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Resum

L’objectiu d’aquesta Tesi és l’estudi de l’acoblament dinàmic entre processos cel·lulars, i de com aquest acobla-
ment genera un comportament ben definit en presència de no-linealitats i soroll. Un funcionament cel·lular
correcte depèn de la coordinació exquisida entre un gran nombre de processos dinàmics no lineals subjectes a
fluctuacions, que s’esdevenen simultàniament dins la cèl·lula. Aquests tipus de processos dinàmics no tenen lloc
de manera aïllada en una cèl·lula sinó que ocorren de manera simultània, essent per tant necessari establir l’origen
i el grau de coordinació entre ells. Totes aquestes qüestions romanen encara sense resposta.

A la Part I introduïm i motivem els dos tipus de dinàmiques cel·lulars que hem estudiat en aquesta Tesi.
Dediquem la Part II als polsos d’expressió o activitat de proteïnes (Capítols 2 i 3), mentre que ens concentrem en
les oscil·lacions periòdiques d’expressió de proteïnes a la Part III (Capítol 4). Concretament, en el Capítol 2 abor-
dem la qüestió sobre com l’acoblament de certs senyals d’entrada afecten la resposta del circuit que regula la com-
petència per a la incorporació d’ADN en Bacillus subtilis. En cèl·lules silvestres i sota determinades condicions
d’estrès ambiental, s’ha determinat que l’estat de competència segueix una dinàmica de polsos estocàstics. Aquí
estudiem com la resposta dinàmica del circuit de competència varia des de polsos excitables fins a la biestabili-
tat i les oscil·lacions, depenent de l’acció conjunta de les dues entrades acoblades aplicades al sistema. Els efectes
fenotípics reportats en aquest Capítol són causats per canvis en el comportament dinàmic del circuit genètic sub-
jacent. L’anàlisi d’estabilitat d’un model teòric del circuit de competència estableix els diferents règims dinàmics
que pot exhibir el circuit, els quals estan quantitativament d’acord amb els resultats experimentals.

Seguint amb dinàmiques de polsos, al Capítol 3 estudiem l’acoblament dinàmic entre polsos d’activitat de
proteïnes en cèl·lules individuals. A aquest efecte, en col·laboració amb el laboratori del Prof. M. Elowitz de
l’Institut de Tecnologia de Califòrnia, vàrem concentrar-nos en la família de factors sigma alternatius en B. sub-
tilis. Els factors sigma són proteïnes que s’uneixen a l’ARN polimerasa de manera reversible, fent possible el
reconeixement de promotors específics per part de l’holoenzim format. En aquest Capítol mostrem que diversos
factors sigma alternatius presenten polsos estocàstics en la seva activació, i que aquests polsos competeixen per
l’ARN polimerasa. A la llum d’aquests resultats proposem un nou mecanisme de repartiment, que anomenem en
anglès “time-share”, pel qual els factors sigma fan torns en el temps per utilitzar la majoria d’ARN polimerasa
disponible. D’aquesta manera, només un o molt pocs factors sigma estarien actius simultàniament en una
mateixa cèl·lula. També hem desenvolupat una sèrie de models matemàtics que revelen com els polsos i la com-
petició afecten la distribució de l’ARN polimerasa.

Al Capítol 4 estudiem com un oscil·lador genètic sintètic està acoblat a la replicació i la divisió cel·lular. Vam
utilitzar l’oscil·lador sintètic desenvolupat per a Escherichia coli al laboratori del Prof. J. Hasty a la Universitat de
Califòrnia San Diego. Mostrem com el cicle cel·lular bacterià és capaç d’entrenar parcialment les oscil·lacions sin-
tètiques de manera consistent en condicions de creixement normal, tot dirigint la replicació periòdica dels gens
involucrats en l’oscil·lador. També exposem que la sincronització entre els dos processos periòdics s’incrementa
si l’oscil·lador sintètic es retroacobla al cicle cel·lular mitjançant l’expressió d’un inhibidor de la iniciació de la
replicació. A més, hem desenvolupat un model computacional simplificat que confirma aquest efecte.

Finalment, a la Part IV (Capítol 5) resumim i discutim els principals resultats presentats en aquesta Tesi, i
suggerim direccions futures cap a on ampliar la recerca.





Summary

The main object of this Doctoral Thesis is the study of the dynamical coupling between cellular processes, and
how this coupling gives rise to a well-defined behavior in the presence of non-linearities and noise. Cell func-
tioning relies on the exquisite coordination between a large number of dynamical nonlinear processes subject
to fluctuations, which simultaneously operate within the cell. Many cellular dynamical processes occur in the
form of periodic oscillations in the expression and/or activation of proteins. Also, more complex dynamics have
been identified recently in the form of transient pulses occurring at random. These types of dynamical processes
do not occur in isolation in a cell but they do so simultaneously, and therefore it is necessary to establish the ori-
gin and level of coordination between them. All these issues still remain unanswered. To address the different
questions posed in this Thesis, we have used experimental and theoretical approaches.

In Part I we introduce and motivate the two types of cellular dynamics studied in this Thesis. Part II is de-
voted to pulses of protein expression or activity (Chapters 2 and 3), whereas in Part III we concentrate in periodic
oscillations in protein expression (Chapter 4). Specifically, in Chapter 2 we focus on how the coupling of certain
inputs affect the response of the circuit regulating competence for DNA uptake in Bacillus subtilis. In wild-type
cells, under certain environmental stress conditions, competence has been found to follow a stochastic pulsing
dynamics. Here we study how the dynamical response of the competence circuit varies from excitable pulses to
bistability and oscillations depending on the joint action of two coupled inputs applied to the system. The pheno-
typical effects reported in this Chapter are caused by changes in the dynamical behavior of the underlying genetic
circuit. The stability analysis of a theoretical model of the competence circuit establishes the various dynamical
regimes that the circuit can exhibit, which are in very good quantitative agreement with experimental results.

Still dealing with pulsing dynamics, in Chapter 3 we study the dynamical coupling between pulses of protein
activity in single cells. For that purpose, in collaboration with Prof. M. Elowitz’s laboratory from the California
Institute of Technology, we concentrated in the alternative sigma factors family in B. subtilis. Sigma factors are
proteins that reversibly bind to core RNA polymerase thus giving the formed holoenzyme promoter-recognition
properties. In this Chapter we show for the first time that several alternative sigma factors present stochastic
pulses in their activation, and that these pulses take place in conditions of competition for core RNA polymerase.
In the light of these results, we propose a new mechanism, “time-sharing”, in which sigma factors take turns in
order to use most of the available RNA polymerase, with only one or a few sigma factors being simultaneously
active in a given cell. We also develop several mathematical models that shed light on how pulsing and competi-
tion affect RNAP allocation.

In Chapter 4 we study how a synthetic genetic oscillator is coupled to cell division and replication. We took
advantage of a synthetic oscillator developed for Escherichia coli in the laboratory of Prof. J. Hasty at the Univer-
sity of California San Diego. We have shown that the bacterial cell cycle is able to partially entrain the synthetic
oscillations consistently under normal growth conditions, by driving the periodic replication of the genes in-
volved in the oscillator. We have also shown that synchronization between the two periodic processes increases
when the synthetic oscillator is coupled back to cell cycle via the expression of an inhibitor of replication initia-
tion. Additionally, we have developed a computational toy model that confirmed this effect.

Finally, in Part IV (Chapter 5) we summarize and discuss the main results presented in this Thesis, and sug-
gest directions for future research.
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I

Introduction





1
Dynamical processes in cells

On June 15 1878 a photographic experiment by E. Muybridge took
place. Muybridge was commissioned by Leland Stanford (Governor of
California, business magnate, founder of Stanford University and also a
horse enthusiast) to demonstrate that a galloping horse lifts all four feet
off the ground at some point during the gait, something impossible to
distinguish for the human eye.

It took Muybridge several years to develop the photographic camera
technology that made this experiment possible by dramatically reduc-
ing the exposure time needed (of the order of the minute in those days).
Muybridge placed 12 of his state of the art cameras in line alongside
the racetrack equidistant at 27 inches, and conceived a trip wire mecha-
nism to shoot the cameras when the horse pulled the string during her
race [Muybridge, 1957, Mitchell, 2001]. The result of this experiment is
shown in Figure 1.1. These images can be considered the first time-lapse
sequence of history, each frame being ∼0.04 seconds apart.

Figure 1.1: The Horse in motion. ”Sallie
Gardner,” owned by Leland Stanford;
running at a 1:40 gait over the Palo
Alto track, 19th June 1878. Copyright,
􏷠􏷧􏷦􏷧, by Muybridge. This image has
been downloaded from the United
States Library of Congress’s Prints
and Photographs division (digital ID
cph.3a45870).

Stanford obtained the proof he was looking for, and the world of arts
and sciences experienced a tremendous revolution by the splitting of the
second. Muybridge gave the world a taste of what would be invented in
a few years time: the motion film. The horserace experiment was also
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reported in the contemporaneous scientific journals Scientific American
and the French La Nature. A new field of knowledge was born: the study
of animal locomotion, in which scientists learnt how to use photographs
as data, thus dissecting motion.

In biology, the first published time-lapse microscopy experiments
date from the first decade of the 20th century [Coutu and Schroeder,
2013]. These movies tracked dynamical processes such as colony forma-
tion in the tunicate Botryllus [Pizon, 1905] or the fertilization and early de-
velopment of sea urchins [Ries, 1909, Chevroton and Vles, 1909, Coutu
and Schroeder, 2013]1. However, details on inner cell structures were

1 The earliest time-lapse sequences still
preserved are at the Pasteur Institute. As
explained in [Coutu and Schroeder, 2013],
one of these movies is available in [Roux
et al., 2004] as the supplementary movie 1.only visible by fixing and staining the sample, and this implied killing

the specimen. The invention of phase contrast microscopy2 in the 1930s
2 Phase contrast microscopy relies in the
difference of phases that the electromag-
netic wave experiences when it travels
through different mediums, for instance,
cells, organelles or culture media. This
difference is due to variations in the veloc-
ity of light traveling through a transparent
specimen and through the surrounding
medium, which is in turn caused by
changes in the refraction index [Ockenga,
2011].

allowed the visualization of these structures in living cells [Landecker,
2009].

But the major revolution in live cell imaging arrived in the 1990s
with the cloning3 of the jellyfish green fluorescent protein (GFP) [Prasher

3 DNA cloning consists of inserting a
DNA fragment containing a sequence
of interest into a self-replicating DNA
element (for instance, a plasmid). In this
way, the cloned sequence will propagate
together with the plasmid [Alberts et al.,
2002]. The development of cloning
techniques also contributed to further
expanding the live cell imaging field.
The first multipurpose cloning vector,
pBR322, was designed and constructed
in the late 􏷠􏷨􏷦􏷟s [Balbás et al., 1986,
Sambrook et al., 1989].

et al., 1992, Tsien, 2003], and the establishment of GFP as a potential
marker for gene expression in living cells [Chalfie et al., 1994]. At that
time, molecular cloning was developed enough to achieve portability
across different organisms and also to monitor a wide variety of targets.
The discovery of new fluorescent proteins with non-overlapping spec-
tral emissions in the early 2000s [Matz et al., 2002, Zhang et al., 2002]
allowed for simultaneous observation of different processes at a single cell
level in vivo.

One striking application of fluorescent proteins in live cell imag-
ing consists in tagging a protein with a fluorophore. In most cases, this
protein fusion does not perturb the functionality of the tagged protein
when expressed in cells, thus allowing the study of protein dynamics
[Lippincott-Schwartz et al., 2001, Zimmer, 2002]. One example is the
work done to track the dynamics of the tumour suppressor protein p53
and the oncogene Mdm2 in mammal cells [Geva-Zatorsky et al., 2006]
(see Figure 1.2A).

Another use of fluorescent reporters is to establish the level of tran-
scription of a specific promoter. This is particularly useful when studying
the activity of regulatory genes, such as sigma factor 𝜎𝐵 in Bacillus subtilis,
responsible for triggering the cell’s response to energy stress [Locke et al.,
2011]. In this case, the activity of a 𝜎𝐵 target promoter is a reporter of the
state of a specific transcriptional program in the cell (see Figure 1.2B).

In conclusion, time-lapse fluorescent microscopy is a fairly recent
technique that unveils for the first time dynamical processes inside the
living cell. Quantification of these data, and a strong will to analyse the
new observations in order to elaborate laws (or at least identify mecha-
nisms) such as those found in exact sciences [Landecker, 2009] have led
physicists to enter wet-labs.

A particularly interesting dynamical phenomenon, from a physical
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A

B
Figure 1.2: Time-lapse fluorescence
microscopy filmstrips. (A) Recording
p53 and Mdm2 dynamics using protein fu-
sion. p53 was tagged with cyan fluorescent
protein (CFP) and Mdm2 was labelled
with yellow fluorescent protein (YFP).
Adapted from [Geva-Zatorsky et al.,
2006]. (B) Time-lapse of 𝜎𝐵 activity in B.
subtilis. A 𝜎𝐵-target promoter followed by
a yellow fluorescent protein (YFP) act as a
reporter of 𝜎𝐵 pulsatile activity. Adapted
from [Locke et al., 2011].

point of view, is synchronization. As defined by [Pikovsky et al., 2003]
synchronization is an adjustment of rhythms of oscillating
objects due to their weak interaction. The phenomenon thus
affects self-sustained oscillators that present a characteristic frequency,
and the interaction between two of these autonomous oscillators must be
weak enough so as not to end up with a new unified system that cannot
be decomposed again.

Synchronization has been observed for centuries in living systems.
One of the earliest documented examples in a large population of oscillat-
ing systems dates from the 17th century, when the physicist E. Kaempfer
documented the spectacle of glowworms swarms flashing their tails si-
multaneously after his voyage to Siam [Pikovsky et al., 2003]. A.T. Win-
free was a pioneer applying non-linear dynamical methods to the study
of biological rhythms, especially studying circadian oscillators and heart
beating [Winfree, 1967].

But it is thanks to time-lapse fluorescence microscopy that the
observation of new complex dynamics within the cell brings up some
challenging questions. Some examples are dynamical processes occurring
in the form of periodic oscillations in the expression and/or activation
of proteins. Genetic oscillators exhibiting different periods have been
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reported: from circadian clocks responsible for inducing time-dependent
behavior in cells and organisms with an approximated period of 24 hours,
to ultradian oscillators that have periods of the order of a few hours.
Circadian clocks have been found in a large variety of organisms, from
bacteria and fungi to plants and animals [Young and Kay, 2001]. Of
particular interest are the studies performed in cyanobacteria at the single
cell level where the authors concluded that the strong temporal stability
of the clock was due to the intracellular biochemical network, as the
coupling between cells was negligible [Mihalcescu et al., 2004, Amdaoud
et al., 2007]. Some examples of ultradian oscillators are the Zebrafish
somitogenesis oscillator [Lewis, 2003], the Notch effector Hes1 [Monk,
2003, Tiana et al., 2007] and the transcription factor p53 [Monk, 2003,
Geva-Zatorsky et al., 2006].

However more complex dynamics have been identified recently in
the form of transient pulses occurring at random. This is the case for ex-
ample of the master regulator of the competence state in Bacillus subtilis,
ComK, in response to nutritional stress [Süel et al., 2006]. Another ex-
ample of stochastic pulses in B. subtilis is the activation of the sigma factor
𝜎𝐵 in response to energy stress [Locke et al., 2011]. In yeast, Crz1 presents
bursts of localization in the cellular nucleus [Cai et al., 2008]. Even the
regulation of pluripotency in stem cells follows a pulsing dynamics, as
in the case of the Nanog transcription factor expression [Kalmar et al.,
2009].

These types of dynamical processes do not occur in isolation in a cell
but they do so simultaneously, and therefore it is necessary to establish
the origin and level of coordination between them, their robustness
to random fluctuations intrinsic to the cellular state and whether this
coordination is actively or passively regulated. All these issues still remain
unanswered.

The main object of this Doctoral Thesis is the study of the dynami-
cal coupling between cellular processes, and how this coupling gives rise
to a well-defined behavior in the presence of non-linearities and noise.
We focus on the study of the origin and control of the coupling for two
types of cellular dynamics: pulses of protein expression or activity on
the one hand (Chapters 2 and 3), and periodic oscillations on the other
(Chapter 4).

Specifically, in Chapter 2 we focus on how the coupling of certain
inputs affect the response of the circuit regulating competence for DNA
uptake in B. subtilis. In wild-type cells, under certain environmental
stress conditions, competence has been found to follow a stochastic
pulsing dynamics [Süel et al., 2006]. Here we study how the dynami-
cal response of the competence circuit varies from excitable pulses to
bistability and oscillations depending on the joint action of two coupled
inputs applied to the system.

Still dealing with pulsing dynamics, in Chapter 3 we study the dy-
namical coupling between pulses of protein activity in single cells. For
that purpose, we concentrated in the alternative sigma factors family in
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B. subtilis. Sigma factors are proteins that reversibly bind to core RNA
polymerase thus giving the formed holoenzyme promoter-recognition
properties. As mentioned before, the alternative sigma factor 𝜎𝐵 has re-
cently been shown to hold a frequency-modulated pulsatile response to
energy stress [Locke et al., 2011]. In this Chapter we show for the first
time that several alternative sigma factors present stochastic pulses in their
activation, and that these pulses take place in conditions of competition
for core RNA polymerase. In the light of these results, we propose a new
mechanism that allows sharing of the common limited resource (RNA
polymerase) among the alternative sigma factors. To further understand
this new mechanism we have developed and analysed several mathemati-
cal models.

Finally, in Chapter 4 we study how a synthetic genetic oscillator is
coupled to cell division and replication. We took advantage of a synthetic
oscillator developed in the laboratory of Prof. J. Hasty at the University
of California San Diego [Stricker et al., 2008] for Escherichia coli. We quan-
tified the degree of entrainment of the synthetic oscillator to bacterial
cell cycle, and went one step further by back-coupling the chromosomal
replication to the synthetic oscillator in order to test whether the two
oscillators can mutually entrain their dynamics.





II

Pulsatile behavior in stress-induced dynamics in

bacteria





2
Dynamics in competence

Cells are usually subject to multiple simultaneous sources of bio-
chemical and physical signals that provide them with information about
their external environment and their internal state. Their adequate re-
sponse to these external and internal conditions relies in the integration
of the corresponding inputs. Previous efforts addressed at understanding
signal integration in gene regulation have mainly concentrated on map-
ping the combinatorial response of bacteria to multiple environmental
signals by measuring the expression of a single promoter [Kaplan et al.,
2008, Krishna et al., 2009, Davidson et al., 2010, Hunziker et al., 2010,
Silva-Rocha and de Lorenzo, 2011]. But in many instances different in-
puts act upon distinct nodes (genes or proteins) of the cell’s underlying
gene regulation network, and it is the network itself, not a particular
promoter, that integrates the information at the system’s level. It thus
becomes necessary to understand how the integrated response of gene
regulatory networks depends on the specific entry points of the inputs.

This Chapter is devoted to the study of the integrated response of
the circuit regulating competence for DNA uptake in Bacillus subtilis.
Specifically, we characterize the response of single cells in vivo to a com-
bination of increased environmental stress that affects one of the two key
competence genes, and a chemical signal controlling the constitutive ex-
pression of the other one of these genes. In order to quantitatively control
the environmental stress acting upon the circuit, we used copy number
variations of the gene affected by the stress. Quantitative time-lapse fluo-
rescence microscopy shows that a variety of dynamical behaviors can be
reached by the combination of the two inputs. An in silico bidimensional
bifurcation analysis of a mathematical model of the circuit offers good
quantitative agreement with the experimental observations, and sheds
light on the dynamical mechanisms leading to the different integrated
responses exhibited by the gene regulatory circuit.

2.1 The competence circuit in Bacillus subtilis

Genetic competence is a well-defined cellular state that is trig-
gered by nutrient starvation in B. subtilis. This state differs from the
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vegetative state (characteristic of exponential growth) in the impairment
of replication, and the development of the ability to uptake and process
extracellular DNA. This is accomplished by the activation of a master
transcription factor, ComK, that is responsible for the expression of over
a hundred proteins that give rise to the new phenotypical state [Dubnau
and Losick, 2006].
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Figure 2.1: Dynamical features of ge-
netic competence. (A) Typical filmstrip
of a cell undergoing two consecutive
competence events, as labeled by the ac-
tivity of the comG promoter, regulated by
ComK, controlling cfp expression (in red
in the figure). The yfp signal, representing
comS levels, is shown in green. (B) Time
traces of comG and comS promoter activ-
ities for the cell highlighted in A. The
conditions for this experiment are those
of Figure 2.3C below. See Appendix A.1
for details of growth conditions and the
microscopy procedures used. Adapted
from [Espinar et al., 2013].

The competence behavior can be quantified with time-lapse fluores-
cence microscopy. Figure 2.1A shows a series of false-color snapshots
of a B. subtilis microcolony subject to baseline stress conditions (see
Appendix A.1 for details on cell culture and imaging under these condi-
tions), with the activity of the ComK-regulated P𝑐𝑜𝑚𝐺 promoter moni-
tored by a cyan fluorescent protein (CFP), whose fluorescent emission
is represented in red in the figure. The filmstrip shows that a fraction of
cells in the microcolony differentiate into the competent state. In par-
ticular, the cell outlined in yellow undergoes two consecutive transient
differentiation events in a time window of over 30 hours. Computing
the mean cell fluorescence as a function of time, as shown in the red
time trace of Figure 2.1B, we can quantify this behavior. In this way, a
systematic monitoring of competence reveals that this process is strongly
dynamic, and the nature of this dynamics totally depends on the inputs
the competence circuit receives.

We can analyze the competence events in terms of their probability of
initiation, exit and reinitiation (see Figure 2.1B).This statistical characteri-
zation represents an advantage of dynamic phenotypes over static cellular
responses. Fluorescence measurements are not able to provide absolute
values of expression levels, unless single molecules are detected [Cai et al.,
2006]. However, transition probabilities are absolute by definition and
are fairly straightforward to measure.

Another advantage of this system is that the gene regulatory circuit
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that governs competence is well known and relatively simple. This makes
competence an ideal model process for signal integration studies. Fig-
ure 2.2 shows a simplified scheme of the interactions between the two
main components forming the circuit [Süel et al., 2006]. The master
regulator of competence, ComK, is subject to a positive and a negative
feedback loop. On the one hand, ComK directly activates its own tran-
scription. On the other hand, it negatively regulates the expression of the
stress sensor protein ComS, which promotes ComK activation by com-
petitively binding to their common protease MecA [Süel et al., 2006].
This combination of a positive and a negative feedback loop gives rise to
excitable behavior in the form of noise-driven ComK pulses, which are
interpreted as functional competence events1 [Süel et al., 2007].

1 From the biological point of view, we
note that effective competence requires
cells not only to turn on ComK expres-
sion, but also to turn it off eventually.
Cells in which ComK expression is sus-
tained die without dividing, and therefore
without passing on to their progeny any
advantage that might have been gained by
incorporating exogenous DNA.

ComS

ComS

ComK ComS

… {x N

copy number
pertubation

Environmental
stress

constitutive
 expression
     signal

Figure 2.2: Scheme of the circuit
underlying genetic competence in B.
subtilis. The three types of inputs whose
integration is considered in this work are
also shown.

Previous work has shown that isolated perturbations of this cir-
cuit can lead to other dynamical regimes such as oscillations [Süel et al.,
2007]. In this line, traditionally there has been a dichotomy in the inter-
pretation of the competence dynamics in B. subtilis. Former studies at
the level of single cells interpret wild-type competence as an excitable dy-
namics driven by noise [Süel et al., 2006, 2007]. However, other studies
identify competence as a bistable phenomenon [Maamar and Dubnau,
2005]. Figure 2.3A and B shows how these two dynamics emerge in the
wild-type case, depending on the intensity of environmental stress the
cells are exposed to. In each panel, the left plot shows a collection of
single-cell time traces of CFP levels quantifying the ComK-regulated
P𝑐𝑜𝑚𝐺 promoter, obtained by time-lapse fluorescence microscopy. The
right plot shows histograms of CFP levels as measured from a typical
instant in each time series analyzed. Finally, the insets display selected
snapshots from these movies. Cells in Figure 2.3A were subject to base-
line conditions of stress (see Appendix A.1), whereas cells in Figure 2.3B
were exposed to harder stress conditions (that we called general stress
conditions, see Appendix A.1). Hence, modifying the severity of environ-
mental stress the competence circuit moves from one of these dynamical
states to the other.

2.2 Perturbing the competence circuit

Here, we aim to characterize the response of the circuit to pairs of
simultaneous perturbations, depending on their relative location within
the circuit. We consider two types of inputs (Figure 2.2): (i) the consti-
tutive expression level of one of the two main components of the circuit:
ComK, and (ii) the intensity of the regulated (native) expression of the
other one: ComS.

To control the constitutive expression of ComK, we used a strain
containing one additional copy of this gene under the control of the
isopropyl 𝛽-D-1-thiogalactopyranoside (IPTG)-induced hyperspank pro-
moter, Pℎ𝑦𝑝 (see Appendix A.2 for a description of the strains used in this
work). This strain also contains a reporter construct in which the P𝑐𝑜𝑚𝐺
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Figure 2.3: Dynamical phenotypes
arising from input integration. The
four upper panels correspond to joint
variation of increasing environmental
stress (increasing vertically toward the top)
and the ComK constitutive expression
level (increasing horizontally toward
the right):(A) 𝛼̃𝑘 = 􏷠, baseline stress
conditions (see Appendix A.1 for details);
(B) 𝛼̃𝑘 = 􏷠, general stress conditions
(see Appendix A.1 for details); (C) 𝛼̃𝑘 =
􏷢.􏷡, baseline stress conditions; and (D)
𝛼̃𝑘 = 􏷢.􏷡, general stress conditions.
Strain V10 was used in panels (A) and
(B), and strain Hyper-𝛼K was used
in panels (C) and (D). The two lower
panels correspond to a ComS high copy
number situation: 𝛽̃𝑠 = 􏷦􏷤 (strain Hyper-
𝛼K-75xS). Specifically, in (E): 𝛼̃𝑘 = 􏷠
and 𝛽̃𝑠 = 􏷦􏷤; and in (F): 𝛼̃𝑘 = 􏷢.􏷡 and
𝛽̃𝑠 = 􏷦􏷤. They thus correspond to panels
(B) and (D), but using here an increase
in ComS copy number instead of real
stress conditions. In each panel, the left
plot shows single-cell time traces of CFP
levels quantifying P𝑐𝑜𝑚𝐺 activity, with a
particular time trace highlighted with a
thicker line, and the right plot presents
histograms of CFP levels as measured
from a typical frame in each movie
analyzed (at an intermediate time, because
at large times there is substantial death and
sporulation in the system). Insets display
selected snapshots from these movies.
Adapted from [Espinar et al., 2013].

promoter drives the expression of cfp (Hyper-𝛼K strain, Table A.3). We
explored five different IPTG levels, namely 0, 3, 5, 10, and 100 𝜇M. In
order to calibrate the promoter activities triggered by these IPTG values,
we quantified the amount of fluorescence emitted by cells with a Pℎ𝑦𝑝-yfp
reporter, where yfp accounts for yellow fluorescent protein (Control-𝛼
strain, Table A.3) for the same IPTG levels, and compared the measured
values with the average signals obtained from a strain containing a P𝑐𝑜𝑚𝐾-
yfp reporter (KG strain, Table A.3) in cells not exhibiting competence.
This comparison allowed us to establish the amounts of constitutive ex-
pression from the Pℎ𝑦𝑝 promoter for increasing IPTG, in units of the
basal expression level of the P𝑐𝑜𝑚𝐾 promoter, 𝛼𝑤𝑡𝑘 (see Figure 2.4 and
Table A.4). In what follows we call this normalized value 𝛼̃𝑘.

