of the linear trend gives an insight of severity of the
spread of the disease.

Previous research related to this type of change-point model has been done by Yao
(1993), Levin and Kline (1985), Ramanayake and Gupta (2003) and
Ramanayake and Gupta (2004), to name a few. Unlike the SACP model, they studied
epidemic changes instead of linear changes. Chen and Gupta (2007) studied a SACP model
of independent normal random variables by using a Bayesian approach. Ning (2012)
also proposed a nonparametric empirical likelihood ratio test for the same model, but
his setting for the linear trend is different from ours. To the best of our knowledge,
the procedures based on the likelihood ratio test (LRT) and the Schwarz information
criterion (SIC) have not been studied for the SACP model. In this paper, we study the
performance of these two procedures under different settings. This paper is organized as
follows. The LRT procedure and the SIC-based procedure for this model are proposed
in Section 2. Monte Carlo Simulations are conducted to demonstrate the performance
of proposed methods in Section 3. We apply the proposed methods to gene expression
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patterns in yeast, Saccharomyces cerevisiae, and the population trends of wolves and moose
in Isle Royale National Park, USA in Section 4. Discussion and future work are stated in
Section 5.

2 Methodology

Let X1, X2, ..., Xn be a sequence of independent normal random variables with means µi
and constant, unknown common variance σ2, for i = 1, 2, . . . , n, n ≥ 3. We are interested
in testing the hypotheses

H0 : µi = µ0 for i = 1, 2, . . . , n (2.1)

versus

H1 : µi =


µ1, 1 ≤ i ≤ k1
µ1 + β(i− k1), k1 + 1 ≤ i ≤ k2
µ1, k2 + 1 ≤ i ≤ n

(2.2)

for some positive integers k1 and k2 such that 1 < k1 < k2 < n− 1.

Note that β is the slope of the linear trend starting at an unknown position k1 and ending
at an unknown position k2. In the following section, we derive the maximum likelihood
estimators (MLEs) of β, µ, and σ2 under H0 and H1 in (2.1) and (2.2).

2.1 Maximum Likelihood Estimators of Parameters

Under H0, the log-likelihood function is

lnL0 = lnL0(µ0, σ
2) = −n

2
ln(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ0)2.

Let µ̂0 and σ̂20 be the MLEs of µ0 and σ2, respectively. Then

µ̂0 = x̄ =
1

n

n∑
i=1

xi, σ̂20 =
1

n

n∑
i=1

(xi − µ̂0)2,

and the maximum log-likelihood function is

lnL0(µ̂0, σ̂
2
0) = −n

2
ln(2πσ̂20)− n

2
. (2.3)

Under H1, the log-likelihood function is

lnL1 = lnL1(µ1, σ
2, β, k1, k2) (2.4)

= −n
2

ln(2πσ2)− 1

2σ2

∑
{i|1,...,k1,k2+1,...,n}

(xi − µ1)2 −
1

2σ2

k2∑
j=k1+1

(xj − µ1 − β(j − k1))2.

(2.5)
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Let β̂, µ̂1, and σ̂21 be the MLEs of β, µ1, and σ2 under H1, respectively. Then

β̂ =

∑k2
i=k1+1(i− k1)xi − x̄

∑k2−k1
j=1 j∑k2−k1

j=1 j2 − 1
n(
∑k2−k1

j=1 j)2
, (2.6)

µ̂1 = x̄− β̂

n

k2−k1∑
j=1

j, σ̂21 =
1

n

 n∑
i=1

(xi − µ̂1)2 − β̂2
k2−k1∑
j=1

j2

 , (2.7)

and the maximum log-likelihood function is

lnL1 = lnL1(µ̂1, σ̂
2
1, β̂, k1, k2) = −n

2
ln(2πσ̂21)− n

2
. (2.8)

2.2 Approach Based on Likelihood Ratio Test

For a fixed pair of (k1, k2), the maximum log-likelihood ratio test statistic for testing (2.1)
versus (2.2) is

Zk1,k2 = −2 ln
L0

L1
= −n ln

σ̂21
σ̂20
.

Since k1, k2 are usually unknown, it is natural to use the maximally selected likelihood
ratio and reject H0 if

Wn = max
1<k1<k2<n−1

Zk1,k2

is sufficiently large comparing to the critical value at a given significance level. k̂1 and k̂2
are estimates of k1 and k2 so that the maximum of Zk1,k2 is reached. Since the asymptotic
null distribution of Wn is not available, therefore, critical values for this test procedure
are obtained through simulations which are illustrated in section 2.4.

