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ALGEBRA AND GEOMETRY OF MULTICHANNEL IMAGES.
PART 1. HYPERCOMPLEX MODELS OF RETINAL IMAGES

Introduction

We develop a conceptual framework and design methodologies for multichannel image
processing systems with assessment capability. The term multichannel (i.e., hyperspectral,
multicolor) image is used for an image with more than one component. An RGB image is an
example of a color image featuring three separate image components: R (red), G (green), and
B (blue). We know that primates and animals with different evolutionary histories have multi-
channel visual systems of different dimensionality. For example, the human brain uses three
channel (RGB) retinal images, reptile and tortoise brains use five channel multicolor images,
and shrimps use ten channel multicolor images. The multichannel images are composed of a
series of images fk0 Xy, £, (X ¥, ka_l(x, y) in different optical bands at wavelengths

Ao» My Ay 4, Called the spectral channels, where K is the number of different optical chan-

nels. A multichannel retinal images can be considered as a n-D K -component (vector—
valued) functions (Cronin, Marschal, 1989):

f(x) =(f,(x), f,(X),..., f (X)):R" > V* (1)
with values into K -D perceptual space V* (dichromatic V2, color V;Zb , or multichannel V*
), where X =(X,X,,... X,) € R", n=2,3,..... The following cases are very interesting for us:
1) 2-D and 3-D bichromatic images
f(x1' Xz) :( fo(Xv Xz)v fl(xl’ Xz)): R? - VZ’

F(X, %, %) = ( fo (%0, %, %), £1(X X%, Xs)): R® > V2
2) 2-D and 3-D trichromatic (color) images

f(X11X2) :(fo(xvxz)’ fl(xi’ Xz)v fz(xvxz)): R’ _>Vr3;;b’

£ %00 %) = (Fo 06 %50 X3), FL0G X5, %3), FL06, %5, %)) 1 RE - V3.
3) 2-D and 3-D K -channel images
F 00 %) = (T (% %), B (X0 %),y Fi s (X, %,)) R® = VE,

F (% %0 %) = (o (% %0 %), £ X X)X, %) ) T R = VS
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4) 2-D and 3-D bichromatic binocular images (Luneburg, 1948, 1950)

f(x,%,) = (fL(X17 X, ), fr (%, Xz)): R* — V|_2 @Vé’

F00 %00 %) = (FL (%%, %), Fa (%%, %)) RP > VE @V,
5) 2-D and 3-D trichromatic (color) binocular images:

f(xv Xz) = (fL(Xi’ Xz)ifR (X11 Xz)): R? _>Vr3£;b,L @Vr:;b,R'

F (0 X, %) = (FL0G X0 %), B (3 X, X)) R = Vi, OV
6) 2-D and 3-D K -channel images

f(x. %) :(fL(X17X2)’fR(X1’ Xz)): R’ _)Vr @Vrlj’

F (0 %0 %) = (FL 0% % %), T (% %, %)) 1 R® > V@V,
where f_,f, are left and right images, respectively.

For processing and recognition of 2-D, 3-D and n-D images, we turn the perceptual
spaces into corresponding hypercomplex algebras (and call them perceptual algebras). We
give algebraic models for two general levels (retina and Visual Cortex) of visual systems us-
ing different hypercomplex and Clifford algebras. In the algebraic-geometrical approach, each
multichannel pixel is considered not as a K -D vector, but as a K -D hypercomplex number.
We will interpret multichannel retinal images as multiplet-valued signals

f(x)=(fy(x), f,(¥)...., i (X)) = 001+ f,(Q)e" +...+ f (¥ (2)
which  take wvalues in the so called the retinal multiplet) algebras
AlgY®s = Alg\k’is(R‘l,al,ez,..,a"’l), where & =-1,0,+1 and 1,&,..., are hyperimaginary