As mentioned above, the second input that we consider affects the
strength of the regulated expression of ComS. Using general stress con-
ditions we dramatically increase the stress intensity to which the cells
are exposed to (with respect to baseline stress conditions), and we move
the competence circuit from an excitable landscape to a bistable one
(Figure 2.3A and B). However, general stress conditions do not allow
for well-controlled experiments because these conditions produce sys-
temic changes in the cells that alter their physiology in multiple ways,
resulting in a high mortality rate and thus making data collection and
reproducibility difficult to achieve. Therefore, to vary in a controlled way
the strength of the regulated ComS expression, we used copy number
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variations of this gene. Specifically, we introduced an additional copy
of the comS gene (under the control of its native promoter) in two plas-
mids of different characteristic copy numbers (kindly provided by Beth
A. Lazzazzera, UCLA): pHP13, which has a low and relatively stable
copy number of ∼ 6, and pDG148, with a larger copy number; and trans-
formed the corresponding strains with each one of these two plasmids.
To calibrate the actual copy number of these plasmids, we compared
the fluorescence generated by cells containing the P𝑐𝑜𝑚𝑆-cfp reporter in
the pHP13 and pDG148 plasmids, with the signal produced by a strain
in which a single copy of P𝑐𝑜𝑚𝑆-cfp had been chromosomally integrated
(Norm-𝛽S strain) (see Table A.3 for strain information). Simultaneously
quantifying the mean expression levels in these strains over long times
using time-lapse microscopy, we could establish the copy numbers of
these two plasmids at around 6.5 and 75, respectively (Figure 2.5). In this
way, we were able to apply three different well established values of the
maximum expression level of the P𝑐𝑜𝑚𝑆 promoter with respect to its wild-
type value. We denote this normalized quantity as 𝛽̃𝑠. We then included
the multi-ComS plasmids in the Hyper-𝛼K strain described above, gen-
erating new strains (Control-𝛽S-6xS and Control-𝛽S-75xS, Table A.3)
that allowed us to vary the two inputs simultaneously and independently
in a totally controlled way.
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Figure 2.4: Dose response of Pℎ𝑦𝑝-yfp to
IPTG. The plot shows Pℎ𝑦𝑝-yfp levels as
a function of IPTG concentration. Fluo-
rescence levels were measured at 􏷠􏷤 and
􏷡􏷟 h of growth on 1.5% (w/v) low melting
agarose pads made with resuspension
medium (RM) (Appendix A.1) and final
IPTG concentrations of 􏷟, 􏷢, 􏷤, 􏷠􏷟 and
􏷠􏷟􏷟 𝜇M. As explained in the main text,
𝛼𝑤𝑡𝑘 accounts for the basal expression level
of the P𝑐𝑜𝑚𝐾 promoter, measured in the
same conditions described here, with
P𝑐𝑜𝑚𝐾 driving the expression of yfp. From
[Espinar et al., 2013].
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Figure 2.5: Calibration of P𝑐𝑜𝑚𝑆 pro-
moter activity. Continuous lines repre-
sent the normalized time traces obtained
by dividing the mean fluorescence of the
Control-𝛽S-6xS (𝑛 = 􏷠􏷟, black) and
Control-𝛽S-75xS (𝑛 = 􏷠􏷤, red) strains
respectively by that of the single-copy
strain Norm-𝛽S (𝑛 = 􏷠􏷟). Dashed lines
represent the mean stationary values of
these normalized traces, which are 􏷥.􏷣􏷥
and 􏷦􏷣.􏷨􏷦 for the pHP13::PcomS-cfp and
pDG148::PcomS-cfp plasmids, respectively.
From [Espinar et al., 2013].

2.3 Phenotypic consequences of integration

Figure 2.3 summarizes the phenotypic consequences of the integrated
response of the competence circuit to the pairs of inputs described above.
It shows single-cell data from the competence reporter P𝑐𝑜𝑚𝐺-cfp for
four selected combinations of each of the two input pairs considered.
The upper panel (top two rows) shows results for the integration of the
constitutive expression of ComK, 𝛼̃𝑘, with an increasing environmental
stress; whereas in the lower panel (bottom row) the latter is systematized
by increasing the ComS copy number, 𝛽̃𝑠 (Figure 2.3E and F correspond
to B and D situation).

In the upper panel, the environmental stress increases from bottom to
top and the constitutive expression signal increases from left to right. In
the lower panel, only the highest ComS copy number is considered. In
each panel, the left plot contains single-cell time traces aligned so that
competence turn-on (if it exists) occurs simultaneously in all traces. We
have included cells representing all the different dynamical behaviors that
we found in each case (except for cells that do not turn to competence in
the excitable regime, represented by green time traces).

Input conditions for which the system is bistable lead to two types
of behaviors, with some cells never entering competence and some oth-
ers exhibited sustained expression of ComK for up to 40 hours, until
either the cell dies or the movie ends. A histogram of CFP levels for all
measured values at a typical instant of all movies analyzed (right plot in
each panel of Figure 2.3) reveals a clear bimodality in the bistable regimes
(panels B and E), which contrasts with the extremely weak bimodality of
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the excitable regime (panel A) that is consistent with the low probability
of competence of the wild-type cells. As explained at the beginning of
this chapter, biologically speaking the functional competence requires
cells to turn on ComK expression and also to eventually turn it off. In
that way cells can keep on with replication after having been able to in-
corporate exogenous DNA, thus passing to their progeny any advantage
they might have gained. In that sense, the only dynamical behaviors that
maintain functional competence are excitability (panel A) and the oscil-
latory regime (panel C). In this latter case, cells are able to return to the
vegetative state where they can divide before turning on ComK expres-
sion again. The remaining dynamical behaviors: bistability and certainly
also monostability (panels D and F), eliminate effective competence.

A second phenotypic consequence of competence is to delay, but not
eliminate, sporulation. Sporulation is another cellular differentiation
response to stress in which the bacterium becomes dormant and waits
for a potential improvement of the environmental conditions before
germinating. Sporulation is known to be inhibited by ComK expression
[Kuchina et al.], and thus when this expression occurs transiently (as
in the excitable and oscillatory regimes), that fate is delayed but not
eliminated. Similarly, bistability does not prevent sporulation, since in
this regime a subpopulation of cells that do not express ComK exists,
cells in this subpopulation are thus able to sporulate. The presence of
spores in those regimes (excitability, bistability and oscillations) is evident
in the microcolony snapshots shown as insets in the right-hand side of
the corresponding panels of Figure 2.3. In the monostable regime, on the
other hand, all cells in the population express ComK in a sustained way
(see time traces and histograms in panels D and F), and as a consequence
spores cannot be produced in this case, as is shown in the snapshots
displayed in those panels.

2.4 Statistical characterization of competence events

In wild-type conditions, B. subtilis cells activate competence in a proba-
bilistic and sparse manner, with less than 10% of cells in a microcolony
exhibiting competence pulses at any given time as a response to stress
[Dubnau and Losick, 2006]. As anticipated above, this behavior can be
characterized statistically by computing the probabilities of several types
of events associated with the pulses, such as their initiation, exit, and
reinitiation within a certain time window after exit (Figure 2.1B). We
systematically evaluated these probabilities under a combination of the
two controlled inputs described above: ComK constitutive expression,
𝛼̃𝑘, and ComS copy number, 𝛽̃𝑠.

Figure 2.6 summarizes our observed results for the integration of the
constitutive expression of ComK, which determines the value of the
parameter 𝛼̃𝑘, with the copy number of ComS natural gene, which estab-
lishes in an integer manner the value of 𝛽̃𝑠. Three statistical observables
are computed, namely the probabilities of competence initiation, 𝑃𝑖𝑛𝑖𝑡,
of exit from competence, 𝑃𝑒𝑥𝑖𝑡, and of competence reinitiation within a
defined time window, 𝑃𝑟𝑒𝑖𝑛𝑖2.

2 The probability of competence initiation
(P𝑖𝑛𝑖𝑡) was determined as follows. Under
baseline stress conditions (Appendix A.1),
P𝑖𝑛𝑖𝑡 was defined as the number of com-
petence initiation events divided by the
total number of cell division events in
a time window of ∼􏷠􏷣􏷟-􏷠􏷤􏷟minutes,
characterised by increasing levels of
PcomS-yfp (which ensures that the colony is
under sustained growth conditions). The
probability of competence exit (P𝑒𝑥𝑖𝑡) was
calculated as the fraction of competent
cells that successfully leave the compe-
tence state. Finally, the probability of
reinitiation P𝑟𝑒𝑖𝑛𝑖 is defined as the proba-
bility that a cell that has successfully left
competence state, goes back into that state
after a fixed amount of time (we took this
time to be equal to two cell cycles). Ta-
bles A.5 to A.7 present a summary of the
statistics leading to the three probabilities
measured experimentally for all input
conditions.
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Figure 2.6: Statistical analysis of compe-
tence dynamics in the presence of two
inputs. Different levels of induction for
the constitutive expression of ComK and
three different copy numbers of the natu-
ral ComS gene are considered: 􏷠 (black),
􏷥.􏷤 (red), and 􏷦􏷤 (green). The error bars
are calculated via the standard deviation
of the means taken in different movies.
Adapted from [Espinar et al., 2013].

This statistical characterization shows distinct integration features de-
pending on the pairs of inputs being applied to the circuit. More specif-
ically, the probability of initiation, 𝑃𝑖𝑛𝑖𝑡, increases up to 100% (all cells
undergo competence within a cell cycle) for increasing 𝛼̃𝑘. But whereas
that increase is smooth for low 𝛽̃𝑠, it becomes sharp and occurs earlier for
high 𝛽̃𝑠 (Figure 2.6A). The exit probability, in turn, decreases abruptly
in all cases for increasing 𝛼̃𝑘 (Figure 2.6B). Finally, the probability of
another competent event arising within one cell cycle after exit is only
non-zero for intermediate values of 𝛼̃𝑘 and small 𝛽̃𝑠 (Figure 2.6C).

2.5 Dynamical characterization of competence events

We can interpret the results in Section 2.4 in terms of dynamical be-
haviour. Table 2.1 summarizes the classification criteria we used in order
to represent the different dynamical regimes occurring for varying values
of the input pairs, as shown in the phase diagrams of Figure 2.7. In those
diagrams, the different experimental regimes (classified according to the
criteria listed above) are represented by means of symbols, for the quan-
titative well controlled input-integration experiments performed (see
Figure 2.2). The shape and color of the symbols encode the dynamical
regime. Green circles represent the wild-type excitable behavior exhib-
ited by B. subtilis under baseline stress conditions [Süel et al., 2006]. Blue
squares correspond to bistability, with the two states being the vegetative
and the competent states. Black triangles denote monostable behavior in
which competence is the only cellular state available to the cell. Finally,
red diamonds mark the oscillatory behavior. The plots reveal distinct
forms of integration in each case, according to the type of dynamical
behaviors generated as the two inputs are varied in a coordinated way.

Dynamical regime P𝑖𝑛𝑖𝑡 P𝑒𝑥𝑖𝑡 P𝑟𝑒𝑖𝑛𝑖 Inputs
Oscillations Low-medium High High 𝛼̃𝑘 Medium

𝛽̃𝑠 Low
Excitability Low-medium High Low 𝛼̃𝑘 Low

𝛽̃𝑠 Low
Bistability (steady) Low-medium Low N/A 𝛼̃𝑘 Low

𝛽̃𝑠 High
Monostability High Low N/A 𝛼̃𝑘 High

𝛽̃𝑠 High

Table 2.1: Dynamical classification of
competence regimes.
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In particular, when ComK is varied constitutively (Figure 2.7), the bi-
furcation scenario is different between the independent applications of
the two inputs, and also with respect to the integrated response. For in-
stance, while the increase of ComS copy number leads to a transition
from excitable to bistable behavior, incrementing only the constitutive
expression of ComK (given a situation in which ComS copy number
is low) generates oscillatory dynamics. These two scenarios are in turn
different from the case of a joint increase of the two inputs, which leads
to monostable competence for input levels that, when independently
applied, result in either bistability or oscillations. Note that monostability
is also the ultimate fate for extremely large levels of ComK constitutive
expression, but it is substantially advanced by the joint action of the two
inputs.

In order to understand the different response maps of the circuit for
the two quantitative inputs, represented as symbols in the phase diagrams
of Figure 2.7, we now focus on a mathematical model of the competence
circuit. As mentioned at the beginning of Section 2.1,one of the advan-
tages of competence is the good understanding of its underlying gene
regulatory circuit, and consequently of a well-defined model of its dy-
namics. Previous investigations have shown that wild-type competence
dynamics [Süel et al., 2006], and its response to single perturbations of
the competence circuit [Süel et al., 2007] can be adequately described by
the following two coupled ordinary differential equations (in dimension-
less units):

𝑑𝐾
𝑑𝑡 = 𝛼𝑘 +

𝛽𝑘𝐾𝑛
𝑘𝑛𝑘 + 𝐾𝑛

− 𝐾
1 + 𝐾 + 𝑆 − 𝛿𝑘𝐾 (2.1a)

𝑑𝑆
𝑑𝑡 =

𝛽𝑠
1 + (𝐾/𝑘𝑠)𝑝

− 𝑆
1 + 𝐾 + 𝑆 − 𝛿𝑠𝑆 (2.1b)

where 𝐾 and 𝑆 represent the concentrations of ComK and ComS in the
cell, respectively. In the first equation, the first term in the right-hand
side (𝛼𝑘) represents the constitutive expression of the ComK gene. In
wild-type cells, this promoter has a non-zero basal activity that we in-

Figure 2.7: Phase diagrams of the com-
petence circuit corresponding to the
joint variation of the constitutive ex-
pression of ComK, 𝛼̃𝑘, and the ComS
expression rate, 𝛽̃𝑠. The symbols repre-
sent the experimental observations, with
green circles corresponding to excitable
dynamics (here defined by 𝑃𝑖𝑛𝑖𝑡 < 􏷟.􏷤
and 𝑃𝑒𝑥𝑖𝑡 > 􏷟.􏷧􏷤), blue squares to bistable
behavior (𝑃𝑒𝑥𝑖𝑡 < 􏷟.􏷧􏷤 if 𝑃𝑖𝑛𝑖𝑡 < 􏷟.􏷤: a
fraction of the cells turn on competence
and stay there, representative of spatial
heterogeneity between two stable states;
or 𝑃𝑒𝑥𝑖𝑡 > 􏷟.􏷧􏷤 if 􏷟.􏷤 < 𝑃𝑖𝑛𝑖𝑡 < 􏷟.􏷨􏷤:
most cells turn on competence and come
back, representative of temporal switch-
ing between two stable states). Black
triangles denote monostable competence
(𝑃𝑖𝑛𝑖𝑡 > 􏷟.􏷤 and 𝑃𝑒𝑥𝑖𝑡 < 􏷟.􏷠), and red dia-
monds oscillatory dynamics (𝑃𝑟𝑒𝑖𝑛𝑖 > 􏷟.􏷠).
Lines represent bifurcation boundaries
of a deterministic mathematical model
of the competence circuit (see text), as
computed with the numerical contin-
uation software AUTO through XPP;
solid lines correspond to saddle-node
bifurcations and dashed lines to Hopf
bifurcations. The symbols and lines are
the same among the three panels, which
differ in the quantities plotted in grayscale,
obtained from discrete simulations of
the competence circuit: 𝑃𝑖𝑛𝑖𝑡 (A), 𝑃𝑒𝑥𝑖𝑡
(B), and 𝑃𝑟𝑒𝑖𝑛𝑖 (C). Parameters of the
deterministic model are 𝛼𝑤𝑡𝑘 = 􏷟.􏷟􏷟􏷟􏷢􏷤,
𝛽𝑘 = 􏷟.􏷡􏷤, 𝛽𝑤𝑡𝑠 = 􏷢, 𝑘𝑘 = 􏷟.􏷡, 𝑘𝑠 = 􏷟.􏷟􏷥􏷡􏷤,
𝛿𝑘 = 𝛿𝑠 = 􏷟.􏷠, 𝑛 = 􏷡, and 𝑝 = 􏷤. Re-
member that 𝛼̃𝑘 = 𝛼𝑘/𝛼𝑤𝑡𝑘 and 𝛽̃𝑠 = 𝛽𝑠/𝛽𝑤𝑡𝑠 .
Parameters of the discrete model are given
in Table A.2. Adapted from [Espinar et al.,
2013].
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crease in a controlled way in the Hyper-𝛼K, Hyper-𝛼K-6xS, and Hyper-
𝛼K-75xS strains. The second term in the right-hand side represents the
positive feedback of ComK activating its own transcription. In the sec-
ond equation, corresponding to ComS, the first term accounts for the
inhibition of ComS expression by ComK.

In both equations, the last two terms correspond to the competitive
degradation of ComK and ComS by the common protease MecA [Süel
et al., 2006] (second to last term) and a linear degradation term (last
term).

The expression parameters 𝛼𝑘, 𝛼𝑠, and 𝛽𝑠 relate to their corresponding
normalized values as follows: 𝛼𝑘 = 𝛼̃𝑘 ⋅ 𝛼𝑤𝑡𝑘 and 𝛽𝑠 = 𝛽̃𝑠 ⋅ 𝛽𝑤𝑡𝑠 . On the other
hand, 𝛽𝑘 represents the maximum rate of regulated expression of ComK.

A stability analysis of the different fixed points exhibited by
Eq.(2.1) establishes the various dynamical regimes that the circuit can
exhibit, which can then be compared with the experimental results
described above. The different regimes are separated by bifurcation
points [Strogatz, 2000], which can be traced in two-dimensional param-
eter spaces such as the ones shown in Figure 2.7 by means of numerical
continuation methods. This analysis allows us to establish different re-
gions separated by bifurcation lines3. The solid lines in Figure 2.7 denote 3 The excitable region in Figure 2.7

panels is crossed by a saddle-homoclinic
bifurcation line, not indicated in the
plot, which separates a region of pure
excitability for lower 𝛽𝑠, from a regime
in which the excitable dynamics coexists
with a limit cycle for higher 𝛽𝑠. This limit
cycle disappears at the Hopf bifurcation
denoted by the dashed line. We have
not included this bifurcation line in the
plots because given the presence of noise,
which destabilizes the limit cycle, the two
regimes are biologically indistinguishable.
Note that plots consider 𝛽̃𝑠 and that
𝛽𝑠 ∝ 𝛽̃𝑠.

saddle-node bifurcations, in which an unstable and a stable fixed point
are created, and the dashed lines correspond to Hopf bifurcations, in
which a stable oscillation emerges [Strogatz, 2000].The distinct dynam-
ical behaviors observed are labeled in the left panel of Figure 2.7. The
experimental observations described above fit, represented by symbols,
reasonably well with the theoretical expectations.

We now want to assess whether the good agreement between ex-
periment and theory exhibited in Figure 2.7 depends on the criteria used
to classify the dynamical behavior from the experimentally measured
probabilities, defined in the caption of that figure. Modifications of these
criteria do not change the results qualitatively, although they certainly
affect some of the dynamical assignments, specially those close to the
theoretical bifurcation lines. This is to be expected, since due to the
existence of underlying biochemical noise, the boundaries defined by
the bifurcation lines are smoothed out [Turcotte et al., 2008]. In order
to evaluate the importance of this effect, we performed discrete simula-
tions of the reactions underlying the deterministic model (Eq.(2.1)).The
grayscale colormaps in Figure 2.7 represent the simulated values of the
three event probabilities defined above: 𝑃𝑖𝑛𝑖𝑡 in panel A, 𝑃𝑒𝑥𝑖𝑡 in panel
B, and 𝑃𝑟𝑒𝑖𝑛𝑖 in panel C. The results show that these probabilities vary
smoothly across the deterministic bifurcation lines, whereas the deter-
ministically predicted transitions are robust. Modifying the probability
threshold values given in the caption of Figure 2.7 would change the way
a simulation result is classified (falling within one dynamical regime or
another), similarly to what would happen with the experimental results.
These changes, however, do not alter the qualitative conclusions that can
be extracted from the theoretical model, which provide an explanation



38 coupled dynamical processes in bacter ia

for the distinct integration responses of the circuit to different input pairs,
in terms of the diverse bifurcation scenarios triggered by the various
inputs.

2.6 Discussion

These results show that the integrated response of the inputs con-
sidered in this work is functionally very different from the effect of each
input acting individually (Figure 2.8). In particular, although no single
input prevents sporulation or normal vegetative growth per se, their com-
bination eliminates these two cellular states. !"#$%&'()&**+",%
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Figure 2.8: Schematic summary of the
input integration observed experimen-
tally. Background colors have the same
meaning as in Figure 2.3 and 2.7. Addi-
tionally, green cells denote vegetative cells,
red cells represent functional competence,
and white spots represent spores. Adapted
from [Espinar et al., 2013].

In this work we have considered three inputs of different nature. The
first one corresponds to a (continuously controllable) level of constitu-
tive expression of one of the two fundamental genes of the competence
circuit, ComK. In a realistic biological setting, this input could corre-
spond to a contextual signal such as those affecting signaling pathways in
developing organisms [Artavanis-Tsakonas et al., 1999]. The effects of
such contextual signals is beginning to be studied systematically in small
developmental networks [Cotterell and Sharpe, 2010].

The second input consists in increasing the environmental stress that
B. subtillis cells are exposed to, as it directly affects the other main gene of
the competence circuit: ComS [Grossman, 1995]. For this purpose, we
let cells grow in a nutrient limited medium and then used conditioned
media containing general stress signals. As a result, the excitable regime
becomes bistable, and the oscillatory regime becomes monostable. It is
noteworthy that the results obtained in the wild-type case might help ex-
plain why certain studies identify competence as a bistable phenomenon
[Maamar and Dubnau, 2005], whereas others interpret it as an excitable
dynamics [Süel et al., 2006]: the system responds in one way or the other
depending on the specific stress conditions of the medium.

However, these general stress conditions produce systemic changes
in the cells that alter their physiology in multiple ways, thus preventing
a full control of the experiments. To address this issue, the third input
takes the form of multiple (discrete) copies of the gene affected by the
environmental stress (ComS) retaining their native regulation. This
input allows us to vary in a controlled way the strength of the regulated
response of ComS, thus mimicking real stress conditions, but without
the disadvantage of any other undesired collateral effect. Again, if we
consider this input in a realistic biological context, it would correspond to
copy number variations such as those being extensively studied in recent
years in the human genome [Conrad et al., 2010] and yeast [DeLuna
et al., 2008, Gruber et al., 2012], among other organisms.

Even though the interplay between the two levels of cellular control
exposed here (a contextual signal on the one hand, and copy number
variations on the other one) is crucial for the correct functioning of cells,
little is know about their integration. By systematically exploring the
integration of contextual and genomic inputs, studies such as the one
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described here should help shed light on the relation between structure
and function in cellular networks.

The physiological effects reported here are caused by changes in the
dynamical behavior of our genetic circuit. Functional consequences of
dynamics have also been reported in mammalian cells [Ashall et al., 2009,
Purvis et al., 2012]. While recent studies have systematically addressed
the effect of individual stimuli on dynamical behavior at the single-cell
level [Ashall et al., 2009, Batchelor et al., 2011], here we have consid-
ered the effects of combining two inputs. In that sense, our study is a
dynamical generalization of more “classical” epistasis studies address-
ing the effect of combinations of genetic perturbations on cell growth
[Segre et al., 2005] or the evolution of resistance under drug interactions
[Michel et al., 2008]. In our case, the use of dynamical phenomena (in
the form of transient activation of a cellular differentiation program) al-
lows us to define observables that that do not depend on arbitrary factors
associated with the measurement process (in our case fluorescence detec-
tion from populations of fluorescent proteins that are not monitored at
the single-molecule level). Furthermore, this study was developed using
well-controlled input signals that were quantitatively normalized with
respect to appropriate reference strains. These facts allow for an objective
comparison with a theoretical model of the competence circuit, which
brings us closer to a quantitative understanding of the biology [Garcia
and Phillips, 2011, Garcia et al., 2011] underlying bacterial stress response.
This approach could in principle be extended to other gene regulation
networks in higher organisms.





3
Dynamics in sigma factors

In Chapter 2 we saw how coupling different inputs in Bacillus subtilis
resulted in the emergence of different dynamical behaviors. In particular,
we saw how the state of competence can be described as stochastic pulses
events of the competence master regulator, ComK, expression under
certain conditions. In this Chapter we deal with pulsatile dynamics again,
but this time we study the dynamical coupling between pulses of protein
activity inside a single cell. To that end, we have focused in the sigma
factors family in B. subtilis. In eubacteria, sigma factors are proteins that
bind reversibly to core RNA polymerase (the enzyme responsible for
gene transcription), conferring on it promoter recognition specificity.
This allows for a high level of transcription control in response to several
environmental stresses and other stimuli [Helmann and Chamberlin,
1988, Gruber and Gross, 2003]. In a recent work, Locke et al. [Locke
et al., 2011] observed the activation of the sigma factor 𝜎𝐵 in response to
energy stress in individual B. subtilis cells. They described a frequency-
modulated pulsing response of 𝜎𝐵, whose frequency increased with the
level of stress.

In collaboration with Prof. Michael Elowitz’s lab from the California
Institute of Technology, we analyzed the dynamics of sigma factor activ-
ity in individual B. subtilis cells using time-lapse fluorescence microscopy.
We saw that under stationary phase stress conditions, several different
alternative sigma factors exhibit pulsatile activation. Then, systematiz-
ing the energy stress applied to cells using micophenolyc acid (MPA, a
drug that reduces cellular ATP levels [Zhang and Haldenwang, 2005,
Locke et al., 2011]), we proceeded to further characterize these pulses.
We saw that seven alternative sigma factors presented stochastic pulses in
their activation of about 1 hour of duration. These pulses occurred in an
asynchronous manner under conditions of competition for core RNAP.
These results suggest that sigma factors take turns in order to use core
RNA polymerase (“time-sharing”) being only one or a few sigma factors
active at the same time in a given cell.

