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AGGREGATION APPROACH TO NONLINEAR FILTERING.
PART 2. FRECHET MIMO-FILTERS

KaioueBsbie cnoBa: nerunetinvie MIMO-gunvmpoi; mouka @pewe; meduanuas obpabomka
MHO2OKAHANLHBIX U300padicenull, 0bobwenHoe azpecayuontoe cpeonee.

B aT0li cTathe MBI pacimpsieM MOHATHE MeAuanbl Dperie 10 0000MIEHHONH MeIuaHbl, KOTO-
pas MUHUMH3UpPYET CTOMMOCTHYIO (yHKImi0 Dpeme B Gopme arperalioHHON (YHKIHH (BMECTO
TPUBUAIBHOW CyMMBI) OT paccTossHuil. MBI HCTIONb3yeM 00OOIEHHYI0 MEIUaHy Uil KOHCTPYHPOBa-
HUsI HOBBIX HenmuHelHbIX Opeme MIMO-gunbTpoB asst 06paboTk MHOTOKAHATBHBIX M300pakeHUH.

Keywords: Nonlinear MIMO-filters, Fréchet point; median hyperspectral image pro-
cessing; generalized aggregation means.

In this paper, we extend the notion of the Fréchet median to the general Fréchet median,
which minimizes the Fréchet cost function (FCF) in the form of aggregation of metric distanc-
es, instead of the ordinary sum. Moreover, we propose use an aggregation distance instead of
classical metric distance. We use generalized Fréchet median for constructing new nonlinear
Fréchet MIMO-filters for multispectral image processing.

Introduction

The basic idea behind this paper is the estimation of the uncorrupted image from the
distorted or noisy image, and is also referred to as image “denoising”. To denoise images is to
filter out the noise. The challenge is to preserve and enhance important features during the de-
noising process. For images, for example, an edge is one of the most universal and crucial fea-
tures. There are various methods to help restore an image from noisy distortions (Dougherty,
1994; Astola, 1997; Mitra, 2001). Each technique has its advantages and disadvantages. Se-
lecting the appropriate method plays a major role in getting the desired image. Noise removal
or noise reduction can be done on an image by linear or nonlinear filtering. The more popular
linear technique is based on average (on mean) linear operators. Denoising via linear filters
normally does not perform satisfactorily since both noise and edges contain high frequencies.
Therefore, any practical denoising model has to be nonlinear. In this paper, we propose a new
type of nonlinear data-dependent denoising filter called the aggregation digital MIMO-filter.

Almost 2500 years ago, the ancient Greeks defined a list of ten (actually eleven) dis-
tinct “means” (Heath, 1981; Bullen, 1988). All these means are constructed using geometric
proportions. Among these, are the well-known arithmetic, geometric, and harmonic means.
These three principal means, which are used particularly in the works of Nicomachus of
Gerasa and Pappus, are the only ones that survived in common usage. In fact, for a set of N
positive numbers x*, x?,...,x" e R*, the arithmetic mean is the positive number

110



3KO-MOTEHLIMAJ Ne 1 (17), 2017

13 : . - .
C:WZX“. The arithmetic mean has a variational property; it minimizes the sum of the
k=1

N .
squared distances to the given points x',x?,...,x" : C,=arg rpeiFg[pr(C, x')j,where
i=1

pl(c,x‘):‘c—x‘“ represents the usual Euclidean distance in R . The geometric mean which

is given by c=X/x'x*...x" also has a variational property; it minimizes the sum of the

N .
squared hyperbolic distances to the given points x*, x?,..., X" : G, =argmin (Zpﬁ (C, x')j,
AN

Whereph(c,x‘):‘logc—log x“ is the hyperbolic distance between ¢ and x'. The harmonic
mean is simply given by the inverse of the arithmetic mean of their inverses, i.e.,

N B -1
Cc= [%Z(Xk ) lj and thus it has a variational characterization as well.
k=1

There is similar situation for vector-valued data. For a given set of N points
xt,x?,...,xN e R", the arithmetic vector-valued mean is given by the barycenter

N
c= ink of the N points x*,x?,...,x" . The arithmetic vector-valued mean has a var-

iational property; it minimizes the sum of the squared distances to the given points

1 2 N

X, %2, XN 1 cy =arg mm(sz (c.x )j where p, (c,x')= i‘ck —x‘k‘z represents the
k=1

ceRK

usual Euclidean distance in R“. The most common distance metrics in continuous space are
those known as the class of ¢ distance metrics:

pp(C,Xi):pZK:‘Ck—XHp. (1)

