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AGGREGATION APPROACH TO NONLINEAR FILTERING.
PART 1. SISO-FILTERS

KuaioueBble cioBa. Henunelinas guiempayus; cepuvle u300padiceHus; azpeeayuoHuvle one-
pamopui,; Henunetinvle SISO-pursmpeol.

B aTo0ii paboTe MBI BBOOUM U aHaTH3UpyeM HOBBIH Kiacc SISO-GuibTpoB, KOTOpPbIE OCHOBBI-
BAIOTCSI HA TEOPUM arperalioHHBIX (QUILTPOB. MBI MOKa3bIBAEM, YTO OOJIBIION KiacC HEIMHEHHBIX
(GHUIBTPOB, M3BECTHBIX B HACTOSINEE BPEMs, SBISIOTCS YaCTHBIMU CITydasMH arperalioHHBIX (HIIb-
TPOB.

Keywords: Nonlinear filtering; multicolor images; aggregation operators; nonlinear SISO-
filters.

In this work, we introduce and analyze a new class of nonlinear SISO-filters that have
their roots in aggregation operator theory. We show that a large body of non-linear filters pro-
posed to date constitute a proper subset of aggregation filters.

Introduction

The basic idea behind this paper is the estimation of the uncorrupted image from the
distorted or noisy image, and is also referred to as image “denoising”. To denoise images is to
filter out the noise. The challenge is to preserve and enhance important features during the de-
noising process. For images, for example, an edge is one of the most universal and crucial fea-
tures. There are various methods to help restore an image from noisy distortions (Gonzalez,
Woods, 1992; Mitra, 2001). Each technique has its advantages and disadvantages. Selecting
the appropriate method plays a major role in getting the desired image. Noise removal or noise
reduction can be done on an image by linear or nonlinear filtering. The more popular linear
technique is based on average (on mean) linear operators. Denoising via linear filters normally
does not perform satisfactorily since both noise and edges contain high frequencies. There-
fore, any practical denoising model has to be nonlinear. In this paper, we propose a new type
of nonlinear data-dependent denoising filter called the aggregation digital filter (ADF).

The object of the study

Let us introduce the observation model and notion used throughout the paper. We
consider noise signals or images of the form f(X)=s(X)+n(x), where

S(X) =(5,(x),5,(X),...,S¢ (X)) is the original multichannel signal, n(x) = (n,(x),1,(x),...n, (x))
denotes the multichannel noise introduced into the signal s(x) to produce the corrupted signal
f(x) =(f.(x), ,(X)...., f (X)). Here x=ieZ, x=(i,j)eZ? or x=(i, j,k)€Z® are a 1D,
2D, or 3D coordinates, respectively, that belong to the signal (image) domain and represent
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the pixel location. If x e Z,z?,Z® then f(x),s(x), m(x) are 1D, 2D and 3D multichannel sig-

nals, respectively. The aim of image enhancement is to reduce the noise as much as possible
or to find a method which, given s(x), derives an image y(x) =§(x) as close as possible to

the original s(x), subject to a suitable optimality criterion (Gonzalez, Woods, 1992).

m=+8,N=+5

In 2D standard linear and median filters with a square window [M(i'j)(m, n)]w_S .

of size (2s+1)x(2s+1) is located at (i, j) the arithmetic mean and median replace the cen-

tral pixel
G, j) = ZArithr}m {f(m,n)}, &G, j)= !\/Ie)dhglan {f(m,n)},

m,n)eM ) o)

where §(i, j) is the filtered image, {f(m,n)} is image block of the fixed size

(m,n)eM(iyj)
(2s+1)x(2s+1) extracted from f by moving window M ;, at the position (i, j). Symbols

Arithm and Medianare the arithmetic mean (average) and median operators, respectively.
When those filters are modified as follows

§(i. J) = Aggreg {f(k, 1)}, (1)

(k,DeM (i, j)
it becomes an aggregation digital filter, where Aggreg is a generalized average or an aggrega-

tion operator (Mayor, 1986).

In the first part, we are going consider a general theory of nonlinear SISO-filters (sin-
gle-input single-output) associated with aggregation operators of averaging types. In the next
parts, we will consider a general theory of nonlinear filters associated with aggregation opera-
tors of conjunctive and disjunctive types. We show that a large body of non-linear filters pro-
posed to date constitute a proper subset of aggregation digital filters.