2.3 Approach Based on Schwarz Information Criterion

Alternatively, a change-point problem can also be treated as a model selection problem.
Detecting changes in a dataset parallels to selecting the best model to fit the data. In
model selection, Schwarz information criterion (SIC) proposed by Schwarz et al. (1978) is
one of the popular methods. In this section, we propose a testing procedure based on SIC.

The null and alternative hypotheses are described previously in (2.1) and (2.2), respec-
tively. The SIC calculation will be used repetitively over the fixed choices of k1 and k2.
Recall that the SIC quantifies a model’s appropriateness by considering the fit of the model
to the data and its simplicity. Generally, SIC = −2 lnL(x, θ̂) + k lnn where L(x, θ̂) is
the likelihood function based on the model assumption and evaluated at the observations
x = (x1, x2, . . . , xn) and the estimators θ̂ = (µ̂0, σ̂

2
0) with the number of parameters, k,

and sample size, n. A model with the smallest SIC value will be considered the best one
to fit the data. For the model under H0, the SIC is:

SIC(n) = −2 lnL0(µ̂0, σ̂
2
0) + 2 lnn.

And for the model under H1 with a fixed pair (k1, k2), the SIC is:
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SIC(k1, k2) = −2 lnL1(µ̂1, σ̂
2
1, β̂, k1, k2) + 3 lnn.

Since k1 and k2 are unknown, SIC(k1, k2) is calculated for all k1 and k2 such that
1 < k1 < k2 < n − 1. Let K = {k1, k2|1 < k1 < k2 < n − 1}. Then, min

k1,k2∈K
SIC(k1, k2)

is the SIC value associated with the best model under H1. The decision to reject H0

occurs when mink1,k2∈K SIC(k1, k2) < SIC(n), that is, the best model under H1 is more
appropriate to describe the data than the best model under H0 which concludes there
are changes in the data. k̂1 and k̂2 are estimates of k1 and k2 so that the minimum of
SIC(k1, k2) is reached. The corresponding estimates for µ1, β, and σ2 are denoted µ̂1,
β̂, and σ̂21 and are calculated from (2.6) and (2.7). Otherwise, we fail to reject H0 which
leads to the conclusion of no change in the data.

Table 1: Powers and Type I error of LRT Approach with k1 = 14, k2 = 24, α = 0.05.

β Power MSE of β MSE of µ1 MSE of σ

-0.5 0.791 1.0729777 0.1667815 0.06420553

-0.4 0.553 0.9931794 0.2221598 0.08253751

-0.3 0.257 2.3848345 0.2843259 0.10275381

-0.2 0.127 6.3443056 0.3150671 0.12713209

-0.1 0.064 9.6517017 0.3068496 0.15032457

0.1 0.067 5.9536738 0.4841837 0.18823868

0.2 0.129 6.3586059 0.3762464 0.11617703

0.3 0.271 1.5878656 0.2864857 0.11183417

0.4 0.580 1.6871640 0.2209664 0.07448546

0.5 0.826 0.5726376 0.1823276 0.06160162

β Type I error MSE of µ0 MSE of σ

0.0 0.045 0.1047409 0.05106262

2.4 Simulation Study

In this section, we conduct simulations to investigate the performance of LRT and SIC-
based procedures under different settings.

The data satisfying H1 were generated with change locations (k1, k2) = (14, 24) or
(14, 29), µ1 = 4, σ = 2, n = 40 and β varies from −0.5 to 0.5 with the increment 0.1. The
data satisfying H0 were generated with µ0 = 4, σ = 2, and n = 40.

We conduct 1, 000 repetitions for each setting. For each repetition, the Schwarz infor-
mation approach and the likelihood ratio test approach are applied. For the likelihood
ratio test, we adopt the bootstrapping sampling procedure to obtain an empirical critical
value corresponding to the level of significance. Under the null hypothesis, we assume
there is no change. We generate a sample of size n = 40 from the normal distribution
with µ = 4 and σ = 2. Then, we calculate Wn. We repeat this 10, 000 times and get
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10, 000 Wn’s. These 10, 000 values of Wn compose an estimated sampling distribution of
Wn. The critical values at different significant levels are corresponding to the percentiles
of the estimated sampling distribution of Wn. For instance, the critical value at α = 0.05

is the 95th percentile of the estimated sampling distribution of Wn. In this simulation
study, the significance level α = 0.05 is used to generate the empirical critical value of
13.38868.