Note for p=1, ¢, represents the rectilinear, or Manhattan, or city distance metric, for
p=2, ¢, is the Euclidean, or straight-line, distance metric, and for p =o0, ¢_ is known

as the Chebyshev distance metric.
The  Chebyshev  distance in K dimensions can be  written as:

p.(cx')= max(‘c1 A —x:(‘). In this paper, we extend the notion of centrality of
empirical data, using aggregation distance:
Pagg (c,xi ) = Aggreg(‘c1 — xiHc2 — x;‘,...,‘cK — Xy D instead of (1), where Aggreg is an aggre-
gation operator (function) (Labunets, 2014a,b,c,d; 2017) and used p,,, (c,X') for designing of
new MIMO-filters. We develop a conceptual framework and design methodologies for multi-
channel image median filtering systems with assessment capability.

The object of the study. Optimal Fréchet point, mean and median

The term multichannel (multicomponent, multispectral, hyperspectral) image is used for
an image with more than one component. They are composed of a series of images in different
optical bands at wavelengths A ,A,,..,A., called the spectral channels:

f(x, ) =( £,y (X Y), flK (X, y)), where K is the number of different optical chan-

nels, i.e., f(X,y):R? —>R", where R" is the multicolor space. Let us introduce the observa-
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tion model and notion used throughout the paper. We consider noise signals or images of the
form f(x) =s(x) +n(x), where s(x) =(s,(X),5,(X),.... S (X)) is the original multichannel sig-

nal, n(x)=(n,(x),n,(x)....n«(x)) denotes the multichannel noise introduced into the signal
s(x) to produce the corrupted signal f(x)=(f,(x), f,(x)...., fc(x)). Here x=ieZ,
x=(i, j)eZ? or x=(i, j,k) € Z® are a 1D, 2D, or 3D coordinates, respectively, that belong
to the signal (image) domain and represent the pixel location. If x e Z,Z?,Z° then f(x),s(x),
n(x) are 1D, 2D and 3D multichannel signals, respectively. The aim of image enhancement is
to reduce the noise as much as possible or to find a method which, given s(x), derives an im-

age y(x) =8(x) as close as possible to the original s(x), subject to a suitable optimality crite-

rion.
In 2D standard linear and median SISO-filters with a square window

M=+r,n=+
[ Mgy (m,n) ]
median replace the central grey-level (scalar-valued) pixel

: of size (2r+1)x(2r+1) is located at (i, j) the arithmetic mean and

m=-r,n=—

8(, j) = Ar)ithr)m {f(mn)}, $G,j)= !\n{Ie;dhiAan{ f(m,n)}, 2)

(m,n)eMg j) MeM,j)

where (i, j) is the filtered image, {f(m,n)} is image block of the fixed size

(m,n)eM(,v]—)
N :‘M(i’j)‘: M xM =(2r +1)x(2r+1) extracted from f by moving window M, at the

position (i, j). Symbols Arithm and Median are the arithmetic mean (average) and median
operators, respectively. In the multichannel case (for hyperspectral images), we need to define
vector-valued arithmetic mean (average) and median. Median filtering has been widely used
in image processing as an edge-preserving filter. The basic idea is that the pixel value is re-
placed by the median of the pixels contained in the window around it. In this work, this idea is
extended to vector-valued images, because the median is also the value that minimizes the ¢,

distance in R (according to (1)) between all the gray-level pixels in the N -cellular window
(Fig. 1). In the multichannel case, we need to define a distance p between pairs of objects on

the domain R" .

Fig. 1. Distances from an arbitrary point ¢ to each point x*, x?,...,x" e R
from the 9-cellular window.

Definition 1 (Fréchet, 1948; Chandrasekaran, 1990). The optimal weighted Fréchet me-
dian and mean associated with the metric p(X,y) are the points m,c,, 2 R" that minimize
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the Fréchet cost functions FCFl(C):Z:ilWip(C,Xi) and FCFZ(C):ZLWipZ (c.x') (the

weighted sum distances from an arbitrary point ¢ to each point x*,x?,...,x"). They are formal-
ly defined as

N .
m,, = FrechMed (p|x",x’,...x" ) =arg min FCF,(m) =arg min [Z_llwip(m,x')}, ()
N .
Co = FrechMean(p|x',x*,...,x" ) =arg min FCF, (c) =arg min (;W‘pz (c.x )j ()
When all the weights are equal (w, =1/N) we call m simply the geometric
median and mean. Note that argmin means the argument, for which the sum is minimized.
In this case, it is the point €,
imum. So, the optimal Fréchet median and mean of a discrete set of the observations (N pix-
els) in the metric space <RK,p> are points minimizing the sum of distances and the sum-of-

opt? Copt :

:from R, for which the sum of all distances to the x''s is min-

squared distances to the N pixels, respectively (Fig. 2).

