
Open Research Online
The Open University’s repository of research publications
and other research outputs

A Requirements-based Framework for the Analysis of
Socio-technical System Behaviour
Conference or Workshop Item

How to cite:

Hall, Jon and Silva, Andrés (2003). A Requirements-based Framework for the Analysis of Socio-technical
System Behaviour. In: Proceedings of the 9th International Workshop on Requirements Engineering- Foundation of
Software Quality (REFSQ’03), 16-17 Jun 2003, Klagenfurt/Velden, Austria,.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://www.sse.uni-essen.de/refsq/downloads/toc-refsq03.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/81585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://www.sse.uni-essen.de/refsq/downloads/toc-refsq03.pdf
http://oro.open.ac.uk/policies.html


A Requirements-based Framework for the Analysis of
Socio-technical System Behaviour

Jon G. Hall
Open University, Milton Keynes (UK)

Andrés Silva
Universidad Politécnica de Madrid (Spain)

Abstract

Requirements Engineering’s theoretical and practi-
cal developments typically look forward to the future
(i.e. a system to be built). Under certain condi-
tions, however, they can also be used for the anal-
ysis of problems related to actual systems in op-
eration. Building on the Jackson/Zave reference
model [2] for requirements and specifications, this
paper presents a framework useful for the preven-
tion, analysis and communication of designer and
operator errors and, importantly, their subtle inter-
actions, so typical in complex socio-technical sys-
tems.

1. Introduction

There are three system ‘dimensions’ that come
into play in the analysis of socio-technical systems:
these are system structure, system behaviour and
human-computer interaction. Many techniques for
the analysis and prevention of accidents in socio-
technical systems focus on only one or two of these
dimensions but not on all three at the same time.
However, it is well known that accidents combine
all three [1, 5].

In this paper we propose an analytical framework
for socio-technical systems. The framework is based
upon a dynamic view of the reference model (RM)
for requirements and specifications [2]. The formal
approach of the RM, complemented with the semi-
formal approach of Jackson’s Problem Frames [3],
provides a clear distinction between descriptions of
the world (or environment of the system) W , the
requirements R and the specifications S of a solution
machine. This specification S contains descriptions

expressed exclusively in terms of shared phenomena
between the machine and its environment. For a
machine to satisfy the requirements, W ∧ S |= R
must hold.

With the purpose of including the analysis of
system-operator interactions, our framework also
contains elements that resemble those of Norman’s
Mental Models [6]. However, Norman concentrates
on the design of the system in non-formal terms;
our location in mission- (including safety-)critical
systems requires reasoning capability above the ad
hoc. As with Norman, we work with three differ-
ent viewpoints: two mental (corresponding to de-
sign and operating stakeholders), one physical (the
system in operation). Those stakeholders can hold
discrepant views of W,S, R [8] that, through their
interactions, can lead to undesirable physical situa-
tions. Our intention is to place stakeholders within
the same spatio-temporal framework to allow proper
analysis of them and the physical system individu-
ally and severally. Although we admit design and
operating teams, throughout this paper we use the
singular, for consistency.

2. Designer and operator viewpoints

Our framework is summarised in Figure 1 which
should, initially, be seen as three concentric squares.
We explain, first, the middle square, corresponding
to the actual physical execution of the system. Ac-
cording to the reference model, the system “moves”
the environment from a state described by W at
time t (abbreviated to W t in the figure) to a state1

at t+1 (W t+1, which, ideally, satisfies requirements
R), as indicated by the mapping W t → W t+1.
This step is decomposed into three: (i) a “sensor”

1We assign unit time to the change for simplicity only, it
could, in fact, be any delta.



step: the state of the world is input to the soft-
ware (W t → St), (ii) a software step: the software
produces output from its input (St → St+1) and
(iii) the “actuator” step: the software output ef-
fects some change in the world (St+1 →W t+1). The
other squares correspond to the views of our iden-
tified stakeholder: outermost the operator’s view
(subscript o); innermost the designer’s view (sub-
script d). In this way, we enable the systematic
forwards or backwards analysis of any discrepan-
cies between the operator’s and designer’s views of a
step (or sequence of steps) and/or the actual step(s)
that took place.

A delta expression (shown in the in the figure as a
decorated ∆, i.e. ∆SW

o ) represents the gap between
the operator’s view of a step and the step itself. So,
for instance, ∆SW

o represents the operator’s view of
an “actuator” step against reality. Discrepancies in
a step can either be in the step itself, or derived from
discrepancies between actual states and designed or
perceived ones. This second class of discrepancies
we label with decorated Xs.