Methods

Filters as discrete dynamic systems. A discrete-time system (DTS) is a device or
algorithm that, according to some well-defined input/output rule, operates on a discrete-time
signal called the input signal x(n) or excitation to produce another discrete-time signal called

the output signal or response y(n) . For a DTS the output y(n) theoretically can depends on all
earlier input values{x(m)} _ . DTS must memorizes these values. It requests infinite volume

m<

of memory. In real, discrete-time systems have finite memory and for this reason can
memorize only a finite set of earlier input values {x(n—l), X(n=2),...x(n=N +1)}. This set of
earlier input values is called the prehistory of the input sample x(n) and denotes as
Hist, (n,N -1) :={x(n—l),x(n—2),...,x(n—N+1)}. Hence, for a DTS the output y(n) can
depends on only a finite set of earlier input values. Mathematically speaking, a system is also
a function of N variables. The input signal x(n) is transformed by the system into a signal
y(n), which we express mathematically as

y(n) = Aggreg{x(n), x(n-1),...,x(n— N +1) }= Aggreg{x(n), Hist,_ (n;N -1},

where Aggreg{.} is some well-defined transformation input/output rule (a function of N var-
iables) of input samples into an output sample y(n) at the discrete moment n. Block diagram

representation of similar discrete-time system is illustrated in Fig.la. It is called a non-
recursive filter (NRF).
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y(n)

Hist,, Hist,, Hist
oui

b)
Fig. 1. Discrete a) non-recursive and b) recursive filters.

More “smart” system have to analyzes to self-behavior and memorizes a finite set of
earlier output values {y(n—l),y(n—2),..., y(n—M)}. This set is called the prehistory of the
output sample y(n) and denotes as Hist,,(n, M)::{y(n—l), y(n-2),..., y(n—M)}. In this case
DTS analyzes both a input and output prehistories and after that the input signal x(n) is trans-
formed by the system into a signal y(n), which we express mathematically as

y(n) = Aggreg{x(n), x(n-1),...,x(n =N +1); y(n-1),...,y(n—M) } =
= Aggreg{x(n), Hist,, (n; N —1), Hist_, (n, M)},

where Aggreg{.} is some well-defined transformation input/output rule (a function of N +M
variables) of input samples into an output sample y(n) at the discrete moment n. Block dia-

gram representation of similar discrete-time system is illustrated in Fig.1b. It is called the re-
cursive filter (RF).
If ecnu Aggreg{.} is a linear function, then NRF is an infinite-impulse response fil-

ter (I11F). In this case, we have
y(n):a~Zka(n—k)+B-kay(n—k)=
=o.- WArithm{x(n),..., x(n—N +1)} +B- WArithm { y(n-1),..., y(n—-M)},

where w,, W, ..., W 1 V,,...,V,, are weights,

M N-1 M 1 N-1 N-1 M -1
B=ZVK(ZWK+ZV|() and a:ZWk(ZWHZij ,
k=0 k=1 k=0 k=0 k=1

k=1
N=

WArithm {x(n),... x(n—N +1)} = iwkx(n—k), WArithm{y(n-1),..,y(n—-M)} = ivky(n —k).

Aggregation operators. The aggregation problem consist in aggregating N -tuples of
objects (Xl, Xy yeeny XN) all belonging to a given set D, into a single object of the same set D,

i.e., Aggreg:D" —D. In fuzzy logic theory, the set D is an interval of the real
D=[0,1]]<R. In image processing theory D =[0,255]c Z. In this setting, an aggregation
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operator is simply a function, which assigns a number y to any N -tuple (Xl,xz,...,xN) of

numbers that satisfies (Mayor, 1986):
1)  Aggreg, (X,X,,...,Xy) IS continuous and monotone in each variable; to be defi-

nite, we assume that Aggreg is increasing in each variable.

2)  The aggregation of identical numbers is equal to their common value:
Aggreg,, (X, X, ..., X) = X.