Fig. 2. Distances (red lines) from an arbitrary point ¢ to each point x*,x?,...,x" c R¥
from the 9-cellular window for two probe locations.

This generalizes the ordinary median, which has the property of minimizing the sum
of distances for one-dimensional data. The properties of these points have been extensively
studied since the time of Fermat (this points are often called the Fréchet points or Fermat-
Weber points (Chandrasekaran, 1990). When filters (3) are modified as follows:

§6, j) = FrechMed[ p,w(m,n) | f(m,n)] =arg Srgg[ > w(m,n)p(s,f(m, n))}

m,n)eM,; :
(mmeMg j) (m,n)eM i)

®)
ééi,j):FrechMean[pz,w(m,n)|f(m,n)}:argsrl1FieQ[ > W(m,n)pz(s,f(m,n))}

(m,n)eMg j (MMM )
it becomes the Fréchet median and mean MIMO-filters (vector-valued filters). Note, that the
Fréchet median and mean MIMO-filters are not equivalent to classical vector-median and
vector-mean filters (Astola, 1990; Tang, 1996), where, in the first, s runs among observed N

data {f(m,n)} =R and, in the second, p(s,f(m,n))=p (s,f(m,n))=|s—F(m,n)],. In

(m,n)eM(i‘j
our case s runs among whole space R" and p(s,f(m,n)) is an arbitrary distance.

In this paper, we extend the notion of the Fréchet median and mean (3)-(4) to general-
ized Fréchet point, which minimizes an arbitrary positive convex function on N +1 variables -

generalized Fréchet cost function (GFCF) - GFCF(p®, p@,..., p™)
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Popt = FrechPt(GFCF,p | X, x2, .., xN ) =arg CmF|{Q I:GFCF(p(l),p(z),m,p(N)):I

=arg gnFlerK] [GFCF(p(c, x1), p(c, x?), ..., p(c, xN))],

(6)

instead of the ordinary sum, where p' = p(c,x"), p°> = p(c,X%), ..., p" = p(c,x"). In particu-
lar, important case we are going to use aggregation Fréchet cost function in the form of an
aggregation function GFCF = Agg,;:
S\ N
GFCF(p', p%,.... p") = AgQ,, {Wlp(c, Xl),sz(C,Xz),..., WNp(c, x" )} = AgY.r {vvip(c, X' )}H (7)
In this case

Popt = FreChPt(Aggcmp | X5 X2, XN ) =

8
= arg min [AggcF {Wlp(C,Xl),sz(C,Xz),...,WNp(C,XN )}} ®

Moreover, we propose to use an aggregation distance o, (c,x) instead of the classical dis-
tance p. It gives a new cost function Agg,, [WlpAgg (CX") WDy (€. X ) e Wiy g (€ X" )J and

new optimal Fréchet point associated with the aggregation distance p,,, (C,X) and Agg,

poptsAgFrechPt(AggCF,,oAgg;wl,wz,...,wN |x1,x2,...,xN):

- arg (QAQ :AggCF {Wlp}-\gg ' sz,igg""’WNp:gg}} =
i 9
=argmin | Agyc {WlpAgg (X)W opgg (X7 ), omes Wiy gy (€ X" )}} - ©)

ceR

- B | N
=arg g?FIQQ _AggCF {vvipAgg (c, X )}HJ.
We use the generalized Fréchet point for constructing new nonlinear filters. When filters (3)
are modified as follows:
S6,j)= A(gF)reMchPt[AggCF,pAgg,w(m, n) | f(m, n)] =
m,n)e (i.j)
(10)
H 1 N
=arg erFlenK [Aggu: {WlpAgg (S':X )"'-’ Wi Pagg (S’:X )}]

it becomes the Fréchet aggregation MIMO-filters. They are based on an arbitrary pair of ag-
gregation operators Agg.- Vand Pagg (c,x), which could be changed independently of one

another.

