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Abstract - This paper p roposes  semi-blind chan- 
nel e s t ima t ion  and interference cancel la t ion schemes 
for the reception of pilot-aided signals i n  WCDMA 
systems.  It is shown that the pe r fo rmance  of clas- 
sical  training-based schemes is severely degraded 
due t o  the code-multiplexing (as opposed to t ime-  
mult iplexing)  of traffic and pilot signals. The time- 
dispers ivi ty  of the channel des t roys  the orthogonality 
be tween  the trafiic signal and the pilot ,  a n d  conse- 
quen t ly  the traffic signal appears as a new interfer ing 
signal for the channel es t ima t ion /beamforming  algo- 
rithm. In order to avoid this effect, w e  propose tech- 
niques that exploi t  b o t h  the presence of  the t r a in ing  
sequence and the structure of the traffic signal in a 
semi-blind fashion. 

I. INTRODUCTION 
The introduction of training sequences or reference signals 

for channel estimation purposes is quite a common practice 
in mobile communication systems. Traditionally the pilot or 
training signal has been transmitted time-multiplexed with 
the traffic data  -that is, occupying different temporal posi- 
tions on the radio frame- so that channel estimation and data 
detection could be performed independently. Nevertheless, in 
most of the terrestrial mobile communication standards pro- 
posed today -such as WCDMA or CDMA2000- training se- 
quence and traffic signal are transmitted simultaneously while 
code-multiplexed. Although the traffic signal and the pilot are 
in principle transmitted with perfectly orthogonal codes, t he  
time-dispersivity of the mobile radio channel destroys this or- 
thogonality at the reception stage. For this reason, the use of 
channel estimators or even interference suppression schemes 
based on the sole knowledge of the training sequence results 
in very poor performance a t  the basestation, no matter how 
good the signal t o  noise ratio might be. 

In this paper we propose channel estimators and interfer- 
ence rejection schemes based on a semi-blind approach to the 
underlying identification problem. The  proposed techniques 
make use of the knowledge of the training sequence while ex- 
ploiting the inherent structure of the traffic signal. Semi- 
blind channel identification techniques yield moderate im- 
provements over classical training-only estimators when traffic 
and training signals are time-multiplexed [l]. We will see here 
that these improvements turn out to  be dramatic when these 
signals are code-multiplexed. 

The rest of the paper is organized as follows. Section I1 
describes the signal model for DS/CDMA-modulated signals 
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with emphasis on multi-rate schemes. In section 111 three dif- 
ferent semi-blind channel estimators designed for pilot-aided 
WCDMA signals are proposed. These results are then used 
in Section IV to  derive three corresponding semi-blind beam- 
forming methods. Section V compares the performance of the 
proposed schemes. 

11. RECEIVED SIGNAL MODEL 
Each mobile station is assumed to map the underlying data 

sequence t o  Q distinct and synchronized spreading sequences 
with period N ,  chips. Both the period of the spreading se- 
quences and the chipping rate are assumed constant for all 
users and sequences. Let sq(m)E C represent the underly- 
ing complex symbol stream associated with the q-th sequence 
and assume that  N,(g) ,  q = 1 . .  . Q consecutive symbols are 
mapped to  each interval of N, chips. The spreading factor 
associated with a particular spreading sequence is expressed 
as S F ( q )  = N,(q ) /N ,  chips/bit. 

The chip-sampled spreading sequences are denoted 
cl(n), . .cq(n) ,  all of them with non-zero support over 1 5 
n 5 N,, and t(n) stands for the training sequence transmit- 
ted in parallel with the traffic channels. On the other hand, 
h(l)  1 = 1 . . . L represents the channel impulse response, where 
it is assumed that L < N,. Using these definitions the chip 
rate-sampled received signal can be expressed as: 

(1) 
with 1.1 denoting the lower largest integer value and zk(n)  
the channel-filtered known component of the transmitted sig- 
nal (typically a pilot or training sequence mapped to a code 
orthogonal to  the traffic channels): 

L 

zk(n)  = Ch(i)t(n - i + l), 
i=l 

Finally g,(n) stands for the signature associated with the q-th 
code sequence, resulting from the discrete convolution between 
the q-th spreading sequence and the channel impulse response: 