Table 2: Powers and Type I error of LRT Approach with k1 = 14, k2 = 29, α = 0.05.

β Power MSE of β MSE of µ1 MSE of σ

-0.5 1.000 0.03060304 0.2042551 0.05558257

-0.4 0.992 0.07697240 0.2064190 0.06090523

-0.3 0.830 0.53180229 0.2445720 0.06731005

-0.2 0.402 1.99511634 0.3051697 0.08835839

-0.1 0.133 7.55239857 0.5820727 0.12935431

0.1 0.107 4.58134718 0.4186879 0.13032007

0.2 0.380 2.50618344 0.2931828 0.08700124

0.3 0.838 0.54217285 0.2496442 0.06090420

0.4 0.989 0.06926793 0.1915168 0.05761837

0.5 1.000 0.02605817 0.1793414 0.05589740

β Type I error MSE of µ0 MSE of σ

0.0 0.046 0.1020306 0.05069541

The power and Type I error of LRT approach are calculated under H1 and H0 respec-
tively. The simulation results are listed in Table 1 and Table 2. For the SIC approach,
the success rate of detecting an SACP change under H1 and success rate of concluding
no SACP change under H0 are also calculated. The simulation results are listed in Table
3 and Table 4. From all the tables, we observe that the power and success rate of LRT
and SIC respectively increase as the increase of |β|. That is, the shaper the linear change
is, the higher of the capability these two tests have. For example, in Table 2, the power
of LRT approach increases from 0.380 to 0.989 as the slope β increases from 0.2 to 0.4.
Similarly, in Table 4, the success rate of SIC approach increases from 0.610 to 0.962 as
the same increase of β. We also observe that more observations between two change lo-
cations, that is, the more observations on the linear trend change, the higher detection
ability for both LRT and SIC approaches. For example, the power of LRT approach is
0.271 when k1 = 14, k2 = 24 and β = 0.3 in Table 1 while the power increases to 0.838
when the change locations k1 = 14 and k2 = 29 in Table 2. Similar performance of SIC
approach can be observed in Table 3 and Table 4. From Table 1 and Table 2, we also can
observe that the LRT method can control the Type I error well. For the SIC method, we
report the probability that such a method can choose a correct model when H0 : β = 0 is
true. In Table 3 and Table 4, those probabilities are reasonable high with values 0.839 and
0.836 respectively. Such a probability is similar to the value of (1-Type I error) in LRT
method and we denote it by “success rate”. The reason is that the Type I error is always
associated with a significance level α and the model selection process with the information
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criterion does not involve any significance level α. Therefore, we calculate the “success
rate” which is the probability to reflect its performance under H0. Moreover, we notice
that the SIC approach performs more sensitive to the change between small slopes with
the same sign than the LRT approach does. For example, in Table 3, the power of the
LRT approach increases from 0.107 to 0.380 as the increase of β from 0.1 to 0.2. For the
SIC approach, the power increases from 0.279 to 0.610 under the same scenario in Table
4 as the increase of β from 0.1 to 0.2.

Table 3: Success Rate of SIC Approach with k1 = 14 and k2 = 24

β Success Rate MSE of β MSE of µ1 MSE of σ

-0.5 0.655 0.03350302 0.1913452 0.05971379

-0.4 0.547 0.04028336 0.2578228 0.06802841

-0.3 0.417 0.03561660 0.3034518 0.06801632

-0.2 0.288 0.05022339 0.3772295 0.08813410

-0.1 0.169 0.04877874 0.5127114 0.09814135

0.1 0.187 0.05524288 0.5277621 0.07997807

0.2 0.283 0.04746516 0.3853301 0.07751565

0.3 0.436 0.03985342 0.3319606 0.08248407

0.4 0.530 0.04054580 0.2411582 0.06126349

0.5 0.647 0.03134863 0.1795267 0.06257280

β Success Rate MSE of µ0 MSE of σ

0.0 0.839 0.1004419 0.05250117

3 Applications

3.1 Gene Expression Data

In this section, the SIC method and LRT method are applied to detect a gene expression
pattern in yeast, Saccharomyces cerevisiae. The data set comes from the microarray
experiments of Spellman et al. (1998) and the specific gene of consideration is the DAL5
gene (probe ID: YJR152W) from the CDC15 dataset. The gene is measured based on
24 equally time interval locations and the normalized log expression of this gene can be
found on the yeast genome website http://genome-www.stanford.edu/cellcycle. This
is the same data set that was analyzed using the Bayesian approach in Chen and Gupta
(2007). During a certain duration of time, the DAL5 gene is known to play a necessary
role in the allantoate transport system in Saccharomyces cerevisiae (Rai et al. (1987)).
During this time period there is an increase in the normalized gene expression, known as
an upregulation. Before and after this time period, the normalized gene expression is in a
more steady state of fluctuation (Chen and Gupta (2007)).

