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OpHa W3 TTIaBHBIX Ielield pabOTHl COCTOHWT B TOM, YTOOBI J0Ka3aTh, YTO aIlapar THIepKOM-
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[Mostomy otaen VC romoBHOT0 MO3ra BEpOSITHO UMEET CIIOCOOHOCTH ONEPHPOBATh KaK YCTPOUCTRBO,
pabotaromee B anredpe Kimuddopaa.
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The main goal of the paper is to show that commutative hypercomplex algebras and non-
commutative Clifford algebras can be used to solve problems of color, multicolor and hypercomplex
2D-, 3D- and nD- images in a natural and effective manner. One can argue that nature has, through
evolution, also learned to utilize properties of hypercomplex numbers. Thus, the visual cortex of a
brain might have the ability to operate as a Clifford algebra computing device.
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Introduction
“The LORD created the integers, the rest is the work of man”
Leopold Kronecker

We develop a conceptual framework and design methodologies for multichannel im-
age processing systems with assessment capability. The term multichannel image is used for
an image with more than one component. They are composed of a series of images

f}bl ), f,, (%), fo (x) in different optical bands at wavelengths A;,A,,..., A, called spec-

tral channels, where K is the number of different optical channels. A multichannel images
(MCI) can be considered as a -D K -component (vector-valued) functions

f(X):(fl(X), fz(X),,,,, fK(X))-Rn _>VK (1)
with values into K -D perceptual space Vv* (dichromaticV?, color Vr3gb! multichannel v©),

where X=(X,X,,...X,)€eR", n=2,3,.....

For processing and recognition of 2-D, 3-D and N-D images we turn the perceptual
spaces into corresponding hypercomplex algebras (and call them perceptual algebras). In this
work our approach to multichannel processing based on noncommutative Clifford algebras. In
the algebraic-geometrical approach, each multichannel pixel is considered not as a K -D vec-
tor, but as a K-D hypercomplex number. We will interpret multichannel images as
Cliffordean-valued signals

FX) = (£,00), £, T () = F,003,+ (03, +.t F (), ©)
which take values in so called Clifford algebra Al (RILJ,J,,...J ;)= Alg"

2K
= Algie“™, where J,J,,...J¢ are hyperimaginary units with the following non-

commutative multiplication rule J,J, ==J.J., 32 =-1 for s,r=12,... K.

Our hypotheses are (Labunets-Rundblad E.V., Labunets V.G.,2001):

1. Brain (Visual cortex) of primates operates with Cliffordean numbers during image
recognition. In the algebraic approach, each pixel is considered not as a multi—dimensional
vector, but as a multi-dimensional Cliffordean number. For this reason, we assume that the
human retina and human visual cortex use triplet numbers and 8-D Clifford numbers to pro-
cess and recognition of color (RGB)-images, respectively.

2. Brain uses different algebras for retina and for Visual cortex (VC) levels. Multi-
channel images appear on the retina as functions with values in a multiplet K -D algebra
(Greaves, 1847) (in particular, in K —cycle algebra), where K is the number of spectral
channels. For example, RGB-color images as they appear on the human retina are represented
as triplet—valued functions. But multichannel images in an human Visual cortex are functions
(2) with values in a 8-D Clifford algebra.

79


mailto:u2007u@ya.ru

9KO-NTOTEHLMAJI Ne 1 (17), 2017 50

3. Visual systems of animals with different evolutionary history use different hyper-
complex algebras for color and multichannel image processing. Thus, the Visual Cortex might
have the ability to operate as a Clifford algebra computing device.

We don’t agree with L.Kronecker in that that “the LORD created the integers, the rest
IS the work of man”. We assume that the LORD was the first engineer who knew hypercom-
plex algebras and used them for designing the visual systems of animals.