In the first part (Labunets, 2017), the notion of digital nonlinear SISO-filters (sin-
gle-input single-output) associated with aggregation operators of averaging types was defined.
In this part, we are going to consider a general theory of nonlinear MIMO-filters (multi-input
multi-output). They are based on the generalized Fréchet point and on an arbitrary pair of ag-
gregation operators Agg., ., » Which could be changed independently of one another. For
each pair of aggregation operators, we get the unique class of new nonlinear filters. We show

that a large body of non-linear filters proposed to date constitute a proper subset of aggrega-
tion digital MIMO-filters.
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Methods

Aggregation operators. The aggregation problem consist in aggregating N -tuples of
objects (X, X,,...,Xy ) all belonging to a given set D, into a single object of the same set D,
i.e., Agg: D" — D. In fuzzy logic theory, the set D is an interval of the real D=[0,1]cR.
In image processing theory D =[0,255]c Z. In this setting, an aggregation operator is
simply a function, which assigns a number y to any N -tuple (xl,xz,..., xN) of numbers that
satisfies (Mayor, 1986):

1) Agg, (%, X,,..., Xy ) is continuous and monotone in each variable; to be definite, we
assume that Agg is increasing in each variable.

2) The aggregation of identical numbers is equal to their common value:
Aggreg,, (X, X,...,X) = X.

3) Min(X,,..., Xy ) SAGY (X, Xy ) SMax(X,,... Xy ). Here  Min(x,X,,..,Xy) and
Max (X, X,,...,Xy) are the minimum and the maximum values among the elements of
(X Xprees Xy ) -

4) AgY (X, X, Xy ) is @ symmetric function: Agg( oy X2 ,U(N)) AGY (X, X1 Xy )
VoeS, of {1,2,...,N}, where S, is the set of all permutations of 1,2,...,N . In this case

Agg(X,,.... Xy ) is invariant (symmetric) with respect to the permutations of the elements of
(X0 Xgrevs Xy ) -

We list below a few particular cases of aggregation means:

1) Arithmetic and weighted means (here K(x)=x): Arithm(x,X,,... X, )=N">"x,

N
WArithm (X, X,,..., ZW, . Where > W, =1. Classical operator Arithm(x,,X,,...,Xy)
i=1
is interesting because it gives an aggregated value that is smaller than the greatest argument
and bigger than the smallest one. Therefore, the resulting aggregation is "a middle value".

This property is known as the compensation property that is described mathematically by:

MiN(X, Xy, ... Xy )< <SArith(X, X ,, . Xy ,)<Smax &,X,, . Xy, ) Where min(x,X,,... X))

and max(x, X,,..., X, ) are the algebraic minimum and maximum functions, respectively. The

mappings min and max both satisfy the defining conditions and therefore are aggregations
(means), even though they are rarely mentioned - or even perceived - as such. It is often used
since it is simple and satisfies the properties of monotonicity, continuity, symmetry, associa-
tivity, idempotence and stability for linear transformations.

2) Another operator that follows the idea obtaining "a middle value™ is the k -order statis-
tic. It consists in ordering the arguments from the smallest one to the biggest one

(X0 Xy ey Xy ,xN)—>(x(1),x(z),...,x(m),...,x(N)) (from the smallest to the biggest element,
where N =2m+1). The k -order statistic chooses the element on the k th position on the or-
dered list: OS, (X, Xy, Xr-oms Xy ) = OSy Xy Xzyse Xy Xy ) = Xy This aggregation opera-

tor satisfies the boundary conditions, the monotonicity, the symmetry, the idempotence and
evidently the compensation behavior.
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3) Three remarkable particular cases of the k -order statistic are the minimum, median and
maximum: — min(X, X, ... X ) =Xgy,  Med (X, Xpre Xy ) = Xys  MAX(X;, Xy, 000, Xy ) = Xy The

minimum gives the smallest value of a set, while the maximum gives the greatest one. They
are aggregation operators since they satisfy the axioms of the definition. The main properties
of these operators are monotonicity, symmetry, associativity, idempotence. Mathematically
speaking they have a compensation behavior, but these are the limit cases. Using these opera-
tors, we will never obtain an aggregated value "in the middle". For this reason, we do not con-
sider that we can talk about compensation behavior in this case.

4) Very notable particular case corresponds to the function K(x)=x". We obtain then

LI AL
Holder mean: Holp(xl,xz,...,xN)=Powerp(xl,xz,...,xN)=[N;xipj . It is easy to see, that

distances are particular cases of aggregation operator. We can use an arbitrary Agg as
Page (€, X) . For example,
1) The Kolmogorov aggregation distances

Py (€)= Py (€)= K[z (e _x;\)}

2) In particular, the Holder aggregation distances

pro(e)=p, (03 ) =S [

3) The k -order statistic distance

pAgg (C, Xi ) = pOSk (C,Xi ) = Osk (‘C1 _X:{ch - X;‘,...,‘CK — Xli< ‘)
Three remarkable particular cases are maximum, median and minimum distances
pAgg (C'Xi): Prmax (Cixi): maX(‘Cl —Xi"..."CK _XLD’
pAgg (C’Xi): pmed (C’Xi): med(‘cl—xli‘,...,‘CK —X:(‘)1