To study if the gene expression is upregulated during a specific time frame, H0 of model
(2.1) for this data set is compared to H1 of model (2.2) via the SIC and LRT methods.
The sample size is n = 24.
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Table 4: Success Rate of SIC Approach with k1 = 14 and k2 = 29

β Success Rate MSE of β MSE of µ1 MSE of σ

-0.5 0.995 0.02052970 0.1930485 0.05930814

-0.4 0.970 0.02483473 0.2122356 0.06426293

-0.3 0.892 0.02297933 0.2410995 0.05996529

-0.2 0.606 0.02789886 0.3272123 0.07265364

-0.1 0.277 0.03478356 0.4396052 0.10606755

0.1 0.279 0.04510367 0.5026791 0.08798779

0.2 0.610 0.03148258 0.3359006 0.07286485

0.3 0.863 0.02045753 0.2237819 0.05802576

0.4 0.962 0.02062928 0.1981439 0.05605714

0.5 0.991 0.02112470 0.1707105 0.05865338

β Success Rate MSE of µ0 MSE of σ

0.0 0.836 0.1066133 0.05276508

Under H1, minSIC(k1, k2) is 16.11332 for all (k1, k2) such that 1 < k1 < k2 < 24, which
is less than SIC(24) = 40.82668 under H0. Therefore, we reject H0 and conclude there is
a linear upregulation trend in this gene expression pattern. This minimum is obtained for
k1 = 11 and k2 = 15. Thus, k̂1 = 11 and k̂2 = 15. Hence, the SIC method estimates that
the time of upregulation approximately lies between 11 and 15 in the time index.
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Figure 2: The plot of the gene expression of the DAL5 gene (probe ID: YJR152W)

On the other hand, the LRT test statistic is 20.48 and is obtained at k̂1 = 11 and k̂2 = 15
as well. Since 20.48 is greater than the empirical critical value of 15.39, there is enough
evidence to overthrow H0 in favor of H1, and the LRT approach agrees with the SIC
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approach. Figure 2 displays the data and the change location estimates k̂1 and k̂2. Chen
and Gupta (2007) estimated the upregulation to be between 11 and 14 via a Bayesian
approach. Furthermore, The MLE estimators for β, µ, and σ when k̂1 = 11, k̂2 = 15 are
computed by the formulas in (2.4) are β̂ = 0.3105, µ̂1 = −0.1294, and σ̂1 = 0.277.

3.2 Predator versus Prey Data

Wolves and moose are a good example of predator versus prey systems and in such systems,
information regarding population changes are important to know. In this section, the SIC
and LRT approaches are applied to the populations of wolves and moose living in Isle
Royale National Park, USA throughout the years 1959 to 2011. The data and general
information are obtained from Vucetich and Peterson (2012).

To study if the population of each animal is increasing during a specific time frame
and then abruptly decreased, the hypotheses of H0 (2.1) and H1 (2.2) are assessed by the
SIC and LRT methods. The sample size for each animal is n = 53, which corresponds to
the 53-year time frame. The tests are done separately for each animal. The results are
displayed in Figure 3, Figure 4, and Table 5.

Table 5: The output of SIC and LRT testing procedures for wolf and moose counts.

SIC LRT

SIC(53) SIC(k̂1, k̂2) Wn critical value k̂1 k̂2 β µ1 σ

Wolf 332.03 281.62 54.38 14.92 13 22 3.15 20.63 5.08

Moose 745.89 677.66 72.20 12.31 28 38 146.02 825.81 213.09
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Figure 3: The plot of the wolf count through 1959 to 2011)