Time-sharing is a general strategy used in engineering to share
a limited resource between multiple users. One example is the time-
division multiplexing (TDM) protocol used in today’s digital telephony.
TDM transmits and receives multiple independent signals using the same
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wire at the same time by dividing the signal into many segments. At the
reception, each signal will show in the line only a fraction of time in an
alternating pattern [Decina and Rossi, 1980].

Because core molecular components are often available in limited
quantities in cells, time-sharing could be a widespread mechanism for the
sharing of core components in other genetic regulatory circuits.

In order to better understand how sigma factors interact, we propose
three mathematical models that show how time-sharing can emerge
either from simple noise driven pulse-generating gene circuits, either
from a limit cycle model, but in all cases competing for limiting amounts
of core RNAP.

3.1 Sigma factors in Bacillus subtilis

In bacteria, alternative sigma factors reversibly bind to the core
RNA polymerase (RNAP) conferring the formed holoenzyme with
specific promoter-recognition properties [Losick and Pero, 1981, Hel-
mann and Chamberlin, 1988, Gruber and Gross, 2003] (see Figure 3.1 A).
Prokaryotes have one house-keeping sigma factor and then a variable
number (that depends on the specific type of bacteria) of alternative
sigma factors that trigger specific transcriptional programs in response
to particular stress conditions, growth transitions, and morphological
changes [Gruber and Gross, 2003]. In particular, B. subtilis has 18 differ-
ent sigma factors [Gruber and Gross, 2003] (see Table 3.1, Figure 3.1 B).

RNAP σ+ RNAP
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Concentration sharing
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Figure 3.1: Sigma factors share core
RNAP. (A) Alternative sigma factors
reversibly bind to RNAP giving the
holoenzyme promoter-recognition
specificity. We used this property to
build reporter strains in which a promoter
specifically activated by one sigma factor
controls the expression of a fluorescent
protein. (B) We studied a subset of
B. subtilis alternative sigma factors not
involved in sporulation that share core
RNAP. (C) RNAP sharing can be
achieved mainly by two mechanisms: by
equitably distributing RNAP between
all the sigma factors present in the cell
(“concentration sharing”); or by sigma
factors taking turns to use most of the
available RNAP (“time-sharing”), being
only one or a few sigma factors active at
the same time in an individual cell.Hitherto the only considered mechanism that allow sharing of a com-

mon limited resource as is RNAP for the cell, is to distribute RNAP
molecules equitably between all the sigma factors expressed in the cyto-
plasm (“concentration sharing”). In this work, we propose a different
mechanism that consists in sigma factors taking turns to use most of the
available RNAP at once (“time-sharing”), so that in a single cell only
one or a few sigma factors are simultaneously active (see Figure 3.1 C).
Despite time-sharing strategies have been studied in other contexts (for
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𝜎-factor Function References
𝜎𝐴 House keeping [Helmann and Chamberlin, 1988]
𝜎𝐵 General stress response [Gruber and Gross, 2003, Paget and Helmann, 2003, Hecker et al., 2007]
𝜎𝐷 Flagelar synthesis [Paget and Helmann, 2003]
𝜎𝐸 Sporulation [Gruber and Gross, 2003, Paget and Helmann, 2003]
𝜎𝐹 Sporulation [Gruber and Gross, 2003, Paget and Helmann, 2003]
𝜎𝐺 Sporulation [Gruber and Gross, 2003, Paget and Helmann, 2003]
𝜎𝐻 Sporulation initiation [Gruber and Gross, 2003, Kroos and Yu, 2000]
𝜎𝐼 Heat-shock or nutritional stress [Zuber et al., 2001, Asai et al., 2007, Tseng and Shaw, 2008]
𝜎𝐾 Sporulation [Gruber and Gross, 2003, Paget and Helmann, 2003]
𝜎𝐿 Cold-shock adaptation, amino acid catabolism [Wiegeshoff et al., 2006, Zellmeier et al., 2005]
𝜎𝑀 Osmotic stress response [Gruber and Gross, 2003, Hecker et al., 2007]
𝜎𝑂 Regulation of oxalate decarboxylase expression by acid stress [MacLellan et al., 2009]
𝜎𝑉 Cell wall protection [Helmann, 2002, Zellmeier et al., 2005]
𝜎𝑊 Cell wall stress response, antibiotic response [Gruber and Gross, 2003, Hecker et al., 2007]
𝜎𝑋 Modulatory role in cell envelope, antimicrobial response [Gruber and Gross, 2003, Zellmeier et al., 2005]
𝜎𝑌 Nitrogen starvation response [Helmann, 2002, Zellmeier et al., 2005, Tojo et al., 2003, Cao et al., 2003]
𝜎𝑍 Unknown [Helmann, 2002, Luo et al., 2010]
YlaC Oxidative stress response [Helmann, 2002, Luo et al., 2010, Matsumoto et al., 2005]

Table 3.1: Bacillus subtilis sigma factors.

instance in telecommunications as explained in the introduction of this
Chapter), examples of time-sharing in cells have not been reported so far.

Most alternative sigma factors are typically co-transcribed with
their cognate anti-sigma factor. This protein prevents the association
between the sigma factor and the core RNAP, and can be inhibited by
different signals (stress for instance), thus enabling sigma factor activation
[Gruber and Gross, 2003].

In a recent work, Locke et al. [Locke et al., 2011] observed the activa-
tion of the sigma factor 𝜎𝐵 in response to energy stress in individual B.
subtilis cells. They described a frequency-modulated pulsing response of
𝜎𝐵, with frequency increasing with the level of stress. These pulses repre-
sent 𝜎𝐵 molecules becoming simultaneously active by binding to RNAP
and thus initiating transcription of target genes. Pulses terminate when
𝜎𝐵 releases RNAP, resulting in the deactivation of 𝜎𝐵 molecules.

However, dynamics of other sigma factors have not been reported so
far. Hence it is unclear whether pulsing is specific of 𝜎𝐵 or occurs more
generally among alternative sigma factors, whether multiple sigma factors
pulse under the same conditions, and how pulsing affects RNAP sharing.
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Figure 3.2: Each sigma factor reporter
strain is activated specifically by its
corresponding sigma factor. Each
sigma factor reporter strain consists of a
promoter activated by the corresponding
sigma factor controlling the expression
of a yellow fluorescent protein (YFP).
In this experiment, each reporter strain
was grown in the presence of 􏷣􏷟 𝜇g/ml
mycophenolic acid (MPA, a drug that
reduces cellular ATP levels and allows to
mimic energy stress conditions [Zhang
and Haldenwang, 2005, Locke et al.,
2011]) considering two different genetic
backgrounds: (+) indicates that the
considered sigma factor is in the genome;
(􏸷) denotes that the considered sigma
factor is knocked out. Each bar is the
average of the 􏷡 independent experiments,
where for each experiment the average
fluorescence of at least 􏷢􏷟􏷟 cells was
taken. The shown percentages are the
fluorescence signal in the knockout strain
relative to signal in the original reporter
strain. Asterisks indicate measurements
for which the fluorescence signal obtained
is indistinguishable from autofluorescence.
Error bars represent SEM. Adapted from
J.C.W.Locke and J.Park [Locke et al.,
2014].

To address these questions, we constructed a set of reporter strains
consisting in promoters specifically activated by each one of the B. subtilis
sigma factors not involved in sporulation, controlling the expression of a
fluorescent protein (see Figure 3.1 A and Figure 3.2).

Under general stress conditions (using stationary phase conditioned
media, see in Appendix B.2.2) we saw pulsatile activation for the 6 sig-
mas studied (these were, 𝜎𝐵, 𝜎𝐷, 𝜎𝑀, 𝜎𝑊 , 𝜎𝑋 , and 𝜎𝑌 ), see Figure 3.3.
As discussed in Chapter 2, the magnitude of stress applied to B. subtilis
using stationary phase conditioned media affects the physiology of cells
in several aspects, dramatically increasing the mortality rate and thus ob-
structing proper data acquisition. For this reason, we used mycophenolic
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Figure 3.3: Several sigma factors pulse
under stationary phase conditions.
Alternative sigma factor reporter strains
were grown separately in stationary phase
conditioned media. Each panel shows 􏷢
representative time traces of a lineage with
pulsatile dynamics. Adapted from [Locke
et al., 2014].

acid (MPA) (a drug that reduces cellular ATP levels) to mimic energy
stress conditions, avoiding undesired systemic effects of stationary phase
stress. Working with MPA also allows a proper control of the intensity of
the applied stress. All the characterization experiments were performed
with this drug, at the given concentrations.

3.2 Characterization of individual dynamics of sigma factors

We proceeded first to characterize the pulses growing the reporter
strains individually in a minimal medium containing 40 𝜇g/ml MPA. Us-
ing time-lapse fluorescence microscopy and quantitative image analysis
we tracked sigma factor activities over time in single cells.

To quantify sigma factor activity instead of sigma factor abundance,
we computed the promoter activity as in [Locke et al., 2011]1. This activ-

1 Briefly, taking the total fluorescence
per cell and considering the production,
degradation, dilution and photobleaching
rates of the fluorescent protein we can
establish that its production rate is given
by the following ODE:

𝑃(𝑡) = 𝑑𝐹(𝑡)
𝑑𝑡 + 𝛾 ⋅ 𝐹(𝑡)

where 𝐹(𝑡) is the total fluorescence and
𝛾 combines the degradation, dilution
and photobleaching processes. In order
to avoid the dependence of 𝑃(𝑡) on
segmentation errors, we can rewrite 𝐹(𝑡)
in terms of the cell’s mean fluorescence
(𝑀(𝑡)) multiplied by the cell’s area (as a
good approximation it is given by 𝐿(𝑡) ⋅
𝑊(𝑡), this is, the cell length multiplied
by its width; note that in B. subtilis
𝑊(𝑡) ≈ 𝑊􏷩),

𝐹(𝑡) = 𝑊􏷩 ⋅ 𝐿(𝑡) ⋅ 𝑀(𝑡)

Replacing 𝐹(𝑡) in the expression for 𝑃(𝑡)
we obtain:

𝑃̃(𝑡) = 𝑃(𝑡)
𝑊􏷩𝐿(𝑡)

= (𝜇(𝑡) + 𝛾) ⋅ 𝑀(𝑡) + 𝑑𝑀(𝑡)
𝑑𝑡

Where 𝑃̃(𝑡) can be interpreted as the pro-
duction rate per chromosomal equivalent
(allowing comparison of production rate
throughout all instants of the cell cycle),
and 𝜇(𝑡) = 𝑑 􏸥􏸨􏸠 𝐿(𝑡)

𝑑𝑡 defines the cell’s in-
stantaneous growth rate. From [Locke
et al., 2011]. We set 𝛾 = 􏷟.􏷟􏷤 to avoid
non-physical negative values of promoter
activity due to bleaching of fluorescent
proteins during movies.

ity is an indicator of the rate at which free sigma factor can associate with
available RNAP and start transcription at target promoters. Given that
sigma factors can be sequestered by their cognate anti-sigma factor (thus
preventing the formation of the sigma-RNAP holoenzyme), the pro-
moter activity depends on the levels of sigma factor protein, anti-sigma
factor, and the availability of RNAP inside the cell.

This analysis revealed that seven sigma factors (𝜎𝐵, 𝜎𝐷, 𝜎𝐿, 𝜎𝑀, 𝜎𝑊 ,
𝜎𝑋 , 𝜎𝑌 ) showed pulsatile activation under constant conditions (see
Figure B.1). Pulses had a typical duration of ∼ 1 hour (Figure 3.4 A),
showed similar amplitude distributions between different sigmas (Fig-
ure 3.4 B), and ocurred at frequencies ranging from 0.06 ± 0.01 h−􏷠 for
𝜎𝑋 to 0.13 ± 0.02 h−􏷠 for 𝜎𝐷 (Figure 3.4 C). In our experimental con-
ditions, the cell cycle had a duration of ∼ 1.9 ± 0.2 h. This means that
pulses occur from once every 8.3 cell cycles to once every 3.5 cell cycles.
No significant correlations were observed in sister cell pairs (Figure B.2),
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or between a parent cell and its two daughters (Figure B.3), suggesting
that pulses are generated stochastically.
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Figure 3.4: Individual characterization
of pulses. Reporter strains were analyzed
under 􏷣􏷟 𝜇g/mL MPA energy stress con-
ditions. Panels show (A) the obtained
mean pulse durations, (B) histogram of
pulse amplitudes (gray shading indicates
the amplitude detection cutoff; the inset
shows the cumulative distribution func-
tions), and (C) mean pulse frequencies.
Error bars denote the mean ± SEM. From
J.C.W.Locke and J.Park [Locke et al.,
2014].

It is noteworthy that the housekeeping factor 𝜎𝐴, which does not have
an associated anti-sigma factor and presents a higher affinity for RNAP
[Maeda et al., 2000], showed a more homogeneous activation with no
pulses (see Figure 3.5).
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Figure 3.5: Housekeeping factor 𝜎𝐴 does
not pulse. Activity time traces for the
housekeeping factor 𝜎𝐴 under 􏷣􏷟 𝜇g/mL
MPA energy stress conditions. Traces
show the homogeneous (non-pulsing)
activation of 𝜎𝐴 in 􏷢 different cell lineages.
Adapted from J.C.W.Locke and J.Park
[Locke et al., 2014].

3.3 Characterization of collective dynamics of sigma factors

In order to establish whether alternative sigma factors pulse in a syn-
chronous or an asynchronous form, we chose 5 of the best-characterized
pulsatile sigma factors (𝜎𝐵, 𝜎𝐷, 𝜎𝑀, 𝜎𝑊 , and 𝜎𝑋 ) and constructed a “ma-
trix” of strains containing pairwise combinations of these sigma factor
reporters.

Specifically, each strain contained a cyan fluorescent protein (CFP) re-
porter for a sigma factor and a yellow fluorescent protein (YFP) reporter
for another sigma (Figure 3.6 A). The matrix also considered the “diag-
onal” case, where CFP and YFP reported the activity of the same sigma
factor. This allowed us to establish an upper limit for possible correla-
tions. As expected, diagonal strains showed strong positive correlations
in snapshots experiments (see Appendix B.2.4), despite intrinsic noise
in gene expression and measurement errors that tend to reduce correla-
tions [Elowitz et al., 2002]. On the other hand, off-diagonal strains (that
contain reporters for different sigma factors) show little or no correla-
tion (see Figure 3.6 B,C). These results would be in agreement with the
hypothesis that sigma factors pulse in an asynchronous manner.

Previous studies in E.coli and B.subtilis reported that under certain
conditions alternative sigma factors can compete for a limited pool of
core RNAP [Grigorova et al., 2006, Maeda et al., 2000, Hicks and Gross-
man, 1996]. To better understand whether competition plays a role in
this system, we engineered a strain in which levels of constitutive 𝜎𝐵
could be controlled. This strain lacked the wild-type 𝜎𝐵 operon and
also contained a copy of the 𝜎𝐵 gene controlled by the inducible Pℎ𝑦𝑝
promoter introduced in Section 2.2 above and a YFP reporter for 𝜎𝑊
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(Figure 3.7 A). Next, using fluorescence microscopy we quantified the
effect of varying the constitutive expression of 𝜎𝐵 on 𝜎𝑊 activity. Specif-
ically, we found that 𝜎𝑊 activity was reduced proportionally to the level
of induction of ectopic 𝜎𝐵 (see Figure 3.7 B). It is noteworthy that 𝜎𝑊
activity is also prevented even at 𝜎𝐵 activation levels comparable to those
obtained in standard pulsing activity of wild-type cells.
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Figure 3.7: Sigma factors competition.
(A) Strain used for the competition ex-
periment. The 𝜎𝐵 operon was knocked
out and replaced with an IPTG-inducible
promoter controlling the expression of
𝜎𝐵. This strain also contained a chro-
mosomally integrated CFP reporter for
𝜎𝐵 activity and a chromosomally inte-
grated YFP reporter for 𝜎𝑊 activity. See
Appendix B.1 for strain list and full de-
scription. (B) Ectopic expression of 𝜎𝐵
showed dose-dependent inhibition of 𝜎𝑊
activity (wild-type case is drawn with a
green dot). Error bars represent SEM. (B)
Adapted from J.C.W.Locke and J.Park
[Locke et al., 2014].
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3.4 Modelling sigma factor pulses

To understand how pulsing and competition together affect the
sharing of the RNAP we developed several mathematical models, of
which we explain here the most relevant ones.

All the models described here incorporate the most common fea-
tures among the different alternative sigma factors gene regulatory net-
works. These common features are: transcriptional autoregulation (the
sigma factor and its cognate anti-sigma are expressed from the same
operon, which is activated by its own sigma factor), inhibition by the
co-expressed anti-sigma factor, and limiting levels of RNAP resulting in
competitive binding between sigma factors (this assumption is supported
by results shown in Figure 3.7B).

3.4.1 Ultrasensitivity model

Molecular titration is a regulatory mechanism by which an active
protein is sequestered by a repressor forming an inactive complex. As
described in [Buchler and Louis, 2008] this mechanism can generate ul-
trasensitive responses where a small fold change in the input (for instance,
the number of molecules of a certain species) is amplified to a large fold
change in the output (following the previous example, that would be the
number of molecules of another species in the system). A reasonable as-
sumption when modeling sigma factors is to consider that there is a tight
binding between the sigma factor (𝑆) and its cognate anti-sigma (𝐴) (this
is the case for instance of the switch-response of Notch to cis-Delta in
mammalian cells [Sprinzak et al., 2010]). In this way, we can postulate a
mathematical model for the sigma factors and identify an ultrasensitivity
region using the work from [Buchler and Louis, 2008].

Hence, if binding between 𝑆 and 𝐴 is tight we could conceive a
“basal” situation in which the system is completely off (for instance,
having a slightly larger 𝐴 production over 𝑆 production would result in
𝐴 sequestering all 𝑆molecules). Then, inputs to the system that inac-
tivate the anti-sigma could reduce its level enough to trigger positive
up-regulation of the operon. If the system was tuned in a ultrasensitive
regime, the positive up-regulation of 𝑆 could overwhelm, at least tem-
porarily, the negative feedback due to up-regulation of 𝐴, thus generating
pulses.
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Figure 3.8: Ultrasensitivity model
diagram of interactions. Alternative
sigma factors (𝑆𝑖) and their cognate anti-
sigma factors (𝐴𝑖) are expressed from
the same operon. Transcription of the
operon is activated by the holoenzyme
𝐶𝑖 composed by RNAP (𝑅) and 𝑆𝑖, thus
constituting a positive feedback. In turn,
expression of 𝐴𝑖 sequesters 𝑆𝑖 forming the
inactive complex 𝑋𝑖, thus interfering in
the holoenzyme formation and leading to
a negative feedback loop.

In order to verify the previous hypothesis, let us consider a collec-
tion of alternative sigma factors 𝑆𝑖 (for 𝑖 = 1, ..., 𝑁 , where 𝑁 is the total
number of sigma factors considered), each expressed from an operon that
also includes the corresponding anti-sigma factor 𝐴𝑖. Transcription of the
operon is activated by the holoenzyme 𝐶𝑖 composed by the RNA poly-
merase (𝑅) and the sigma factor itself, constituting a positive feedback.
This feedback loop is interfered with by the anti-sigma factor 𝐴𝑖, which
binds competitively to 𝑆𝑖. The situation is summarized in Figure 3.8.
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Modelling the dynamics of the biochemical processes described above
by means of chemical kinetics we obtain:

𝑑𝑆′𝑖
𝑑𝑡′ = 𝜙𝑠 + 𝛽𝑠𝐶

′
𝑖 − 𝑘𝑟+𝑅′𝑆′𝑖 + 𝑘𝑟−𝐶′𝑖 − 𝑘𝑎+𝐴′𝑖𝑆′𝑖 + 𝑘𝑎−𝑋′

𝑖 − 𝜆𝑠𝑆′𝑖 (3.1a)

𝑑𝐴′𝑖
𝑑𝑡′ = 𝜙𝑎 + 𝛽𝑎𝐶

′
𝑖 − 𝑘𝑎+𝐴′𝑖𝑆′𝑖 + 𝑘𝑎−𝑋′

𝑖 − 𝜆𝑎𝐴′𝑖 (3.1b)

𝑑𝐶′𝑖
𝑑𝑡′ = 𝑘𝑟+𝑅

′𝑆′𝑖 − 𝑘𝑟−𝐶′𝑖 − 𝜆𝑐𝐶′𝑖 (3.1c)

𝑑𝑋′
𝑖

𝑑𝑡′ = 𝑘𝑎+𝐴
′
𝑖𝑆′𝑖 − 𝑘𝑎−𝑋′

𝑖 − 𝜆𝑥𝑋′
𝑖 (3.1d)

𝑑𝑅′
𝑑𝑡′ = 𝛼 −

𝑁
􏾜
𝑖=􏷠
𝑘𝑟+𝑅′𝑆′𝑖 +

𝑁
􏾜
𝑖=􏷠
𝑘𝑟−𝐶′𝑖 − 𝜆𝑟𝑅′ (3.1e)

Assuming that the complexes’ unbinding rates are sufficiently larger
than the linear degradation rates, 𝑘𝑟− ≫ 𝜆𝑐, 𝑘𝑎− ≫ 𝜆𝑥, the correspond-
ing equations can be adiabatically eliminated, leading to the following
simplified model in dimensionless units:

𝑑𝑆𝑖
𝑑𝑡 = 𝜑𝑆 + 𝜌𝑖𝑅𝑆𝑖 − 𝐴𝑖𝑆𝑖 − 𝛿𝑆𝑆𝑖 (3.2a)

𝑑𝐴𝑖
𝑑𝑡 = 𝜑𝐴 + 𝜉𝜇𝑅𝑆𝑖 − 𝐴𝑖𝑆𝑖 − 𝛿𝐴𝐴𝑖 (3.2b)

𝑑𝑅
𝑑𝑡 = 1 −

𝑁
􏾜
𝑖=􏷠
𝜒𝑖𝑅𝑆𝑖 − 𝑅 (3.2c)

where the rescaled variables and parameters are shown in Table 3.2, and
𝜉 is an independent parameter that controls the intensity of the positive
feedback loop.

Rescaled variables
𝑆𝑖 = 𝜆𝑥𝑘𝑎+

𝜆𝑟(𝑘𝑎−+𝜆𝑥)
𝑆′𝑖 𝐴𝑖 = 𝜆𝑥𝑘𝑎+

𝜆𝑟(𝑘𝑎−+𝜆𝑥)
𝐴′𝑖

𝑅 = 𝜆𝑟
𝛼 𝑅

′ 𝑡 = 𝜆𝑟𝑡′

Rescaled parameters

𝜑𝑆 =
𝜙𝑠
𝜆􏷫𝑟
𝜆𝑥 𝑘𝑎+

𝑘𝑎−+𝜆𝑥
𝜑𝐴 =

𝜙𝑎
𝜆􏷫𝑟
𝜆𝑥 𝑘𝑎+

𝑘𝑎−+𝜆𝑥

𝜉𝜇 = 𝛼
𝜆􏷫𝑟
𝛽𝑎 𝑘𝑟+

𝑘𝑟−+𝜆𝑐
𝜒 = 𝜆𝑐

𝜆𝑥
𝑘𝑟+

𝑘𝑟−+𝜆𝑐
𝑘𝑎−+𝜆𝑥
𝑘𝑎+

𝛿𝑆 = 𝜆𝑠
𝜆𝑟

𝛿𝐴 = 𝛿𝐴
𝛿𝑅

𝜉𝛾 = 𝛼
𝜆􏷫𝑟
𝛽𝑠 𝑘𝑟+

𝑘𝑟−+𝜆𝑐
𝜂 = 𝛼

𝜆􏷫𝑟
𝜆𝑐 𝑘𝑟+

𝑘𝑟−+𝜆𝑐

𝜌 = 𝜉𝛾 − 𝜂

Table 3.2: Rescaled variables and
parameters for the dimensionless
ultrasensitivity model.

Assuming now a tight binding in the sigma–anti-sigma interaction
and considering only one sigma factor, we can generate pulses by ex-
ternally decreasing 𝐴 production (this is, decreasing 𝜇) and then re-
establishing the original value again, in order to recover 𝐴 levels that turn
off 𝑆 free (see Figure 3.9).
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Figure 3.9: Pulse resulting from ultra-
sensitivity. Considering only one sigma
factor, we can generate pulses by changing
abruptly the value of 𝜇 from 􏷟.􏷟􏷦 to 􏷟.􏷟􏷟􏷦
and reestablishing the initial value again
so that the pulse turns off. The param-
eter values used for this simulation are:
𝜙𝑆 = 􏷟.􏷟􏷟􏷢, 𝜙𝐴 = 􏷟.􏷟􏷟􏷠, 𝜉 = 􏷠􏷠, 𝜌 = 􏷟.􏷦,
𝜒 = 􏷟.􏷧, 𝛿𝑆 = 􏷟.􏷟􏷟􏷤, 𝛿𝐴 = 􏷟.􏷟􏷟􏷤, and
𝜇 = 􏷟.􏷟􏷦 − 􏷟.􏷟􏷟􏷦.

In order to characterize the pulses we identified the ultrasensitivity
regime, as in [Buchler and Louis, 2008]. As a result, we obtained the ul-
trasensitivity curves shown in Figure 3.10, where we plotted in panel A
the sigma factor rescaled concentration at the equilibrium, 𝑆𝑒𝑞, as a func-
tion of 𝜇, for different 𝑆 and 𝐴 degradation rates (𝛿𝑆 and 𝛿𝐴, respectively);
in panel B 𝑆𝑒𝑞 as a function of 𝜑𝑆, for several values of 𝜑𝐴; and in panel C
𝑆𝑒𝑞 as a function of 𝜑𝐴, for several values of 𝜑𝑆. Note that the simulation
shown in Figure 3.9 corresponds to the blue line (𝛿𝑆 = 𝛿𝐴 = 0.005) in
Figure 3.10A, so that when we vary 𝜇 from 0.07 to 0.007 we move from
the ultrasensitivity region to out of it. Then, when we reestablish 𝜇 to its
original value we enter again in the ultrasensitivity region.