3)  Min(x,..., X, ) < Aggreg(x,,..., Xy ) < Max(x,..., Xy ). Here Min(x,,X,,..., X, ) and

Max (X, X,,..., X, ) are the minimum and the maximum values among the elements

of (X, Xy, Xy ) -
4) Aggreg(xl,xz,..., xN) is a symmetric function:
Aggreg(xa(l),xa(z) ..... xa(N)):Aggreg(xl,xz ..... Xy ), Vo eS,
of {12,..,N}, where S, is the set of all permutations of 12,..,N. In this case
Aggreg (X1 ) is invariant (symmetric) with respect to the permutations of the elements of
(xl,xz,...,xN). In other words, as far as means are concerned, the order of the elements of

(X,,X,,..., Xy ) is - and must be - completely irrelevant.

Proposition 1. (Kolmogorov, 1930; Ovchinnikov, 1998). If conditions 1) — 4) are
satisfied, the aggregation Aggreg(x,, X,,..., X, ) Of the average type are as of the forms:

Kolm (K | X, Xy .00 Xy ) = K{%ZN:K(XJ} K™ [Arithm {K (x,), K(X,),..., K(x)}].
WKolm (K | X, X,, )=K 1[. ‘iK(xi)}_ K™ [WArithm {K (x,), K(X,),..., K(Xy)}].

)

or

Kolm (K™ | X, X110 Xy ) = Hiw } [ Arithm (K (%), K (%,),.. K ()} ],

N

WKoIm (K™ X, X,,..., X ) = {Zw,Kl } K[ WArithm {K (), K™ (%,),... K™ (%)} ],
(3)

where K is a strictly monotone continuous function in the extended real line.
In (2) and (3) we can use an arbitrary aggregation operator instead of Arithm, that
gives new the Kolmogorov aggregation operators

KolmAgg (K | X, X,,..., Xy ) = K™ [Aggreg {K (x,), K(X,),..., K(Xy)}].

KolmAgg (K™%, X,..... Xy ) = K[ Aggreg {K (%), K™(x,),... K (%)} ]
We list below a few particular cases of aggregation means:

(4)

1) Arithmetic and weighted means ( K(x) = x):
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N
Arithm (X, %,,..., Xy ) = _1ZXI, WATrithm (x,, )= WX (5)

=1 i=1

N
where Zv‘vi =1. Classical operator Arithm(x,x,,..,x,) IS interesting because it gives an ag-
i=1
gregated value that is smaller than the greatest argument and bigger than the smallest one.
Therefore, the resulting aggregation is "a middle value". This property is known as the com-
pensation property that IS described mathematically by:

MIN (X, X100 Xy ) S AFIth (X, Xy, Xy ) SMAX( Xy, Xy, Xy ), Where min(x,,X,,..., Xy )) and
max(xl,xz,...,xN) are the algebraic minimum and maximum functions, respectively. The

mappings min and max both satisfy the defining conditions and therefore are aggregations
(means), even though they are rarely mentioned - or even perceived - as such. It is often used
since it is simple and satisfies the properties of monotonicity, continuity, symmetry, associa-
tivity, idempotence and stability for linear transformations. However, it has neither absorbent
nor neutral element and has no behavioral properties.

2) Another operator that follows the idea obtaining "a middle value" is the median. It
consists in ordering the arguments from the smallest one to the biggest one

(X1 Xyyeens X 1'X2m’x2m+l""’XN)_)<X(l)’X(Z)""'X(Zm—l)’X(Zm)'X(2m+1)""'X(N))’ N =2m+1,

(X0 Xy, ene 2m,XZM,...,XN)—>(x(1),x(z),...,x(Zm),x(ml),...,x(N)), N =2m,
where taking the element in the middle:
M d( ) X amy» N =2m+1], ©)
ed (X, X,,..., X
? 0, 5( m) T (2m+1))’ N =2m.

This aggregation operator satisfies the boundary conditions, the monotonicity, the
symmetry, the idempotence and evidently the compensation behavior.

3) There exists a generalization of this operator: the k -order statistic, with which we
can choose the element on the kth position on the ordered list (from the smallest to the big-
gest element):

OS, (Xy) Xy e X eens Xy ) = O, (x(l),x(z),..., Xy x(N))= X (o) (7)

4) Two remarkable particular cases of the k -order statistic are the minimum and the
maximum:

MIN (X}, Xy, 00y Xy ) = Xgyo MAX(Xy Xyemnr Xy ) = Xy (8)
The minimum gives the smallest value of a set, while the maximum gives the greatest one.
They are aggregation operators since they satisfy the axioms of the definition. The main prop-
erties of these operators are monotonicity, symmetry, associativity, idempotence. Mathemati-
cally speaking they have a compensation behavior, but these are the limit cases. Using these
operators, we will never obtain an aggregated value "in the middle". For this reason, we do
not consider that we can talk about compensation behavior in this case.