The two methods agree in selecting 1971 as the beginning of the upward trend in wolf
count and in selecting 1980 as the year before the drastic decrease. Between 1971 and 1980,
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the methods estimate the average rate to be β̂ = 3 wolves per year. Furthermore, both
methods estimate moose count to increases from 1986 until 1996 at an estimated average
rate of β̂ = 146 moose per year. Interestingly, Vucetich and Peterson (2012) mention that
“in 1980 the wolf population crashed when humans inadvertently introduced a disease,
canine-parvovirus,” and “in 1996, the moose population collapsed during the most severe
winter on record and an unexpected outbreak of moose ticks.” Hence, the results agree
with Vucetich and Peterson (2012) and give further insight on the average growth rate of
wolf and moose counts. Furthermore, the results suggest the moose count started a major
increase in 1986 which is after the wolf count’s drastic decreased.
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Figure 4: The plot of the moose count through 1959 to 2011)

4 Discussion

In this paper, the smooth-abrupt change-point (SACP) model is investigated. Particularly,
the approaches based on the likelihood ratio test (LRT) and the Schwarz information
criterion (SIC) are proposed. Simulations conducted under different SACP model settings
indicate the reasonable performance of both approaches in detecting the changes in terms
of the control of Type I error and the power. The proposed methods are applied to gene
expression data and predator versus prey data to reveal possible abrupt changes in a linear
trend. With the testing results, we conclude that a SACP model is appropriate to describe
both data.

From the simulations, as we mentioned in previous sections, we observe that the SIC
method performs more sensitive to the changes between small slopes β with the same
sign than the LRT method does. We suspect that the sensitivity of the SIC method
may vary when some component which affects the model complexity of SIC is altered. For
instance, when we use the model selection criterion to analyze a change point problem, the
change locations are possible components which may affect the complexity of the model.
When the changes are either close to the beginning or to the end of the data, it could
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cause some redundant parameters in the parameter space as Chen et al. (2006) pointed
out. Consequently, it may affect the complexity of the model since it is usually measured
in terms of the dimensionality of the parameter space. Therefore, we are curious about
whether the variety of the complexity of the SACP model could affect the sensitivity of the
SIC method when the slopes are relatively small. One possible direction for us to explore
is that we may alter the locations of changes in data and investigate the magnitude of
changes of the sensitivity under such scenarios analytically and numerically.

In our work, we only consider a change with a linear pattern and extensively use the
normal assumption. Future work could be expanded to nonlinear patterns with various
parametric assumptions or nonparametric assumptions. Further, other epidemic models
can be considered, but the corresponding theoretical results remain to be justified.
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Horváth, L. and Csorgo, M. (1997). Limit theorems in change-point analysis.

Levin, B. and Kline, J. (1985). The cusum test of homogeneity with an application in
spontaneous abortion epidemiology. Statistics in Medicine, 4(4):469–488.

Moreno, E., Casella, G., and Garcia-Ferrer, A. (2005). An objective bayesian analysis of
the change point problem. Stochastic Environmental Research and Risk Assessment,
19(3):191–204.

Ning, W. (2012). Empirical likelihood ratio test for a mean change point model with a
linear trend followed by an abrupt change. Journal of Applied Statistics, 39(5):947–961.

Rai, R., Genbauffe, F., Lea, H., and Cooper, T. G. (1987). Transcriptional regulation of
the dal5 gene in saccharomyces cerevisiae. Journal of bacteriology, 169(8):3521–3524.



Electronic Journal of Applied Statistical Analysis 205

Ramanayake, A. and Gupta, A. K. (2003). Tests for an epidemic change in a sequence of
exponentially distributed random variables. Biometrical journal, 45(8):946–958.

Ramanayake, A. and Gupta, A. K. (2004). Epidemic change model for the exponential
family. Communications in Statistics-Theory and Methods, 33(9):2175–2198.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of statistics,
6(2):461–464.

Sen, A. and Srivastava, M. S. (1975). On tests for detecting change in mean. The Annals
of statistics, pages 98–108.

Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B.,
Brown, P. O., Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell
cycle–regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization.
Molecular biology of the cell, 9(12):3273–3297.

Srivastava, M. and Worsley, K. J. (1986). Likelihood ratio tests for a change in the
multivariate normal mean. Journal of the American Statistical Association, 81(393):199–
204.

Vucetich, J. A. and Peterson, R. O. (2012). The population biology of isle royale wolves
and moose: an overview. URL: www. isleroyalewolf. org.

Worsley, K. (1986). Confidence regions and tests for a change-point in a sequence of
exponential family random variables. Biometrika, pages 91–104.

Yao, Q. (1993). Tests for change-points with epidemic alternatives. Biometrika, pages
179–191.