Pags (€X' )= prin (€ X') = min(‘c1 =% sonn|C = XH)
The same situation is true for the aggregation Fréchet cost function Agg. . Using differ-

ent aggregation operators, we can obtain different aggregation Fréchet cost functions. For ex-
ample,
1) The Kolmogorov-Fréchet cost functions

AGYcr { Plsg: Phyr -+ Phag ) = KOler { Dy Pl Phag |

i=1

Kl[ZK:K(pggg )j

2) In particular, the Holder-Fréchet cost functions

K
AGGecr { Plggr- Phag | = HOL, o0 Pl Pl = 12 (P05s)

k=1

3) The k -order statistic-Fréchet cost functions

AYcr | Plggr 1 Pl | = AGTEs {Pfag -+ Phgg | = OSic { PRy Pl |-
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Three remarkable particular cases are maximum-, median- and minimum-Fréchet cost func-
tions

AGGcr { Py Phigr-+ Pl | = AT | Py Piggr-+ Pl | = MaX{ lgg, Pl P |
AGYcr { Phag Pl s+ Poag | = AT { Plag: Phigr++ Py | =Med {0l Pl - Pl |
AGGcr { Py Phags-+ Pl | = ATuin | Plig: Phagss Phgg | =MiIN{ e, Pligyr--os Py |

and so on. Every pair Aggce, 0ag, gives us an exotic Fréchet aggregation MIMO-filters (10).
For example ,

$€i, j) = AgFrechPt[Agd,. e | F(M,N)] =

(m,n)eM j

= arg min [AggHoI {max(s,:xl),max(s,:xz),...,max(s,:x“‘ )}} -
=arg sTrieQ [{’/[max(s,:xlﬂp +[max(s,:x2)]p +...+[max(s,:x'“ )]p }

§€i, j) = AgFrechPt[ Agd,, P | F(M,N)] =

(m,n)eM j

=arg Srgiqrr! |:AggHoI {max(s,:xl)'max(s’:xz)"“’ max(s,:xN )}} =

_ . -1 1 2 N
= argsrgl?rll K [K (max(s,=x ))+ K (max(s,zx ))+...+ K ((s,zx ))}
Suboptimal 2D Fréchet MIMO-filters. In computation point view, it is better to restrict the

infinite search domain from R" to a finite subset D e R . We are going to use the following
finite subsets:

o The set of observed data D, ={x',x’,...x" | = R¥.

e The hyperspectral hypercube D, :=[0,255]“ . For example, if K =3, then

dig -

D, =[0,255] is the RGB-color cube.

In this case, we obtain definition of D -optimal Fréchet points.
Definition 2. The suboptimal classical Fréchet mean and median (or D -optimal Fréchet
points)  associated  with the classical metric  p(x,y) are the points

Cobopt € Dyg =[0,255]* = R* and ¢, €D, ={x",x*,...,.x" } = R* that minimizes the clas-
sical FCF over restricted search domains Dy, =[0,255] and D, = {x',x’,....x"}

Codopt = Dy -FrechPt( psw!, w,..., w" |xl,x2,...,xN):argDmin(iwip(c,x‘)j,

C&Dyig i=1

Coront = Do -FrechPt( p;w!, w? ..., w" [ X', x%,.., x" ) =arg min(ZN:wip(c,x‘ )j
i=1

ceDyy

We use D -Fréchet points for constructing the following nonlinear digital MIMO-filters

A

sO:pt(i,j):RK-FrechPt[p,w(m,n)|f(m,n)]:argsmirl{ > w(m,n)p(s#(m,n))}, (11)

m,n)eM; ;
(m.neMg j) (m,n)eM jy
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subopt
(m,n)eMg j

aob
Sessopt (I ) = Dgy-FrechPt[ p,w(m,n) | f(m,n)] =arg mtl)n

subopt sz
(mn)eMg j) b | (mn)eMg ;)

The next generalization of Fréchet MIMO-filters is based on the following suboptimal

Fréchet points.