(multircolor) units with the commutative multiplication rules

8r(—Bs(modK)' if &N =41,
eS.el=gh.e85= Hev(l _m)gr(Bs(modK)’ if eV = 0,.
Sign(l —m)g"®smodk) g N = g
where |1'$ mis addition modulo K,
+1, x>0 +1, x>0
Sign(x) = Hev(x) =
an(x) {—1, x <0, ) {O, X <0,

are the signum and Heaviside functions.
We interpret a multichannel images in Visual Cortex (VC) as the following hyper-
complex—valued signals:

f(x)=(f,(x), f,(0)..... f (X)) = £,003,+ £, 3, +...+ F (X) I, (3)
which take values in the Clifford algebra  Algy"" (R[LJ,J,.... ;)= Algye“™", where

2K
J;,J,,...,d are hyperimaginary units with the following non-commutative multiplication
rules

J ), =-3J,, for s;r=12,..,K.

-1 s=12,..,u,
J2=20, s=u+lu+2,..Uu+v,

S

+1, S=u+Vv+lLu+Vv+2,...,U+V+W,

where u+v+w=K,

In this context, the full machinery of ordinary grey-level signal processing theory can be
transposed into multichannel image processing one.

Our hypotheses are (Labunets, 2003):

78



JKO-IIOTEHLIUAJI Ne 4 (16), 2016

1. Brain of primates operates with hypercomplex numbers during retinal image pro-
cessing. In the algebraic approach, each pixel is considered not as a multi-dimensional vector,
but as a multi-dimensional (hypercomplex) number. For this reason, we assume that the hu-
man retina uses 3-D hypercomplex (triplet) numbers.

2. Brain uses different algebras for Retina and for VC levels. Multichannel images appear
on the retina as functions (2) with values in a multiplet K -D algebra (in particular, in K —
cycle algebra), where K is the number of spectral channels. But multichannel images in a
human VC are functions (3) with values in a K -D Clifford algebra.

3. Visual systems of animals with different evolutionary history use different hypercom-
plex algebras for color and multicolor image processing.

Algebraic models of perceptual spaces and bichromatic images

2-D bichromatic images

f(xl' Xz) = ( fo(Xv X2)1 fl(xl' Xz)): R2 - V2
have two attributes: spatial and visual 2-D spaces R* and V?, respectively. According to
(Doran, 1994; Labunets, 2003), we provide these spaces with the algebraic frame of space
Alg;?(R|1,1) and visual Alg,* (R |1 J) algebras of 2-D generalized complex and 2-D bi-
chromatic numbers, respectively, i.e.,

R > Alg;” (RIL1)=R+RI ={z=x+Ix,|%,X, €R},
VZ > Alg°(R|1J)=R+RI={Z =r+Jg|r,g eR},
where | and J are a spatial and bichromatic visual imaginary units, respectively. These al-
gebras are called the spatial and perceptual bichromatic algebras of spaces R? and V?, re-
spectively.
There are three spatial algebras
o If 17=12=-1,then Algy"(R[L1_)={z=x+1y[x,yeR;1? =1} is the field of com-

(4)

plex spatial numbers, where |_ =i is the ordinary imaginary unit.

o If 17=17=+1,then Alg;®(RL1,)={z=x+1,y|x,yeR;1? =-1} is the ring of double
spatial numbers. where |, =e is the ordinary double unit.

o If17=15=0,then Alg® (R[L1,)={z=x+1,y|x,yeR;I5 =0} is the ring of dual spa-
tial numbers. where |, = ¢ is the ordinary dual unit.

There are three perceptual algebras, too:

o If J°=J=-1,then Alg;*(R[L,J )={Z =r+J g|r,g eR;J* =-1} is the field of
complex bichromatic numbers, where J_[J i is similar to the ordinary imaginary unit.

o If 3°=J7=+1,then Alg;*(RILJ )={Z =r+J,g|r,geR;J? =1} is the ring of
double bichromatic numbers, where J, [ e is similar to the ordinary double unit.

o 1fJ?=07=0,then Algy*(R[LJ,)={Z =r+J,g|r,geR;J; =0} is the ring of dual
bichromatic numbers, where J. [ e is similar to the ordinary dual unit.