L 

gn(n) = c h(i)c,(n - 2 + l), (3) 
i = l  

and n(n) a component modelling thermal noise. Next we de- 
fine a column vector sq(m)€ ~ ~ * ( q ) ~ ~  containing a fragment 
of the data  sequence mapped t o  the q-th spreading code: 

Gathering N ,  samples of the received signal z(n) into a column 
vector x(m) = [ z ( ( m  - 1) N ,  -t 1) . . . z ( m ~ , )  3 E eNcx1, 
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we can express the global received signal in an observation 
window of N, chips as: 

Matrices Gq(i)c C N c x N s ( q )  i = 1,2 are the two parts of the 
global signature matrix: 

f5; = 

where O ( r - l ) ~ ~ ( q ) x l  stands for an all-zeros 
(r - l ) S F ( q )  x 1 column vector. The vector 
corresponding to  the received training sequence 

can be expressed as: 
x k ( m )  = [z"(m - 1) N, + 1 ) .  . . xk (",)]'E C N C X l  

t ( ( m - l ) N c + l ) - . . t ( ( m - l ) N c - L + 2 )  
t ( ( m - 1 ) N c + 2 ) - . . t ( ( m - 1 ) N c - L + 3 )  

t(mlv,) ..: t(", - L + 1) 

xk(m)  = 

-, 
T(m)€  C N C X L  

(9) 
Stacking M vectors x(m) into a column vector x E C M N C X 1  

we get to: 

s q =  [ S q T ( 1 ) . " S ~ ( A 4 +  1 ) y - E  @ ( M + l ) N * ( q ) x l ,  (11) 

with 7 = [ ~ ( 1 ) . . . 7 ' ( M ) ] '  and n =  [n'(l).-.n*(M)]'. 
The final received signal model is therefore expressed as: 

being now: 

G = [ G I . .  . GQ]  E C N c M X ( M + l ) N a  

c = [C, .  . . C,] E I p c M x ( M + l ) N a L  

s =  [ST . . .STQ]TE I p + 1 ) N S X l  (13) 

and N, = E$'=, N,(q ) .  It  is assumed that the compo- 
nents of the thermal noise vector are circularly symmetric 
jointly Gaussian distributed with zero mean and covariance 
E [nn"] = u ~ I M N , ,  E [nn'] = 0. Whenever the unknown 
symbols are modelled as random variables, they are also as- 
sumed circularly symmetric with zero mean and unit covari- 
ance matrix. 

111. ML CHANNEL ESTIMAT~ON METHODS 

Training-only Approach 
The  training only estimator disregards the presence of the 

traffic channels, which is equivalent to setting s = 0 in (12). 
The ML estimator under this hypothesis can be easily found 
as: 

ht, = (T"7) -I I H X .  (14) 

The normalized estimator mht,, can be shown to be unbi- 
ased Gaussian-distributed with asymptotic covariance' : 

C,";2 = MCRBE + M (7"7)-' 7 * G G H 7  ( IH7)- l ,  

(15) 
being: 

CRBE = o2 (T*T)-' (16) 
the CramBr-Rao bound for the training-only scenario. Al- 
though traffic and training sequences are designed to be per- 
fectly orthogonal, the time dispersivity of the channel destroys 
this orthogonality rendering the training-only channel estima- 
tor inefficient even at high signal to noise ratios. 

The poor performance of the training-only estimator can 
be overcome modelling explicitly the presence of the traffic 
channels in the received signal. In particular, one can model 
the unknown data either as unknown deterministic parameters 
(Conditional approach) or as random variables (Unconditional 
Approach). These two approaches will lead to  two distinct 
estimators that  do not perform equivalently [l]. 