5) Geometric and weighted geometric means ( K(x) =In(x) ):

Geo(x,, —W—exp[lilnxi}

o 9)
N P
WGEO(X,, Xy, vy Xy ) = [H X;" ] -

6) Harmonic and weighted harmonic means (K(x)=x"):
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N -1 N
Harm(x, x,,.... Xy) = (le xilj - N

i=1

N 10
ZWi -
WHarm(xi,xz,...,xN)_— =1 :

iwi =
i=1

X;

7) Very notable particular case corresponds to the function K(x) = x". We obtain then
power mean:

1
Ll
Powerp(xi,xz,...,xN):(%ZXipjp. (11)
i=1

In mathematics, the power mean, also known as Hélder mean (named after Otto Hold-
er), is an abstraction of the Pythagorean means including arithmetic, geometric, and harmonic
means.

Ordinary aggregation 2D SISO-filters. The simplest and most common way to
aggregate input data in 2D SISO-filter is to use a simple arithmetic and weighted mean:

8(i, j) = Arithm{ f (m,n)},  &(i, j) = WArithm {W(m, n) f (m, n)}. (12)

(m,n)eM(i‘j) (m,n)eMm)

Some extensions of the simple arithmetic filters (12) have been introduced as geomet-
ric and harmonic filters

r 1/N
$(,j)= Geo {f(mn)i= f(m,n ,
) (m'n)EM("”{ ( )} _(m,n)gu‘j) ( )]
r 1/ z w(m,n) (13)
A\ _ w(m,n) (mmeMi,j)
8(i, J)_<W>§M%S){f(m’n)}_ (m’ngw f (m,n)}
- -1
§(i,j)= Harm {f(m,n)}= > f*mn)| ,
(m,n)eMg j _(mvn)EM(i,j)
> w(m,n) (14)
§(i, j) = WHarm{ f (m, n)} = — "2 .
(.J) (m,n)eMu,,-){ (m.m)} > w(m,n)- f*(m,n)
(m,n)eMg; j

Kolmogorov aggregation 2D SISO-filters. Many extensions of the simple ordinary
linear filters are defined as Kolmogorov filters

Y I L
s(u,J)=(mKngerp){K|f(m,n)}=K1 N > K(f(m,n))}=
! h (m,n)eMg; j) (15)
= K™ Arithm{K ( f (m, :
Lm,'ﬁ)'eM{f]{ (f(m n))}}
and as dual Kolmogorov filters
N
8(i, j)= Kolm {K|f(m,n)}=K 1 > K*(f(mn))|=
(mn)eM j) (m,n)eM g j, (16)

=K {Arithm{K‘l( f (m,n))}}.

(m,n)eM(ivj)

100



JKO-IIOTEHLHUAJINe 1 (17),2017 101

If K(x)=x" and K*(x)=%x then we have the Hélder (or power) and the dual
Holder filters of the following forms:

§(i,j)=HOIdp{f(m,n)}=dl zN: £2(m,n), §(i, j) = Hold"® { f (m, )}:[1 zN: pf(m,n)]. (17)

m,n)eM;; : (m,n)eM
()M (mm)eMg ;) JMij) (mm)eMg ;)

This family is particularly interesting, because it generalizes a group of common fil-
ters, only by changing the value of p:
N