S

W

S

Operator model (at operation time)

Intended behavior (at design time) 

W

W W

S S

S

WW

S

Actual behavior (at operation time)

∆S

d

∆S
d

W

∆

d

W

∆W
d

S

∆

o

W

∆S
o

∆S

o

∆W
o

S

t+1

t+1

t+1

t

t

t

o

oo

o

dd

d d

t+1

t

t

t

t+1

t+1

W

X

d

X

d

X

d

X

d

X

o

X

XX

o

o

o

Figure 1. Resume of the framework

One of the immediate advantages that our frame-
work provides is its taxonomic capability. For ex-
ample, from the delta expressions, operator errors
can be classified into one of:

∆W
o the operator misconstrues an environmental

step;

∆SW
o the operator misconstrues an actuator step;

∆S
o the operator misconstrues the sensor/actuator

linkage;

∆WS
o the operator misconstrues an sensor step.

This is a more granular and detailed view of Nor-
man’s mental model (mis)constructions [6]. Also,
similar taxonomies exist for misconstrued states
(the X’s) and for design errors (the ∆d’s), not
shown here for reasons of space.

3. Case study: the chemical reactor

This section shows, through a real-world example,
how our framework may be used in the analysis
of the chemical reactor explosion [4]. The require-
ments for a chemical reactor, a schematic for which
appears in Figure 2, included the clause that when
a component in the plant reported a problem, the
software should send a warning message to the op-
erators and stop executing. On one bad day, the
operator sent an order to the software to open the
catalyst (with the aim of increasing the output of
the reactor). The program was instructed to, first,
open the catalyst and, second, open the flow of cool-
ing water, to regulate the reaction. An accident
occurred when a component gearbox reported low
oil levels to the software, just after opening the re-
actor, causing the software to stop. As a conse-
quence, opening the cooling water was never per-
formed. The temperature of the reactor increased
resulting in an explosion.

Reactor

Cooling waterComputerGearbox

CondenserCatalyst

Figure 2. Chemical reactor schematic

For our analysis, we will use a formal approach, re-
lated to individual traces of behaviours in, respec-
tively, the real world (i.e., the actual behaviour), the
designer’s view and the operator’s view. However,
less formal approaches could also be used under our



framework (for example, based on problem frame
concerns[3]).

In the simplest of safety and liveness terms, the sit-
uation {catalyser open,¬water open} should never
occur. Figure 3 represents, step by step, the se-
quence of events. Analysis goes backwards in time,
from top to bottom. The three columns represent
the designer’s view, the actual events and the op-
erator’s view of those events. States are shown in
angle brackets, where shared phenomena are under
the line.

There is a Xd difference, shown at the top of the fig-
ure, between the (actual) hazardous state and the
state envisioned by the designer. If we trace back in
time the sequence of events we find that, previously,
in the St+1 state, there are some differences but
there are no differences in the previous one (St). So
it is in this St → St+1 step where a ∆S

d actually hap-
pened (i.e., the software did not achieve its intended
action, even when sensors, actuators and the oper-
ator behave correctly). Analyzing this step, what
we find here is a design decision that proved to be
wrong: the atomicity of the operations of opening
the catalyser and the water when, actually, the wa-
ter was never opened, as the second column shows.

Please note that our framework would admit an al-
ternative analysis if the designers view ignored the
possibility of unit needs service in W t. In this
case, a difference would appear in the W t stage,
indicating that an expectation Xd of the designer
was wrong, but at the end, the conclusion would be
the same: the program has been poorly designed.

The actual behaviour of the world, machine and op-
erator is expressed by the relation |= on the W , S
and R rules, where

R if (catalyser open) then water open
if (unit needs service) then (warn operator; STOP )
if (req catalyser open) then catalyser open

S if (opencsen) then (opencact; openwact)
if (req servicesen) then (warn operatoract; STOP )

W if (opencact) then catalyser open
if (warn operatoract) then warn operator
if (openwact) then water open
if (unit needs service) then req servicesen

if (request catalyser open) then opencsen

This model satisfies the RM in the sense that W ∧
S |= R holds2. On the other hand, the designed

2The reader can check this by chasing round Figure 1 the

behaviour (Wd, Rd and Sd) differs from this model.
Although Wd = W and Rd = R, S changes to:

Sd if (opencsen) then [opencact; openwact]
if (req servicesen) then (warn operatoract; STOP )

where [a; b] indicates that a followed by b should
be atomic, i.e., that no event should come between
their occurrence. Similarly, rules and relation |=o

could be provided for the operator; however, due
to the informality of the operator (it is a biddable
domain in Jackson’s terms[3]) we prefer to analyse
it informally as follows:

Referring back to Figure 3, from the point of view
of the operator the first departure from actual be-
haviour happens in W t: the operator ignores that,
at the same time he is requesting the catalyzer to
open, the gearbox signals a request for service. The
operator continues, under the assumption that there
is no abnormal behaviour, and is therefore never
aware of the hazard, as can be seen in the W t+1

row. Although it is not “the solution”, this suggests
that a proper feedback mechanism for the gearbox
request for service is missing.