Clifford algebras for physical and visual spaces

As we see in (1), a n—D K -component images
f(x) =(f,(x), f,(), .. f (¥)):R" > V"
have two attributes: N-D physical R" and K -D perceptual space V* spaces. We suppose (La-

bunets V.G.,2000) that a brain operates with hypercomplex numbers when processing image
and calculates hypercomplex—valued invariants of an image recognizing it. In order to operate

with N-D  vectors X =(%,%,,...X,)eR" and K -D vectors f=(f,f,.., f)eV" as with
numbers, we embed R" and V¥ into spatiaInAlgzsf(R|1,Il,...,IK) and visual

Alg¥¥ (R[L J,,..., 3, ) hypercomplex Clifford algebras:

R" = Alg;R (RL 1,0 1,), V<> Alghe (RIL I, Iy ).
When one speaks about both algebras simultaneously, then they are denoted by
Alg, (RILB,,...,B) or Alg, . Obviously,
NG (RIL 1. 1), ift=nandB =1,,...,B, =1,
Alg, (RILB,....B)=1 _

AIgye (RIL Iy, dc ), ift=KandB =J,...,B, =J.

Let «small» t-D space R' be spanned on the orthonormal basis of t hyperimaginary

units B, i=1,2,...,t (basic imagineries). We assume
+1, fori=12,...,u,
B’=1-1 fori=u+Lu+2,..,u+v, (2)

0, fori=u+v+Lu+v+2,...,u+v+w=t,
and B, BJ- = —Bj B.. Now, we construct the «big» multicolor 2'-D hypercomplex space R as
a direct sum of subspaces of dimensions CtO,Ctl,Ctz,..., C :
R? =RY @R @RY @..0R% @..®RY @®RY, 3)
where subspaces RC‘S, $=0,12,..,t are spanned on the S—products of units B, B, -+ B,

(ml<m2 <...<ms). By definition, we suppose that B, =1 is the classical real units 1. So
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RY ={aB,|a <R},
R -={aB +aB,+.+aB|a,a,..a R},
2
RY ={a,BB, +a,BB, +..+a B B a4, R},

3
RY = {61,2,38182 By +a,,BB,B,+..+a ,4B, Bt—lBt|a:lZ3’a124""’ CETETE R}’

RC — {ai,z,s,...,t BB, Bl|al,z,3,...,t € R}'

. t 1 p2 p3
Example 1. Let us consider 1-,2-,3-D small spaces R* =R",R*,R”. The correspond-
ing “big” spaces are
R? =R?=R'®R'=R-B,+R"B,
R¥ =R*=R'®R?*®R'=R-B,+[R-B,+R-B,|+R BB,
—_—

3 R (6)
R =R *=R'OR*OR*OR!=
=R-B,+[R-B,+R-B,+R-B,]®[R-BB, +R BB, +RB,B,|®R-B,B,B,.

R R®

(5)

As we will see complex numbers live in R21 , quaternions - in R?", and biquaternions
in R23.

Every element of R* has the following representation. Let b =(b;,b,,...,b) B} be
an arbitrary t-bit binary vector, where b. €B, :{0,1} and B is the t-D Boolean. Let us in-
troduce  2' elements B°:=B’Byr---B*  where b= (b,b,,....b0)eB;.  Let
w(b)=b, +b, +---+b, be the weight of b=(h,b,,...,b, ) B . Elements B® = BB} ... B

t
form a basis of 2'-D space (full set of imaginaries — FSol). For all Ce R’ we have the fol-
lowing hypercomplex representations

K
C:: ZabBb :z Z abBb: z abBb-l- Z abBb+ Z abBb++ z abBb++ z abBb =
beB s=0 w(b)=s w(b)=0 w(b)=1 w(b)=2 w(b)=s w(b)=t

(7)
=S¢(C)+(Vec' (C)+ Vec? (C)+...+ Vec* (C) +...+ Vec' (C)),

where
. Sc(C)= > a,B°=a,B, R is the scalar part of the Clifford number C,
w(b)=0
. Vec!(C) = Z a,B° e RS s its the pure vector part,
w(b)=1
. Vec?(C) = Z a,BP e R is its the bivector part, ...,
w(b)=2
. Vec® (C) = Z a,B’ e RS s its the S-vector part,..., and
w(b)=s
. Vec' (C)= > a,B° cR“ isits the t-vector part.

w(b)=t
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Among the FSol imaginary units B® :=B}B} ---B} with w(b)=1 (i.e. B,,...,B,) are
called the basic imaginaries and units B® := BBy --- B} with w(b)>1 are called the deriva-
tive imaginaries.