> f(mn),

D= Holdl {f(m,n)} = Arithm { f (m,n)} =

1
Mi.j) (m.n)eMg ) N m,n)eM j)
s (18)
2) (i, j)— HoId2 {f(m,n)} = Square { f (m,n)} = o|— f%(m,n),
NeM j (m,n)eMg j N (m n)eM(, i
2
S(i, j Y2{f(m,n)}= Root {f(m,n)}= 1 N JT(m,n)
3) §(i, Hold = il ,
) ( J) (m,n)eM ;) (mn)eMg N mn)eM<, )
3 H 1 N 3
4)$(i, j)= Hold® {f(m,n)} = Triple {f(m,n)}=3— f*(m,n), (19)
(m,n)eM j) (mn)eMg ;) N mn)eM(,J)
3
5) §(i, j) = Holdl’s{f(m n)} =Triple™{f(m,n)} = (N Z Hf(m,n)} .
mMeM.j) (m,n)eM j) (m.n)eMg; j)
In particular, using Holder filters we can construct new Kolmogorov-Lehmer filters as:
(H())I&Ip {f(m,n)}
Lehm? { f (m,n)} = 0D 20
(m,n)eM(i‘n{ (m,m)} = Hold”*{ f (m,n)} (20)
(m, n)eM(,J)
The next extensions of the Kolmogorov filters are based on (4):
8, J)—(Kgle {K|f(m,n)}=K {Aggkt;eg{ (f(m.n)} |,
m.n [((}))] m,n)e i
" . (21)

s(i, j)— Kolm {K| f(m,n)}:K{Aggreg{K‘l(f(m,n))} .

m,n)eMg j) (m,n)eM; j ]

The Heronian aggregation filters. The classical Heronian mean definition of two
positive real numbers a and b are

ArithHeron(a,b):(a+@+b)/3:(¢£+@+\/%)/3. (22)

Hero of Alexandria is the Greek mathematician (Kolmogorov, 1930). Along with the
Heronian mean, we introduce the Heronian median as follows

MedHeron(a,b) = Med{\/ﬁ, Jab, \/%} (23)

Let (x,x,,...x,) bean N -tuple of positive real numbers. An obvious way to generalize
Egs. (22)-(23) is by including inside the parentheses the square roots of all possible products
of two elements.

Definition 1. The 2-generalized Heronian mean and median of an N -tuple of positive
real numbers (x, X,,..., X ) are defined as
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N(N +1) ) Zr

e (24)

MedHeron, (X, X,,..., Xy) = Med[{\/rxj}iﬂ}.

Now we can generalize this definition using k -th roots of all possible distinct products
of k elements of (x,x,,...,x,), again with repetition. The number of all such products corre-

MeanHeron, (X, X,, ..., Xy )

sponds to extracting k elements from a bag of N, with replacement, where Cy,, , is the bi-

nomial coefficient. This determines the normalization factor.
Definition 2. The Heronian k-mean and k-median of an N -tuple of positive real
numbers (x, X,,...,Xy) are defined as

ArithHeron, (X, X,, ..., X C'(. - DD kXX (25)

R<n < <K

MedHeronk(xl,xz,...,xN):Med[{k/xrlxrz "'er} o } (26)

Obviously, C{,, , = ArithHeron, (11,...,1).
As we see, two types of aggregation operators ( Arith and Med) are used in (25) and
(26). We can use an arbitrary aggregation operator

AggHeron, (X, X,,..., Xy ) = Aggreg [{ KX X, oo X, }J 27)

L<h <. <h

that gives a wide family of Heronian filters. Indeed, in the standard linear and nonlinear 2D-

m=+s,n

filters the square window [ M, j(mn)| "~ " of size N=MxM =(2s+1)x(25+1) s

used, where M =2s+1. Obviously, { (i'j)(n,m)}(nm) D is an image block of the fixed size

N=MxM extracted from f by moving window M , at the position (i, j) . Our idea con-
sists in ordering the pixels according to Radix-S number system:

{Fon ] = {579 £y 0.0)s F y (5:9)] ={f™) =
:{f(i,j)(l)’ fin @)y f(i,n(N)}'

where the map (n,m) —r has the following form r=M(n+s)+(m+s). For example, for
the  window of size 3x3 we have (-1-1)—>0, (-10)—>1 (-11)—>2,
(0,-1) -3, (0,0) >4, (0,1) »5 @-1)—6, (L0)—>7, (1) —>8. Here M=3,s= and
r=3(n+1)+(m+1). Now we define a product of k pixels f;  (r)f; ,(r)...f;; (r) from the
image block {f(i]j)(r)}L. Using this product we define the generalized aggregation Heronian
filter as

&(i, j) = AggHeron® {f(mn)}= Aggreg[{\/f(I NOITOR f(i'j)(rk)}}. (28)

(m,n)eMg j LS <<

In particular cases, we have the following Heronian filters.
1) The arithmetic k -Heronian filter

§(i, j) = ArithHeron* = Arith [{{/f(i,j)(rl)f(i‘j)(rz)...f(i'j)(rk)”=

(m,n)eM j) L <SG

> X T o @) ) f ().