Conditional (Deterministic) Approach 
If we model the unknown data as deterministic parame- 

ters, the ML estimator for both data and channel impulse 
response can be obtained minimizing the following negative 
log-likelihood function: 

The unknown symbols can be estimated as: 

yith LC the CML estimate of the channel impulse _response and 
G equal t o  G substituting h for its estimation h,. Plugging 
(18) into (17) we get t o  the simplified cost function: 

'Note that only the circulant part of the covariance matrix is 
x = xkfGs + n, (12) different from zero 
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with PA = IMN, - G [G"G]-' GH denoting the orthogonal 
projection matrix onto the null space of the columns of G .  
Estimations of the channel impulse response and the noise 
power can be readily obtained minimizing either (17) or (19): 

being R =I + C (& @ IL) a structured reconstruction of 
the transmitted signal convolution matrix. The normalized 
estimator can be shown to be strongly consistent 
and asymptotically circularly symmetric Gaussian-distributed 
with zero mean and covariance matrix shown in (21) on top  
of the next page, where C ( i )  = C : , ( i - l ) ~ + l : i ~ E  @ 2 N c M x L  and 
CRBy is the asymptotic Deterministic Cram&-Rao Bound: 

( M + l ) N s  

(I' (CRB:)-l = IHP&7+ CH(i)P&C(z) (22) 
i=l  

As we see from (21), the deterministic channel estimator is in- 
efficient a t  finite values of the signal to  noise ratio. This is due 
to  the finite number of samples per symbol (finite spreading 
factors), from which a consistent estimation of the unknown 
symbols is not possible. 

Gaussian Approach 

According to  the GML approach, unknown symbols are 
modelled as jointly Gaussian random variables with zero mean 
and unit variance. The likelihood function t o  be minimized 
becomes: 

q G M L  = logdet (TCr) + t r  (C;'",) , (23) 

where now C ,  and stand for the temporal covariance ma- 
trix of the received signal and its rank-one sample estimate 
respectively: 

c, = G G ~  + U ' I ~ ~ , ,  

e, = (x - Th) (x - 7h)13. 
(24) 

(25) 

Note that the GML channel estimator tends to  be equivalent 
to  the CML scheme as the signal t o  noise ratio increases with- 
out bound, so that C;l -+ +PA. Taking derivatives with 
respect to the channel taps, the GML solution for the channel 
impulse response can be expressed as follows 131: 

Iv. BEAMFORMING DESIGN 

Let us now consider the design of a beamformer in order to 
suppress the contribution from all the undesired components 
of the received signal, consisting of both noise and multi-user 
interference. First, we generalize the received signal model in 
(12) to  the multi-antenna case. Assuming the model in (12) 
for the received signal a t  the p t h  antenna: 

x,=lh,+C (IL @ s) h,+n,, (28) 

we stack the P received signal vectors next t o  one another to  
obtain the spatial-temporal received signal matrix: 

X =  [x~...x~]=TH+C(IL@S)H+NE C M N C x P .  (29) 

Matrix H E C L x p  contains on each of its columns the 
channel impulse response at the corresponding antenna, and 
N = [ nl . . . np] E C M N C x P  contains noise and interference 
from mobile stations other than the desired one. 

Assume that we have an estimation of the spatial-temporal 
channel matrix after beamforming h = Hw. Our objective 
is to  design a narrowband beamformer w = [ w1 . . . w p ]  E 
C P x 1  that  minimizes the mean squared error between its out- 
put and the training sequence once filtered by the equivalent 
channel: 

% =argmin(Xw - I h ) H  M ( X w  - I h ) .  (30) 

Note that  we have introduced a weighting matrix M E 
C M N c  to  allow for generalized least squares solutions. 
In practice, both the weighting matrix M and the channel 
estimator h will be chosen according to  the statistical model 
for the unknown data.  Moreover, the channel estimation will 
depend on the beamforming and consequently (30) will have 
to  be solved forcing a constraint on the beamvector. Let us 
assume that the channel estimation depends linearly on the 
observation h = Q.Xw; if we impose a constraint on the power 
received from the direction of arrival of the training sequence' : 

W 

wHXH Q H M + X w  =a (31) 

the beamvector can be obtained as the generalized eigenvector 
associated with the minimum generalized eigenvalue of the 
following eigensystem: 

X H M X w  = X,i,XH*HM*X~, (32) 

where we have assumed that  matrices M and * do not depend 
on the weight vector w. If they did, the solution to (30) would 
have t o  be found iteratively, solving (32) and using the solution 
to  re-initialize matrices M and a. 