Binary vector b=(b,,b,,...,b)eB;, can be considered as binary code of an integer
b=(b,b,,....)€[0,2" ~1], hence B® « {B°,B",...,.B*"} and

BO — BO — B(O,O,O,O...,O)’ Bl — Bl — B(l,O,O,O...,O),
82 — BZ — B(O,l,O,O...,O), 83 — B4 — B(O,O,l,O...,O)’

B — Bz"l _ B(O,O,O,O...,l)
............................... y t - .

Definition 1. Elements of the form (7) are called the Clifford physical (if t=n) or
hyperspectral numbers (if t = K).
If A=3" aB® B=> bB*ecR? aretwo Clifford numbers then their product is

beBtz CeBtz
C=AB:=| Y aB" || Y 0B |=| > > abBB° |=| > > (-1)"*ahB"" =
beBtz CEBKZ beB‘z CeB‘z beBtz CeB‘z
(8)
— (_1)<b‘R‘d®b>ab Bd — (_1)<b‘R‘d@b>ab Id _ CBd,
where
o _
11
Cdzz(_1)<b‘R‘d®b>abbd®b’ R=11 1 . (9)
beB),
11111

There are 3 possibilities for B =+1,0,-1, Vs =1,2,...,t. Every possibility generates

algebra. Therefore, the space R? with 3 rules of the multiplication forms 3' different 2'-D
algebras, which are called the Clifford algebras. We denote these algebras by

Alggﬂ‘v‘W)(R|1,B,...,Bt), or Alg, if B,...,B, and u,v,w are fixed. If t=n then we have 3"

different 2"-D spatial Clifford algebras Algg’,ﬁ’(p’q’r)(Rﬂ, Il,...,ln). For t=K we have 3X

different 2 -D visual Clifford algebras AlgSt“"" (R[L,J,...,J ). Spatial and visual Clifford
algebras can have different signatures (3): (u,v,w)#(p,q,r). In Alg, we introduce the con-
jugation operation which maps every Clifford number C:= COJO+ZMchb to the number
Ci=cdy—)., B

The algebras Alg, are transformed into 2'-D pseudometric spaces designed as

Geo.,, if the pseudodistance between two Clifford numbers A and B is defined by

P00)-p - [A-STA B - U [T 0. o

2

beBtz

where A-B=U=>"u,B".

beB‘z
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Subspaces of pure vector Clifford numbers R’ :{x|x: Z XbBb :xlBl+...+xtBt}
w(D)=L

in this case is transformed into different t-D  pseudometric  spaces
R' — Geo, =<<Rt,p(A,B)>>, since pseudometrics p(A,B) constructed in R? induce corre-

sponding pseudometrics in R*. The pseudometric spaces Geo, are the Cayley-Klein geome-
tries (Labunets-Rundblad et al., 2001; Labunets et al., 2001a,b). Obviously,

R _)Geoip(p,q,r) =<<Rn,psp(p,q,r)>>1 VK —>G60Y<is(u'v'w) :<<VK,pVis(u,v,w)>>’

where Geo™™*" is a spatial geometry for the physical space R" with a metric p*®*"” and
Geoy*“"™ is a geometry for the visual space V¥ (in the Visual Cortex) with a metric

pVis(u,v,w) .
Every algebra Alg\Z/LS(U‘V’W) can be decomposed as
1t/2[ /2
Alg, = °Alg, + 'Alg, = D Vec® + ) Vec™™, (11)
s=0 s=0

1t/2[ It/2[

where 0Alg2t = ZVeczs and 1Alg2t = ZVecZS+1 are even and odd parts of Alg,,. We will see

s=0 s=0

that all orthogonal transforms of «small» perceptual t-D space R' live in 0Algzt . Clifford
numbers E 0Alg2t of unit modulus represent the rotation group for the corresponding space
R" which is called spinor group and is denoted by Spin(Alg, ).