Further description of the ultrasensitivity regime for this model can be
found in Appendix B.3.1.
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Figure 3.10: Ultrasensitivity curves.
Ultrasensitivity increases for (A) lower
degradation rates, 𝛿𝑆 and 𝛿𝐴; (B) higher
basal production of anti-sigma, 𝜑𝐴; (C)
higher basal production of sigma, 𝜑𝑆.
Curves were obtained for the following
sets of parameter values: 𝜌 = 􏷟.􏷦, 𝜉 = 􏷠􏷠,
𝜒 = 􏷟.􏷧 and (A) 𝜑𝑆 = 􏷟.􏷟􏷟􏷢, 𝜑𝐴 = 􏷟.􏷟􏷟􏷠;
(B) and (C) 𝛿𝑆 = 􏷟.􏷟􏷟􏷤, 𝛿𝐴 = 􏷟.􏷟􏷟􏷤, and
𝜇 = 􏷟.􏷟􏷦.
Panel (A) explicitly shows 𝜇 values used in
Figure 3.9; the parameter set considered
in that simulation corresponds to the blue
curve.

Once we characterized the deterministic system, we implemented
it under a stochastic framework in order to obtain a more realistic vari-
ation in 𝐴 production (𝜇). Going back to the dimensional model, we
performed stochastic simulations for 2 identical sigma factors (𝑖 = 1, 2)
considering a noisy 𝛽𝐴,𝑖 for each sigma (note that 𝛽𝐴 ∝ 𝜇, this is the anti-
sigma production rate due to RNAP-sigma holoenzyme - see Table 3.2).
Following [Shahrezaei et al., 2008], we generated one log-normal stochas-
tic process for each 𝛽𝐴,𝑖 so that 𝛽𝐴,𝑖(𝑡) = 𝛽􏷟𝐴,𝑖𝑒𝜖𝑖(𝑡)/⟨𝑒𝜖𝑖(𝑡)⟩. Where 𝜖𝑖(𝑡) is an
Ornstein-Uhlenbeck (OU) process and the autocorrelation time of the
𝛽𝐴,𝑖 noise is equal to the cell cycle duration (that is, 2 h approximately)
as we can consider that 𝐴𝑖 a stable protein and is therefore only diluted
by cell division. Exponentiating the OU process ensures that the noisy
reaction rate is always positive. In fact, the new reaction rate becomes
log-normally distributed, consistent with experimental observations that
have found gene expression rates to be log-normally distributed rather
than follow a normal distribution [Rosenfeld et al., 2005]. Normaliz-
ing the reaction rate by ⟨𝑒𝜖𝑖(𝑡)⟩ ensures that the mean value of 𝛽𝐴,𝑖 is not
affected by noise.

In Figure 3.11 the time series of 𝐶􏷠(𝑡) and 𝐶􏷡(𝑡) for one particular
simulation are shown, as well as the evolution of free RNAP (𝑅(𝑡)) (see
Appendix B.3.1 for more details and Table B.4 for the numerical values of
the parameters).

This model relies in ultrasensitivity due to the tight binding be-
tween the sigma factor and its cognate anti-sigma, and assumes that
extrinsic noise affects only the expression rate of the anti-sigma factor
despite being 𝑆 and 𝐴 expressed from the same operon. It is particularly
interesting the fact that we do need an asymmetry between 𝑆 and 𝐴 in
order to obtain non-trivial pulses. This might suggest the existence of an
“extra process” involved in obtaining a functional anti-sigma factor.

One interesting hypothesis related to the extrinsic noise affecting only
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A B Figure 3.11: Time traces for sigma-
RNAP holoenzyme from a stochastic
simulation of 􏷡 identical coupled sigma
factors with noisy 𝛽𝐴,􏷪 and𝛽𝐴,􏷫. (A)
Number of molecules for sigma-RNAP
holoenzyme, 𝐶􏷪 and 𝐶􏷫, and (B) number
of free RNAP molecules, 𝑅, are plotted
in function of time. See Table B.5 for
parameter values considered for this
simulation.
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the anti-sigma factor is the following. In the group of the extracytoplas-
mic function (ECF) sigma factors (which includes 𝜎𝑀, 𝜎𝑊 , 𝜎𝑋 , 𝜎𝑌 and
𝜎𝑍) one common feature is the way the anti-sigma factor inactivates its
cognate sigma factor. In most cases, the anti-sigma is a transmembrane
protein that sequesters by default its cognate sigma factor, only releasing
it when receiving a certain input from the extracellular environment
[Helmann, 2002, Zellmeier et al., 2005]. Thus, for the anti-sigma factor
to be functional after being produced, it would need to be located in the
membrane in order to be able to inactivate 𝑆. Besides, under this hypoth-
esis the anti-sigma factor would be the element of the circuit receiving
extracellular signals, and thus subject to external noise.

Regarding the remaining sigma factors considered in our experiments,
in the case of 𝜎𝐵 the asymmetry hypothesis between 𝑆 and 𝐴 still holds,
as 𝜎𝐵 anti-sigma factor RsbW is further regulated by the anti-anti-sigma
factor RsbV that acts as an energy stress sensor [Locke et al., 2011]. In the
case of 𝜎𝐷 (responsible for flagellar biosynthesis) its cognate anti-sigma
(FlgM) is present in the cytosol until the hook-basal body structure com-
plex (HBB, this would be the base of the flagellum) is functional. Then
FlgM is exported outside the cytoplasm presumably via this HBB struc-
ture allowing 𝜎𝐷 to activate the transcriptional program for flagellum
generation [Hughes and Mathee, 1998]. Finally, 𝜎𝐿 up to date does not
have an identified anti-sigma factor. Some authors postulate a roadblock
regulation mechanism for 𝜎𝐿 mediated by ccpA (a protein that mediates
catabolite repression): ccpA would bind to a specific region of the 𝜎𝐿
gene when glucose is present, thus preventing the RNAP proceed with
transcription of this gene [Choi and Saier, 2005]. But ccpA is not part
of 𝜎𝐿 operon (as opposite to the general case where the sigma factor and
its anti-sigma are transcribed from the same operon). So in the case of
𝜎𝐿 the asymmetry hypothesis between 𝑆 and 𝐴 would still hold, but the
production from 𝑆 and 𝐴 would not come from the same operon.

3.4.2 Ligand model

Following with the ECF sigma factors discussion at the end of Sec-
tion 3.4.1 regarding the transmembrane anti-sigma factor detecting cer-
tain environmental inputs, we propose here another mathematical model
that incorporates a ligand (𝐿𝑖) responsible for the inactivation of its target
anti-sigma (𝐴𝑖) thus allowing the release of its cognate sigma factor (𝑆𝑖).
See Figure 3.12 for a diagram of circuit’s interactions.
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Figure 3.12: Ligand model diagram of
interactions. Each alternative sigma
factor pathway involves a sigma factor, 𝑆𝑖,
an anti-sigma factor, 𝐴𝑖, and a regulatory
ligand, 𝐿𝑖. All negative regulation occurs
through sequestration. RNAP, 𝑅, is
shared between the sigma factors, and
the holoenzyme 𝐶𝑖 (composed by 𝑅 and
𝑆𝑖) activates the expression of the operon
containing 𝑆𝑖 and 𝐴𝑖.

In this model, a stochastic burst of ligand production can suddenly
reduce the activity of its cognate anti-sigma factor allowing the initia-
tion of a pulse of the corresponding sigma factor. Autoregulation of the
sigma factor operon reinforces the pulse by up-regulating expression of
the sigma factor itself. The pulse eventually terminates itself through
increased expression of the anti-sigma factor (see Figure B.8).

The corresponding reactions for this model are listed in Table 3.3.
Note that 𝐿𝑖(𝑡) follows a gamma distribution as a result of the interac-
tions specified in this table. This was motivated by previous observa-
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tions that cellular protein concentrations follow a gamma distributed
Ornstein-Uhlenbeck (GOU) process [Friedman et al., 2006, Raj et al.,
2006, Taniguchi et al., 2010].

Basal productions Activated productions Ligand dynamics

∅ 𝑘􏷫−→ 𝑆𝑖 (a) 𝐶𝑖
𝛽𝑆−→ 𝐶𝑖 + 𝑆𝑖 (j) 𝑃𝑂𝐹𝐹,𝑖

𝐾􏷪−→ 𝑃𝑂𝑁,𝑖 (r)

∅
𝑘􏷬−→ 𝐴𝑖 (b) 𝐶𝑖

𝛽𝐴−→ 𝐶𝑖 + 𝐴𝑖 (k) 𝑃𝑂𝑁,𝑖
𝐾􏷫−→ 𝑃𝑂𝐹𝐹,𝑖 (s)

∅ 𝑘􏷪−→ 𝑅 (c) Degradations/dilutions 𝑃𝑂𝑁,𝑖
𝐾􏷬−→ 𝑃𝑂𝑁,𝑖 + 𝑚𝑖 (t)

Formation of complexes 𝑆𝑖
𝑘􏷪􏷫−−→ ∅ (l) 𝑚𝑖

𝐾􏷭−→ 𝑚𝑖 + 𝐿𝑖 (u)

𝑆𝑖 + 𝐴𝑖
𝑘𝑎+/􏸵−−−→ 𝑋𝑖 (d) 𝐴𝑖

𝑘􏷪􏷬−−→ ∅ (m) 𝑚𝑖
𝐾􏷮−→ ∅ (v)

𝑋𝑖
𝑘𝑎−−−→ 𝑆𝑖 + 𝐴𝑖 (e) 𝑅 𝑘􏷪􏷪−−→ ∅ (n) 𝐿𝑖

𝐾􏷯−→ ∅ (w)

𝐴𝑖 + 𝐿𝑖
𝑘𝑙+/􏸵−−−→ 𝐼𝑖 (f) 𝑋𝑖

𝑘􏷪􏷭−−→ ∅ (o)

𝐼𝑖
𝑘𝑙−−→ 𝐴𝑖 + 𝐿𝑖 (g) 𝐼𝑖

𝑘􏷪􏷮−−→ ∅ (p)

𝑆𝑖 + 𝑅
𝑘𝑟+/􏸵−−−→ 𝐶𝑖 (h) 𝐶𝑖

𝑘􏷪􏷯−−→ ∅ (q)

𝐶𝑖
𝑘𝑟−−−→ 𝑆𝑖 + 𝑅 (i)

Table 3.3: Set of reactions for the
stochastic ligand model. Where 􏸵 is
a volume factor that in bacteria can be
considered ≈ 􏷠molec nm−􏷪 [Süel et al.,
2007] (see Table B.6).Figure 3.13 shows the time series for 𝐿, 𝐶 and 𝑅 corresponding to a

stochastic simulation of one sigma factor.
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Figure 3.13: Time series of the ligand
model for one sigma. Time traces for
the total amount of ligand, 𝐿𝑇𝑂𝑇𝐴𝐿
(left panel); the sigma-RNAP holoen-
zyme complex, 𝐶 (center panel); and the
available RNAP, 𝑅 (right panel), corre-
sponding to a stochastic simulation of one
sigma factor. Only one sigma factor is
enough for pulsing. Parameter values for
this simulation are shown in Table B.6.

We focused on the deterministic system in order to optimize compu-
tation time. The ligand concentration was generated in bursts randomly
distributed over time uniformly, and exponentially distributed in magni-
tude. This ensures a GOU process for the ligand protein concentration.
This implementation allows for direct manipulation of both burst mag-
nitude and frequency independently. Hence, the ordinary differential
equations (ODEs) were solved between the stochastic ligand bursts in the
discretized stochastic GOU process.
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The system ODEs are the following:

𝑑𝑆𝑖
𝑑𝑡 = 𝑘􏷡 − 𝑘𝑎+𝑆𝑖𝐴𝑖 + 𝑘𝑎−𝑋𝑖 − 𝑘𝑟+𝑆𝑖𝑅 + 𝑘𝑟−𝐶𝑖 + 𝛽𝑆𝐶𝑖 − 𝑘􏷠􏷡𝑆𝑖 (3.3a)

𝑑𝐴𝑖
𝑑𝑡 = 𝑘􏷢 − 𝑘𝑎+𝑆𝑖𝐴𝑖 + 𝑘𝑎−𝑋𝑖 − 𝑘𝑙+𝐿𝑖𝐴𝑖 + 𝑘𝑙−𝐼𝑖 + 𝛽𝐴𝐶𝑖 − 𝑘􏷠􏷢𝐴𝑖 (3.3b)

𝑑𝑅
𝑑𝑡 = 𝑘􏷠 −

𝑁
􏾜
𝑖=􏷠
𝑘𝑟+𝑅𝑆𝑖 +

𝑁
􏾜
𝑖=􏷠
𝑘𝑟−𝐶𝑖 − 𝑘􏷠􏷠𝑅 (3.3c)

𝑑𝐼𝑖
𝑑𝑡 = 𝑘𝑙+𝐿𝑖𝐴𝑖 − 𝑘𝑙−𝐼𝑖 − 𝑘􏷠􏷣𝐼𝑖 (3.3d)

𝑑𝑋𝑖
𝑑𝑡 = 𝑘𝑎+𝑆𝑖𝐴𝑖 − 𝑘𝑎−𝑋𝑖 − 𝑘􏷠􏷤𝑋𝑖 (3.3e)

𝑑𝐶𝑖
𝑑𝑡 = 𝑘𝑟+𝑅𝑆𝑖 − 𝑘𝑟−𝐶𝑖 − 𝑘􏷠􏷥𝐶𝑖 (3.3f )

Where 𝐿𝑖(𝑡) follows:

𝑑𝐿𝑖
𝑑𝑡 = 𝑘𝑙−𝐼𝑖 − 𝑘𝑙+𝐿𝑖𝐴𝑖 − 𝑘􏷠􏷦𝐿𝑖 (3.4)

and its dynamics is modified by adding the random quantity 𝜖􏷟𝐿𝑖(𝑡)
(being 𝜖􏷟 a random number exponentially distributed that controls the
ligand burst magnitude) at random times 𝑇􏷟 (uniformly distributed)
throughout the simulation. Hence,

𝐿𝑖(𝑡) → 𝐿𝑖(𝑡) + 𝜖􏷟𝐿𝑖(𝑡) (3.5)

The deterministic version of the ligand model is the system we used to
simulate competition and correlation (see Section 3.5).

3.4.3 Limit cycle model

A different possibility for modelling sigma factor pulses of activity is
to think about every pulsing sigma as an independent oscillator, coupled
between each other through RNAP sharing.

Taking into account the interactions shown in Figure 3.14, the model
ODEs are the following:
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Figure 3.14: Limit cycle model dia-
gram of interactions. Interactions in
this model are the ones described in Fig-
ure 3.12 except that in here the ligand (𝐿𝑖)
can break the inactive sigma–anti-sigma
complex (𝑋𝑖), forming a ligand–anti-
sigma aggregate (𝐼𝑖) thus releasing the
sigma factor (𝑆𝑖).
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𝑑𝑆𝑖
𝑑𝑡 = 𝑘􏷡 − 𝑘𝑎+𝑆𝑖𝐴𝑖 + 𝑘𝑎−𝑋𝑖 − 𝑘𝑟+𝑆𝑖𝑅 + 𝑘𝑟−𝐶𝑖 + 𝑘𝑙𝑥𝐿𝑖𝑋𝑖 + 𝛽𝑆𝑀𝑖 − 𝛿𝑆𝑖

(3.6a)

𝑑𝐴𝑖
𝑑𝑡 = 𝑘􏷢 − 𝑘𝑎+𝑆𝑖𝐴𝑖 + 𝑘𝑎−𝑋𝑖 − 𝑘𝑙+𝐿𝑖𝐴𝑖 + 𝛽𝐴𝑀𝑖 − 𝛿𝐴𝑖 (3.6b)

𝑑𝑋𝑖
𝑑𝑡 = 𝑘𝑎+𝑆𝑖𝐴𝑖 − 𝑘𝑎−𝑋𝑖 − 𝑘𝑙𝑥𝐿𝑖𝑋𝑖 − 𝛿𝑋𝑖 (3.6c)

𝑑𝐼𝑖
𝑑𝑡 = 𝑘𝑙+𝐿𝑖𝐴𝑖 + 𝑘𝑙𝑥𝐿𝑖𝑋𝑖 − 𝛿𝐼𝑖 (3.6d)

𝑑𝐶𝑖
𝑑𝑡 = 𝑘𝑟+𝑅𝑆𝑖 − 𝑘𝑟−𝐶𝑖 − 𝛿𝐶𝑖 (3.6e)

𝑑𝑀𝑖
𝑑𝑡 = 𝑘𝑚𝑇𝑟𝑖 − (𝛿 + 𝛿𝑚)𝑀𝑖 (3.6f )

𝑑𝑇𝑟𝑖
𝑑𝑡 = 𝑘𝑡𝐶𝑖 − 𝑘𝑚𝑇𝑟𝑖 − (𝛿 + 𝛿𝑚)𝑇𝑟𝑖 (3.6g)

Where 𝐿𝑖(𝑡) = 𝐿(𝑖)𝑇 − 𝐼𝑖(𝑡) is the amount of free ligand (with 𝐿(𝑖)𝑇 being
the total pool of ligand fixed at the beginning of the simulation), 𝑅 =

𝑅𝑇 −
𝑁
∑
𝑖=􏷠
𝐶𝑖 is the amount of available RNAP (with 𝑅𝑇 being the total

pool of RNAP, also a constant parameter of the simulation),𝑀𝑖 is the
mRNA that will be translated into its corresponding sigma factor (𝑆𝑖)
and its anti-sigma (𝐴𝑖), and 𝑇𝑟𝑖 represents the immature form of𝑀𝑖.
These ODEs are essentially the same presented in Section 3.4.2 (Eq.(3.6))
except that in here the total amount of ligand (𝐿(𝑖)𝑇 ) and RNAP (𝑅𝑇 )
present in the system are constant throughout the simulation. Also, we
introduced another interaction for which the ligand (𝐿𝑖) can break the
sigma–anti-sigma inactive complex (𝑋𝑖), forming a ligand–anti-sigma
aggregate (𝐼𝑖) thus releasing the sigma factor (𝑆𝑖) that can now bind to
RNAP. This “partner-switching” interaction together with the implicit
delay introduced through explicitly modeling mRNA (via𝑀𝑖 and 𝑇𝑟𝑖
species) facilitate that the model could present a stable limit cycle.

We first identified a volume in parameter space that was biologically
meaningful, and systematically explored a multi-dimensional region
of this volume looking for oscillations that are robust with respect to
variations of the total RNAP pool (𝑅𝑇 ) and pulse durations of the order
of magnitude of the experimental data (this is, around 1 h). It is worth to
mention that this system was too stiff to perform a numerical bifurcation
analysis with the numerical continuation software AUTO through XPP
[Ermentrout and Mahajan, 2003].

Time traces for the complex sigma-RNAP (𝐶) and free RNAP (𝑅)
simulating only one sigma factor are plotted in Figure 3.15. Note that for
the parameter values considered here the RNAP is not saturated, as it is
not straightforward to find biologically meaningful parameters for which
oscillations are robust to reasonable variations of 𝑅𝑇 , pulse durations are
around 1 h and free RNAP is low.
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Figure 3.15: Limit cycle model time
series for only one sigma. Time traces
for the holoenzyme complex sigma-
RNAP, 𝐶, (left panel) and the available
RNAP, 𝑅, (right panel) corresponding to
numerical integration of the ODEs. Only
one sigma factor is enough for pulsing.
Note that under the current parameter set
RNAP is not saturated. Parameter values
for this simulation are shown in Table B.8.

3.5 Modelling competition and correlation

To model competition and correlation between pulses of sigma
factor activity, we chose the ligand model in front of the ultrasensitivity
and the limit cycle ones because these two models present some diffi-
culties. Regarding the ultrasensitivity model, it is not straightforward to
modify pulse frequencies and durations in order to match experimental
data. Regarding the limit cycle model, the parameter set found results in
pulse durations and amplitudes in agreement with experimental data but
it does not operate in the regime of RNAP saturation.
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Figure 3.16: Ligand model simulations
for 􏷦 identical pulsing sigma factors.
(A) Time traces for the RNAP-sigma
factor holoenzyme (𝐶𝑖) of 􏷦 identical
pulsing sigma factors (𝑖 = 􏷠,… , 􏷦). (B)
Histogram of pulse durations (upper
panel) and amplitudes (lower panel) for
the simulation shown in panel (A). Gray
area in the amplitudes histogram indicates
the selected cutoff (set to amplitude
= 􏷡􏷤􏷟􏷟 a.u.), when a pulse surpasses
this cutoff it is counted as a pulse and is
discarded otherwise. Parameter values for
this simulation are shown in Table B.7.

In order to understand how sigma factor pulses interact in a sce-
nario of limiting amounts of RNAP, we proceeded to couple 7 identical
sigma factors for the ligand model (see Section 3.4.2). We first identified
physiologically reasonable parameters that could produce similar pulsing
dynamics to those observed experimentally, under conditions of limiting
amounts of RNAP (see Figure 3.16). In these simulations, sigma-RNAP
pulses present a typical duration of around 1 h and a long-tailed distribu-
tion for amplitudes, in agreement with experimental data2. While a pulse 2 Experimental and simulated pulses were

defined and analyzed in the same way.
See Appendix B.2 for details.

is active, the amount of available RNAP is significantly reduced, hence
alternative sigma factors compete for the use of RNAP. The pulse even-
tually terminates itself through increased expression of the anti-sigma
factor, thus releasing RNAP and allowing other sigma factors to initiate
pulses (Figure B.8).
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Note that if we remove the anti-sigma factor from the model the
resulting sigma does not pulse (Figure 3.17), being now constitutively
expressed. As we saw in Section 3.2 this is the case for the housekeeping
sigma factor 𝜎𝐴 (see Figure 3.5). This sigma factor was not explicitly
included in the simulations, because its effect can be directly translated
into reducing the pool of RNAP present in the system.
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Figure 3.17: A sigma factor with no anti-
sigma associated does not pulse. This
figure shows time series for a sigma factor
with no anti-sigma associated, situation
corresponding to 𝜎𝐴, (upper panel) and
for a standard sigma factor (lower panel).
As can be clearly seen, removing the
cognate anti-sigma results in a total loss
of the pulsing behavior, now being this
sigma factor constitutively expressed.
Parameters used for these simulations are
the same as in Figure 3.16.

Figure 3.18 quantifies time-share dynamics. Panel A shows that at
any given time > 75% of available RNAP was occupied by just 2-3most
active alternative sigma factors. This is in agreement with the experimen-
tal distribution of the number of sigma factors active at a time shown
in panel B (this calculation was performed from the experimental data
assuming that pulses are uncorrelated between the different sigma factors,
and considering the frequencies and durations measured experimentally
for each of the 7 studied sigma factors, see Appendix B.4 for details).
These results suggest that only a few sigma factors occupy RNAP si-
multaneously, and that active sigma factors alternate the possession of
RNAP over timescales of the pulse duration. In our simulations, the
different sigma factors compete for RNAP as shown in Figure 3.18C,
although the level of competition is not as high as what we saw experi-
mentally (see Figure 3.7). One prediction of this model is that one active
sigma factor is strongly anti-correlated with the remaining sigmas (see
Figure 3.18D). Unfortunately, checking this prediction experimentally
presents numerous technical challenges, being the main one the limita-
tion in the number of available colors in fluorescence microscopy that
prevents simultaneously tracking several sigma factors in the same movie.
Another one is obtaining long time-series data to compute sufficiently
clear experimental cross-correlations.
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B Figure 3.18: Activity distribution,
competition and cross-correlation
for the ligand model. (A) Activity
distribution of the n-th most active sigmas
(blue bars) computed for the simulation
shown in Figure 3.16. The cumulative
percentage of sigma activity accounted
for by the most active sigmas (in red) is
also plotted. The 􏷦􏷨% of the RNAP
is being used by 􏷢 sigma factors. (B)
Predicted distribution of the number
of sigma factors simultaneously active
from experimentally determined pulse
statistics, assuming pulse independence
(from J.C.W.Locke and J.Park [Locke
et al., 2014]). See Appendix B.4 for details
on the calculation. (C) Competition plot
for 􏷥 pulsing sigmas and 􏷠 constitutively
expressed sigma factor. Here we have
considered 􏷢 different stabilities for the
𝐶𝑖 complex, with the strongest sigma
(the one with highest affinity for the
RNAP) being the one that is expressed
constitutively in an inducible manner,
and the weakest sigma (the one with the
lowest affinity for the RNAP) being the
one we used to evaluate the effects of that
induction. The green dot corresponds
to the situation of 𝑁 = 􏷥 pulsing sigmas,
and the red dot corresponds to the
“wild-type” situation, with 𝑁 = 􏷦
pulsing sigmas. Parameters used for these
simulations are shown in Table B.7. (D)
Cross-correlation between 𝜎􏷪 and 𝜎􏷫 (two
identical pulsing sigmas) for simulation
shown in Figure 3.16A (purple line);
and between 𝜎􏷪 and the sum of all the
remaining sigmas (blue line). This latter
case suggests that one sigma factor is
strongly anti-correlated with all the other
sigma factors.

In summary, this model shows that time-sharing can emerge from
the combination of pulsatile activation dynamics and competition for
core RNAP.

3.6 Discussion

In order to understand the phenotypic consequences of time-
sharing in cells, let us compare two scenarios. One way of sharing core
RNA polymerase would be partitioning RNAP molecules between the
different sigma factors at constant levels over time (this is, concentration
sharing, as in Figure 3.1C upper panel). In this case, cells would exhibit
relatively homogeneous phenotypes among them. This the starting
mechanism that has been considered so far in the literature.

In contrast, alternative sigma factors can use RNAP almost exclusively
during short periods of high activity (time-sharing, as in Figure 3.1C
lower panel). This new sharing mechanism is the one we propose in our
sigma factor pulses. The pulses’ duration is of the order of about 1 h,
which means that during a cell’s life (the cell division time in our exper-
iments is 1.9 ± 0.2 h) only one or very few alternative sigma factors are
active. At a population level, as pulses of activity are generated stochasti-
cally, the picture is that there are always subpopulations of cells in every
phenotype. This ensures a prompt response of at least one of these sub-
populations to rapidly evolving environmental stresses, without cells
having to cycle through the activation of all the different sigma factors.

Following this train of thought, we could imagine a specific transient
stress selecting a given subpopulation, then once the stress signal is over,
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the full distribution of phenotypes would be re-established after about
one cell cycle.

In summary, time-sharing and concentration sharing can result in very
different phenotypic distributions that have a large impact in how cell
populations face rapidly changing environments.

Other functional capabilities that time-sharing may offer to cells
are avoiding conflicts between incompatible gene regulatory programs,
and increasing coordination of target promoters by concentrating most
target gene expression into brief periods of high activation.