N+k1 L<rn < <K

2) The median Kk -Heronian filter

(29)
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G, j) = MedHeron {f(mn)} = Med [{\/f(ln(r)f(”)(r) (iyj)(rk)}}. (30)

m,n)eM < <.<r

3) The KoImogorov-Heronian filter

§(i, j) = KoImHeron {K]f(m,n)}= Kl[Arith ({K({/f(i'j)(rl) TN (ARE f(i‘j)(rk))m:

M) H<H<.SH

R R )

(31)

<K

It is easy to see that »_ Z D XXX, X isa symmetric polynomial in the varia-

B <, £ <y
bles x,,...,X, . There are a few types of symmetric polynomials in variables x,,..., X, , which
that are assomated new symmetric means.

Symmetric aggregation filters. Any monomial in x;,X,,...,X, can be written as
X*X;2..Xy", where the exponents p, are natural numbers (possibly zero); writing

p:(pl, [ pN) this can be abbreviated to X" = x™x}?..x{". If p=p, +p,+...+p, then

we write /XP = E/xPxPe. x2 .

Definition 3. The monomial symmetric polynomial is defined as the sums of all mono-
mials /X , where q ranges over all distinct permutations of p:

Monp(Xi, X21---| XN) — z S/Xla(M)X;(Pz).“XE(PN). (32)

oSy

where S, is the set of all permutations of p,, p,,..., p, . These monomial symmetric poly-

nomials form a vector space basis: every symmetric polynomial can be written as a linear
combination of the monomial symmetric polynomials.

Definition 4. Let X,X,,..,X, be positive real numbers and p=(p,, p,.... py)eR".
The p -Muirhead symmetric polynomial (Sykora, 2009) is defined by

Mui (X1 Xpyoeey Xy ) = z \/Xgl(l)xor-)(Z) O'(N)' (33)

oeSy

For example,

N
MUi ;5 o) (X0 X100 Xy ) = Zx =Mean(x,, X,,..., Xy ),

Mu'(n ..... 1) X1 Xyyeens \/X1X = Geo(x,, Xy )s (34)
Mw(11 100 (X0 X Xy ) = > Z (/X X, X, = Heron, (X, X,,..., X,).

For each nonnegative integer 0<k <N the elementary EI, (X, X,,..., X,) and homoge-
neous Hom, (X, X,,...,X,) symmetric polynomials are the sums of all distinct products of k
distinct variables:

El (X4, X0y Xy ) = Z X X, e X,
Homk(xl’XZ" " z \’ n r2 k

R <h <. ST

(35)

We then define
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9
Elklkz...kq (X1 X1 Xy ) = ‘Q/H Elkt (X1 Xy 5y Xy )
t=1

(36)

q
Homy i (X% Xy ) = q\/H Hom, (X, X,,.00, Xy )-
t=1

To each of polynomial Mon
normalized symmetric function:

Mony, ..o, (X, Xy )=Mon, (%, %y )/ Mon, - (L...,2),

pl,pz,...,pN1M“'p1,p2,...,pw' Elklkz...k,1 Homklkz__kr we will associate

Muip,,..p, (X Xy )= MUy (%0 Xy )/ MU

Eligkgeky (X0 Xy ) =Bl (X X ) Bl (L00),

HOMigk, .k, (Xyeens Xy ) = HOMy (%00 Xy )T HOM o (2,002),
We obtain four families of a generalized symmetric means:

MonMean, , pN(xl,...,x,q):{’/mpl,pz ,,,,, o (X Xy ),
MuiMean ..,pN(Xi""X :{’/M_uiplp2 ..... oy (Xiree Xy ),

EIMean,, \/Elklkz (X Xy )

37)

(38)

HomMean,, (x1 Xy ) = (/Homklkz...k, (Xpseer Xy )-
where k =k, +k, +...+k.,and p=p, +p, +...+ p,.Using generalized symmetric means, we
can construct the following families of symmetric MonArith -, MuiArith-, EIMean- and