(26) Training-only Solution 

with: 
If we disregard the presence of unknown data and use 

training-only estimator of the channel impulse response, we 
(M+1)N, get to  the following cost function: 

D = C H ( i )  [e;;' - e;lc.e;'] C ( i ) ,  (27)  i~ = a rgminwHXHP+Xw,  w 
i=l 

subject to  : wHXHP:Xw =a (33) and C, equal to  C, replacing h for its estimation. I t  can be 
shown that  the GML channel estimator is asymptotically non- 
circular Gaussian-distributed and efficient. The expression we have the weighting matrix M as: 
of the asymptotic covariance matrix (Cram&-Rao bound) is 

For 

with pT = gr ( 7 - H q - l ; r H  and p+ = - pT, N~~~ that 

omitted here for lack of space, but can be found in [4]. 
a comparison of the theoretical performance of the semi-blind 

~ l ; d  = LE ( x W  - I h )  ( x W  - ,p)H] = lEvIN,, (34) 
U* 

ML channel estimators, see also [2]. 
'Note that, due to the structure of the channel estimator, 

XH@I3M%X can be interpreted as an approximation to the spatial 
covariance matrix corresponding to the user of interest. 
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where the expected value is taken according to the training- 
only assumption. The solution is obtained solving the eigen- 
system in (32): 

XHX*t, = X:inXHPTX*t,, (35) 

which corresponds to  the beamforming scheme proposed in 
15, 61. According to  the training-only approach, the beam- 
former identifies the  desired signal as the component of the 
received snapshots lying on the training sequence subspace 
and tries to null out any other contribution. In fact, the traf- 
fic signal corresponding to  the user of interest is identified as 
an interference coming from the direction of arrival of the de- 
sired user. We will see in the next section that this causes a 
severe degradation of the beamformer performance, especially 
at high input signal t o  noise ratios. 

Gaussian Solution 

Let us now model the unknown symbols as circularly sym- 
metric random variables. The weighting matrix M is chosen 
accordingly: 

(Xw - 7h) (Xw - 7 h ) H ]  = -C,, 1 (36) 
U2 

where expectation is taken with respect t o  both noise and un- 
known data. Concerning the channel impulse response, note 
that the estimator obtained for the Gaussian model can be 
expressed as: 

h, = Hw - 7HC;17]-17HC;'X~,+Op (M-'/') , 

with Op( . )  the in probability version of the corresponding de- 
terministic notation. Disregarding the presence of the second 
term in (37), we can obtain an asymptotically valid solution 
for the beamvector under the Gaussian hypothesis: 

(37) 
g -  [ 

xHc;'x*, = XginXHC,17 7 H C 3 -  7HC;1X*g. 

(38) 
1. ! -' 

Because of the dependence of matrix C, on the beamforming 
weights, the solution to  (38) will have to be obtained iter- 
atively. We will show in the next section that this beam- 
former performs considerably better than the training-only 
one, thanks to the explicit modelling of the traffic signal in 
matrix C,. 

Deterministic Solution 

The proposed beamformer under the Deterministic ap- 
proach can be obtained in the same way as the Gaussian so- 
lution. However, as shown before, the Conditional solution is 
no other than the limit of the Gaussian Solution as the input 
signal t o  noise ratio tends to  infinity, namely CZ1 --* &PA. 
Therefore: 

M, =PA, (39) 

h, = [ 7 H P & 7 ] - 1 7 H P & X ~ g + O p  (M-1'2), 

and the beamforming is readily obtained as: 

XHP&X*, = X&i,XHPk7- [ 7 H p & 7 ] - l  IHP&X*, .  

(40) 
Again, the optimum value of a, will have to be obtained it- 
eratively. 

V.  PERFORMANCE ASSESSMENT 

In this section we will compare the performance of the 
channel estimation and beamforming algorithms in terms of 
relative mean squared error and output signal to noise ratio 
respectively. 