Definition 3. The suboptimal generalized Fréchet points associated with an aggregation
Dy, =[0,255] < R®

R* that minimizes the AFCF over restricted search domains

metric Pagg (X Y) are  the points oot €

Coubopt € Dop {xl X2, xN}c
Dy, =[0,255] and D, {xl,xz,...,x'“}
cdis —p -AgFrechPt(AggCF,,oAgg;wl,...,wN |x1,...,xN)

subopt dig

=arg min [AggCF {Wl,oAgg (c, xl) yeoes Wy Oagg (c, xN )}]

= D,,-AgFTechPt(Aggcr ) Paggi Woon W [ X XN ) =

=arg min [AggCF {WlpAgg (€ X") s Wy Pagg (€ X" )}}

subopt

880 (1,1) =Dy, FrechPt[p,w(m,n)|f(m,n)]=argstin[ > w(m,n)p(s(m,n))
Edig (mn)eMg ;)

Y. w(m,n)p(sf(m,n))|.

(12)

(13)

and

We use these points for constructing the following nonlinear digital MIMO-filters

Soufi, )= RK-AgFrechPt[AggCF,pAgg,w(m n) | f(m, n)]_

(m,n)eMg j)

=arg mFlen{ AgY e {W(m N)* Pagg (S:f(m n))}}

(mn)eMg i

80op 61, J) = Dy -AgFrechPt[ Agdce, Pagg, WM, N) [F(m,n) | =
(m,n)eM j

=arg min LA?QMCF {w(m, n)- pag, (seF (m, n))}}
19| (mn)eM j
Sopont 1 1) = Dob-AgFrechPt[AggCF,pAgg,w(m,n)|f(m,n)]:

subopt
(m,n)eMg j

=arg min [ AQQ e {W(m N)* Pagg (S:f(m n))}}

$2Dgp (m,n)eM; j

Example 1. If observation data are real numbers, i.e., x',X%,...,x" €R, and the distance
function is the city distance p(X,y) = p.(X,y) :|x— y|, AFCF is L, -distance, then the optimal

and suboptimal Fréchet points for data X x2,.., XN eR to be

N
Copt = RK-AgFrechPt(Hol 01 Pagg = PuIXEXE ) arg rll'Rn[p >

i=1

N
Cato = D-FrechPt(Hol , p,. = p, [ X', X*,....x" ) =arg m[!n( Z

subopt

N
= D-FrechPt(Hol ,, puy = oy | X', X, X" ) = argmén(pz

subopt
i=1

e[ J
c_xir].

(14)

(15)

(16)
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In particular, if p=1,2,00 then we obtain the Fréchet point (FrechPt), arithmetic mean

(ArithMean) and midrange (MidPt) of a set of observations X', x*,..., X" €R, respectively:

N
Copt = R-AgFrechPt(HoIl,pAgg = p | XX X ) arg mm[z

=1

U FrechPt(x!, x,..., x"),

>

i=1

ceR

Cy = R-AgFrechPt(Hol,, p,, = [ X',....x" ) =arg mln[ c—x“2 ] = ArithMean(x",...,x") =

18,
= — XI,
N =

C = R-AGFrechPt(Hol,,, ppy, = o, | X', X0 X ) = argmln(llzN‘c x) MidPt(x', x?,...,x") =

ceR
= [Max(xl,xz,...,x’“)+ Min(x*, x%,..., x”)}/Z.
In this case, filters

§O:pt(i,j)—R-AgFrechPt[HoIp,pAgg—p1|f(m,n)}—argrsneigl[i)/ > |sf(m,n)|p]. 17)

(m,n)eMg j) (mn)eMg ;)

are the optimal maximum likelihood SISO-filter for Laplacian ( p=1), Gaussian (p=2) and
Uniform (on [-0.5,+0.5]) PDF ( p=w) of noises, respectively.

If D=D,, =[0,255] then we obtain the following suboptimal estimates (for the same val-
ues p=12,0):

Cg&gopt i AgFreChPt(H0|p,pAgg p1|xl,x2,...,xN): C!SIZFSIS](\/Z:‘CiX]

In this case, filters

Soumopt 61, 1) =Dy AgFrechPt[HoIp,pl)|f(m,n)] arg min [;\)/ > |sf(m,n)|p]. (18)

dig

52[0,255
(MMM ) =[0.255] (MM )

are the suboptimal maximum likelihood SISO-filter for the same noises.

If D=D, = {xl, X, XN} then we obtain the next suboptimal estimates (for the same val-
ues p=12,0): the suboptimal Fréchet point is the classical median (Med), arithmetic mean
(ArithMean) and midrange (MidPt) of a set of observations X', x’,..., X" €R, respectively:

N ip
c—x‘ .