Time-sharing is a common solution to allocate limited resources be-
tween multiple users in other contexts. As mentioned at the beginning
of this Chapter one example is the time-division multiplexing protocol
that allows the simultaneous transmission and reception of multiple in-
dependent signals using a single channel [Chu, 1969, Decina and Rossi,
1980]. Another example would be distributed computing systems where
the processor is shared between different jobs that alternate its use de-
pending on activity [Wilkes, 1972]. In biology, many cellular systems rely
on shared molecular components, hence time-sharing could represent a
general dynamic design principle used by other molecular systems in the
cell.





III

Oscillatory dynamics in genetic circuits in bacteria





4
Coupling oscillators

In previous Chapters we dealt with coupled dynamical processes that
resulted in pulsatile protein expression or activity. Here we will focus on
dynamical processes occurring in the form of periodic oscillations in the
expression of proteins. As explained in Chapter 1 genetic oscillators are
a widespread dynamical phenomenon in living organisms. In particular,
circadian rhythms (characterized by a period of about 24 h) have attracted
a great interest in the last two decades in part due to its challenging dy-
namics and in part due to their role in controlling some key processes
in organisms (such as repair mechanisms [Lahav, 2004], and metabolic
[Kaasik and Lee, 2004] and signalling pathways [Covert et al., 2005]). A
very interesting study at the single cell level about how the circadian clock
entrains cell cycle in cyanobacteria is the one by [Yang et al., 2010]. Un-
derstanding how genetic oscillators interact with each other and produce
a certain phenotype is an important question that needs to be addressed.
In this Chapter we study the interaction between a natural oscillator,
such as cell cycle in Escherichia coli, and a synthetic one.

4.1 Genetic oscillators

The bacterial cell cycle consists in cell growth, chromosomal replica-
tion and cell division [Wang and Levin, 2009]. In general, for all bacterial
species and during the exponential phase, this whole cycle has a fairly
constant period under a fixed set of conditions (such as temperature and
culture medium), thus being a natural genetic oscillator.

During bacterial duplication, it is critical to ensure that daughter cells
will inherit one copy of the chromosome, and only one. Hence, chro-
mosomal replication must occur only once per cell division. Replication
is initiated at a specific site of the DNA, known as oriC, where the repli-
cation machinery conformed by several proteins is recruited forming
multimeric complexes. The formation of these complexes is triggered by
specific proteins, such as DnaA in E. coli [Donachie and Blakely, 2003,
Katayama et al., 2010]. Only the active form of DnaA initiates replica-
tion. Once the process has started, cell needs to inhibit DnaA activity to
ensure that replication occurs only once per cell division. E. coli presents
three main DnaA-regulatory mechanisms, one of them consisting in
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the so-called the regulatory inactivation of DnaA (RIDA) system.The
RIDA system is essentially formed by the Hda protein and the beta sub-
unit of DNA polymerase III holoenzyme, encoded by dnaN gene. This
RIDA complex forms a sliding clamp on DNA that converts the active
ATP-DnaA to the inactive ADP-DnaA form, thus preventing replication
re-initiation [Camara et al., 2005, Kaguni, 2006, Katayama et al., 2010].

One of the consequences of chromosomal replication is that during a
certain fraction of the cell cycle bacteria have two copies of the genome.
In this way cell cycle drives the number of proteins of transcribed genes
[Swain et al., 2002]. This is something to take into account when study-
ing genetic oscillators operating inside a cell.

Over the last two decades synthetic biology has provided grounds
for understanding complex gene regulatory networks by the engineering
of simple circuits that can be used as toy models. As already mentioned
in Chapter 1 and at the beginning of this Chapter, genetic oscillators ex-
hibiting different periods have been found in a large variety of organisms
(for a nice review on biological oscillators and modelling see [Goldbeter,
2002]). Several efforts have been made in this field to understand the ba-
sic principles governing gene regulatory networks that lead to oscillatory
dynamics. This is the case of the synthetic oscillator for E. coli developed
in the laboratory of Prof. J. Hasty at the University of California San
Diego [Stricker et al., 2008]. This synthetic oscillator was engineered us-
ing an inducible combinatorial promoter (𝑃𝑙𝑎𝑐/𝑎𝑟𝑎) for which the following
gene transcription is activated by the AraC protein in the presence of ara-
binose, and repressed by the LacI protein in the absence of isopropyl 𝛽-D-
1-thiogalactopyranoside (IPTG) (see Figure 4.1). The two components of
the oscillator: araC and lacI genes, and the green fluorescent protein (gfp)
gene that acts as a reporter, were marked with a degradation tag and were
placed under the control of three identical copies of the 𝑃𝑙𝑎𝑐/𝑎𝑟𝑎 promoter.
Then, these elements were introduced into two different plasmids and
transformed in a genetically modified E. coli with deletions in the araC
and lacI wild-type genes, conforming the JS011 strain (see Supplementary
Information in [Stricker et al., 2008]). Thus, activating the promoters
in the presence of arabinose and IPTG results in the transcription of the
three elements. Incrementing AraC levels results in a higher transcrip-
tion of the three elements (positive feedbak), but once a critical level of
LacI is reached the transcription is slowed down (negative feedback). The
combined dynamics of these two feedback loops can lead to oscillations
in protein expression levels.

araC

lacI

GFP
Figure 4.1: Network diagram of the syn-
thetic oscillator. The hybrid promoter
𝑃𝑙𝑎𝑐/𝑎𝑟𝑎 controls the transcription of araC
and lacI genes, forming a positive and a
negative feedback loop respectively. gfp
acts as a reporter of the state of the genetic
oscillator.

Many cellular processes are driven by oscillating gene regulatory
networks, and it is still not well understood how these genetic oscillators
coordinate with each other inside a living cell. One approach to this
question might be provided by the concept of phase synchronization
introduced by Rosenblum et al., who applied it to the study of weakly
coupled self-sustained chaotic oscillators [Rosenblum et al., 1996]. In
this Chapter we will establish the degree of entrainment caused in the
synthetic oscillator developed by Hasty and co-workers (JS011) by the
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bacterial cell cycle, and we will determine whether the two oscillators
can mutually entrain their dynamics by ectopically implementing a back-
coupling from the synthetic oscillator to the chromosomal replication.
For this purpose, we designed and constructed a plasmid (pMiL101) that
contains a copy of hda and dnaN genes (members of the RIDA system)
under the control of the oscillator 𝑃𝑙𝑎𝑐/𝑎𝑟𝑎 promoter, and we introduced
it into he synthetic oscillator strain JS011, conforming a bidirectionally
coupled strain (see Appendix C.1 for details). Figure 4.2 shows a diagram
of the synthetic oscillator back-coupled to chromosomal replication.

To ensure a fair comparison between the synthetic oscillator driven by
cell cycle system and the back-coupled one, we transformed the pMiL101
plasmid backbone (this is, the plasmid containing only the origin of
replication and the antibiotic resistance, without the back-coupling to
replication) into JS011 (see Appendix C.1 for details). We will refer to this
strain as the unidirectional strain.

araC

lacI

GFP

hda dnaN
Figure 4.2: Network diagram of the
synthetic oscillator back-coupled to
chromosomal replication. This is the
network shown in Figure 4.1 with an
extra element: another copy of the hybrid
promoter 𝑃𝑙𝑎𝑐/𝑎𝑟𝑎 driving the transcription
of hda and dnaN genes, members of the
RIDA system that inhibit the initiation of
chromosomal replication.

4.2 Characterization of the natural and synthetic genetic oscillators

We started by characterizing the synthetic oscillator driven by
the cell cycle using the unidirectional strain. We filmed microcolonies
of this strain with time-lapse fluorescence microscopy, and tracked indi-
vidual cells while growing in a minimal medium containing 0.7% (w/v)
Arabinose and 2mm IPTG (see Appendix C.2 for details on cell culture
and imaging). Figure 4.3A shows a filmstrip of the unidirectional strain,
with the GFP signal colored in green. A heterogenous pattern “off-on-
off-on” in GFP fluorescence can be appreciated in single cells, reflecting
the oscillations in the reporter’s expression. Time traces for cell length
and fluorescence of three independent lineages for this strain are plotted
in Figure 4.3B.
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Figure 4.3: Tracking the natural and
synthetic oscillators. (A) Filmstrip
for the unidirectional strain (see Ap-
pendix C.2 for details on cell culture and
imaging). GFP fluorescence (colored in
green) follows a heterogeneous “off-on-
off-on” oscillating pattern in single cells.
(B) and (C) show cell length and GFP
fluorescence time traces in independent
lineages for the unidirectional case and
the bidirectional one, respectively.

Analysis of data shows that the cell cycle period is ∼ 48 ± 12min and
the synthetic oscillator period is ∼ 54 ± 11min under our experimen-
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tal conditions. The distributions of these two quantities are shown in
Figure 4.4A.
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Figure 4.4: Experimental distributions
of the periods of the cell cycle (left)
and synthetic (right) oscillators. (A)
Unidirectional strain, for these data
period mean value plus/minus standard
deviation of the mean were obtained for
cell length, ⟨𝑇𝐿⟩ = 􏷣􏷧 ± 􏷠􏷡min, and
fluorescence, ⟨𝑇𝐹⟩ = 􏷤􏷣 ± 􏷠􏷠min. (B)
Bidirectional strain: ⟨𝑇𝐿⟩ = 􏷣􏷦 ± 􏷠􏷡min
and ⟨𝑇𝐹⟩ = 􏷤􏷣 ± 􏷠􏷟min.

Figure 4.3C shows the time traces of the synthetic oscillator back-
coupled to chromosomal replication using the bidirectional strain. In
this case, when AraC and LacI in the synthetic oscillator are expressed
at a high level, the RIDA system is also overexpressed, thus inhibiting
replication initiation. In this case the obtained periods are ∼ 47 ± 12min
for the cell cycle and ∼ 54 ± 10min for the synthetic oscillator under the
same experimental conditions as the previous case. The corresponding
distributions of the two quantities are shown in Figure 4.4B. Hence,
introducing the back-coupling in the system seems not to affect the
period of any of the two oscillators. However, given that overexpression
of the RIDA system is controlled by the synthetic oscillator, we directly
act on replication time. In this way, as we introduced in Section 4.1, the
system can present phase synchronization when frequencies are adjusted
in a way that we can establish a phase shift between the two oscillators
[Pikovsky et al., 2003].

Therefore, we proceeded to define a phase that accounts for the
progress of the system through a cycle, and correspondingly assigned it
to each point of the time series data of the two oscillators. We defined a
cycle as the segment of data going from one minimum of cell length to
the following maximum (thus spanning the entire cell life), and fixed this
phase to be 0 at the beginning of the cycle (when the cell is born) and 1 at
the end of the cycle (just before the cell divides). As experimental data is
sampled at a fixed interval, it is straightforward to assign the intermediate
values for the phase. Fluorescence data was also segmented according to
cell length cycles, and phases were assigned correspondingly.

We are now prepared to quantify the existing phase shift between the
two oscillators by asking when fluorescence maximums occur within a
cell length cycle. The distributions of the timing of fluorescence max-
imums within a cell length cycle are shown in Figure 4.5 for the unidi-
rectional strain (left panel) and for the bidirectional one (right panel).
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For the sake of clarity, phase has been redefined so that 0.6 indicates the
minimum of cell length (when the cell is born) whereas 0.5 indicates the
moment when cell achieves its maximum length. In this way, it is clear
to appreciate that only the histogram for the bidirectional case appears as
a unimodal distribution similar to a gaussian “bell curve”. These results
suggest that synchronization between the two oscillators increases with
back-coupling.
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Figure 4.5: Phase shift between the
two oscillators. Distributions of the
timing of fluorescence maximums within
a cell length cycle are plotted for the
unidirectional case (left panel) and the
bidirectional one (right panel). Note that
only the histogram for the bidirectional
case appears as a unimodal distribution
similar to a gaussian “bell curve”. The x
axis covers one full cycle of cell division.
For a better visualization of data, phase
has been redefined so that a phase equal
to 􏷟.􏷥 denotes when the cell is born
(minimum of cell length), whereas a phase
equal to 􏷟.􏷤 indicates the moment of cell’s
maximum length.

4.3 Modelling the two oscillators

In order to deeper understand the experimental results we propose
the following toy model. Since the unidirectional system (this is, the
synthetic oscillator driven by cell cycle) is a particular case of the more
general scenario depicted by the bidirectional system (where the synthetic
oscillator is back-coupled to chromosomal replication), we will introduce
first the bidirectionally coupled model and will explain the specificities of
the unidirectional system as a particular case of the back-coupled model.

For the synthetic oscillator, we developed a reduced model based in
an activator-repressor system [Rué and Garcia-Ojalvo, 2011] where only
two species are described: the activator, 𝐴, and the repressor, 𝑅, both
controlled by the same promoter. The dynamics of these two species
is described by Eq.(4.1)a-b (see Appendix C.3 for details). Besides, the
influence of the synthetic oscillator on replication is modeled by consid-
ering the production of the RIDA system (𝐵), which is also controlled by
the hybrid promoter, 𝑃𝑙𝑎𝑐/𝑎𝑟𝑎, as given by Eq.(4.1)c.

In turn, the cell cycle was modelled as an integrate and fire mech-
anism, in which cell length grows exponentially (Eq.(4.1)d) and two
thresholds trigger chromosomal replication and cell division events. In
this way, when cell length reaches the first threshold (replication, 𝑅𝑡ℎ𝑟)
the productions of all the oscillator elements are doubled (as the copy
number of genes is increased by 2-fold) (Eq.(4.2)). We are assuming here
that all the considered species are transcribed at the same time. Given
that all these genes are located in plasmids, the possible delays due to
replicating genes from far away positions in the chromosome does not
apply. 𝐵 is assumed to increase the threshold 𝑅𝑡ℎ𝑟, in a way that mimics
its inhibitory effect on replication (Eq.(4.3)). Once the cell length arrives
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to the second threshold (division, 𝐷𝑡ℎ𝑟), returns to its initial value 𝐿􏷟
(Eq.(4.4)) and the production rates are re-established to their original
values (Eq.(4.2)). The full model is:

𝑑𝐴
𝑑𝑡 = 𝛼􏷠𝜁 +

𝛽􏷠𝜁𝐴𝑛
𝐾𝑛 + 𝐴𝑛 + (𝛾𝑅)𝑝 − 𝛿􏷠𝐴 (4.1a)

𝑑𝑅
𝑑𝑡 = 𝛼􏷡𝜁 +

𝛽􏷡𝜁𝐴𝑛
𝐾𝑛 + 𝐴𝑛 + (𝛾𝑅)𝑝 − 𝛿􏷡𝑅 (4.1b)

𝑑𝐵
𝑑𝑡 = 𝛼􏷢𝜁 +

𝛽􏷢𝜁𝐴𝑛
𝐾𝑛 + 𝐴𝑛 + (𝛾𝑅)𝑝 − 𝛿􏷢𝐵 (4.1c)

𝑑𝐿
𝑑𝑡 = 𝛼􏷟𝐿 (4.1d)

where 𝛼􏷟 = 𝐿􏷟/𝜏 (with 𝜏 being the characteristic time of cell cycle). 𝜁
is the parameter that reflects the driving of the synthetic oscillator by
chromosomal replication:

𝜁 =

⎧⎪⎪⎨
⎪⎪⎩
1 for 𝐿􏷟 ≤ 𝐿 < 𝑅𝑡ℎ𝑟
2 for 𝑅𝑡ℎ𝑟 ≤ 𝐿 < 𝐷𝑡ℎ𝑟 ,

(4.2)

as mentioned above 𝐵mediates the coupling of the synthetic oscillator to
chromosomal replication by

𝑅𝑡ℎ𝑟 = 𝐷𝑡ℎ𝑟 ⋅ 􏿵𝜖 +
𝜂 ⋅ 𝜅 ⋅ 𝐵
𝐵 + 𝐾𝑙

􏿸 . (4.3)

Where 𝜖 ∈ (0, 1) is the fraction of the division threshold at which replica-
tion occurs. In the case when the synthetic oscillator is not back-coupled
to replication, for 𝜖 → 1 we have that 𝑅𝑡ℎ𝑟 → 𝐷𝑡ℎ𝑟. When back-coupling
is introduced (0 < 𝜂 ≤ 1) 𝑅𝑡ℎ𝑟 increases and approaches 𝐷𝑡ℎ𝑟. As the term
𝐵/(𝐵 + 𝐾𝑙) saturates to 1, the maximum limit where replication can hap-
pen (considering the strongest back-coupling, so 𝜂 = 1) is 𝜅 = 0.9 ⋅ (1 − 𝜖).
We chose this limit because we estimated it was not biologically realistic
that replication occurred simultaneously to cell division.

Besides, division events are implemented as follows

𝐿(𝑡) becomes 𝐿􏷟 for 𝐿 = 𝐷𝑡ℎ𝑟 . (4.4)

Note that as the synthetic oscillator elements are controlled by the same
promoter (𝑃𝑙𝑎𝑐/𝑎𝑟𝑎) parameters 𝐾, 𝑛, 𝑝 and 𝛾 are the same for species 𝐴, 𝑅
and 𝐵. Figure 4.6 shows two diagrams for the model interactions for the
unidirectional and the bidirectional cases.

Some variability was introduced into the deterministic model by al-
lowing random variation in the reaction rates. In this way, for each cell
cycle parameter values were drawn from a gaussian distribution with
mean values shown in Table C.1 and standard deviations ranging from
2% of the mean value in the case of the synthetic oscillator parameters
(Eq.(4.1)a-c) up to 18% in the case of initial cell length 𝐿􏷟. This was ad-
justed to be in agreement with experimental results, in which the length
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Figure 4.6: Diagrams of model interac-
tions. Cell length increases exponentially
between division events. When it reaches
the replication threshold (𝑅𝑡ℎ𝑟) all the
productions from the synthetic oscilla-
tor are doubled (gray areas). Once cell
length arrives to the division threshold
(𝐷𝑡ℎ𝑟) it returns to its initial value (𝐿􏷩)
and the synthetic oscillator productions
are re-established to their original rates.
This applies to (A) the unidirectional case
and (B) the bidirectional one. Besides
in (B), the oscillator inhibits replication
initiation by increasing 𝑅𝑡ℎ𝑟 so that it
narrows the time intervals where oscillator
production rates are doubled (pushes gray
areas towards the right).

distribution of newborn cells shows a deviation of 18% for the unidi-
rectional and the bidirectional strains, while the division ratio presents
a deviation of 13% (see Figure 4.7). Also, in the light of maximum cell
length distributions shown in this Figure, we assumed that back-coupling
only affected the replication threshold (by incrementing its value and ap-
proaching it to the division threshold) and we left the division threshold
unchanged.
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Figure 4.7: Experimental distributions
for cell length minimum, maximum
and division ratio. (A) Unidirectional
strain new born cell length distribution
(left panel), ⟨𝐿𝑚𝑖𝑛⟩ = 􏷢􏷨± 􏷦 a.u, maximum
cell length distribution (medium panel),
⟨𝐿𝑚𝑎𝑥⟩ = 􏷦􏷣 ± 􏷠􏷠 a.u., and cell division
ratio (defined as 𝜌 = (𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛)/𝐿𝑚𝑎𝑥,
right panel) distribution, ⟨𝜌⟩ = 􏷟.􏷣􏷦 ± 􏷟.􏷟􏷥.
(B) The same distributions are plotted for
the bidirectional strain: ⟨𝐿𝑚𝑖𝑛⟩ = 􏷢􏷧±􏷦 a.u,
⟨𝐿𝑚𝑎𝑥⟩ = 􏷦􏷡± 􏷨 a.u., and ⟨𝜌⟩ = 􏷟.􏷣􏷦± 􏷟.􏷟􏷥.

Figure 4.8 shows the time series for the synthetic oscillator driven
by cell cycle (𝜂 = 0) and for the synthetic oscillator back-coupled to
chromosomal replication (𝜂 > 0), corresponding to the experiments with
the unidirectional and the bidirectional strains, respectively. To allow
comparison, experimental time traces for these strains in one indepen-
dent lineage are also plotted. We focused in the activator (𝐴) expression
to account for the synthetic oscillator state as the model does not consider
a fluorescent reporter. The replication threshold (𝑅𝑡ℎ𝑟) has been indicated
in every cell cycle as a vertical gray bar. For 𝜂 = 0 the periods obtained
for the division and synthetic oscillators are ⟨𝑇𝐿⟩ = 44 ± 10min and
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Figure 4.8: Simulated and experimental
time series of the coupled oscillators for
the unidirectional case (left) and the
bidirectional one (right). (A) Numerical
integration of the coupled oscillator model
ODEs. Cell length (𝐿) is shown in red
and the normalized concentration of the
activator (𝐴) in blue. In every cell cycle,
replication threshold (𝑅𝑡ℎ𝑟) is indicated
as a vertical gray bar. In the bidirectional
case time series for 𝐵 is also plotted (green
dashed line). (B) Time traces for cell
length (red line) and GFP fluorescence
(blue line) in one independent lineage for
the unidirectional and the bidirectional
strains. Data from Figure 4.3 (solid red
lines in that Figure).

⟨𝑇𝐴⟩ = 46 ± 13min, respectively. For 𝜂 = 0.8 the values obtained are
⟨𝑇𝐿⟩ = 43 ± 11min and ⟨𝑇𝐴⟩ = 50 ± 16min (see Figure 4.9). Hence, the
mean values and deviations of the periods obtained in simulations are in
agreement with the experimental ones.
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Figure 4.9: Theoretical distributions
of the periods of the cell cycle and
synthetic oscillators. (A) Unidirectional
case (𝜂 = 􏷟), for these data period mean
value plus/minus standard deviation
of the mean were obtained for the cell
cycle, ⟨𝑇𝐿⟩ = 􏷣􏷣 ± 􏷠􏷟min, and the
synthetic oscillator, ⟨𝑇𝐴⟩ = 􏷣􏷥 ± 􏷠􏷢
min. (B) Bidirectional case (𝜂 = 􏷟.􏷧),
⟨𝑇𝐿⟩ = 􏷣􏷢 ± 􏷠􏷠min and ⟨𝑇𝐴⟩ = 􏷤􏷟 ± 􏷠􏷥
min.

In order to quantify the phase shift between the cell cycle and the
synthetic oscillator, we assigned a phase to simulated time series in ex-
actly the same way as we did for experimental data (see Section 4.2). The
results for the unidirectional (𝜂 = 0) and the bidirectional (𝜂 = 0.8)
cases are plotted in Figure 4.10, where the distributions of the timing of
activator concentration maximums within a cell length cycle are shown
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for each case. Again, phase has been redefined so that 0.6 indicates the
instant when cell length is minimal whereas 0.5 indicates the moment
when length is maximal. Results are in good agreement with the exper-
imental ones, showing that only the histogram for the bidirectional case,
𝜂 = 0.8, emerges as a unimodal peaked distribution (see Figure C.3 for an
intermediate coupling intensity of 𝜂 = 0.4). This confirms that synchro-
nization between the two oscillators increases with back-coupling.
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η = 0.8 Figure 4.10: Phase shift between the
two simulated oscillators. Histograms
of the timing of activator concentration
maxima within a cell length cycle are
plotted for the unidirectional (𝜂 = 􏷟, left
panel) and bidirectional (𝜂 = 􏷟.􏷧, right
panel) cases. As in Section 4.2, phase has
been redefined so that 􏷟.􏷥 corresponds
to 𝐿 being minimum and 􏷟.􏷤 to it being
maximum. These results are in agreement
with the experimental ones (Figure 4.5).

4.4 Discussion

The correct functioning of cells requires the orchestration of mul-
tiple cellular processes, many of which are inherently dynamical. The
conditions under which these dynamical processes, such as genetic oscil-
lations, entrain each other remain unclear. In this Chapter we have used
synthetic biology to address this question. Specifically, we have studied
at the single-cell level the interaction between the bacterial cell cycle and
a robust synthetic oscillator in E. coli. Our results show that cell replica-
tion and division are able to entrain the synthetic oscillations consistently
under normal growth conditions, by driving the periodic replication of
the genes involved in the oscillator. In Figure 4.11 we have considered
the theoretical case in which the synthetic oscillator is not driven by
bacterial cell cycle, nor back-coupled to replication. Panel B shows the
histogram of the timing of activator concentration maxima within a cell
length cycle. Phases have been redefined as in Section 4.2. Comparing
this histogram with the one in Figure 4.10 (for 𝜂 = 0, left panel) we can
appreciate that in the latter case the synthetic oscillator is entrained by
cell cycle, in contrast with the situation depicted in this Figure.

However, it is only when the synthetic oscillations are coupled back
into the cell cycle via the expression of a key regulator of chromosome
replication, that the synchronization between the two periodic processes
increases. A computational toy model allows us to confirm this effect.

Still, the proposed toy model has some limitations. In the limit of high
back-coupling (𝜂 → 1) the temporal window between chromosomal
replication and cell division tends to disappear, resulting in an unrealis-
tic scenario. Hence, further work should include defining a minimum
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Figure 4.11: Time series and phase
shift between the two independent
oscillators. We have considered the
theoretical case in which the synthetic
oscillator is not driven by bacterial cell
cycle, nor back-coupled to replication.
(A) Time series for cell length (𝐿), in red,
and the normalized concentration of the
activator (𝐴), in blue, are plotted. In every
cell cycle, replication threshold (𝑅𝑡ℎ𝑟) is
indicated as a vertical gray bar. Periods for
cell length and the synthetic oscillator are
⟨𝑇𝐿⟩ = 􏷣􏷤 ± 􏷠􏷟min and ⟨𝑇𝐴⟩ = 􏷠􏷡􏷟 ± 􏷦􏷟
min, respectively. (B) Histogram of the
timing of activator concentration maxima
within a cell length cycle is plotted. As in
Section 4.2 phase has been redefined so
that 􏷟.􏷥 corresponds to 𝐿 being minimum
and 􏷟.􏷤 to it being maximum.

time interval between replication and division events, as well as imple-
menting a stochastic version of the model (so that variability is generated
intrinsically).
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Final remarks and outlook





5
Conclusion

In this Thesis we have used time-lapse fluorescence microscopy and dynamical systems theory to study how
different cellular processes dynamically coupled give rise to well defined phenotypes. In particular, we have
focused on the study and control of the coupling for two types of cellular dynamics: pulses of protein expres-
sion/activation and periodic oscillations.

The fruitful collaboration between experiments and theory deserves a special mention in the research on the
gene regulatory network controlling competence. Up to now, certain studies identified competence as a bistable
phenomenon [Maamar and Dubnau, 2005], whereas others described it as an excitable system [Süel et al., 2006,
2007]. Our experimental and theoretical work demonstrated that the circuit governing competence responds in
one way or the other depending on the intensity of the stress applied to the cell, thus reconciling two competing
views.