We know that complex numbers and quaternions of unit modulus have the following
forms:

e, =€% =cosp+ising, Q,=e"’ =cosp+u,sing, (12)
where cos¢ and sing are trigonometric functions in the corresponding 2-D geometries, re-
spectively, ¢ is a rotation angle around vector-valued quaternion u, of unit modulus (|uo| =]

U, =—Uo). In general case Clifford spinors =4 eSpin(AIgzt) with unit modulus have the

same form
EO:eU¢:COS(0+U-Sin(peSpin(Alg2t), (13)

t t
where U= >"u, BB, = > U,B"eVec is a unit bivector (U? =1}, and ¢ is a rotation

k=Lk,=1 w(b)=2
angle.
Theorem 1 (Labunets-Rundblad et al., 2001; Labunets et al., 2001a). The transforms

Q ':eul‘/’l/ZQ’ Q":Qe*UZ‘/’Z/Z’ Q'":eulq’llee*UZ(/’Z/Z (14)

are the rotations of the “big” space Geo,, where Q, Q'Q"Q"eGeo, and
gln/2 g thn/2 eSpin(AIg2t ) They form groups RotL(Geozl), RotR(Geoz,), Rot , (Geozt) of
left, right and double-side rotations of “big” space Geo, and transforms

X' =gUn/2xg%n/2, (15)
where X, X'eGeo, and etal2 g-the:/2 eSpin(Algzt) are rotations of “small” space Geo,.

They form group of rotations Rot,, (Geo, ).
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Theorem 2 (Labunets-Rundblad et al., 2001; Labunets et al., 2001a). The transforms
Q " eU_lwl/ZQ + P ’ Q u:Qe—Uz(pz/Z + P ’ Q m:eL!L@l/ZQe—UZ(pZ/Z + P (16)
form three groups of left, right and double-side multicolor motions Mov, (Geo, ),

Mov, (Geo, ), Mov, (Geo, ) of “big” space Geo,
Theorem 3. Every motion of “small” Geo, -space is represented in the following form

z'=eY2.7.67%2 \w, 7,2'\weGeo,. (17)
Cliffordean models of multichannel images

In classical approach multichannel images f(x) are considered asa n-D K -
component (vector—valued) functions
f(x) =(f,(x), f,(¥),.... fc (X)):R" > V" (18)

with values into K -D perceptual spaces V¥ (dichromatic \VV?, color V., , multichannel V),

where xeR", n=23..... Now we can interpret multichannel images f(x) as
Alg\Z/LS(”'V'W) (R 1,3,,.... 3¢ ) ~valued signal of hypercomplex variables

xe Alg X PID (RILL,,....1,):
F() = (£, 00,00 £ 09): AlGFPE(RIL L, ..o, ) > Algy e (RILI,,. 3¢ ) (19)
Obviously,
R" :Vecl( Mg PV (RIL 1, 1,)) = LR+1,R+...+1,R =Vec' (AlgHP7),
VK = Vecl(AIg\Z/lif(“’V'W) (RIL I, 3 )) = JR+J,R+...+ IR =Vec' (Algyet¥)
There are four algebraic models for multichannel images:

1) The first model

£ =(£,00), ,(X),..0, f () Vecl(AIgg’,E’(p’q'r) ) BN Vecl(AIg\zl,if(“"”W) ) (20)

where we used basic spatial and multichannel imaginaries, i.e.
fx +0Lx+..+1x)=
(lxi 272 n n) (21)
=30 X X+ X )+, G+ L%+ 41 x )+ d - f (X + X+ 4+ LX),