Cohopt = Doy “AQFTeChPt(Hol , pps = o, [ X', %, x" ) =arg mln[PZ
=1

ceDyy

In this case, filters

Sobop £ 1) = ob-AgFrechPt[Holp,p1|f(m,n)} argmm[i/ > |sf(m,n)|p}. (19)

(mneMg (m,n)eMg

are the suboptimal maximum likelihood SISO-filter for the same noises. It is interesting that
only in the first case we have classical median filter
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X et

(m,meMg

Med [f(m,n)]=D,,-AgFrechPt[Hol,,p,,| f (m,n)]=arg Smgn

(m.n)eMg j) (mn)eMg o

Example 2. If observation data are vectors, i.e., X', x°,....X" € R* and the distance func-
tionis ¢, distance o,y (X,Y) = p,(X,Y) = ||x—y||p then we have

Cop = RK-AgFrechPt(AggCF,,op;vvl,...,wN |x1,,_,,xN):

~arg min| Aggee {1 fo- 1, . Je-x"]} |

In particular, if Agge =Hol, (and w* =w’ =...=w") then
N [ K o a/p
Conr = R -AgFrechPt(Hol,, p, |x',X*,....x" ) =argmip| ; ;(;‘ck = ) .

If p=12,00 and q=12,0 then we obtain nine Fréchet points and nine Fréchet MIMO-filters

(m.n)eMg j (mn)eMy; jy \ k=L

§0=pt(i,j)R-AgFrechPt[HoIq,pp|f(m,n)]argsmgergw > [i‘sk—fk(m,n)"’jqp], 20

For each pair of aggregation operators, we get the unique class of new nonlinear filters.
If one can accurately model the noise distribution, then the filtering results can be significant-

ly improved by using a suitable metric p,, (c,x) or aggregation cost function Agg.. The
link between the noise distribution and the metric is given by the maximum likelihood theory.

Results and Discussion

We performed a number of experiments with the proposed MIMO-filters using several
images. The results of some of them are presented here. We developed five the following fil-
tering algorithms:

1) Classical arithmetic mean MIMO-filter (Mean)

36, j) = FrechMean| Agg., = Hol,,pf [f(m,n) | =

(m,n)eMg; j

:arngiQL > ||s=f(m,n)||fj:% > f(m,n),

(m,n)eM(i,j) (m,n)eMm)
2) Classical vector-valued median filter - independent median filtering along every chan-
nel R,R, and R, with the research domain in the form of observed data

s, e D, <[0,255],, s, €D, ,, =[0,255],, s, €D, <[0,255], (three median SISO-filters
acting in each channel. Our designate D,,-SISO® -filter or Med)

§:3bopt éi’ J) = Dob -AgFrEChPt [AggCF = HOIl' P1s W(m’ n) |f(m! n)] =

(m,n)eM(i‘j)

:argsreDr?Ci[rg‘%S][ > |s—f(m,n)|}.

Sq €Dy op<[0,255] (m.n)eMg ;)
Sp €Dy on <[0,255],

(21)
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4) Elaborated vector-valued median filter - independent median filtering along every
channel R ,R, and R, with the research domain in the form of digital domains

s,2[0,255],, s, €[0,255],, s, <[0,255], (three elaborated median SISO-filters acting in
each channel - D,_-SISO®-filter or ElabMed)

dig

5)
Sbon 61,1) = Dob_(Ag)FMreChPt[Agch =Hol,,p,,w(m,n)|f(m,n)] =
MM
. (22)
=arg_min { > |s—f(m,n)|].
5, €[0,255], [ (MM<Mqj)
5,[0,255],

4) Classical vector-valued median MIMO-filter [13-14] with the research domain in the form
of observed data sz D, ={f(m,n)} . <[0,255];, (D,,-MIMO or VecMed)

$2op: H, 1) = Dy -AgFrechPt[Agg.. = Hol,,p, |f(m,n)] =

subopt
(m,n)eM; ;y
(23)
—arg _ min { > |s—f(m,n)|:l,

$=D, 10,255, | (. MM,

5) Elaborated vector-valued median MIMO-filter with the research domain in the form of
RGB-cube sz[0,255F, (D,-MIMO or ElabVecMed)

dig

Sebopt 1 J) = Dy -AgFrechPt[Agg, = Hol,,p, |f(m,n)] =

subopt

(m,n)eM;
(24)
=arg min s—f(m,n)| |,
g 5%[0,255]%,, l:(m'n%\;l(ij) | ( )|:|

For the experiments presented here, the "Macaw" images (Figures 2a,3a,4a, respec-
tively) are used. Salt-Pepper and Unichannel Uniform-PDF noises are added to the images to
obtain noised images with different peak signal-to-noise (PSNR). The performance evaluation
of the filtering operation is quantified by the PSNR (Peak Signal to Noise Ratio). The pro-
posed suboptimal Fréchet MIMO-filters (21)-(24) has been applied to noised 3x3 image
"Macaw". We use 3x3-window. The denoised images are shown in Fig. 3-5. Tables 1-3 are
the filtering results at different intensities and types of noise. All Fréchet MIMO-filters