There are nine algebraic models of 2-D bichromatic images
f(z): Algy’ (RIL1) > Algy® (R[LJ):
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“f(2): Alg? (RILL ) Algy" (RILI) | “f(z): Alg? (RIL1) > Algy" (R]L3,) | “f(z): Alg?(RIL1.) > Alg,* (R[LJ,)
"f(z2): Algy (RIL1,) > Alg,® (RILJ) | “F(@): Alg? (RIL 1) - Algy® (RIL ;) | F(2): Algy’ (RIL 1)~ Alg;* (R11.,)
“(z): Alg (RILI,) - Algy® (RILI) | *"F(z): Algy’ (RIL1, ) Algy* (R1L3,) | *F(2): Alg,? (R]L1, )—>AIgV'5(R|1J)

Ret

When one speaks about all six algebras simultaneously, then they are denoted by Alg,
Al R{1LB), B=l,
AlgREI(R|1,B) gv ( | )
Alg,*(R[1,B), B=1.
In Algs* we introduce conjugation operation, which maps every element Z =a+Bb

to the element Z =a+Bb=a—Bb.
Definition 1. Let Z=a+Bb then a quadratic form N(Z):=|Z|=2Z =a*-B%* is
called the pseudonorm of the number Z =a+ Bb.
It is easy to check that N (Z,Z,)=N(Z,)N(Z,). The arithmetic value of the square root

of the norm |Z| =N (2)= \JZZ is called the modulus of the number Z and is considered as
a distance to the point Z from the origin.

Now, 2-D algebras Alg,” = Alg;” (R[1,1) and Alg,"” = Alg;*(R|1,J) are easily turned
into pseudometric spaces (spatial and perceptual geometries):
Alg;” (R|1,J) - Geoy?™) = <R2,p(2 ,22)>,

Algy* (R[1,1) - Geoy* ™) = (V? p(Z,,Z,)),
if one defines pseudometric

P(202.)=\(2.-2.)(2Z,-2) = (@, - &) = 3% (b, -b,)" =
J(@-a)+(b,-b), ZeAg*(RB),

:\/Sl(az_a1)2 +3, (bz_bl)z = \/(az _ai)z_(bz_b1)21 Ze AlgVIS(R|B+)’
la, —a,|, Z e Algy* (R|B, ),

where Z, =a +Bb, Z, =a, +Bb, and two left superscripts (s,,s,) in RE***) denote a sig-

nature of the pseudometric (s, =+1, s, =—1,0,+1). The algebras Alg;* (R|1B) of general-

ized complex numbers (spatial and bichromatic) are transformed into three 2-D pseudometric
spaces Geo5*™*2) as follows:

e The 2-D Euclidian geometry Geo5**) = RE () = <AlgRet (R[B.); > (spatial
Geoy’™") and perceptual Geoy""").
e The 2-D Minkowskian geometry Geo ) = RE(+") <AlgRet (RIB.); p> (spatial

Geoy’™) and perceptual Geoy""?).

e The 2-D Galilean geometry Geo;*+? = RE+0 = <AIgRe‘(R|BO);p> (spatial Geo3*™?

and perceptual Geoy""?).
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Definition 2. The set of all points in the generalized complex plane Geo5® ) satis-

fying the equation |Z|2 =a’ - B%?* =R? is called the Geo5"*-circle of the radius R cen-

tered at the origin.
Example 1. Let Alg;* (R|1,B)=Alg,’ (R|L1), then there are three types of circles:

. Geoy"") —circle is the classical Euclidean circle (Fig. 1-a),
. Geo™"?—circle is the Minkowskian (hyperbolic) circle (Fig. 1-b) and
. Geo™? —circle is the Galilean circle (two parallel lines) (Fig. 1-c).