Another example of prolific interplay between experimental and theoretical research is the study on sigma
factors. In a joint effort with our collaborators, we revealed for the first time that several alternative sigma factors
in stressed B. subtilis cells present pulses in their activation. This intriguing behavior led us to postulate a new
mechanism that could explain the partition allocation of RNAP, a common limited resource for sigma factors.
The traditional “concentration sharing” strategy, in which a common resource is distributed equitably between
different biomolecular species, cannot explain the observed sigma factor dynamics. Hence, we here propose a
new mechanism that consists in sigma factors taking turns to use most of the available RNAP at once. We call
this mechanism “time-sharing”.

These two cases exemplify the quest led by physicists and other quantitative scientists to integrate all the in-
formation arising in the field of dynamical systems biology, and elaborate hypothesis that can in turn be tested
experimentally. This rigorous approach should allow us to discover the “laws” of biology.

Summary of results and outlook

Dynamics in competence

Living organisms are subject to multiple simultaneous signals that provide them with information about their
surrounding environment and internal state. Their appropriate response depends on the integration of these
coupled inputs. Previous studies that aimed to understand signal integration in gene regulation have mainly fo-
cused on mapping the combinatorial response of bacteria to multiple environmental signals by measuring the
expression of a single promoter [Kaplan et al., 2008, Krishna et al., 2009, Davidson et al., 2010, Hunziker et al.,
2010, Silva-Rocha and de Lorenzo, 2011]. However, in many cases different inputs affect different genes or pro-
teins, being the network itself the one that integrates the information at the system’s level instead of dealing with
the individual response of a particular promoter. In this way, it is necessary to understand how the integrated
response of gene regulatory networks depends on the specific entry points of the inputs. We have shown that the
integrated response of the circuit regulating competence in B. subtilis results in well defined phenotypes depend-
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ing on the inputs applied to the system. Specifically, we have shown that the integrated response of the constitu-
tive expression of ComK (one of the two master regulators of competence in B. subtilis) coupled to a high level
of environmental stress (which affects the other regulator of the competence circuit, ComS) eliminates sporu-
lation and normal vegetative growth, although no single input prevents these two cellular states simultaneously.
The phenotypical effects reported in Chapter 2 of this Thesis are caused by changes in the dynamical behavior of
the underlying genetic circuit. The stability analysis of a theoretical model of the competence circuit establishes
the various dynamical regimes that the circuit can exhibit, which are in very good quantitative agreement with
experimental results.

In this work we have perturbed two inputs of different nature: a contextual signal on the one hand (corre-
sponding to modifying the level of constitutive expression of a certain protein, in a continuous way), and a copy
number variation of a particular gene on the other. The effects of perturbing one of these two inputs individ-
ually has been assessed in recent studies [Cotterell and Sharpe, 2010, Conrad et al., 2010, DeLuna et al., 2008,
Gruber et al., 2012], however little is known about the integration of those two levels of cellular control. These
coupled perturbations could be applied to other gene regulatory networks to deeper explore the relation between
structure and function in cellular networks.

An interesting application derived from the work presented here, is the possibility of quantifying the biological
inputs applied to the cell. This allows a quantitative comparison with the corresponding theoretical model of the
system. In this regard, we could take advantage of some of the techniques used in Chapter 2 and apply them to
the study of the coupled oscillators exposed in Chapter 4. Hence, establishing the exact copy number of each
of the three plasmids that compose the unidirectional and the bidirectional strains, we could chromosomally
integrate all the elements now contained in the plasmids preserving the current copy number equilibrium (as
it seems this has a non-neglectable effect on the synthetic oscillator [Stricker et al., 2008]). Varying the specific
locations of the integration sites in the genome, we could test if replication delays between the coupled elements
(due to their ubication at different distances to oriC) disrupt the entrainment of the synthetic oscillations by cell
cycle. Still following, we could even quantify the back-coupling strength in the bidirectional strain, using the
“normalization method” exposed, in order to be able to unambiguously identify the same regime in the model.

Dynamics in sigma factors

In collaboration with Prof. M. Elowitz’s lab from the California Institute of Technology, we have investi-
gated the dynamical coupling between pulses of protein activity inside a single cell. The object of our study were
the sigma factor family in B. subtilis. These proteins reversibly bind to core RNA polymerase conferring the
formed holoenzyme promoter recognition specificity. In this way, alternative sigma factors have a tight control
of the transcriptional programs that are triggered in response to several environmental stresses and other stimuli
[Helmann and Chamberlin, 1988, Gruber and Gross, 2003]. We have shown for the first time that several alterna-
tive sigma factors are activated following a pulsatile dynamics when the cell is under energy stress, and that these
pulses are generated stochastically and occur in conditions of competition for core RNAP. Considering these
results, we have proposed a new mechanism, “time-sharing”, in which sigma factors take turns in order to use
most of the available RNAP, being only one or a few sigma factors simultaneously active in a given cell. Finally,
we have developed several mathematical models that shed light on how pulsing and competition affect RNAP
allocation.

The model predicts that one pulsing sigma factor would be strongly anti-correlated with all the other sigma
factors. This prediction presents several challenges when attempting to test it experimentally. In order to quan-
tify anti-correlations, the time series need to be long enough to be able to extract some information from fairly
noisy data. This implies some challenging technical issues regarding how microcolonies are grown during imag-
ing, which our collaborators are currently trying to address.

In this work, we have also shown that sigma factors compete by controlling the expression of ectopic 𝜎𝐵 and
checking the effect on 𝜎𝑊 activity, in a strain where the 𝜎𝐵 operon had been knocked out. For the competition
experiment, instead of overexpressing 𝜎𝐵 another option would be using gene 28 of the B. subtilis bacteriophage
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SPO1 (sigma_gp28). This gene is a sigma factor itself, responsible for recruiting the RNAP so that the tran-
scription of the phage middle stage infection genes begins [Lee and Pero, 1981, Costanzo and Pero, 1983]. The
advantage of using the bacteriophage sigma factor is that in a genetic background of a non-infected cell, the
holoenzyme formed by the core RNAP and the bacteriophage sigma factor would not have any target promoter
(except for the reporter we would introduce). So in principle we could assure we would not interfere, except
for reducing the pool of available RNAP, which is precisely the desired effect in the competition experiment.
However, the gene 28 promoter recognition sequences in the -35 and in the -10 regions contain several bases
corresponding to the thymine analog 5-hydroxymethyluracil [Lee and Pero, 1981]. Some authors studied if hav-
ing “common” thymine instead of this thymine analog in the promoter sequence could result in a decrease of
binding affinity between RNAP-sigma_gp28 holoenzyme and the promoter. Choy et al. created two hybrid
promoters partially substituting the thymine analog bases for “common” thymine in one of the two conserved
regions that Lee et al. found [Choy et al., 1986], and they saw a weaker interaction between these two hybrid
promoters and the RNAP-sigma_gp28 complex. This issue could be insignificant if a bright enough fluorescent
reporter could compensate the transcription deficiency effect. But it obviously requires a fairly accurate experi-
mental characterization.

This also brings up another question. The SPO1 bacteriophage presents more genes like sigma_gp28, that is
sigma factor analogs. This is the case of genes 33 and 34 responsible for the transcription of phage infection late
genes [Costanzo and Pero, 1983]. It would be very exciting to monitor which is the dynamics of the SPO1 phage
infection, and check what are the possible advantages of having the different stages of infection controlled by
sigma factor analogs instead of, for instance, transcription factors.

Coupling oscillators

Genetic oscillators are found in many organisms and part of their importance resides in their role controlling
some key processes in living systems, such as repair mechanisms [Lahav, 2004], and metabolic [Kaasik and Lee,
2004] and signalling pathways [Covert et al., 2005]. These processes do not take place in isolation but occur si-
multaneously inside the cell. Thus it is necessary to understand how these genetic oscillators interact with each
other in order to propagate information and generate specific phenotypes. We have studied a natural oscillator,
such as the bacterial cell cycle in E. coli, and a synthetic one, developed in Prof. J. Hasty laboratory at the Uni-
versity of California San Diego [Stricker et al., 2008], to quantify the level of entrainment between these two
oscillators. We have shown that the bacterial cell cycle is able to entrain the synthetic oscillations consistently
under normal growth conditions, by driving the periodic replication of the genes involved in the oscillator. We
have also shown that synchronization between the two periodic processes increases when the synthetic oscillator
is coupled back to cell cycle via the expression of an inhibitor of replication initiation. We have also developed a
computational toy model that confirmed this effect.

Checking whether increasing the period difference between the two oscillators has an impact in the loss
of synchronization for the back-coupled system is an interesting question. This is a feasible experiment given
that the synthetic oscillator was designed to have a tunable period depending on the concentration of inductors.
Moreover, the cell cycle period can also be modified by changing the culture media.

Another possibility to explore would be to maximize the back-coupling by knocking out genomic hda
and replacing wild-type genomic dnaN by the thermosensitive mutation dnaN159ts in the bidirectional strain.
dnaN159ts folds into a functional protein when the temperature is around 30 ∘C and into a totally non-functional
form at around 40 ∘C [Grompone et al., 2002, Maciag et al., 2011]. In this way, as the 𝑃𝑙𝑎𝑐/𝑎𝑟𝑎 promoter would
express the wild-type dnaN, increasing the temperature would only affect the genomic contribution portion
(thermosensitive dnaN). This would allow us to control a natural oscillator vital for cell survival, as is replication,
via the synthetic oscillator.





V

Appendix





A
Materials and Methods for Chapter 2

In this Appendix we have included a compilation of supporting informa-
tion for the work exposed in Chapter 2.

A.1 Growth conditions for microscopy

For the experiments with baseline stress conditions, B. subtilis
cells were grown at 37∘C in Luria Broth (Miller’s modification) (LB)
with appropriate antibiotics for selection, added to the following final
concentrations: 10 𝜇g/ml spectinomycin, 5 𝜇g/ml chloramphenicol,
5 𝜇g/ml kanamycin, and 5 𝜇g/ml erythromycin. Cells were grown to an
OD of 1.8 and resuspended in 0.5 volume of resuspension media (RM)
(composition per 1 L: 0.046mg FeCl􏷡, 4.8 g MgSO􏷣, 12.6mg MnCl􏷡,
535mg NH􏷣Cl, 106mg Na􏷡SO􏷣, 68mg KH􏷡PO􏷣, 96.5mg NH􏷣NO􏷢,
219mg CaCl􏷡, 2 g L-glutamic acid) [Sterlini and Mandelstam, 1969].
The cells were incubated at 37∘C for 1.5 h, then diluted 10-fold in RM
and spotted onto a 1.5% (w/v) low-melting agarose pad placed into a
coverslip-bottom Willco dish for imaging. When necessary, IPTG was
added to cultures and agarose pads at a final concentration of 3, 5, 10, or
100 𝜇M.

For the general stress experiments, B. subtilis cells were grown
overnight at 30∘C in LB without antibiotics. Then, cells were diluted
to an OD of 0.1 into 10mL of LB (1:20) in Phosphate-Buffered Saline
(PBS) and incubated at 37∘C for a time period ranging from 4 to 6 h.
Finally, cells were diluted to a final OD = 0.1–0.12 and placed into a
2% (w/v) low-melting agarose pad made of conditioned medium (1:30;
prepared as described below) in PBS enriched with L-glutamate at a fi-
nal concentration of 0.21% (w/v). When necessary, IPTG was added to
cultures and agarose pads at a final concentration of 5 𝜇M. Conditioned
media was prepared growing PY79 wild-type B. subtilis strain in 2mL
of LB at 37∘C for 4.5 h. Then, this culture was diluted in 23mL of fresh
LB and was grown at 37∘C for 17.5 h. After this, cells were removed by
centrifugation (at 3000 × 𝑔 for 10min) and the supernatant was sterilized
by filtration (using 0.2-𝜇m pore-size filters) and stored at −80∘C. This
is a variation of the conditioned media used in previous works [Çagatay
et al., Locke et al., 2011].
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All data were acquired imaging B. subtilis microcolonies in the pads at
37∘C with a Nikon TE2000 inverted microscope and a motorized stage
(Prior). Images were acquired every 20min with a Hamamatsu ORCA-
ER camera. Imaging time was optimized to prevent phototoxicity [Süel
et al., 2006]. The NIS-Elements software was used to automate image
acquisition and microscope control. Data analysis of time-lapse movies
was performed by custom software developed with MATLAB image
processing and statistics toolboxes (MathWorks).

A.2 Strain construction

The strains 75xS and Control-𝛽S-75xS were constructed from
the plasmid pDG148, kind gift of Beth A. Lazazzera (UCLA). Native
PcomS-comS and PcomS-cfp constructs were amplified by standard PCR
techniques and were cloned into pDG148 using EcoRV and BamHI
restriction sites. The cloned plasmids were transformed into the strains
containing chromosomally integrated PcomG-cfp and PcomS-yfp reporters
(V10) and Phyp-yfp (Control-𝛼).

For the construction of the Control-𝛽S-6xS strain we used the
low-copy number plasmid pHP13 [Haima et al., 1987]. Standard PCR
techniques were used to amplify a PcomS-cfp construct, that was cloned
into pHP13 using SmaI and BamHI restriction sites. This plasmid was
then transformed into the strain containing chromosomally integrated
Phyp-yfp (Control-𝛼).

The strain Norm-𝛽S was obtained by integrating the construct PcomS-
cfp into the amyE locus using the pDL30 plasmid (kind gift from Jonathan
Dworkin, Columbia University).

The Hyper-𝛼K-6xS and Hyper-𝛼K-75xS strains were obtained by
transformation of the plasmids pHP13::PcomS-comS and pDG148::PcomS-
comS, respectively, into the Hyper-𝛼K strain.

A.3 Discrete simulations of the competence circuit

Transcription

𝑃(𝑐)𝐾
𝑘􏷪−→ 𝑃(𝑐)𝐾 + 𝑚𝐾 (a)

𝑃𝐾
𝑓(𝐾,𝑘􏷫 ,𝑘𝑘 ,𝑛)−−−−−−−−→ 𝑃𝐾 + 𝑚𝐾 (b)

𝑃(𝑐)𝑆
𝑘􏷭−→ 𝑃(𝑐)𝑆 + 𝑚𝑆 (c)

𝑃𝑆
𝑔(𝐾,𝑘􏷮 ,𝑘𝑠 ,𝑝)−−−−−−−−→ 𝑃𝑆 + 𝑚𝑆 (d)

Translation

𝑚𝐾
𝑘􏷬−→ 𝑚𝐾 + 𝐾 (e)

𝑚𝑆
𝑘􏷯−→ 𝑚𝑆 + 𝑆 (f)

mRNA degradation

𝑚𝐾
𝑘􏷰−→ ∅, (g)

𝑚𝑆
𝑘􏷲−→ ∅, (h)

Protein degradation

𝐾
𝑘􏷱−→ ∅, (i)

𝑆
𝑘􏷪􏷩−−→ ∅, (j)

Competitive enzymatic degradation

𝑀𝑒𝑐𝐴 + 𝐾
𝑘􏷪􏷪/􏹉−−−→ 𝑀𝑒𝑐𝐴𝐾 , (k)

𝑀𝑒𝑐𝐴𝐾
𝑘−􏷪􏷪−−−→ 𝑀𝑒𝑐𝐴 + 𝐾, (l)

𝑀𝑒𝑐𝐴𝐾
𝑘􏷪􏷫−−→ 𝑀𝑒𝑐𝐴, (m)

𝑀𝑒𝑐𝐴 + 𝑆
𝑘􏷪􏷬/􏹉−−−→ 𝑀𝑒𝑐𝐴𝑆, (n)

𝑀𝑒𝑐𝐴𝑆
𝑘−􏷪􏷬−−−→ 𝑀𝑒𝑐𝐴 + 𝑆, (o)

𝑀𝑒𝑐𝐴𝑆
𝑘􏷪􏷭−−→ 𝑀𝑒𝑐𝐴. (p)

Table A.1: Set of reactions for the
discrete competence circuit. Adapted
from [Espinar et al., 2013].

Discrete simulations of the competence circuit were performed using
Gillespie’s first reaction method [Gillespie, 1977]. The simulated bio-
chemical reactions are detailed in Table A.1. In this table, 𝑃(𝑐)𝑖 and 𝑃𝑖 are
the constitutive and regulated promoters of their corresponding genes
(𝐾 for ComK and 𝑆 for ComS), 𝐾 and 𝑆 are the number of ComK and
ComS molecules, respectively, 𝑚𝐾 and 𝑚𝑆 are the mRNAs for ComK
and ComS, respectively, 𝑘𝑖 are the reaction rates and Ω represents a vol-
ume factor, which we take to be equal to 1molec/nM [Süel et al., 2007].
The transcriptional regulation of each gene is represented by the follow-
ing Hill functions:

𝑓(𝐾, 𝑘􏷡, 𝑘𝑘, 𝑛) =
𝑘􏷡(𝐾/Ω)𝑛
𝑘𝑛𝑘 + (𝐾/Ω)𝑛

, 𝑔(𝐾, 𝑘􏷤, 𝑘𝑠, 𝑝) =
𝑘􏷤

1 + (𝐾/(Ω𝑘𝑠))𝑝
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where 𝑘𝑘 (𝑘𝑠) represent the concentration of ComK for which the acti-
vation of ComK (repression of ComS) is half-maximal. The number of
MecA molecules is conserved, here we assumed it to be equal to 1000
molecules. The values of the reaction rates, which are compatible with
the values of the parameters of the deterministic model according to the
conversion rules given in [Süel et al., 2007], are listed in Table A.2.

Par. Value Units Par. Value Units

𝑘􏷪 􏷥.􏷡􏷤 × 􏷠􏷟−􏷮 s−􏷪 𝑘􏷪􏷩 􏷟.􏷟􏷟􏷟􏷠 s−􏷪

𝑘􏷫 􏷟.􏷠􏷤􏷥 􏷡􏷤 s−􏷪 𝑘􏷪􏷪 􏷠.􏷟􏷡 × 􏷠􏷟−􏷯 s−􏷪

𝑘􏷬 􏷟.􏷡 s−􏷪 𝑘−􏷪􏷪 􏷟.􏷟􏷟􏷟􏷤 s−􏷪

𝑘􏷭 􏷟.􏷟 s−􏷪 𝑘􏷪􏷫 􏷟.􏷟􏷡􏷤 s−􏷪

𝑘􏷮 􏷟.􏷟􏷟􏷟 􏷡􏷤 s−􏷪 𝑘􏷪􏷬 􏷢.􏷤 × 􏷠􏷟−􏷯 s−􏷪

𝑘􏷯 􏷟.􏷡 s−􏷪 𝑘−􏷪􏷬 􏷤 × 􏷠􏷟−􏷮 s−􏷪

𝑘􏷰 􏷟.􏷟􏷟􏷤 s−􏷪 𝑘􏷪􏷭 􏷡 × 􏷠􏷟−􏷮 s−􏷪

𝑘􏷱 􏷟.􏷟􏷟􏷟􏷠 s−􏷪 𝑘𝑘 􏷤􏷟􏷟􏷟 molec
𝑘􏷲 􏷟.􏷟􏷟􏷤 s−􏷪 𝑘𝑠 􏷠􏷤􏷥􏷡 molec

Table A.2: Values of the reaction rates
used in the stochastic simulations of
the competence circuit. Adapted from
[Espinar et al., 2013].

Strain name Genotype Reference
V10 AmyE::PcomG-cfp-PcomS-yfp [Süel et al., 2006]
6xS AmyE::PcomG-cfp-PcomS-yfp

pHP13::PcomS-comS [Süel et al., 2007]
75xS AmyE::PcomG-cfp-PcomS-yfp

pDG148::PcomS-comS This study
Hyper-𝛼K AmyE::Phyp-comK

SacA::PcomG-cfpPcomS-yfp This study
Hyper-𝛼K-6xS AmyE::Phyp-comK

SacA::PcomG-cfpPcomS-yfp
pHP13::PcomS-comS This study

Hyper-𝛼K-75xS AmyE::Phyp-comK
SacA::PcomG-cfpPcomS-yfp
pDG148::PcomS-comS This study

KG AmyE::PcomG-cfp-PcomK-yfp [Süel et al., 2006]
Control-𝛼 AmyE::Phyp-yfp [Süel et al., 2007]
Control-𝛽S-6xS AmyE::Phyp-yfp

pHP13::PcomS-cfp This study
Control-𝛽S-75xS AmyE::Phyp-yfp

pDG148::PcomS-cfp This study
Norm-𝛽S AmyE::PcomS-cfp This study

Table A.3: Strains used in the work
explained in Chapter 2. Adapted from
[Espinar et al., 2013].

Strain name 􏷠􏷤 h SEM n 􏷡􏷟 h SEM n 􏷢􏷟 h SEM n
KG 􏷥.􏷠􏷡 􏷠.􏷨􏷨 􏷦􏷦 􏷣.􏷥􏷢 􏷡.􏷡􏷤 􏷤􏷡 - - -
Control-𝛼 􏷟 µm IPTG 􏷢.􏷠􏷣 􏷟.􏷧􏷦 􏷠􏷠􏷧 􏷠.􏷦􏷨 􏷟.􏷧􏷠 􏷠􏷟􏷦 􏷠.􏷤􏷥 􏷟.􏷦􏷨 􏷣􏷧
Control-𝛼 􏷢 µm IPTG 􏷧.􏷢􏷡 􏷠.􏷨􏷣 􏷠􏷥􏷟 􏷦.􏷡􏷡 􏷠.􏷧􏷦 􏷡􏷤􏷠 􏷥.􏷡􏷦 􏷠.􏷦􏷟 􏷧􏷥
Control-𝛼 􏷤 µm IPTG 􏷠􏷣.􏷢􏷨 􏷣.􏷢􏷣 􏷡􏷟􏷦 􏷠􏷠.􏷠􏷤 􏷡.􏷧􏷠 􏷠􏷢􏷠 􏷠􏷠.􏷣􏷣 􏷢.􏷣􏷦 􏷤􏷤
Control-𝛼 􏷠􏷟 µm IPTG 􏷢􏷥.􏷢􏷠 􏷠􏷟.􏷨􏷧 􏷡􏷠􏷦 􏷡􏷦.􏷠􏷣 􏷥.􏷨􏷥 􏷡􏷟􏷢 􏷡􏷤.􏷥􏷨 􏷥.􏷧􏷡 􏷦􏷢
Control-𝛼 􏷠􏷟􏷟 µm IPTG 􏷠􏷡􏷥.􏷢􏷟 􏷢􏷟.􏷠􏷣 􏷡􏷠􏷣 􏷠􏷣􏷠.􏷠􏷢 􏷢􏷠.􏷠􏷥 􏷡􏷤􏷟 􏷠􏷢􏷨.􏷨􏷢 􏷡􏷢.􏷡􏷤 􏷨􏷥

Table A.4: Fluorescence of control
strains at 􏷟, 􏷢, 􏷤, 􏷠􏷟 and 􏷠􏷟􏷟 𝜇M of
IPTG concentration, at 􏷠􏷤, 􏷡􏷟 and
􏷢􏷟 h (in arbitrary units). Adapted from
[Espinar et al., 2013].
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IPTG (𝜇M) 𝛽𝑠 = 􏷠 (n) Prob. (%) SEM 𝛽𝑠 = 􏷥.􏷤 (n) Prob. (%) SEM 𝛽𝑠 = 􏷦􏷤 (n) Prob. (%) SEM
wt 􏷠􏷠/􏷤􏷢􏷣 􏷡.􏷡􏷥 􏷟.􏷡􏷥 􏷢􏷧/􏷦􏷧􏷠 􏷣.􏷨􏷟 􏷟.􏷣􏷡 􏷡􏷣􏷢/􏷠􏷣􏷧􏷤 􏷠􏷥.􏷧􏷥 􏷠.􏷢􏷤
􏷟 􏷠􏷡/􏷢􏷧􏷧 􏷢.􏷢􏷦 􏷟.􏷢􏷨 􏷣􏷥/􏷡􏷣􏷢 􏷠􏷧.􏷟􏷤 􏷡.􏷠􏷦 NA 􏷠􏷟􏷟.􏷟􏷟 NA
􏷢 􏷨􏷤/􏷤􏷣􏷥 􏷠􏷦.􏷢􏷨 􏷠.􏷤􏷥 􏷠􏷦􏷤/􏷢􏷡􏷨 􏷤􏷣.􏷢􏷥 􏷢.􏷥􏷦 NA 􏷠􏷟􏷟.􏷟􏷟 NA
􏷤 􏷣􏷥􏷣/􏷥􏷨􏷤 􏷥􏷣.􏷨􏷤 􏷣.􏷟􏷢 NA 􏷠􏷟􏷟.􏷟􏷟 NA NA 􏷠􏷟􏷟.􏷟􏷟 NA
􏷠􏷟 􏷠􏷢􏷠/􏷠􏷨􏷢 􏷥􏷦.􏷨􏷟 􏷡.􏷧􏷥 NA 􏷠􏷟􏷟.􏷟􏷟 NA NA 􏷠􏷟􏷟.􏷟􏷟 NA
􏷠􏷟􏷟 NA 􏷠􏷟􏷟.􏷟􏷟 NA NA 􏷠􏷟􏷟.􏷟􏷟 NA NA 􏷠􏷟􏷟.􏷟􏷟 NA

Table A.5: Probability of initiation
for varying 𝛼𝑘 and 𝛽𝑠. n = fraction of
initiation of competence events with
respect to all cell divition events; SEM
= standard error of the mean; wt = wild
type; NA = not applicable, all cells enter
in competence. Adapted from [Espinar
et al., 2013].

IPTG (𝜇M) 𝛽𝑠 = 􏷠 (n) Prob. (%) SEM 𝛽𝑠 = 􏷥.􏷤 (n) Prob. (%) SEM 𝛽𝑠 = 􏷦􏷤 (n) Prob. (%) SEM
wt 􏷧􏷧/􏷠􏷣􏷦 􏷥􏷠.􏷠􏷡 􏷢.􏷣􏷠 􏷤􏷦/􏷠􏷡􏷡 􏷣􏷧.􏷦􏷦 􏷣.􏷧􏷥 􏷠􏷡/􏷡􏷧􏷦 􏷣.􏷠􏷡 􏷟.􏷢􏷡
􏷟 􏷠􏷥/􏷡􏷥 􏷥􏷡.􏷠􏷣 􏷢.􏷤􏷣 􏷠􏷡/􏷢􏷧􏷟 􏷢.􏷠􏷨 􏷟.􏷤􏷦 􏷠􏷟/􏷢􏷣􏷟 􏷡.􏷨􏷤 􏷟.􏷠􏷦
􏷢 􏷣􏷤/􏷦􏷣 􏷥􏷠.􏷤􏷤 􏷡.􏷣􏷨 􏷠􏷢/􏷣􏷟􏷤 􏷢.􏷠􏷧 􏷟.􏷤􏷣 􏷨/􏷢􏷥􏷟 􏷡.􏷤􏷥 􏷟.􏷤􏷥
􏷤 􏷥􏷢/􏷠􏷠􏷤 􏷤􏷤.􏷢􏷨 􏷢.􏷦􏷡 􏷠􏷡/􏷣􏷢􏷤 􏷡.􏷦􏷨 􏷟.􏷡􏷨 􏷦/􏷢􏷤􏷟 􏷡.􏷟􏷠 􏷠.􏷧
􏷠􏷟 􏷤􏷧/􏷠􏷟􏷢 􏷤􏷥.􏷦􏷠 􏷡.􏷨􏷤 NA 􏷟.􏷟􏷟 NA NA 􏷟.􏷟􏷟 NA
􏷠􏷟􏷟 NA 􏷟.􏷟􏷟 NA NA 􏷟.􏷟􏷟 NA NA 􏷟.􏷟􏷟 NA

Table A.6: Probability of exit for vary-
ing 𝛼𝑘 and 𝛽𝑠. n = fraction of competent
cells that successfully leave the compe-
tence state with respect to all competence
events; SEM = standard error of the mean;
wt = wild type; NA = not applicable, cells
do not exit competence. Adapted from
[Espinar et al., 2013].