2) The second model
£(x) = ( f,x), f,(X),..., fK(x)):Vecl(AIggf(p’q’r))—> Alg\z/r!f(”""w)(R|1,J1,...,Jm). (22)

where we used basic spatial and the full set of multichannel imaginaries, i.e.
fx +1%+..+1.X)=

0 1 K-1 (23)
=30 f(Ix LG o+ LX)+ (X X+ 1 X )+ 4377 f (X + DX+ 41X,
Here we suppose that K =2" and (22) is a2™ -channel image.
3) The third model
f(x) =(f,(x), f f (3): Alg PO (RILL,,....,1,) - Vec!  Alg ") 24
00 =(H,00, 1,00, £ (0): AlGEPII (R, .. 1, ) > Ve (Algye ™ ), (24)

where we used the full set of spatial and basic multichannel imaginaries, i.e.
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1% + 1'% +...+1"X, ) =

(25)
=3, F 0% 1% A1)+ 3, F (0% + 1% 4+ 1M )+ 3 F (0% + X+ 4+ 17X

Here we suppose that n=2" and (23) is a2' D image.

4) The fourth model
£ = (.00, 1,000, i (09): AlgF P9I (RIL1,.... 1, ) > Algyd ™ (RILD,,... 3¢ ). (26)
where we used the full set of spatial and multichannel imaginaries, i.e.
F1%% + 1'% +...+1"X ) =
=30 £ (1% + 1% o+ 1)+ 3 £ (1% + 1% e+ 17X )+t 30 (0% + 1%+ 4 17X,
Here we suppose that n=2", K =2 and (27) is a2' dimension 2" -channel image.

(27)

Example 2. Let
f(x)=[1, (%), T (%), Ts (x), f3(¥)] (28)

be a grey-level and color retinal image. We can consider four models for this image. For this
purpose we introduce the following physical space and multichannel Clifford algebras

NP (RILL),  AlgEPID(RILI L),

Alg " (R, 3, ), Alg e (RIL I, 3,,95,3, )
We are going to consider two variants for X =(X, y):

X=(%y)=xl,+yl, € Alg PO (R[L,1,) =Rl, +RI,,

X=(x,y) =X, +yl, €Vec' (Alg PP (R[L1,,1,)) = Rl +RI, < Rl + (Rl +RI,) +Rll,,

Vec!

and two variants for [ f,, fo, fo, fg]:
[£,, fo fe. f] € Alg P PIY (RILJ,,0,) =R, + R, + RJ, +RJ,J, = RJ, + RI, +RIg +Rl,,
[£,, o, fo, y] € Vec (AlgSID pqr)(R|1,J1,J2,J3,J4)):RJ1+RJ2+RJ3+RJ4 c
cRI,+(RJ, +RJ, +RI, +RI,)+(RJ,J, +...+RI,I, ) +(RI,J, 3, +..+RI,J,3, )+ R1J,,J, =

1

Vec
Rl,+(RJ,+RJ, +RI; +RJ,)+(RI,J, +..+RIJ, ) +(RIJ, I, +..+RI,I,J, ) +RI,J, .0,
Vec!
where J, =J,,J;=1J,,J;=J,,J;=J,. Now we can consider the following four algebraic
models of retinal image (28):

F(x):Vec!(Alg;2 P40 (RIL 1,1, ) - Vec! (Algye™ (RL 3, 3,, 35,3, ),
f(X) :f(X|1+y|2) = fY (X|1‘|'y|2)"]1+ fR(X|1+y|2)'J2 + fG(X|1+y|2)'J3+ fB(X|1+y|2)'J4v