! " \J
\\\ Z
b - \ s

a) b) ¢
Figure 1: Circles in a) 2-D Euclidean space Geo3""*), b) in 2-D Minkowskian space Geo3*"” and

) X,

Xz

X )(1

c) in 2-D Galilean space Geo3*"?

Let Z=a+Bb be a bichromatic number (spatial or bichromatic), then the number
Z, =Z 1|Z] has the unit modulus if |Z|=R = 0. It is easily to see, that

Z :|z|-{i+ B£]= R-(cose +B-sina)=R-e%,
2l 2]
where cosa and sina are the Euclidean, Minkowskian (hyperbolic) or Galilean trigonomet-

ric functions.
Definition 3. Bichromatic images f(z):Alg;”(R|11)— Alg;*(R[L1J) are inter-
Vis

preted as Alg,” (R |J)-valued signals of the complex variables z € Alg,” (R |1,1):
f(z)= 1,0 +1Ix,)+J- f,(x +1Ix,). 4)

Definition 4. Transformations
2'=z+W, 2'=4z, z'=¢'%z,
Z2'=Z+W, Z2'=uzZ, Z'=e'%7,
where z, z',weAlg;’(R|L1)and Z,Z "W €Alg,*(R|LJ) are called the translations,

scalings and rotations of the physical Geo3"™*) and bichromatic Geo}*** spaces, respec-
tively.

They form the following groups:

- translation spatial Tr(Geo;"™*)) and bichromatic Tr(Geo,***) groups,

- scaling spatial Sc(Geo3"™*)) and bichromatic Sc(Geo,***) groups,

- rotation spatial Rot(Geo3**) and bichromatic Rot(Geo,***’) groups.
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Yi Yy b

a) b) c)

Figure 2: Rotation in a) 2-D Euclidean space Geo3” """, b) in 2-D Minkowskian space Geo3""”
and
c) in 2-D Galilean space Geo3*"?

Changes in both the physical and perceptual spaces can be treated in the language of spatial
and bichromatic algebras as the actions of some space and perceptual transformation groups.
These distortions will be caused by

. space transformations (translation z'=z+w, rotation z'=e'*z, dilatation z'= 1z
and
. bichromatic transformations (bichromatic translation f+w, hue transformation e’*f,
and transformation of saturation z-f).
If f(z) are the initial bichromatic 2-D image then

W (@)= e f (Aej"’spz + W) +W ()

is its spatial and bichromatic distorted version. Spatial distorted by rotation versions of the
initial 2-D grey—level image F” for different spatial geometries are shown on Fig.2.

Algebraic models of color perceptual spaces and color images

The color retinal images are vector-valued functions f(x):R" — V., where V., is the thri-
chromatic (color) RGB-space. We will interpret color images as triplet-valued signals

f(x) = f, 01+ f, (X)eg, + f,(X)e%, (see Fig. 3) which take values in the triplet (in the so
called color) algebra Algy* (R|Lg,”):= Rl + Rej, +Re; L

82
col col col ! col

col

where 1_,,¢ are hyperim-

aginary (color) units, and €, =+1,0 [6] We will denote them by 1,&',%. There are three

col

visual (perceptual) algebras.
If £2=¢%=-1, then

Algy°(R[L e, &’)=R1+Re' +Re’ ={C=rl+ge! +be’|r,g,be R} (6)
is the triplet algebra of color acycle numbers.
If &% =¢’=+1, then

Algy® (RILé,, &) :=R1+Re! +Re? = {C=r1+ge, +be’|r,g,be R} 7
is the triplet algebra of color cycle numbers.
If &2 =¢; =0, then

Algy® (R[L &, &; ) = R1+ Rey +Re; = {C=r1+gs; +bes |1, g,b e R} (8)
is the triplet nilpotent algebra of color nilpotent numbers.
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Figure 3: In classical approaches every color pixel is associated to a point of a 3-D color
RGB vector space and in the algebraic approach, each pixel is considered as a triplet num-
ber. It is called triplet RGB-format