IPTG (𝜇M) 𝛽𝑠 = 􏷠 (n) Prob. (%) SEM 𝛽𝑠 = 􏷥.􏷤 (n) Prob. (%) SEM 𝛽𝑠 = 􏷦􏷤 (n) Prob. (%) SEM
wt 􏷥/􏷡􏷠􏷢 􏷡.􏷢􏷧 􏷟.􏷨􏷡 􏷨/􏷡􏷣􏷟 􏷡.􏷨􏷥 􏷠.􏷟􏷠 􏷧/􏷠􏷨􏷡 􏷡.􏷨􏷢 􏷠.􏷟􏷨
􏷟 􏷦/􏷠􏷡􏷠 􏷢.􏷣􏷦 􏷠.􏷤􏷧 􏷡/􏷥􏷥 􏷢.􏷟􏷥 􏷟.􏷡􏷧 􏷡/􏷦􏷧 􏷡.􏷤􏷦 􏷟.􏷟􏷦
􏷢 􏷠􏷤/􏷦􏷤 􏷡􏷠.􏷡􏷟 􏷣.􏷣􏷨 􏷠/􏷤􏷡 􏷡.􏷟􏷧 􏷡.􏷟􏷧 􏷠/􏷣􏷡 􏷡.􏷟􏷧 􏷡.􏷟􏷧
􏷤 􏷧􏷣/􏷡􏷥􏷡 􏷢􏷢.􏷟􏷡 􏷢.􏷤􏷨 􏷡/􏷦􏷢 􏷡.􏷦􏷦 􏷟.􏷡􏷦 􏷠/􏷥􏷡 􏷠.􏷤􏷥 􏷠.􏷤􏷥
􏷠􏷟 􏷥􏷨/􏷠􏷣􏷡 􏷤􏷟.􏷣􏷢 􏷡.􏷨􏷨 NA 􏷟.􏷟􏷟 NA NA 􏷟.􏷟􏷟 NA
􏷠􏷟􏷟 NA 􏷟.􏷟􏷟 NA NA 􏷟.􏷟􏷟 NA NA 􏷟.􏷟􏷟 NA

Table A.7: Probability of reinitiation
for varying 𝛼𝑘 and 𝛽𝑠. n = fraction
of competent cells that after leaving
competence, go back into this state
within two cell cycles, with respect to
all competence events; SEM = standard
error of the mean; wt = wild type; NA
= not applicable, cells do not reinitiate
competence. Adapted from [Espinar et al.,
2013].



B
Materials and Methods for Chapter 3

In this Appendix we have included a compilation of supporting informa-
tion for the work exposed in Chapter 3.

B.1 Strain construction

E. coli strain DH5𝛼 was used to clone all plasmids using standard molec-
ular cloning techniques. In turn, plasmids constructs were integrated
into 𝐵.𝑠𝑢𝑏𝑡𝑖𝑙𝑖𝑠 chromosomal loci via double crossover using standard
techniques. All strains were constructed from PY79 wild-type 𝐵.𝑠𝑢𝑏𝑡𝑖𝑙𝑖𝑠.
Many starting strains/genomic DNA were kind gifts of C.W. Price (see
references in Table B.3).

Plasmid name Description Source
1 ppsB::P𝑡𝑟𝑝𝐸-mCherry Erm𝑅 This plasmid provides uniform expression The original integration

from mCherry from a 𝜎𝐴 dependent promoter, so that vector was a gift
time-lapse images can be automatically segmented during from A. Eldar [Eldar et al., 2009]
movie analysis. The 𝜎𝐴 dependent promoter used is the one
from TrpE gene; it was cloned into a vector with ppsB
homology regions [Locke et al., 2011]

2 sacA::P𝑠𝑖𝑔□-yfp Cm𝑅 Target promoters of each alternative sigma [Eldar et al., 2009]
factor □ = B, D, L, M, W, X, Y, were cloned into
the EcoRI/BamHI sites of AEC127.

3 amyE::P𝑠𝑖𝑔□-3 × cfp Spect𝑅 Target promoters of each alternative sigma pDR-111 was a gift
factor □ = B, D, L, M, W, X, Y, were cloned into of D. Rudner (Harvard)
the EcoRI/NheI sites of plasmid pDR-111.

4 amyE::Pℎ𝑦𝑝𝑒𝑟𝑠𝑝𝑎𝑛𝑘-sigB Spect𝑅 𝜎𝐵 gene followed by a 5’ transcriptional pDR-111 was a gift
terminator was cloned behind the Pℎ𝑦𝑝𝑒𝑟𝑠𝑝𝑎𝑛𝑘 of D. Rudner (Harvard)
IPTG-inducible promoter in plasmid
pDR-111.

5 pyrD::P𝑠𝑖𝑔𝐵-cfp Kan𝑅 𝜎𝐵 target promoter followed by CFP [Middleton and Hofmeister, 2004]
fluorescent protein gene was cloned into
the EcoRI/BseRI site of the ECE171 plasmid.

Table B.1: Plasmid list. Adapted from
J.C.W.Locke and J.Park [Locke et al.,
2014].
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Target promoter Sequence Reference
𝜎𝐵 5’-GTTTCTTGGAGCGTCCTGATCTGCAGAAGCTCATT Sequence was chosen from the

GAGGAACATATGTGTTCCTCTGCGCAGGAAATGGTCAAAAAC 𝜎𝐵 binding site upstream
ATTTATGACAGCCTCCTCAAATTGCAGGATTTTCAGCTT of the rsbV gene
CACGATGATTTTACGTTAATTGTTTTGCGGAGAAAGGTT [Kalman et al., 1990, Boylan et al., 1993].
TAACGTCTGTCAGACGAGGGTATAAAGCAACT
AGTGATTTGAAGGAAAATTTG - 3’

𝜎𝐷 5’ – TTTTGCATTTTTCTTCAAAAAGTTTCAAAAA Sequence was chosen from the
TGCCGAAAAGAAAGGAGAAAAAACAGAAATTCTG – 3’ 𝜎𝐷 binding site upstream

of the flgB gene [Estacio et al., 1998].

𝜎𝐿 5’ – AATATGGCCTTGCAAATGAAGGCATGCAATAATTT Sequence was chosen from the
GCAGAATAAACGCAAACATCTGCACGAATGTTTCGGTATACCT 𝜎𝐿 binding site upstream
GGTATGACAGCACCCTTAAGAGCTGGCATGGAA of the ptb gene [Debarbouille et al., 1999].
CTTGCATAATAAAAGGCGGAG – 3’

𝜎𝑀 5’ – TTTGCATGTAATGTGCAACTTTAAACC Sequence was chosen from the
TTTCTTATGCGTGTATAACATAGAGG-3’ 𝜎𝑀 binding site upstream

of the sigM gene [Horsburgh and Moir, 1999].

𝜎𝑊 5’ – TTAAGAATGAAACCTTTCTGTAAAAG Sequence was chosen from the
AGACGTATAAATAACGACGAAAAAAAG – 3’ 𝜎𝑊 binding site upstream

of the ydbS gene [Cao et al., 2002].

𝜎𝑋 5’ – TTGTAATGTAACTTTTCAAGCTATTC Sequence was chosen from the
ATACGACAAAAAAGTGAACGGAGGG – 3’ 𝜎𝑋 binding site upstream

of the sigX gene [Huang et al., 1997].

𝜎𝑌 5’ – GAATTGTAAAAAAGATGAACGCTTTT Sequence was chosen from the
GAATCCGGTGTCGTCTCATAAGGCAGAAAAACA – 3’ 𝜎𝑌 binding site upstream

of the sigY gene [Cao et al., 2003].

Table B.2: Target promoters of sigma
factors. Adapted from J.C.W.Locke and
J.Park [Locke et al., 2014].



mater ia l s and methods for Chapter 3 85

Strain Genotype Construction Procedure Used in Reference
name

0 PY79 trpC2 (omitted in the BGSC 1A776
derived strains below)

1 JP1 ppsB::P𝑡𝑟𝑝𝐸-mCherry Phleo𝑅 Plasmid (􏷠)→ PY79 [Locke et al., 2011]
Antibiotic cassette switched from
Erm𝑅 to Phleo𝑅

2 JP2 JP1; ytvA::Neo𝑅 JJB751→ JP1 (with Neo𝑅 selection) [Locke et al., 2011]
3 JP3 JP2; sacA::P𝑠𝑖𝑔𝐵-yfp Cm𝑅 Plasmid (􏷡)→ JP2 Figures 3.2 to 3.4 and B.1 to B.3 This work
4 JP4 JP2; sacA::P𝑠𝑖𝑔𝑊 -yfp Cm𝑅 Plasmid (􏷡)→ JP2 Figures 3.2 to 3.4 and B.1 to B.3 This work
5 JP5 JP2; sacA::P𝑠𝑖𝑔𝐷-yfp Cm𝑅 Plasmid (􏷡)→ JP2 Figures 3.2 to 3.4 and B.1 to B.3 This work
6 JP6 JP2; sacA::P𝑠𝑖𝑔𝐿-yfp Cm𝑅 Plasmid (􏷡)→ JP2 Figures 3.2, 3.4 and B.1 to B.3 This work
7 JP7 JP2; sacA::P𝑠𝑖𝑔𝑌-yfp Cm𝑅 Plasmid (􏷡)→ JP2 Figures 3.2 to 3.4 and B.1 to B.3 This work
8 JP8 JP2; sacA::P𝑠𝑖𝑔𝑀-yfp Cm𝑅 Plasmid (􏷡)→ JP2 Figures 3.2 to 3.4 and B.1 to B.3 This work
9 JP9 JP2; sacA::P𝑠𝑖𝑔𝑋-yfp Cm𝑅 Plasmid (􏷡)→ JP2 Figures 3.2 to 3.4 and B.1 to B.3 This work
10 JP10 JP2; sacA::P𝑠𝑖𝑔𝐴-yfp Cm𝑅 Plasmid (􏷡)→ JP2 Figure 3.5 This work

11 JP11 JP3; amyE::P𝑠𝑖𝑔𝐵-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP3 Figure 3.6 This work
12 JP12 JP3; amyE::P𝑠𝑖𝑔𝐷-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP3 Figure 3.6 This work
13 JP13 JP3; amyE::P𝑠𝑖𝑔𝑀-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP3 Figure 3.6 This work
14 JP14 JP3; amyE::P𝑠𝑖𝑔𝑋-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP3 Figure 3.6 This work
15 JP15 JP3; amyE::P𝑠𝑖𝑔𝑊 -3 × cfp Spect𝑅 Plasmid (􏷢)→ JP3 Figure 3.6 This work
16 JP16 JP4; amyE::P𝑠𝑖𝑔𝐵-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP4 Figure 3.6 This work
17 JP17 JP4; amyE::P𝑠𝑖𝑔𝐷-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP4 Figure 3.6 This work
18 JP18 JP4; amyE::P𝑠𝑖𝑔𝑀-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP4 Figure 3.6 This work
19 JP19 JP4; amyE::P𝑠𝑖𝑔𝑋-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP4 Figure 3.6 This work
20 JP20 JP4; amyE::P𝑠𝑖𝑔𝑊 -3 × cfp Spect𝑅 Plasmid (􏷢)→ JP4 Figure 3.6 This work
21 JP21 JP5; amyE::P𝑠𝑖𝑔𝐵-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP5 Figure 3.6 This work
22 JP22 JP5; amyE::P𝑠𝑖𝑔𝐷-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP5 Figure 3.6 This work
23 JP23 JP5; amyE::P𝑠𝑖𝑔𝑀-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP5 Figure 3.6 This work
24 JP24 JP5; amyE::P𝑠𝑖𝑔𝑋-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP5 Figure 3.6 This work
25 JP25 JP5; amyE::P𝑠𝑖𝑔𝑊 -3 × cfp Spect𝑅 Plasmid (􏷢)→ JP5 Figure 3.6 This work
26 JP26 JP8; amyE::P𝑠𝑖𝑔𝐵-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP10 Figure 3.6 This work
27 JP27 JP8; amyE::P𝑠𝑖𝑔𝐷-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP10 Figure 3.6 This work
28 JP28 JP8; amyE::P𝑠𝑖𝑔𝑀-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP10 Figure 3.6 This work
29 JP29 JP8; amyE::P𝑠𝑖𝑔𝑋-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP10 Figure 3.6 This work
30 JP30 JP8; amyE::P𝑠𝑖𝑔𝑊 -3 × cfp Spect𝑅 Plasmid (􏷢)→ JP10 Figure 3.6 This work
31 JP31 JP9; amyE::P𝑠𝑖𝑔𝐵-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP11 Figure 3.6 This work
32 JP32 JP9; amyE::P𝑠𝑖𝑔𝐷-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP11 Figure 3.6 This work
33 JP33 JP9; amyE::P𝑠𝑖𝑔𝑀-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP11 Figure 3.6 This work
34 JP34 JP9; amyE::P𝑠𝑖𝑔𝑋-3 × cfp Spect𝑅 Plasmid (􏷢)→ JP11 Figure 3.6 This work
35 JP35 JP9; amyE::P𝑠𝑖𝑔𝑊 -3 × cfp Spect𝑅 Plasmid (􏷢)→ JP11 Figure 3.6 This work

36 JP36 JJB213; rsbU-rsbX::Tet𝑅 􏸷rsbU-rsbX Tet𝑅 recombination This work
at the rsbU-rsbX locus and [Locke et al., 2011]

37 JP37 JP1; rsbU-rsbX::Tet𝑅 JP36→ JP1 (with Tet𝑅 selection This work
38 JP38 JP37; amyE::Pℎ𝑦𝑝𝑒𝑟𝑠𝑝𝑎𝑛𝑘-sigB Plasmid (4)→ JP37 This work

Spect𝑅

39 JP39 JP38; pyrD::P𝑠𝑖𝑔𝐵-cfp Kan𝑅 Plasmid (7)→ JP38 This work
40 JP40 JP39; sacA::P𝑠𝑖𝑔𝑊 -yfp Cm𝑅 Plasmid (2)→ JP39 Figure 3.7 This work

Table B.3: Strain information and
construction for sigma factors. In
the column labeled as ”Construction
Procedure” the ’→’ symbol indicates
an integration event from plasmid or
genomic DNA into the strain after the
arrow. Adapted from J.C.W.Locke and
J.Park [Locke et al., 2014].
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B.2 Sample growth and imaging

The following passages have been quoted verbatim from [Locke et al.,
2014] Supplementary Information:

B.2.1 Sample preparation

Samples were prepared following a time-lapse microscopy
protocol described in [Young et al., 2012]. Between days,
relative lamp intensity levels were monitored by taking
an image of fluorescent beads and measuring their mean
intensity. Exposure times were then adjusted to keep per
exposure light levels constant between experiments. For
snapshots, cells were spotted on solidified 1.5% low melt
agarose in PBS pads and imaged. Images were then analyzed
via custom MATLAB software, where mean cell intensities
were background corrected using strain JP2, which has
mCherry expression for segmentation, but lacks YFP or CFP
expression. For most time-lapse movies (unless otherwise
specified), cells were spotted on solidified 1.5% low
melt agarose in SMM pads. These prepared pads were then
enclosed in coverglass bottom dishes (Wilco #HBSt-5040),
sealed with parafilm or grease to prevent evaporation,
and then imaged.

B.2.2 Growth conditions

SMM is derived from Spizizen’s minimal media [Spizizen,
1958], which uses 0.5% glucose as the carbon source,
and tryptophan (50 𝜇g/mL) as an amino-acid supplement.
Mycophenolic acid (MPA) was dissolved in DMSO and diluted
1000 fold into working concentrations in liquid and pad
conditions. IPTG was dissolved in H􏷡O and diluted 1000
fold into working concentrations. Concentrations of 0.1%
DMSO were not found to affect cell growth or 𝜎𝐵 activity.

Stationary phase (conditioned medium) experiments
Conditioned Medium Preparation: Conditioned medium was

prepared growing PY79 wild-type B. subtilis strain in 2 mL
of LB at 37∘C for 4.5 h. Then, this culture was diluted
in 23 mL of fresh LB and was grown at 37∘C for 17.5h.
After this, cells were removed by centrifugation (at 5000
rpm for 10 min) and the supernatant was sterilized by
filtration (using 0.2 𝜇m pore-size filters) and stored
at −80∘C. This conditioned media protocol was defined in
[Espinar et al., 2013].

Time-lapse microscopy: Cells were grown from glycerol
stocks in LB until OD􏷥􏷟􏷟 1.5-3.5, then diluted back into
LB (1:10) in PBS to an OD􏷥􏷟􏷟 of 0.05. This culture was
grown at 37∘C for a minimum of 4 hours and a maximum of
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7, when cells were diluted to an OD􏷥􏷟􏷟 of 0.8-0.1 with
conditioned medium (1:45) in PBS for imaging. 1.5% low
melting agarose pads were prepared with conditioned medium
(1:45) in PBS. After allowing cells to equilibrate for 2-3
hours, time-lapse acquisition was started.

Mycophenolic Acid (MPA) experiments
Liquid snapshots: Cells were grown overnight from

glycerol stocks in SMM to mid-log (OD 0.3-0.8) at 30∘C,
then diluted back in SMM to an OD􏷥􏷟􏷟 of 0.01 the next
morning. After regrowing to OD􏷥􏷟􏷟 of 0.1 at 37∘C, varying
concentrations of MPA (MP Biomedicals cat #194172), dissolved
in 1000 fold DMSO concentrate, were added to separate
cultures. After 2.5 hours of MPA exposure, cells were
imaged as described above.

Time-lapse microscopy: Protocol was similar to liquid
snapshot protocol above, except when cells regrew to OD􏷥􏷟􏷟
of 0.1, cells were then spotted on SMM 1.5% low melt
agarose pads containing various concentrations of MPA.
MPA pads were prepared by taking 1 mL of the SMM/agarose
mixture and adding it to 1 𝜇L of various MPA stock concentrations.
After allowing cells to equilibrate after 2-3 hours,
time-lapse acquisition was started.

B.2.3 Quantitative analysis of time-lapse movies

Quantitative movie analysis used custom image analysis
code in MATLAB, described in previous work [Rosenfeld
et al., 2005]. [...] We characterized the amplitude,
duration and frequency of the pulses using custom MATLAB
software [Locke et al., 2011]. The pulse amplitude and
duration were obtained by calculating the pulse height
and half‐maximum width, respectively. Pulse frequency
was defined as the number of pulses per hour. To prevent
erroneous detection of non‐pulse fluctuations in the
traces, we imposed two criteria for pulse detection:
First, we rejected pulses below a minimum amplitude cutoff.
Second, we rejected pulses which contributed less than
thirty percent of total gene expression over their duration,
i.e. pulses that were relatively small compared to the
basal expression rates.

B.2.4 Competition assay

For the competition assay, strain JP40 was inoculated from glycerol
stock into SMM minimal media (plus glucose, tryptophan, 40 𝜇g/mL
uracil and trace elements), and then grown overnight at 30∘C. The
following morning, cultures were diluted to 0.01 OD􏷥􏷟􏷟 in
SMM, and then regrown to 0.1 OD􏷥􏷟􏷟 at 37∘C. After regrowth,
the culture was split in two. One culture received MPA
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(40 𝜇g/mL) and IPTG (100 𝜇M), while the other culture
received only MPA. All cultures were then grown at 37∘C
for an additional 2 h. Following this 2 h incubation,
cells were harvested for microscopy (using imaging protocol
described above).

B.2.5 Microscopy

All data were acquired using a CoolSnap HQ2 attached to a
Nikon inverted TI-E microscope, equipped with the Nikon
Perfect Focus System (PFS) hardware autofocus module.
Molecular Devices commercial software (Metamorph 7.5.6.0)
controlled microscope, camera, motorized stage (ASI instruments),
and epifluorescent and brightfield shutters (Sutter Instruments).
Epi-illumination was provided by a 300 W Xenon light
source (LamdbaLS, Sutter instruments) connected via a
liquid light guide into the illuminator of the scope.
Phase contrast illumination was provided by a halogen
bulb to allow verification of cell focus and cell shape.
Temperature control was achieved using an enclosed microscope
chamber (Nikon) attached to a temperature sensitive heat
exchanger set to 37∘C. All experiments used a Phase 100x
Plan Apo (NA 1.4) objective. Chroma filter sets used
were as follows: #41027 (mCh), #41028 (YFP), and #31044v2
(CFP). The interval between consecutive imaging was 15-20
minutes.
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Figure B.1: Multiple sigma factors
pulse under energy stress conditions.
Alternative sigma factor reporter strains
were grown separately/individually in a
minimal medium containing 􏷣􏷟 𝜇g/ml
MPA. Each panel shows 􏷢 representative
time traces of a lineage with pulsatile
dynamics. Adapted from J.C.W.Locke
and J.Park [Locke et al., 2014].
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Figure B.2: No correlations observed
between sister cells. Blue histograms
show expected probabilities that a cell
pulses in the event that her twin cell
pulses, in a bootstrap model where sister
cell pulses are randomized. Red dashed
line indicates measured probability.
Adapted from J.C.W.Locke and J.Park
[Locke et al., 2014].
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Figure B.3: No correlations observed be-
tween a parent cell and its two daugh-
ters. The frequency of events where a
parent and subsequent child pulsed (red
dashed line) was compared to a boot-
strapped model (blue histogram) where
parent/child pulses were randomized. The
probability of pulses in generation n+􏷠 is
independent of the presence of pulses in
generation n. Adapted from J.C.W.Locke
and J.Park [Locke et al., 2014].
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B.3 Modelling sigma factor pulses

B.3.1 Ultrasensitivity model

Figure B.4 (panel A) shows the peak height variation (defined as the
dimensionless sigma factor concentration, 𝑆, maximum value minus
the minimum value) as a function of the degradation rates of 𝐴 (the
anti-sigma factor) and 𝑆 (considering 𝛿𝐴 = 𝛿𝑆 = 𝛿). Panel B of this
figure displays the maximum logarithmic slope for 6 different curves
𝑆𝑒𝑞(𝜇) corresponding to different values of 𝛿 (in Figure 3.10A, three
of the 𝑆𝑒𝑞(𝜇) curves considered here are plotted). Panel B allows us to
define an ultrasensitivity region for a given set of parameters by defining a
threshold value for 𝑆𝑒𝑞(𝜇) slope (shadowed region).
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Figure B.4: Characterization of the
ultrasensitivity region. (A) Peak height
variation (defined as the maximum
value of 𝑆minus the minimum one) as a
function of 𝛿𝑆 = 𝛿𝐴 = 𝛿. The parameter
values used here are the same as in
Figure 3.9 (except for the variation in 𝛿𝑆,
𝛿𝐴). (B) Maximum logarithmic slope for
􏷥 different curves 𝑆𝑒𝑞(𝜇) corresponding to
􏷥 values of 𝛿 (including the ones plotted
in Figure 3.10A). The parameter values
used are the ones shown in Figure 3.10A
plus 𝛿 = 􏷤 ⋅ 􏷠􏷟−􏷮, 􏷤 ⋅ 􏷠􏷟−􏷭, 􏷤. In both
figures, shadowed regions correspond to
the ultrasensitivity regime.

It is also worth to mention that in this system, under the ultrasensitiv-
ity regime, we can have bistability even though there is no cooperativity
in 𝑆 and 𝐴 productions (see Figure B.5).
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Figure B.5: Bifurcation diagram for the
ultrasensitivity model. This diagram
shows 𝑆 at the steady state (𝑆𝑒𝑞) versus
𝜑𝑆. Blue dots indicate stable fixed points,
whereas red dots represent unstable fixed
points. Parameter values for this diagram
are the following: 𝜑𝐴 = 􏷟.􏷟􏷠, 𝜌 = 􏷟.􏷦, 𝜇 =
􏷟.􏷟􏷦, 𝜒 = 􏷟.􏷧, 𝜉 = 􏷦, 𝛿𝑆 = 􏷟.􏷟􏷟􏷤, 𝛿𝐴 =
􏷟.􏷟􏷟􏷤.

Figure B.6 shows the time series for 𝑆(𝑡) and the anti-sigma produc-
tion rate, 𝜇(𝑡), for a simulation of the rescaled model for only one sigma
factor. We considered 𝜇(𝑡) = 𝜇􏷟𝑒𝜖(𝑡)/⟨𝑒𝜖(𝑡)⟩, where 𝜖(𝑡) is an Ornstein-
Uhlenbeck (OU) process with autocorrelation time 𝜏 = 1000 and an
intensity of noise 𝐷 = 0.1. The OU process was simulated using the
algorithm from [Fox et al., 1988], and the ODEs were numerically inte-
grated using the Heun algorithm for a colored noise [García-Ojalvo and
Sancho, 1999].
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As it can be seen in this figure, pulses in 𝑆(𝑡) are not a trivial reflection
of the dynamics of 𝜇(𝑡). Of course, due to the nature of the ultrasensi-
tivity mechanism, only when fluctuations surpass a certain threshold 𝑆
presents a pulse.
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Figure B.6: Comparing 𝑆 pulses with
noise in the dimensionless ultrasensi-
tivity model. Time series for 𝑆 and 𝑚𝑢
are plotted for a simulation of only one
sigma factor. Pulses in 𝑆 do not trivially
follow the noise. Parameter values con-
sidered in this simulation are 𝜑𝑆 = 􏷟.􏷟􏷟􏷢,
𝜑𝐴 = 􏷟.􏷟􏷟􏷠, 𝜉 = 􏷠􏷠, 𝜌 = 􏷟.􏷦, 𝜒 = 􏷟.􏷧,
𝛿𝑆 = 𝛿𝐴 = 􏷟.􏷟􏷟􏷤, and 𝜇(𝑡) = 𝜇􏷩𝑒𝜖(𝑡)/⟨𝑒𝜖(𝑡)⟩
where 𝜖(𝑡) is an Ornstein-Uhlenbeck
(OU) process with autocorrelation time
𝜏 = 􏷠􏷟􏷟􏷟 and intensity of noise 𝐷 = 􏷟.􏷠.
Where ⟨𝜇(𝑡)⟩ = 𝜇􏷩 = 􏷟.􏷟􏷦.