F(x):Vec (Alg P (RIL 1,1, )) - Algl " (R[L 3, 3, ),
f(X) :f(X|1+ y|2)= fY (XI1+ Y|2)'J0+ fR(Xll—I_yIZ)'Jl—I_ fG(X|1+y|2)'J2 + fB(XI1+ ylz)'Jl‘]zv
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£0): AlgPP A (RIL 1, ) > Vec  Algye ™) (RIL J;,3,,35,3,)),

f(X) :f(XIO + yll) = fY (Xlo + yll)"]1+ fR(Xlo + yll)“lz + fG(XIO + yllz)"]3 + fB(Xlo + yll)"]Av

f(x): Alg PP (RL 1) g "™ (R, 3, ),

fO)=F(xl, +yl,) =1, (xl,+yl,)- I+ fo(Xly + y1,)- 3, + T (X, + y1,,) - 3, + o (xI, + y1,)- 3,3,
Geometric properties of these images depend on signaturies (p,q,r) and (u,v,w).

Example 2. Binocular vision is vision in which both eyes are used together. Each eye
(right and left) views the visual world from slightly different horizontal positions. Each eye's
image differs from the other (Fig. 1), i.e.,

F100 = (1700, F 0 F00), 100 =( 00, 100,00 T4 00). (29)

Obijects at different distances from the eyes project images in the two eyes that differ
in their horizontal positions, giving the depth cue of horizontal disparity Depth perception is
commonly referred to as stereopsis. Stereopsis appears to be processed in the visual cortex in
binocular cells having receptive fields in different horizontal positions in the two eyes. Such a
cell is active only when its preferred stimulus is in the correct position in the left eye and in
the correct position in the right eye, making it a disparity detector. The two eyes can influence
each other. We take to account this influence using a new hyperimaginary binocular unit B
and construct images on VC as signal

"/ XQ Lett view Right view
T A £7,,(,9)
3..
xt. '
e
Left view Right view fo (%,5) free (%,

Fig. 1. When two eyes (or cameras) view a 3D scene from two distinct positions, there
are a number of geometric relations between the 3D points and their projections onto the 2D im-
ages that lead to constraints between the image points.

£81 (x) = " (x) + Bf ' (x), (30)
ie.,

FEX) = (7 (%) 3+ £ (%) Iy ot B (X)- Iy )+ B( £ (X) 9y + £ (X)- Jp +t B (X)- 0y ). (31)
for the first model and

fB‘”(x)ZLi > fb'(x)Jb}r B[i > fbr(x)ij (32)

s=0 w(b)=s s=0 w(b)=s
for the second one, which take wvalues in the Clifford binocular bialgebra
g (R, 3,003, 118,38, 3,8, ,B), with BZ =8, =+1,0,1.
Obviously,
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FE (%) = (£ () + B, (%)) 3y +( £, (%) +Bf, (%) )- I, . (£ 00 + B (%)) I

= £5 %), + £ (%) I, +ot £2N(X)- I,

(33)

and

e => > [fb' (x)+bef(x)]Jb =3 > 12®I° (34)
s=0 w(b)=s s=0 w(b)=s
where f%"(x) = f/(x)+Bf'(x) and f2"(x)= f.(x)+Bf,(x) are channel binocular images.
In this form, these binocular images are complex-valued images, where B binocular complex
unit.

Conclusion

We developed a novel algebraic approach based on hypercomplex algebras to alge-
braic models of color, multicolor and hyperspectral images. It is our aim to show that the use
of hypercomplex algebras fits more naturally to the tasks of recognition of multicolor pat-
terns than does the use of color vector spaces. One can argue that Nature has, through evolu-
tion, also learned to utilize properties of hypercomplex numbers. Thus, a brain might have
the ability to operate as a Clifford algebra computing device. We don’t agree with L. Kron-
ecker in that that “the LORD created the integers, the rest is the work of man”. \We assume
that the LORD was the first engineer who knew hypercomplex algebras and used them for
designing the visual systems of animals.
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