Color cycle numbers of the form C=x1+ ye+ze® (&* =1) were considered by Greaves

(1847). According to Ch. Greaves, these numbers are called the triplet numbers. We shall call
them the color numbers. The addition and product of two triplet numbers

G =(r,+g,e +be?) and G =(r, +g,e +h,e?) are given by

C+C =(r,+g,e +be’)+(r,+ 9,6 +be’)=
=(r+1)+(9,+9,)e + (b +b,)&’,

G-C=(r+ge +be’)-(r,+0,e +h,e?) =

=(nrn, + 90, +0,9,) + (g, + 1,0, +bb,)e +(rb, + 9,9, + rzbl)gz-
It is easy to see that the triplet product is isomorphic to 3—point cyclic convolution

©)

GG =(n+g& +be®)-(r, + 0,6 +he’) =
= (1, 90, 0)*(,, 9,,b,) = (10)
= (rlrz + gle +b192' ng, +no; +b1b2’ r1b2 +0,0, + r2b1)'

The triplet conjugate of C=(r +ge +be?) is defined as C=r+ge +be? =r+ge? +be’. The
norm ||C|, and modulus |C|, are given by
|ICll, =CC = (r +ge +be?)(r+ge®+be) =
=(r* +g*+b*) —(rg +rb+gb), (11)

€], =Icl, = VOC = (s + g7 +b7) ~(rg + b + gb).

Greaves (1847) showed that each triplet has three norms

ICl, = Ir+g +b],
ICll, = (r*+g°+b*)—(rg+rb+gb), (12)
ICll; = IICILICIl,=r*+g’+b’—3rgb.

If pseudodistance p(C,D) between two triplet numbers C and D is defined as modulus of
their difference C-D =U =r+gs +bs’:
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pl(C,D):|C—D|1:|U|1=|r +g +b],

p,(C,D)=|C~Dl, =|U], =4/(r* + g? +b*)— (rg + b+ gb), (13)
p,(C.D)=|C~D|, =|U|, =r* +g° +b* -3rgb,

then the algebra Alg}® (R|1, 8,82) of triplet numbers is transformed into three 3-D pseudo-
metric spaces (color geometries) designed as
Geo/ :<<A3 (R|1,8,gz)| r +g +b |>>

Geo!*? = <<A3 (R[L&,&%)

(g7 +b))—(rg+rb+ gb)>>, (14)

%/r3 +q° +b3—3rgb>>.

Definition 5. The sets of all points in 3D color geometries Geoy*,Geo;*?,Geoy** satisfying
the equations

Geo!** = <<A3 (RILe &)

||C||1:r +g +b=R,
=(r*+g*+b®)—(rg+rb+gb)=R, 15
,=(r +g%+b*)~(rg + b+ gb) (15)
[0 =IdlIcl;, =r*+g* +b*~3rgb =R
are called Geo!*,Geo:**,Geo;**-spheres of radius R, centered at the origin and denoted as
S,(R)eGeo;*, S7(R)eGeo,*?, S;(R)eGeo,* (see, for example, Geoy**-sphere on
Fig.4).

Vis3

Figure 4: Geo}*® —sphere r®+g° +b® —3rgb =1. (This surface is also called the Appell

sphere having the achromatic line fAch as axis)

From the above figure one can see, that the line r =g =b is asymptotic axis T, . It is called
achromatic axis, because it passed through all the achromatic points (i.e., those with r=g=b

). Obviously, all planes ﬂ(alu):{(r,g,b)|%r+%g +%b:a,u} are perpendicular to T,

where g, € R" is a luminance, In the international recommendation for the high definition
television standard the following weights for calculating luminance from the red, green and
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blue components are given: 7, :{(r,g,b)|0.2126r +0.7152g +0.0722b = a,, }. This plane is

not perpendicular to the achromatic line T, . By this reason the intersection of this plane with
the Appell sphere is an ellipse. The regular set of ellipses obtained as intersections the plane
a,, =0.2126r +0.71529 +0.0722b = const  with regular comb of Appell spheres are MacAd-

ams ellipses (see Fig. 5).