(Dg,-MIMO and Dg,-MIMO) have very good denoised properties. It is easy to see that re-
sults for Fréchet filters D, -MIMO and D,

4ig-MIMO are better, compared to the classical

Mean- and- D, -SISO® filters. Filter D, -SISO® gives elaborated results with respect to their

dig
classical counterpart D, -SISO®. These facts confirm that further investigation of these new
filters is perspective.
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ey ult
) AggCF - HOIl' Pagg = P2 d) AggCF = HOIl' Pngg = P2»
D=D,, eR, xR, xR,,PSNR =27.69. D=D,, €R, xR, xR,,PSNR=29.26.

dig

e) AggCF = H0|11 pAgg = ,021 f) AggCF = HOIl’ pAgg = p2'

RS N

D=D, R’ , PSNR=29.92. D=D, R}

rgh? dig rgh?
Fig. 3. Original (a) and noise (b) images.

PSNR =30.48.
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Impulse noise: “Uniform PD”. Denoised images (c)-(f).

. 1 & s e ;
€) AQYcr = Hol,, pags = 5, d) Aggcr = Hol,, puge = 2,
D=D, eR, xR xR,,PSNR =20.60. D=D,, €R, xR, xR, PSNR =29.70.

dig

i ' . ,
€) AQYcr = Hol,, pag = 5, f) AgQce =Hol,, pagg =P,
D=D, eR?,, PSNR =29.61. D=D, eR® , PSNR=2981.

rgh? dig rgh?
Fig. 4. Original (a) and noise (b) images.
Impulse noise: “Black-white salt-pepper”. Denoised images (c)-(f).
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C) AggC,: = HOI]_I ,DAgg = pza d) AggCF = Ho'l’ pAgg = p2’
D=D,, €R, xR, xR,, PSNR=21.25. D=D,, R, xR, xR,,PSNR =29.99.

dig

e) AggCF = HOIl’ pAgg = 102’ f) AggCF = HOIl’ pAgg = p2'
D=D,, eR?%,, PSNR =31.86. D=Dg, €R},, PSNR=32.07.

rgh? dig rgh?
Fig. 5. Original (a) and noise (b) images.
Impulse noise: “Color Salt-Pepper”. Denoised images (c)-(f).
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Table 1. Noise wit uniform pdf

% PSNR | Mean | Med Elab Vec ElabVec
Med Med Med
05 19.05 | 26.68 24.16 24.16 22.36 25.83
10 15.71 | 23.99 20.88 20.88 19.09 22.71
20 13.48 | 21.89 18.57 18.57 16.64 20.52
40 11.79 | 20.11 16.72 18.57 15.11 18.77
50 10.57 | 18.69 15.37 15.37 13.84 17.46
70 08.83 16.41 13.26 13.26 11.91 15.44
Table 2. Black-white salt-pepper noise
% PSNR | Mean | Med Elab Vec Elab-
Med Med | VecMed
01 15.27 | 23.47 32.97 32.92 32.92 33.02
05 12.49 | 20.60 29.80 29.80 29.72 29.80
10 10.94 | 18.87 25.54 25.46 25.46 25.50
20 09.90 17.47 21.81 21.67 21.67 21.74
50 09.15 | 16.51 18.92 18.92 18.75 18.82
70 08.54 | 15.67 16.61 16.61 16.40 16.51
Table 3. Color salt-pepper noise
% PSNR | Mean Med Elab- Vec- Elab-
Med Med | VecMed
01 15.20 | 23.49 32.77 32.77 33.26 33.54
05 12.40 | 20.56 29.58 29.58 31.84 32.09
10 10.93 | 18.78 25.57 25.57 30.00 30.10
20 09.81 | 17.43 21.78 21.78 27.32 27.32
50 09.13 | 16.48 19.00 19.00 24.77 24.82
70 08.82 | 15.63 16.60 16.60 22.06 22.26
Conclusion

A new class of nonlinear generalized MIMO-filters for multichannel image processing
are introduced in this paper. These filters are based on an arbitrary pair of aggregation opera-
tors, which could be changed independently of one another. For each pair of parameters, we
get the unique class of new nonlinear MIMO-filters. The main goal of the work is to show
that generalized Fréchet aggregation means can be used to solve problems of image filtering
in a natural and effective manner.
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