Let us first concentrate on the channel estimation algo- 
rithms. Figure 1 represents the relative MSE for the three 
proposed methods, defined as: 

RMSE = t r  cM 
M llhll 0 

with CM the asymptotic covariances as defined in Section 111. 
The channel was generated with a Vehicular-A delay profile 
as specified by ETSI with L = 17 chips and the codes were 
randomly selected from the large Kasami set of length N ,  = 
256. Only one traffic channel was used by the user of interest 
(Q = l), and it was transmitted with the same power as the 
training sequence. The spreading factor was set to S F  = 8. 

We see that as the input signal t o  noise ratio increases, the 
relative MSE of the training-only channel estimator tends to 
a constant instead of following the corresponding CramBr-Rao 
Bound. As shown in (15), this behavior is a consequence of the 
presence of the traffic signal, which renders the estimator inef- 
ficient even at high signal to noise ratios. The  auto-interfering 
effect of the traffic channel is overcome with either of the semi- 
blind schemes, which in fact perform very similarly (especially 
at high signal to noise values). 

Turning now to the performance of the  three beamforming 
methods proposed in Section IV, Figure 2 represents the out- 
put signal to noise plus interference ratios as a function of the 
input signal to noise ratio for a scenario consisting of three 
users and an antenna array of P = 4 elements. Along with 
the values obtained with Monte-Carlo simulations (asterisks), 
we represent the following theoretical approximation for the 
output signal to noise ratio3 : 

with the signal to noise plus interference ratio defined as 
SINR(w) = z, (.)+ denoting Moore-Penrose pseudo- 
inverse and: 

3 A  sketch of the derivation of (42) is given in the Appendix 
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Figure 1. Performance of the channel Estimation algorithms. 

K = [Rad - (1 - XzL)Rd] E (cQx4 

M - a H M @  x E CQxQ > I  
E [(X - 7H)” T3CzT3 (X - IH)] 

Tz = E CQXQ 

T3 = M-X,,,a”M@ E C M N C X M N c .  
W E t  R n d W o p t  

(43) 

Note that ,  due t o  the definitions of R d  and R n d ,  our 
S I N R ( w )  depends on the modelling assumption for the statis- 
tics of the unknown data In Figure 2 matrices R d  and R n d  

are defined under the Gaussian assumption, but very similar 
results are obtained with deterministic definitions. Because 
of the presence of the traffic channel, the performance of the 
training-only beamformer levels off for increasingly high input 
signal t o  noise ratios. Once again, this behavior is avoided 
with the semi-blind techniques, whose performance is very 
close to  the optimum one. Note that  in Figure 2 the theo- 
retical values for the training-only scheme are not plotted for 
high signal to noise ratios. This is due to  the fact that  (42) 
is only a valid approximation at S I N R ( w )  values close to  the 
optimum ones When this hypothesis is not met, the approx- 
imation may give negative values (as it is the case in Figure 

VI. CONCLUSIONS 
This paper proposes semi-blind channel identification and 

beamforming techniques for the reception of pilot-aided sig- 
nals in WCDMA systems First, Maximum Likelihood Condi- 
tional and Gaussian estimation techniques are particularized 
to  the WCDMA scenario Then, an asymptotic approxima- 
tion of these channel estimators is used to  propose semi-blind 
narrowband beamformers which are robust t o  the presence 
of the traffic signal The performance of the proposed algo- 
rithms has been validated theoreticaliy and via simulations, 
and results show substantial improvements with respect to 
traditional training-only approaches. Further results on the 
performance of the semi-blind algorithms and a their depen- 
dence on system parameters -such as Spreading Factors, ratio 
of training to  traffic power or signal to  noise ratio- will be 
included in [4] 

2). 

APPENDIX 
In this Appendix we give a brief description of the approx- 

imations made in order to  obtain expression (42). Assuming 
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Figure 2: Performance of the Beamforming Algorithms 

that the S I N R ( w )  is close to its optimum value S I N R ( w O p t )  
we approximate its value with the first term of its Taylor series 
development : 

with K defined in (43) and G = w - wept. Applying clas- 
sical results of eigensystem perturbation theory to (44) and 
disregarding the terms of higher order: 

where B = XH (M-XzL@HM@) X.  Finally applying the 
formula for the expectation of four Gaussian-distributed ran- 
dom matrices given in 171 we get to  (42). 
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