0 01 02 03 04 05 06 07 08

Figure 5: MacAdam ellipses plotted on the CIE 1931 XY -chromaticity diagram.

Greaves gave algebraic and geometrical interpretations of triplet algebra. With geomet-
rical point of view, the color numbers x -+ ye+zg® are points of 3-D color space. With alge-
braical point of view, the color algebra is the direct sum of the real R and complex C fields:
Alg)* =R-e,+C-E, =R®C, where e, =(l+&+¢£°)/3, E , =+, +wle)l3 are so
called orthogonal «real» and «complex» idempotents (e’ =e,,, E; =E,,, €,E,, =E,&, =0
), respectively, and w, :=exp(2r/3). Therefore, every color number C=x+ye +z&” is a
linear combination C=a,-e,+Z, -Ey =(a,,Zy) of the «eal» a,-e, and «complex»

parts Z,, -E, in the idempotent basis {e,,,E,}. We will call the real numbers a, R the

luminance (intensity) numbers, and we will call the complex numbers Z, € C the chromatici-

ty numbers. For this reason, we can consider a color image in the two presentations (formats):
f(2) = fo(2)1+ 5 (2)e+ f,(2)%,

f(2) = f,(2)e,, +4 (2)Eq= ( fi, (2). %5, (Z))

The first presentation is called the (R,G,B)-format and the second presentation is called the
“luminance-chrominance” (LC) format. This format defines every pixel in terms of luminance

real-valued (grey-level) part f,(z) and complex-valued chrominance part f,(z), where |
f,,(z)| is saturation and arg(f, (z)) is hue of f(z). In the second form we have separated
the color image into two terms: the luminance (intensity) term f (z) and the chromacity term
f,,(z) (color information), represented on Fig. 6.

Changes in perceptual space of reality such as intensity, color or illumination can be
treated in the language of triplet algebra as the action of some transformation groups in the

perceptual color space (color algebra) V3= Alggis(R|1,e,82) (Labunets, 1996; Labunets-
Rundblad et al., 2000; Labunets et al., 2002).

(16)
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Figure 6: The “luminance-chrominance” (LC)-format

1. For example, if A =(a,u,Zch):(a,u, Z,

ei“’), where a,, >0, then the following trans-
formation
f(z)>A-f(2)=(a,.Z4) (f, (2).f.(2))=
:(a,u,|zch|e“")-( fiu (2). T (Z)):(alu fiu (2),]Zcn €7Fcy (Z))

changes luminance, hue and saturation of the initial image. The set of all such transformations
forms the luminance-chromatic group

LCG(Alg* (Rle)) ={(a: Zs)|(3 €R*) &(Z,y €C)f .
2. Let A=(a,,Z,)= (1,e‘¢), then the following transformations of color image
f(z)>A-f(2)=(1e") (£, (2).5,(2))=(F, (2).€"F,(2)) (18)
change only hue of the initial image (see Fig. 7). The set of all such transformations forms the
hue orthogonal group HOG (AI ye (R|g)) = {(L e“”)|ei“’ € C} .

(17)

112 =7x/6

a) p=0 by
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) p=rld e p-—rll2  f)p--xl6
Figure 7: Hue distorted versions of the initial 3-D color image
f(z)>A-f(z)= (1, e“")~( fu (2).fo, (Z)) = ( f. (Z),ei(’fch (Z)) a) initial image “'Yorick” (¢ =0),
b) p=7/12,¢) p=7n16,d) p=xl4,e) p=—n112, f) p=—716

3. Letnow A =(1,s), s> 0, then the following transformations of color image

f(z)>A-f(z)=(Ls)(f,(2).f,(2))=(f, (2).5F4(2)) (19)

change only saturation of the initial image (see Fig. 8). The set of all such transformations

cu))=(Es)p<R ).

forms the saturation group SaG (AlggiS (R

Figure 8: Saturation distorted versions of the initial 3-D color image
f(z)>A-f(z)=(1, S)( f (2). s (Z)) = ( f, (2),sf,, (Z)), a) initial image “Yorick” (s =1),
b)s=13,c)s=16 d)s=2,e)s=0.6,f)s=0.3
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4.1f A=(12 ):(1, se' ) then transformation

1 =ch

f(z) >A-f(z)=(Lse®)-(f,(2).F(2)=( i, (2),5¢"F, (2)) (20)

changes both hue and saturation of the initial image (see Fig. 9). The set of all such transfor-

£y )) = {(1 se‘“’)|(e“” cC)&(se R*)} .