HomMean-filters:
N
8, j) = MonArlth{pl,pz, Pyl f(mn)}= Avrith { Hf(i‘f};")(l)} ]:
1=1
oeSy

(m.n)eMgi,; Mqi.j) (30)
B By Sy
8@, §)= I\{Imunl)Ah\Arlth{pl,pz, . Py | f(m,n)} Arlth { /H f P (o) } ]:
:A;A':iifh[{\/f(- iy (0(1) 1% (o(r)-+- £ (alny ))}Ges }: (40)

= Mui (1 Z pH f(' ) G(I)
Pro Py AT

GESN
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a) Original image b) Noise images, PSNR = 21.83

e) Aggreg = Min,PSNR = 27.5. f) Aggreg = Geo, PSNR = 28.6.
Fig. 2. Original (a) and noise (b) images.
Noise: “Salt-Pepper PD”. Denoised images (c)-(f).

s, 1) = ElArith {k | {(m.m} = Arith [{\/f(”)(r)f(,n(r) (i,j)(rk)}}.

Z {\/f(u (0 fp () B, J)(rk)}/EI (L2),
o g (41)
8, j) = E'&”}T{q kiky.. ke, | (m, n)}:H(rézcltD [{\/ fi (R f(”.)(rz)...f(i'j)(rkt)}D

=1ti[[ Z {Vf(i,i)(q) f(i,j)(rz)--. f(i,i)(rkt)}/EIkI (1,,1)},

=1\ f<h <<
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a) Original image b) Noise images, PSNR = 28.24

e) Aggreg = Min,PSNR = 19.9. f) Aggreg = Geo, PSNR = 28,7.
Fig. 3. Original (a) and noise (b) images.
Noise: “Laplasian PDF”. Denoised images (c)-(f).

§(i, j) = HomArith {k | f (m,n)! = Arith H\/f(”) 0T (0) (,,)(r)ﬂ

(m,neM j) L<6<Sh
{\/f(| ])(r)f(| i) ) (i) ( k)}/Homk (1,...,1),
.- eolakt o0 [T 00
ij t=1 \[150=

li[( {J () Fe () i,j)(rkt)}/Homkt (1,...,1)].

r< <. <rk
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As we see, aggregation operator Arith is used in (39)-(42). We can use here an arbi-
trary aggregation operator Aggreg. Some of similar filters can find in the papers (Muirhead,
1902; Labunets, 2014a,b,c).

a) Original image b) Noise images, PSNR =23

c) MonMean, PSNR = 29. d) MuiMean, PSNR = 28.
e) EIMean, PSNR = 28. f) HomMean, PSNR = 27.

Fig. 4. Original (a) and noise (b) images.
Noise: “Salt-Peper PD”. Denoised images (c)-(f).

Results and Discussion
The following generalized aggregation Heronian filtering MeanHeron®, MedHeron?,
MinHeron?, GeoHeron? for N =M |=M xM =5x5 has been applied to noised 256x256

gray level “Dog” images (Figures 2b,3b). The denoised images are shown in Figures 2—3 c-f.
In Fig. 4-5, we present examples of MonArith-, MuiArith-, EIMean- and HomMean-
filtering to to noised gray level “Mountain” images. All filters have very good denoising
properties. This fact confirms that further investigation of these new filters is perspective.
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Particularly, very interesting is a question about the types of noises, for which such filters are
optimal.

a) Original image b) Noise images, PSNR = 23

c) MonMean, PSNR = 30. d) MuiMean, PSNR = 31.

e) EIMean, PSNR = 31. f) HomMean, PSNR = 32.

Fig. 5. Original (a) and noise (b) images.
Noise: “Laplasian PDF”. Denoised images (c)-(f).

Conclusion

We developed a new theoretical framework for image filtering using aggregation op-
erators. The main goal of the work is to show that aggregation operators can be used to solve
problems of image filtering in a natural and effective manner. Some properties of a nonlinear
aggregation filters are exploited in this paper. Unlike the linear masking filter, they avoid
amplification thanks to the nonlinearity of the response to luminance variations; unlike the
classical linear and median filters, they are able to sharpen even small details as its impulse
response demonstrates.
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