Table B.4 contains the set of discrete reactions for the ultrasensitivity
model. Time series for all species from a stochastic simulation consider-
ing only one sigma factor are shown in Figure B.7. Pulses in 𝐶(𝑡) follow
those in 𝑆(𝑡) thanks to a high unbinding rate (𝑘𝑟−). And pulses in 𝑆 are
due to a tight binding with its cognate anti-sigma factor (𝐴). Parameter
values used for simulations shown in Figures 3.11 and B.7 are listed in
Table B.5.

Basal productions Activated productions

∅
𝜙𝑠−→ 𝑆 (a) 𝐶

𝛽𝑠−→ 𝐶 + 𝑆 (h)

∅
𝜙𝑎−→ 𝐴 (b) 𝐶

𝛽𝑎(𝑡)−−−→ 𝐶 + 𝐴 (i)

∅ 𝛼−→ 𝑅 (c) Degradations/dilutions

Molecular titration 𝑆
𝜆𝑠−→ ∅ (j)

𝑆 + 𝐴
𝑘𝑎+−−→ 𝑋 (d) 𝐴

𝜆𝑎−→ ∅ (k)

𝑋
𝑘𝑎−−−→ 𝑆 + 𝐴 (e) 𝑅

𝜆𝑟−→ ∅ (l)

Holoenzyme formation 𝑋
𝜆𝑥−→ ∅ (m)

𝑆 + 𝑅
𝑘𝑟+−−→ 𝐶 (f) 𝐶

𝜆𝑐−→ ∅ (n)

𝐶
𝑘𝑟−−−→ 𝑆 + 𝑅 (g)

Table B.4: Set of reactions for the
stochastic ultrasensitivity model.

Par. Value Units Par. Value Units

𝜙𝑠 􏷡.􏷣􏷦 × 􏷠􏷟−􏷭 s−􏷪 𝛽𝑠 􏷟.􏷟􏷤 s−􏷪

𝜙𝑎 􏷧.􏷡􏷢 × 􏷠􏷟−􏷮 s−􏷪 𝛽􏷩𝑎 􏷟.􏷟􏷣􏷨􏷤 s−􏷪

𝛼 􏷣􏷟 s−􏷪 𝜆𝑠 􏷟.􏷟􏷟􏷤 s−􏷪

𝑘𝑎+ 􏷟.􏷟􏷢􏷟􏷦 s−􏷪 𝜆𝑎 􏷟.􏷟􏷟􏷤 s−􏷪

𝑘𝑎− 􏷟.􏷤 s−􏷪 𝜆𝑟 􏷟.􏷟􏷟􏷤 s−􏷪

𝑘𝑟+ 􏷟.􏷟􏷟􏷡 􏷥􏷦􏷣 s−􏷪 𝜆𝑥 􏷟.􏷟􏷟􏷤 s−􏷪

𝑘𝑟− 􏷤.􏷟 s−􏷪 𝜆𝑐 􏷟.􏷟􏷟􏷤 s−􏷪

Table B.5: Values of the reaction
rates used in the stochastic simula-
tions of the ultrasensitivity model.
𝛽𝑎(𝑡) = 𝛽􏷩𝑎𝑒𝜖(𝑡)/⟨𝑒𝜖(𝑡)⟩, where 𝜖(𝑡) is an
Ornstein-Uhlenbeck (OU) process
with autocorrelation time of the order
of the cell cycle duration (this is, 􏷡.􏷤 h
approximately) and intensity of noise
𝐷 = 􏷠􏷟􏷟.
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Figure B.7: Time traces for all species
from a stochastic simulation of the
ultrasensitive model for only one sigma
factor with noisy 𝛽𝑎. The number of
molecules for each species are plotted in
function of time. See Table B.5 for the
parameter values used in this simulation.
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B.3.2 Ligand model

Par. Value Units Par. Value Units

𝑘􏷪 􏷠 s−􏷪 𝑘􏷪􏷫 􏷢 × 􏷠􏷟−􏷭 s−􏷪

𝑘􏷫 􏷡.􏷣􏷥􏷧 × 􏷠􏷟−􏷭 s−􏷪 𝑘􏷪􏷬 􏷢 × 􏷠􏷟−􏷭 s−􏷪

𝑘􏷬 􏷠 × 􏷠􏷟−􏷭 s−􏷪 𝑘􏷪􏷭 􏷢 × 􏷠􏷟−􏷮 s−􏷪

𝑘𝑙+/􏸵 􏷟.􏷢 s−􏷪 𝑘􏷪􏷮 􏷢 × 􏷠􏷟−􏷭 s−􏷪

𝑘𝑙− 􏷤 × 􏷠􏷟−􏷭 s−􏷪 𝑘􏷪􏷯 􏷢 × 􏷠􏷟−􏷭 s−􏷪

𝑘𝑎+/􏸵 􏷟.􏷣 s−􏷪

𝑘𝑎− 􏷟.􏷟􏷟􏷠 s−􏷪 𝐾􏷪 􏷟.􏷟􏷟􏷠 s−􏷪

𝑘𝑟+/􏸵 􏷟.􏷟􏷤 s−􏷪 𝐾􏷫 􏷟.􏷟􏷠 s−􏷪

𝑘𝑟− 􏷤.􏷟 s−􏷪 𝐾􏷬 􏷟.􏷟􏷟􏷠 s−􏷪

𝛽𝑆 􏷟.􏷟􏷟􏷠 s−􏷪 𝐾􏷭 􏷠.􏷟 s−􏷪

𝛽𝐴 􏷟.􏷟􏷟􏷠􏷤 s−􏷪 𝐾􏷮 􏷟.􏷟􏷟􏷠 s−􏷪

𝑘􏷪􏷪 􏷢 × 􏷠􏷟−􏷭 s−􏷪 𝐾􏷯 􏷢 × 􏷠􏷟−􏷮 s−􏷪

Table B.6: Values of the reaction rates
used in the stochastic simulations of
the ligand model. Note that rates of
bimolecular reactions are divided by the
volume factor 􏸵, that relates number of
molecules in the stochastic description
with concentrations in the deterministic
one. In bacteria, 􏸵 ≈ 􏷠molec nm−􏷪 [Süel
et al., 2007].

Par. Value Units Par. Value Units

𝑘􏷪 􏷤 nm s−􏷪 𝛽𝐴 􏷟.􏷟􏷟􏷠􏷤 s−􏷪

𝑘􏷫 􏷡.􏷣􏷥􏷧 × 􏷠􏷟−􏷭 nm s−􏷪 𝑘􏷪􏷪 􏷢 × 􏷠􏷟−􏷭 s−􏷪

𝑘􏷬 􏷠 × 􏷠􏷟−􏷭 nm s−􏷪 𝑘􏷪􏷫 􏷢 × 􏷠􏷟−􏷭 s−􏷪

𝑘𝑙+ 􏷟.􏷢 nm−􏷪 s−􏷪 𝑘􏷪􏷬 􏷢 × 􏷠􏷟−􏷭 s−􏷪

𝑘𝑙− 􏷤 × 􏷠􏷟−􏷭 s−􏷪 𝑘􏷪􏷭 􏷢 × 􏷠􏷟−􏷮 s−􏷪

𝑘𝑎+ 􏷟.􏷣 nm−􏷪 s−􏷪 𝑘􏷪􏷮 􏷢 × 􏷠􏷟−􏷭 s−􏷪

𝑘𝑎− 􏷟.􏷟􏷟􏷠 s−􏷪 𝑘􏷪􏷯 􏷢 × 􏷠􏷟−􏷭 s−􏷪

𝑘𝑟+ 􏷟.􏷤 nm−􏷪 s−􏷪 𝑘􏷪􏷰 􏷢 × 􏷠􏷟−􏷭 s−􏷪

𝑘𝑟− 􏷤 × 􏷠􏷟−􏷭 s−􏷪 𝐿 burst freq. 􏷢 × 􏷠􏷟−􏷭 s−􏷪

𝛽𝑆 􏷟.􏷟􏷟􏷠 s−􏷪 𝐿 burst size 􏷠􏷟 -

Table B.7: Values of the reaction rates
used in the deterministic version of
the ligand model simulations. For
these values of the parameters the mean
duration of pulses is 􏷠.􏷡 h, and the mean
frequency is 􏷟.􏷢 h−􏷪 (Figure 3.16). In order
to perform the competition experiment
in silico (Figure 3.18B) the following
parameters were modified: 𝑘(􏷪)𝑟− =􏷟.􏷟􏷟􏷤 s−􏷪,
𝑘(􏷰)𝑟− =􏷤 × 􏷠􏷟−􏷱 s−􏷪, 𝛽(􏷰)𝑆 ∈ [􏷟.􏷟􏷟􏷟􏷢, 􏷟.􏷟􏷟􏷟􏷢􏷤]
s−􏷪, 𝑘(􏷰)􏷬 = 𝑘(􏷰)𝑙+ = 𝑘(􏷰)𝑙− = 𝑘(􏷰)𝑎+ = 𝑘(􏷰)𝑎− = 𝑘(􏷰)􏷪􏷬 =
𝑘(􏷰)􏷪􏷭 = 𝑘

(􏷰)
􏷪􏷮 = 𝑘

(􏷰)
􏷫􏷩 = 􏷟.

The sequence of a sigma factor activity pulse in the ligand model is
illustrated in Figure B.8. A burst in ligand concentration (motivated by
a gamma distributed Ornstein-Uhlenbeck process) causes sequestration
of the anti-sigma factor by the formation of the inactive complex ligand–
anti-sigma factor (𝐼). This reduces the amount of free anti-sigma factor,
which allows the dissociation of the inactive complex sigma–anti-sigma
(𝑋). This results in an increase of free sigma factor that rapidly recruits
RNAP in order to form the holoenzyme sigma-RNAP (𝐶) active com-
plex. The activated transcription of the sigma factor and its cognate
anti-sigma factor due to 𝐶 activity results in an increase of the complex
sigma–anti-sigma, and eventually the pulse in 𝐶 is terminated as the acti-
vated production of the anti-sigma factor is slightly larger than the one of
the sigma factor.
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Figure B.8: Time traces for all species
for the ligand model. Focusing on a
few typical pulses in 𝐶􏷪, we plot here
the behavior of the different species in
the model. For the simulation shown in
Figure 3.16, here we plot the time traces
for the ligand (𝐿􏷪), the free sigma factor
(𝑆􏷪), its cognate anti-sigma factor (𝐴􏷪),
the complex 𝑆􏷪 − 𝐴􏷪 (𝑋􏷪), the complex
𝐿􏷪 − 𝐴􏷪 (𝐼􏷪), the available RNAP (𝑅) and
the holoenzyme 𝑆􏷪 − 𝑅 (𝐶􏷪), all for sigma
factor 􏷠. Gray dashed lines mark the time
at which 𝐶􏷪 pulses occur. Note that for
the parameter set considered RNAP is
saturated. See Table B.7 for parameter
values.
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B.3.3 Limit cycle model

Par. Value Units Par. Value Units

𝑘􏷫 􏷧.􏷦 × 􏷠􏷟−􏷮 nm s−􏷪 𝑘𝑡 􏷟.􏷟􏷟􏷦􏷦 s−􏷪

𝑘􏷬 􏷤 × 􏷠􏷟−􏷮 nm s−􏷪 𝑘𝑚 􏷡.􏷨􏷣 × 􏷠􏷟−􏷭 s−􏷪

𝑘𝑙+ 􏷟.􏷡􏷢􏷤􏷢 nm−􏷪 s−􏷪 𝛽𝑆 􏷟.􏷟􏷡􏷢􏷧 s−􏷪

𝑘𝑎+ 􏷟.􏷟􏷡􏷟􏷢 nm−􏷪 s−􏷪 𝛽𝐴 􏷟.􏷠􏷤􏷨􏷟 s−􏷪

𝑘𝑎− 􏷟.􏷟􏷟􏷠􏷢 s−􏷪 𝛿 􏷠 × 􏷠􏷟−􏷭 s−􏷪

𝑘𝑟+ 􏷢.􏷨􏷦 × 􏷠􏷟−􏷯 nm−􏷪 s−􏷪 𝛿𝑚 􏷟.􏷟􏷟􏷠􏷤 s−􏷪

𝑘𝑟− 􏷟.􏷟􏷟􏷠􏷣 s−􏷪 𝐿𝑇 􏷤􏷢􏷣.􏷠􏷟􏷧􏷦 nm
𝑘𝑙𝑥 􏷠.􏷡􏷧􏷟􏷦 × 􏷠􏷟−􏷭 nm−􏷪 s−􏷪 𝑅𝑇 􏷠􏷨.􏷨􏷡􏷡􏷢 nm

Table B.8: Reaction rates values for the
limit cycle simulations.

B.4 Predicted distribution of the number of sigma factors simultaneously
active

In order to compute the predicted distribution of the number of sigma
factors simultaneously active from experimentally determined pulse statis-
tics shown in Figure 3.18, we considered the following. With 𝜎𝑖 (where
𝑖 = 1,… , 7) denoting the 7 sigma factors studied experimentally, each of
them with its own frequency (𝑓𝑖) and duration (𝜏𝑖), the probability that a
given 𝜎𝑖 is active at any instant is given by 𝑝𝑖 = 𝑓𝑖𝜏𝑖 assuming pulses are
generated stochastically.

Assuming now that sigma factors pulses occur independently of each
other, it is possible to have up to 7 sigma factors pulsing simultaneously.
If we consider the probability that 𝜎􏷠, and only 𝜎􏷠, is pulsing at some
point in time, this is given by 𝑝􏷠∏􏷦

𝑗=􏷡(1 − 𝑝𝑗). Hence, summing this quan-
tity over all sigma factors, we can find the probability that exactly one
sigma is pulsing at some point in time, regardless of the sigma identity:

􏷦
􏾜
𝑖=􏷠
􏿵𝑝𝑖

􏷦
􏾟
𝑗=􏷠
𝑗≠𝑖

(1 − 𝑝𝑗)􏿸 (B.1)

This expression is the one used to calculate the distribution shown in
Figure 3.18B.





C
Materials and Methods for Chapter 4

In this Appendix we have included a compilation of supporting informa-
tion for the work exposed in Chapter 4.

C.1 Plasmid and strain construction

E. coli strain DH5𝛼 was used to clone all plasmids using standard
molecular cloning techniques. Plasmid pMiL001 was constructed de novo
by assembling the origin of replication SC101 and the gene for spectino-
mycin resistance. Plasmid pMiL101 was constructed cloning the con-
struct 𝑃𝑙𝑎𝑐/𝑎𝑟𝑎-hda-dnaN-T1 into pMiL001 (T1 being the transcriptional
terminator used in the synthetic oscillator) (see Figure C.1). 𝑃𝑙𝑎𝑐/𝑎𝑟𝑎 and
T1 fragments were amplified by PCR from the original synthetic oscil-
lator strain (JS011). In turn, hda and dnaN genes were amplified from
the wild-type E. coli MG1655 genome. Both plasmids were verified by
sequencing.

SpectR

SC101

pMiL001

Plac/ara

hda

dnaN

T1SpectR

SC101

pMiL101

Figure C.1: Plasmids diagrams. Plasmid
pMiL001 contains only the origin of
replication (SC101) and the antibiotic
resistance gene (spectinomycin). It was
transformed into the synthetic oscillator
“wild-type” strain (JS011) to conform the
unidirectional strain. Plasmid pMiL101
contains the origin of replication (SC101),
the antibiotic resistance gene (spectino-
mycin), and the construct 𝑃𝑙𝑎𝑐/𝑎𝑟𝑎-hda-
dnaN-T1 (responsible for back-coupling
the synthetic oscillator to chromosomal
replication). pMiL101 was transformed
into JS011 to form the bidirectional strain.

The unidirectional strain was constructed transforming the plasmid
pMiL001 into the original synthetic oscillator strain JS011 (kind gift from
Prof. J. Hasty, University of California San Diego). The bidirectional
strain was constructed transforming the plasmid pMiL101 into JS011.

C.2 Growth conditions for microscopy

Cells were grown overnight from glycerol stocks at 37∘C in Luria
Broth (Miller’s modification) (LB) with appropriate antibiotics for selec-
tion (added to the following final concentrations: 100 𝜇g/ml ampicilin,
50 𝜇g/ml kanamycin, and 50 𝜇g/ml spectinomycin), then diluted back



98 coupled dynamical processes in bacter ia

in LB with the corresponding antibiotics and inductors: 0.7% (w/v)
arabinose and 2 mm IPTG, to a final OD􏷥􏷟􏷟 = 0.02. This culture was
grown at 37∘C until OD􏷥􏷟􏷟 = 0.2. After this, cells were diluted 1:5 in
A minimal medium1 with inductors and 0.4% (w/v) glucose. 50 𝜇l of 1 Composition of the A minimal medium

per 􏷠􏷟􏷟ml: 􏷡􏷟ml A Salts (􏷤x), 􏷧􏷟ml
sterile deionized water, 􏷠􏷟􏷟 𝜇l MgSO􏷭⋅ 􏷦
H􏷫O (1 m), 􏷡􏷤􏷟 𝜇l Glycerol (􏷧􏷟%), and
􏷠ml CasaAa (􏷠􏷟%).
A Salts (􏷤x) composition per 􏷠􏷟􏷟ml:

􏷟.􏷟􏷣􏷥 g (NH􏷭)􏷫SO􏷭, 􏷡.􏷡􏷤 g KH􏷫PO􏷭,
􏷤.􏷡􏷤 g K􏷫HPO􏷭, 􏷟.􏷡􏷤 g sodium citrate
tribasic ⋅ 􏷡H􏷫O, and 􏷠􏷟􏷟ml sterile
deionized water ([Sambrook et al., 1989]).

this diluted culture were spotted onto a low-melt agarose pad made of
A minimal medium 2% (w/v) and containing the inductors and 0.4%
(w/v) glucose. Cells were grown in the pad at 37∘C for 2 h and then were
vortexed in 10ml of A minimal medium. 2.25 𝜇l of the resulting “su-
pernatant” were spotted onto a freshly prepared A minimal medium 2%
(w/v) low melt agarose pad containing the inductors and 0.4% (w/v) glu-
cose that was placed afterwards into a coverslip-bottom Willco dish for
imaging.

All data were acquired imaging E. coli microcolonies in the pads at
37∘C with a Nikon TE2000 inverted microscope and a motorized stage
(Prior). Images were acquired every 5min with a Hamamatsu ORCA-
ER camera. Imaging time was optimized to prevent phototoxicity [Süel
et al., 2006] and photobleaching [Herman et al., 2014]. Between days,
relative lamp intensity levels were monitored by taking an image of fluo-
rescent beads and measuring their mean intensity. Exposure times were
then adjusted to keep emission light levels constant between experiments.
The NIS-Elements software was used to automate image acquisition and
microscope control. Data analysis of time-lapse movies was performed by
custom software developed with MATLAB using the image processing
and statistics toolboxes (MathWorks).

C.3 Modelling the synthetic oscillator

Stricker et al. proposed a detailed molecular model for their syn-
thetic oscillator consisting in 73 reactions, 27 species and 27 parameters.
The authors explicitly considered intermediate processes such as dimer-
ization of AraC and tetramerization of LacI [Stricker et al., 2008]. Due
to the difficulty to work with such a complex model, we propose a low-
dimensional model based on minimal mechanisms, inspired by the model
from Rué and Garcia-Ojalvo [2011],

𝑑𝐴
𝑑𝑡 = 𝛼􏷠 +

𝛽􏷠𝐴𝑛
𝐾𝑛 + 𝐴𝑛 + (𝛾𝑅)𝑝 − 𝛿􏷠𝐴 (C.1a)

𝑑𝑅
𝑑𝑡 = 𝛼􏷡 +

𝛽􏷡𝐴𝑛
𝐾𝑛 + 𝐴𝑛 + (𝛾𝑅)𝑝 − 𝛿􏷡𝑅 (C.1b)

where 𝐴 is the activator (AraC dimers) and 𝑅 the repressor (LacI tetramers).
Given that all the synthetic oscillator elements are controlled by the same
promoter (𝑃𝑙𝑎𝑐/𝑎𝑟𝑎) 𝐾, 𝑛, 𝑝 and 𝛾 are the same for both species. A cartoon
showing model interactions is shown in Figure C.2. These ODEs are
part of the coupled oscillator model (see Eq.(4.1)a-b).

A

R

Figure C.2: Diagram of interactions
for the synthetic oscillator reduced
model. The activator (𝐴) promotes its
own production and the repressor (𝑅)
one. Whereas the repressor inhibits 𝐴
expression and its own.This system presents a limit cycle for the parameter values shown in
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Table C.1. Note that we assume a non zero basal production because the
limit cycle disappears when 𝛼􏷠 = 0. In this regard, experiments show that
when the synthetic oscillator is not induced part of the population turns
on the reporter’s expression, thus demonstrating that that the hybrid
promoter 𝑃𝑙𝑎𝑐/𝑎𝑟𝑎 is leaky.

Degradation rate of 𝑅 (𝛿􏷡) is one order of magnitude smaller than
the one of 𝐴 (𝛿􏷠) which can be explained by the following reason. AraC
and LacI are marked with a ssrA degradation tag. This tag is recognized
by ClpXP, a proteolytic machine composed by ClpX (responsible for
unfolding the protein to be degraded) and ClpP (a peptidase) [Baker
and Sauer, 2012]. This tag is also recognized by ClpAP, that analo-
gously to ClpPX is composed by a chaperon (ClpA) and also by the
ClpP peptidase [Sharma et al., 2005]. When ClpAP finds an homodimer
(which happens when the two protomers -the subunits that constitute
an oligomeric protein- have the ssrA degradation tag, as it is our case) the
most probable scenario is that ClpAP degrades the two subunits at the
same time [Sharma et al., 2005]. It is also probable that ClpXP behaves in
the same way. However, there is no evidence in the literature that ClpAP
and/or ClpXP may degrade a whole tetrameric complex at once. Studies
measuring the size of the pore that allows the substrate to reach the active
site of ClpP show that this pore would be big enough to simultaneously
accommodate between two and three polypeptidic chains [Burton et al.,
2013]. In addition, kinetic experiments with ClpXP machinery indicate
that the denaturalization process determines the degradation rate [Kim
et al., 2000]. Hence, it seems reasonable that LacI tetramers (𝑅) degrade
slower than AraC dimers (𝐴) 2.

2 Consider a pool of a protein that as-
sembles in “homo-tetramers”. If we
denote by 𝐷 the dimeric conformation
and by 𝑇 the tetrameric form, assuming
degradation only occurs enzimatically we
have:

𝑑𝐷
𝑑𝑡 = −𝑘+𝐷

􏷫 + 𝛿𝑇𝐶𝑇 − 𝛿𝐷𝐶𝐷

𝑑𝑇
𝑑𝑡 = 𝑘+𝐷

􏷫 − 𝛿𝑇𝐶𝑇

where 𝐶 corresponds to the protease
concentration. If we assume that 𝐷 is in
quasi-steady state, we obtain

𝑑𝑇
𝑑𝑡 =

(𝛿𝐷𝐶)􏷫
􏷡𝑘+

− 𝛿𝐷𝐶􏷡𝑘+ √
(𝛿𝐷𝐶)􏷫 + 􏷣𝑘+𝛿𝑇𝐶𝑇

Given the assumption in 𝑘+, from
the previous expression we have that 𝑇
degrades as ∼ 𝑇􏷪/􏷫. Since in the model
Eq.(C.1) we consider only linear degra-
dations, we take this fact into account
by assuming a smaller degradation rate
for 𝑅 (LacI tetramers) compared to 𝐴
degradation rate (AraC dimers).

The Hill coefficients in the synthetic oscillator model, defined by
parameters 𝑛 and 𝑝 are both equal to 2 and account for changes in DNA
conformation. Regarding 𝑛, regulation of 𝑃𝑎𝑟𝑎 by AraC is implemented
in a positive form (in the presence of arabinose) and in a negative one (in
the absence of arabinose) involving DNA looping [Lobell and Schleif,
1990]. Regarding 𝑝, the repression of 𝑃𝑙𝑎𝑐 also relies in a DNA looping
conformation effect [Lewis et al., 1996].
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Par. Value Units Description
𝛼􏷪 􏷤.􏷠 nm s−􏷪 A basal production rate
𝛼􏷫 􏷟.􏷦􏷤 nm s−􏷪 R basal production rate
𝛼􏷬 􏷟.􏷤 nm s−􏷪 B basal production rate
𝛽􏷪 􏷡􏷡􏷤 nm s−􏷪 A maximum activated production

rate
𝛽􏷫 􏷢􏷟 nm s−􏷪 R maximum activated production

rate
𝛽􏷬 􏷠􏷟 nm s−􏷪 B maximum activated production

rate
𝛿􏷪 􏷟.􏷟􏷠􏷠 􏷤􏷧 s−􏷪 A degradation rate
𝛿􏷫 􏷟.􏷟􏷟􏷠 􏷠􏷤􏷧 s−􏷪 R degradation rate
𝛿􏷬 􏷟.􏷟􏷟􏷟 􏷡􏷤 s−􏷪 B degradation rate
𝛾 􏷡 - Ratio of activation to inhibition

threshold
𝐾 􏷤􏷟􏷟􏷟 nm Concentration of A for half-

maximal activation
𝑛 􏷡 - Activation cooperativity
𝑝 􏷡 - Inhibition cooperativity
𝐿􏷩 􏷟.􏷤 a.u. Initial cell length (when cell is

born)
𝜏 􏷢􏷟 min Characteristic time of the cell

growth integrate & fire model
𝐾𝑙 􏷠􏷟􏷟 nm Concentration of B for half-

maximal back-coupling
𝜖 􏷟.􏷦􏷤 - Replication threshold

Table C.1: Parameter values for the
coupled oscillator model.
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Figure C.3: Phase shift between the
two simulated oscillators for 𝜂 = 􏷟.􏷣.
Histogram of the timing of activator
concentration maximums within a
cell length cycle computed for 𝜂 =
􏷟.􏷣. This figure shows an intermediate
intensity back-coupling case (𝜂 = 􏷟.􏷣)
thus completing the results shown in
Figure 4.10.
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