Vis

mations forms the chromatic group ChG (Alg3 (R

4

2.2, (A o R g0, Coe
a)s=1 ¢=0 b)s=13, o=—7/12 c)s=16, p=+x/12

Figure 9: Chromatic distorted versions of the initial 3-D color image
f (Z) —->A-f (Z) = (l, se“")-( f, (Z) s (Z)) :( f, (Z), se'f, (Z)) a) initial image Yorick”
(s=1 ¢=0),b)s=13 ¢p=—7/12, c)s=1.6, p=+7/12

Multiplet algebras for multi-channel image processing

The n-D multichannel images are interpreted as K -D vectors
f(x)=(f(X), f,(X),.... f (X)) :R" > V.
We will interpret them as multiplet-valued signals
f(x) = f,(x)+ f,(x)&' + f,(X) & +..+ f, ()" (21)
which take values in the multiplet algebra Algy* (R|Lz,...e“")=R1+Re" +...+ Re?,

where xeR" and 1,¢',...,e"" (¢“=+10,-1) are the multicolor hyperimaginary units.
Multiplet numbers are represented in its basic form by
M =a,+as +a,e" +...+a,,e"", a eR. (22)

with three multiplication rules £ =+1,0,—1 (Labunets et al., 2002; Labunets-Rundblad et al.,

2001a,b). They form three algebras
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A|g+V|s( ) A|g+V|s (R|1' gi’gf,m,gf_l) =R+ R(C,‘i + R&‘f +..+ Rgf_l

Alg,"*(R)= Alg,"* (RL &, &’,....& ") =R+Re! +Re’ +...+ Re ™, (23)
Algy"® (R)= Algy"* (R[L &, &5, 65 ') =R+Rey + Rl +..+Reg
The addition of muliplet numbers M, and M, are given by
M=M,+M, =
=(a+ae +a,6" +..+a, &)+ (b +he +he’ +.4b e )= (24)
(a,+by)+(a, +b)e +(a,+b, ) e’ +..+(ac, +b )&
The product of two muliplet numbers M, and M, are given by
M=M,-M,=

= (2, +ae +a,e” +..+a e ) (b +he +be’ +. b e )= (25)

K-1 K-1 K-1K-1 K-1/ K-1 K-1
:[ ang_j-[Zb g["j: ab "= [ a|$mbmj£1 :quﬂ,

:(ao+a13++azef+...+aKfng’1)-(b +he, +b 52+...+beng’1): (26)

K-1 K-1 K-1K-1 K-1/K
:[Zang:j.(megT): Zanbmngrm (Z&gn(l—m)amm mjé‘l —ZC|€+,

m=0

K-1

=(a0+a150+azg§+...+a et -(b +he, +be’ +..+b _lg(f‘l)= 27

K-1 K-1 K-1K-1 K-1/ K-1 K-1
=[Zang§j-[2bmgg”J = ab e = Z(Z Hev(l-m)a, m}go —ZClgé
n=0 m=0 m=0 n=0 1=0 \ m=0

It is easy to see that the multiplet products are isomorphic to the K—point cyclic, acyclic and
nilpotent convolutions, respectively,

K-1 K-1 K-1
C| = Z(:)a|$ mbm’ Cl = ZSIQn(I - m)al$ mbm’ CI = Z HeV(I - m)al$ mbmm' (28)
m=l m=0 m=0

One can show that two algebras Alg,"™ (R)=and Alg, " (R)= are the direct sums of the real

and complex fields:

L

2 .
R-e, +R-e;, + > C-E}, ifK even,
j-1

Alg;"* (R)=R" @C" = (29)

K-1

R- eIU+ZC El., if K odd,

j=1

89
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K

2 .