Although we have been able to present only a sim-
ple analysis, we claim that our framework has the
potential to raise awareness about many real de-
sign and operator errors as well as suggesting so-
lutions by which they can be avoided. To support
this claim, consider for instance, the long sequence
of ¬water open facts without the operator being
aware of it, even after his request was made. The
analyst could ask why this happens, if it has some
importance or not, and how can be avoided in future
designs. Also, an analysis of mixed causes (inter-
mingled design and operator errors) can be done,
like when even subtle design errors lead to wrong
information in a display that lead the operator into
taking a bad decision [5].

4. Conclusions and Further Work

We have presented a framework into which many
aspects of socio-technical systems fit, and within
which their interrelationships become clear. With
its strong foundations in the reference model, from

sequence of events.



Designer Actual Operator

W t+1 :

〈 catalyser open
water open

warn operator

STOP

〉
Xd←→

〈 catalyser open
¬water open

warn operator

STOP

〉
Xo

←→

〈 catalyser open
water open

warn operator

STOP

〉
↑ ∆SW

d⇐====================⇒ ↑ ∆SW
o⇐====================⇒ ↑

St+1 :

〈 ¬catalyser open
¬water open

opencact

openwact

warn operatoract

〉
Xd←→

〈 ¬catalyser open
¬water open

opencact

warn operatoract

STOP

〉
Xo

←→

〈 ¬catalyser open
¬water open

opencact

openwact

〉
↑ ∆S

d⇐====================⇒ ↑ ∆S
o⇐====================⇒ ↑

St :

〈 ¬catalyser open
¬water open

opencsen

req servicesen

〉
Xd←→

〈 ¬catalyser open
¬water open

opencsen

req servicesen

〉
Xo

←→

〈
¬catalyser open
¬water open

opencsen

〉
↑ ∆W S

d⇐====================⇒ ↑ ∆W S
o⇐====================⇒ ↑

W t :

〈 ¬catalyser open
¬water open

req catalyser open
unit needs service

〉
Xd←→

〈 ¬catalyser open
¬water open

req catalyser open
unit needs service

〉
Xo

←→

〈 ¬catalyser open
¬water open

req catalyser open

〉

Figure 3. Analysis of the chemical reactor accident

a safety engineering point of view, we aim in further
papers to show how widely used techniques (fault
tree analysis (FTA), HAZOP and Event Tress (ET),
for instance) can be embedded within our frame-
work. For instance, our Framework provides the
means to structure FTA analysis as, in FTA, the
backward chaining sequence from the root of the
tree (the hazard) can be guided by stepping back-
wards in the cycle shown in Figure 1. For each step,
the operator and designer view can be interleaved
to study their interactions, improving former pro-
posals like [1]. In HAZOP, on the other hand, our
framework provides a general structure for HAZOP
meetings [7]. In this way, HAZOP keywords can be
applied to each small step in the cycle, both from
a designer point of view and/or from an operator
point of view. A similar argument can be provided
with regard to ET or other techniques. In this way,
our framework provides a coherent view that under-
lies hazard analysis techniques, also integrating the
interaction between operator and design errors.

This framework provides the basis of our future
work, whose mission is to bring a complete and co-
herent view of the misbehaviours in socio-technical
systems. Another approach we are exploring is the
potential use of our framework for storing and dis-

tributing accident-related information.

References

[1] C.F. Fan and Chen W.H. Accident sequence analysis of
human-computer interface design. Reliability Engineer-
ing and System Safety, (67):29–40, 2000.

[2] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave.
A reference model for requirements and specifications.
IEEE Software, 17(3):37–43, 2000.

[3] M. Jackson. Problem Frames: Analyzing and structuring
software development problems. Addison-Wesley, 2001.

[4] T. Kletz. Computer Control and Human Error. Institu-
tion of Chemical Engineers, 1995.

[5] N. Leveson, L. D. Pinnel, Sandys S.D., S. Koga, and
J.D. Reese. Analyzing software specifications for mode
confusion potential. In 1st ACM SIGSOFT Symp. on
the Foundations of Software Engineering, Dec. 1993.

[6] D.A. Norman Cognitive Engineering. In D.A. Norman,
S.W. Draper, User Centred System Design. LEA Asso-
ciates, New Jersey, 1986.

[7] F. Redmill, M. Chudleigh, and J. Catmur. System Safety:
HAZOP and Software HAZOP. Wiley, 1999.

[8] A. Silva. Requirements, domain and specifications: A
viewpoint-based approach to requirements engineering.
In International Conference on Software Engineering
2002 (ICSE 2002), 2002.