Y C-EJ, if K even,
j=1

Alg, " (R)=R" ®C* =1 (30)

K-1

ER

R-e, + Y C-E}, ifK odd,
j=1

where e, and E) are "real" and "complex" orthogonal idempotents, respectively, such that

(e:u )2 =e:u’ (Ecjh )2 =Egh’ eIuEéh Ecjhe:u (31)
forall i and j.
Let K, =0,1,2 and K, =§ g—l KTl Every multiplet M e Alg,;"* (R) can be

represented as a linear combination of K, «scalar» parts and K, «complex» parts:

M Z@q”}lz&” (32)

The real numbers a R are called the multi- mtensity ones and complex numbers z; € C are

called the multi-chromacity ones. In such representation two main arithmetic operations have
very simple form:

s elu+Zz £ [ S e,U+ZW E
(3 b J-

Klu (33)
[Z(a+b)e|u+zz +W)E j
[ia elu+zz E j[%bi'e:u+§hle'Ecjhj:
) . (34)

(S S w) e
i=1 j=1
Multiplet algebras possess divisors of zero and form number rings.

Definition 6. A 2-D multichannel image f(z): Alg,” (R) — Alg,* (R) of the forms

f(z)=f,(2)+ f(2)e" +...+ f_,(2)e"7, (35)
and

f(z) = Z[f.u(z) el |+ Z[fc’h(z) E) |=

=(fo@, R0 @, £ @) 152,50, T3 ()
(36)

are called a multiplet-valued images in the multiplet and the multiluminance-chrominance
(GLC) formats, respectively (Luneburg, 1948, 1950; Labunets, 2003).
The second format defines every pixel in terms of K, luminance real-valued parts

(fi@. fi@... f,(@) and K, chrominance complex-valued parts ( f.(2).f2(2),..f; (2)),
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£ @), [f2@)--ms
are multihues of the multichannel image f(x) .

where

f# (2)| are multisaturations and arg{f}, (2)},arg{f; (2)},...,arg {fcﬁ;h ()}

ch

Changes in perceptual space AIgV'S( ) of multispectral reality such as multi-intensity
and multicolor can be treated in the language of multiplet algebra as the action of a multiplet
number on an image f(z) > M f(z). This transformation change multi-luminancies, multi-
hues and multi-saturations of the initial multicolor image. For example, if

M :(allu,ali,, A" Zoy Zgyronn Loy ):

e (37)
el(pch )

(Al a2 Ku.

then the following transformation

P2
Wch 1Peh ch

2
|2l

f(z) > M £(2) =

(Sl ) Sl ]| Slhwal Swa]- e

=1 =1

=[§|:aliufli(z)'e:J DZ ‘el%hf] Z)'Ecjh}j

i=1
changes multiluminancies, multihues and multisaturations of the initial multicomponent im-
age. The set of all such transformations forms the multiluminance-multichromatic group
MLCG (Ak (R|1,$1,52’”_'5K_1)):

(39)
(B8l 28,280,200 (B8 8 €R7)&(28,28,.,280 €C)).

We suppose that the human brain can use hypercomplex algebra for mental changing mul-
tiluminancies, multihues and multisaturations of images (for example, in a dream), which are
contained in the brain memory on the so-called «screen of mind».

Conclusion

We developed a novel algebraic approach based on hypercomplex algebras to algebraic mod-
els of multichannel images. It is our aim to show that the use of hypercomplex algebras fits
more naturally to the problems of image processing than the use of color vector spaces does.
One can argue that Nature has, through evolution, also learned to utilize properties of hyper-
complex numbers. Thus, a brain might have the ability to operate as a hypercomplex algebra
computing device.
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